Science.gov

Sample records for parallel logic programming

  1. MELD: A Logical Approach to Distributed and Parallel Programming

    DTIC Science & Technology

    2012-03-01

    extremely successful. A recent success story is the MapReduce programming model, which can be viewed as a somewhat more generalized version of the data...parallel model that is optimized for large scale clusters. In MapReduce , the data sharing and scheduling model is very simple: the computation for...models than MapReduce , but they do not allow the programmer to specify scheduling strategies or support formal proof techniques. Hellerstein’s group

  2. Logic programming

    SciTech Connect

    Lusk, E.L.; Overbeek, R.A.

    1989-01-01

    This book contains the proceedings of the 1989 North American Conference on Logic Programming. Included are the following papers: Expanding query power in constrain logic programming languages, Investigating the linguistics of DNA with definite clause grammars, An intermediate language to support prolog's unification.

  3. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  4. Parallel logic programming and parallel systems software and hardware. Progress report (Final), 1 April 1988-31 March 1989

    SciTech Connect

    Minker, J.

    1989-07-29

    This progress report summarizes work performed under AFOSR-88-0152 on parallel logic programming, problem solving, and deductive data bases. A parallel problem-solving system, PRISM (Parallel Inference System), that was implemented on McMOB was ported to the BBN Butterfly machine. Two versions of PRISM were developed and are operational on the Butterfly: a message-passing ring-structure system and a shared-memory system. Experimental testing of PRISM on McMOB continued, while experiments were also conducted on the Butterfly systems. Three enhancements were made and completed during the grant period. These are: a capability to handle negated queries and a capability to assert and retract statements. In addition to the above, work continued in the area of informative answers to queries in deductive data bases. A thesis was completed on the subject. An interpreter was developed and is running, that can take restricted natural language as input and can respond with a cooperative natural language output. In the area of parallel software development, the following were accomplished. Theoretical work on slicing/splicing was completed. Tools were provided for software development using artificial-intelligence techniques. AI software for massively parallel architectures was started.

  5. What is "the patient perspective" in patient engagement programs? Implicit logics and parallels to feminist theories.

    PubMed

    Rowland, Paula; McMillan, Sarah; McGillicuddy, Patti; Richards, Joy

    2017-01-01

    Public and patient involvement (PPI) in health care may refer to many different processes, ranging from participating in decision-making about one's own care to participating in health services research, health policy development, or organizational reforms. Across these many forms of public and patient involvement, the conceptual and theoretical underpinnings remain poorly articulated. Instead, most public and patient involvement programs rely on policy initiatives as their conceptual frameworks. This lack of conceptual clarity participates in dilemmas of program design, implementation, and evaluation. This study contributes to the development of theoretical understandings of public and patient involvement. In particular, we focus on the deployment of patient engagement programs within health service organizations. To develop a deeper understanding of the conceptual underpinnings of these programs, we examined the concept of "the patient perspective" as used by patient engagement practitioners and participants. Specifically, we focused on the way this phrase was used in the singular: "the" patient perspective or "the" patient voice. From qualitative analysis of interviews with 20 patient advisers and 6 staff members within a large urban health network in Canada, we argue that "the patient perspective" is referred to as a particular kind of situated knowledge, specifically an embodied knowledge of vulnerability. We draw parallels between this logic of patient perspective and the logic of early feminist theory, including the concepts of standpoint theory and strong objectivity. We suggest that champions of patient engagement may learn much from the way feminist theorists have constructed their arguments and addressed critique.

  6. Logic Programming: PROLOG.

    ERIC Educational Resources Information Center

    Lopez, Antonio M., Jr.

    1989-01-01

    Provides background material on logic programing and presents PROLOG as a high-level artificial intelligence programing language that borrows its basic constructs from logic. Suggests the language is one which will help the educator to achieve various goals, particularly the promotion of problem solving ability. (MVL)

  7. Logic via Computer Programming.

    ERIC Educational Resources Information Center

    Wieschenberg, Agnes A.

    This paper proposed the question "How do we teach logical thinking and sophisticated mathematics to unsophisticated college students?" One answer among many is through the writing of computer programs. The writing of computer algorithms is mathematical problem solving and logic in disguise and it may attract students who would otherwise stop…

  8. Parallel Logic Programming Architecture

    DTIC Science & Technology

    1990-04-01

    cooperation in distributed problem solving. IEEE Transactions on Systems, Man, and Cybernetics, SMC-l(1), 61-70. 33. Tanenbaum, A. S. (1988). Structured ... Computer Organization, Englewood Cliffs, NJ: Prentice-Hall. 34. Tanenbaum, A. S. (1988). Computer Networks. Englewood Cliffs, NJ: Prentice-Hall. 35

  9. Metacomputation and logic programming

    SciTech Connect

    Abramov, S.M.

    1992-03-01

    This paper presents an approach to logic programming based on implementing reverse semantics of programming languages. The interpreter that implements reverse semantics is called a Universal Resolving Algorithm (URA). Implementation and methods for application of a URA are based on methods of metacomputation. 12 refs., 2 figs.

  10. Conceptual Modeling via Logic Programming

    DTIC Science & Technology

    1990-01-01

    31 2.7 Approaches Other Than Logic Programming ............................. 33 2.7.1 L isp...Development Environment Needs ................................ 84 5.1.4 Alternative Logic Programming Implementation Approaches ......... 85 5.1.5 User... APPROACH and logic programming techniques. Section 2 The CMLP project consisted of three describes the task outputs. interrelated investi ations: 3

  11. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  12. Logic Programming in LISP.

    DTIC Science & Technology

    1981-01-01

    79/7, Imperial College, University of London. [Colmerauer 1973] Colmerauer, A., Un Systeme de Communication Homme - machine Kanoui, H., en Francais...any of the LOGIC interface functions (,-, THE, ALL, ANY, etc.) can be obtained by invoking the command (DOC fn), where "fn" is the name of the function...well as for output) illustrates one more way in which the LOGLISP programmer can fruitfully exploit the interface between LOGIC and LISP. GIVE is just a

  13. Program Theory Evaluation: Logic Analysis

    ERIC Educational Resources Information Center

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  14. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  15. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-09-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, a set of tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory at info.mcs.anl.gov.

  16. The Family of Concurrent Logic Programming Languages

    DTIC Science & Technology

    1989-05-01

    nature , such as the solution of large numerical problems. Following Harel [70], we call concurrent systems that are transforma- tional as a whole parallel...nondeterminitic finite mtompla, and logic programs. Reactive systems are also nondeter- ministic. However, the nature of nondetaminism in the former is very...0l) Im(EXIXs],S) fail Figure 4: Examples of input matching of goals with clause heads The dataflow nature of matching is evident: an "instruction

  17. Logic programming and metadata specifications

    NASA Technical Reports Server (NTRS)

    Lopez, Antonio M., Jr.; Saacks, Marguerite E.

    1992-01-01

    Artificial intelligence (AI) ideas and techniques are critical to the development of intelligent information systems that will be used to collect, manipulate, and retrieve the vast amounts of space data produced by 'Missions to Planet Earth.' Natural language processing, inference, and expert systems are at the core of this space application of AI. This paper presents logic programming as an AI tool that can support inference (the ability to draw conclusions from a set of complicated and interrelated facts). It reports on the use of logic programming in the study of metadata specifications for a small problem domain of airborne sensors, and the dataset characteristics and pointers that are needed for data access.

  18. Language constructs for modular parallel programs

    SciTech Connect

    Foster, I.

    1996-03-01

    We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

  19. Genetic Parallel Programming: design and implementation.

    PubMed

    Cheang, Sin Man; Leung, Kwong Sak; Lee, Kin Hong

    2006-01-01

    This paper presents a novel Genetic Parallel Programming (GPP) paradigm for evolving parallel programs running on a Multi-Arithmetic-Logic-Unit (Multi-ALU) Processor (MAP). The MAP is a Multiple Instruction-streams, Multiple Data-streams (MIMD), general-purpose register machine that can be implemented on modern Very Large-Scale Integrated Circuits (VLSIs) in order to evaluate genetic programs at high speed. For human programmers, writing parallel programs is more difficult than writing sequential programs. However, experimental results show that GPP evolves parallel programs with less computational effort than that of their sequential counterparts. It creates a new approach to evolving a feasible problem solution in parallel program form and then serializes it into a sequential program if required. The effectiveness and efficiency of GPP are investigated using a suite of 14 well-studied benchmark problems. Experimental results show that GPP speeds up evolution substantially.

  20. Logic Programming and Knowledge Maintenance.

    DTIC Science & Technology

    1987-08-13

    the literature , and became convinced that many of the advantages of frames and semantic nets can be captured in logic programming systems by a...consists of: needs(john,money). married_to(john,mary). loves(john,mary). (mary is the dead victim in this thriller .) The victim’s sister sara consists of

  1. Program Logics for Homogeneous Meta-programming

    NASA Astrophysics Data System (ADS)

    Berger, Martin; Tratt, Laurence

    A meta-program is a program that generates or manipulates another program; in homogeneous meta-programming, a program may generate new parts of, or manipulate, itself. Meta-programming has been used extensively since macros were introduced to Lisp, yet we have little idea how formally to reason about meta-programs. This paper provides the first program logics for homogeneous meta-programming - using a variant of MiniML_e^{square} by Davies and Pfenning as underlying meta-programming language. We show the applicability of our approach by reasoning about example meta-programs from the literature. We also demonstrate that our logics are relatively complete in the sense of Cook, enable the inductive derivation of characteristic formulae, and exactly capture the observational properties induced by the operational semantics.

  2. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  3. Parallel Programming in the Age of Ubiquitous Parallelism

    NASA Astrophysics Data System (ADS)

    Pingali, Keshav

    2014-04-01

    Multicore and manycore processors are now ubiquitous, but parallel programming remains as difficult as it was 30-40 years ago. During this time, our community has explored many promising approaches including functional and dataflow languages, logic programming, and automatic parallelization using program analysis and restructuring, but none of these approaches has succeeded except in a few niche application areas. In this talk, I will argue that these problems arise largely from the computation-centric foundations and abstractions that we currently use to think about parallelism. In their place, I will propose a novel data-centric foundation for parallel programming called the operator formulation in which algorithms are described in terms of actions on data. The operator formulation shows that a generalized form of data-parallelism called amorphous data-parallelism is ubiquitous even in complex, irregular graph applications such as mesh generation/refinement/partitioning and SAT solvers. Regular algorithms emerge as a special case of irregular ones, and many application-specific optimization techniques can be generalized to a broader context. The operator formulation also leads to a structural analysis of algorithms called TAO-analysis that provides implementation guidelines for exploiting parallelism efficiently. Finally, I will describe a system called Galois based on these ideas for exploiting amorphous data-parallelism on multicores and GPUs

  4. Parsing with logical variables (logic-based programming systems)

    SciTech Connect

    Finin, T.W.; Stone Palmer, M.

    1983-01-01

    Logic based programming systems have enjoyed an increasing popularity in applied AI work in the last few years. One of the contributions to computational linguistics made by the logic programming paradigm has been the definite clause grammar. In comparing DCGS with previous parsing mechanisms such as ATNS, certain clear advantages are seen. The authors feel that the most important of these advantages are due to the use of logical variables with unification as the fundamental operation on them. To illustrate the power of the logical variable, they have implemented an experimental atn system which treats atn registers as logical variables and provides a unification operation over them. They aim to simultaneously encourage the use of the powerful mechanisms available in DCGS and demonstrate that some of these techniques can be captured without reference to a resolution theorem prover. 14 references.

  5. Automatic logic synthesis for parallel alternating latches clocking schemes

    NASA Astrophysics Data System (ADS)

    Guerrero, D.; Bellido, M.; Juan, J.; Millan, A.; Ruiz, P.; Ostua, E.; Viejo, J.

    2007-05-01

    This paper proposes a VHDL coding technique that allows for the automatic synthesis of digital circuits using the so called Parallel Alternating Latches Clocking Schemes (PALACS). The proposed method greatly improves the applicability of PALACS and its benefits. This technique is verified through design examples in three different CMOS processes and using logic level simulation, with successful results in all the cases.

  6. Tolerant (parallel) Programming

    NASA Technical Reports Server (NTRS)

    DiNucci, David C.; Bailey, David H. (Technical Monitor)

    1997-01-01

    In order to be truly portable, a program must be tolerant of a wide range of development and execution environments, and a parallel program is just one which must be tolerant of a very wide range. This paper first defines the term "tolerant programming", then describes many layers of tools to accomplish it. The primary focus is on F-Nets, a formal model for expressing computation as a folded partial-ordering of operations, thereby providing an architecture-independent expression of tolerant parallel algorithms. For implementing F-Nets, Cooperative Data Sharing (CDS) is a subroutine package for implementing communication efficiently in a large number of environments (e.g. shared memory and message passing). Software Cabling (SC), a very-high-level graphical programming language for building large F-Nets, possesses many of the features normally expected from today's computer languages (e.g. data abstraction, array operations). Finally, L2(sup 3) is a CASE tool which facilitates the construction, compilation, execution, and debugging of SC programs.

  7. Procedural and Logic Programming: A Comparison.

    ERIC Educational Resources Information Center

    Watkins, Will; And Others

    1988-01-01

    Examines the similarities and fundamental differences between procedural programing and logic programing by comparing LogoWriter and PROLOG. Suggests that PROLOG may be a good first programing language for students to learn. (MVL)

  8. Parallel processor engine model program

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1984-01-01

    The Parallel Processor Engine Model Program is a generalized engineering tool intended to aid in the design of parallel processing real-time simulations of turbofan engines. It is written in the FORTRAN programming language and executes as a subset of the SOAPP simulation system. Input/output and execution control are provided by SOAPP; however, the analysis, emulation and simulation functions are completely self-contained. A framework in which a wide variety of parallel processing architectures could be evaluated and tools with which the parallel implementation of a real-time simulation technique could be assessed are provided.

  9. Evolutionary program induction directed by logic grammars

    PubMed

    Wong; Leung

    1997-01-01

    Program induction generates a computer program that can produce the desired behavior for a given set of situations. Two of the approaches in program induction are inductive logic programming (ILP) and genetic programming (GP). Since their formalisms are so different, these two approaches cannot be integrated easily, although they share many common goals and functionalities. A unification will greatly enhance their problem-solving power. Moreover, they are restricted in the computer languages in which programs can be induced. In this paper, we present a flexible system called LOGENPRO (The LOgic gramar-based GENetic PROgramming system) that uses some of the techniques of GP and ILP. It is based on a formalism of logic grammars. The system applies logic grammars to control the evolution of programs in various programming languages and represent context-sensitive information and domain-dependent knowledge. Experiments have been performed to demonstrate that LOGENPRO can emulate GP and GP with automatically defined functions (ADFs). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The experiments show that LOGENPRO has superior performance to that of GP and GP with ADFs when more domain-dependent knowledge is available. We have applied LOGENPRO to evolve general recursive functions for the even-n-parity problem from noisy training examples. A number of experiments have been performed to determine the impact of domain-specific knowledge and noise in training examples on the speed of learning.

  10. Parallel Transport Quantum Logic Gates with Trapped Ions

    NASA Astrophysics Data System (ADS)

    de Clercq, Ludwig E.; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P.

    2016-02-01

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity.

  11. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  12. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  13. Molecular implementation of simple logic programs

    NASA Astrophysics Data System (ADS)

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-11-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  14. Verification and Planning Based on Coinductive Logic Programming

    NASA Technical Reports Server (NTRS)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution

  15. Efficient dynamic optimization of logic programs

    NASA Technical Reports Server (NTRS)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  16. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

  17. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  18. Information hiding in parallel programs

    SciTech Connect

    Foster, I.

    1992-01-30

    A fundamental principle in program design is to isolate difficult or changeable design decisions. Application of this principle to parallel programs requires identification of decisions that are difficult or subject to change, and the development of techniques for hiding these decisions. We experiment with three complex applications, and identify mapping, communication, and scheduling as areas in which decisions are particularly problematic. We develop computational abstractions that hide such decisions, and show that these abstractions can be used to develop elegant solutions to programming problems. In particular, they allow us to encode common structures, such as transforms, reductions, and meshes, as software cells and templates that can reused in different applications. An important characteristic of these structures is that they do not incorporate mapping, communication, or scheduling decisions: these aspects of the design are specified separately, when composing existing structures to form applications. This separation of concerns allows the same cells and templates to be reused in different contexts.

  19. Global Arrays Parallel Programming Toolkit

    SciTech Connect

    Nieplocha, Jaroslaw; Krishnan, Manoj Kumar; Palmer, Bruce J.; Tipparaju, Vinod; Harrison, Robert J.; Chavarría-Miranda, Daniel

    2011-01-01

    The two predominant classes of programming models for parallel computing are distributed memory and shared memory. Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory subsystems in modern computers this characteristic can have a negative impact on performance and scalability. Careful code restructuring to increase data reuse and replacing fine grain load/stores with block access to shared data can address the problem and yield performance for shared memory that is competitive with message-passing. However, this performance comes at the cost of compromising the ease of use that the shared memory model advertises. Distributed memory models, such as message-passing or one-sided communication, offer performance and scalability but they are difficult to program. The Global Arrays toolkit attempts to offer the best features of both models. It implements a shared-memory programming model in which data locality is managed by the programmer. This management is achieved by calls to functions that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that remote data is slower to access than local data and allows data locality to be specified by the programmer and hence managed. GA is related to the global address space languages such as UPC, Titanium, and, to a lesser extent, Co-Array Fortran. In addition, by providing a set of data-parallel operations, GA is also related to data-parallel languages such as HPF, ZPL, and Data Parallel C. However, the Global Array programming model is implemented as a library that works with most languages used for technical computing and does not rely on compiler technology for achieving

  20. Parallel Logic Programming and Parallel Systems Software and Hardware

    DTIC Science & Technology

    1989-07-29

    MARYLAND DEPART~mT Of COMMIR SCMNCI Cot.LLo PA K. MYLAA3 20742 -O iRT , 9i 3 0 9 Telephone (301) 454-6119 July 28, 1989 Carey M. Fountain , Major, USAF...Department of the Air Force Air Force Office of Scientific Research Boiling Air Force Base Washington, DC 20332-6448 Dear Major Fountain : Enclosed is...K. " SODA : The Software Designer’s Aide" Technical Report (in preparation), Computer Science Department, University of Maryland, June, 1986. (27

  1. Debugging Parallel Programs with Instant Replay.

    DTIC Science & Technology

    1986-09-01

    produce the same results. In this paper we present a general solution for reproducing the execution behavior of parallel programs, termed Instant Replay...Instant Replay on the BBN Butterfly Parallel Processor, and discuss how it can be incorporated into the debugging cycle for parallel programs. This...program often do not produce the same results. In this paper we present a general solution for reproducing the execution behavior of parallel

  2. Improvements to the adaptive maneuvering logic program

    NASA Technical Reports Server (NTRS)

    Burgin, George H.

    1986-01-01

    The Adaptive Maneuvering Logic (AML) computer program simulates close-in, one-on-one air-to-air combat between two fighter aircraft. Three important improvements are described. First, the previously available versions of AML were examined for their suitability as a baseline program. The selected program was then revised to eliminate some programming bugs which were uncovered over the years. A listing of this baseline program is included. Second, the equations governing the motion of the aircraft were completely revised. This resulted in a model with substantially higher fidelity than the original equations of motion provided. It also completely eliminated the over-the-top problem, which occurred in the older versions when the AML-driven aircraft attempted a vertical or near vertical loop. Third, the requirements for a versatile generic, yet realistic, aircraft model were studied and implemented in the program. The report contains detailed tables which make the generic aircraft to be either a modern, high performance aircraft, an older high performance aircraft, or a previous generation jet fighter.

  3. A parallel programming environment supporting multiple data-parallel modules

    SciTech Connect

    Seevers, B.K.; Quinn, M.J. ); Hatcher, P.J. )

    1992-10-01

    We describe a system that allows programmers to take advantage of both control and data parallelism through multiple intercommunicating data-parallel modules. This programming environment extends C-type stream I/O to include intermodule communication channels. The progammer writes each module as a separate data-parallel program, then develops a channel linker specification describing how to connect the modules together. A channel linker we have developed loads the separate modules on the parallel machine and binds the communication channels together as specified. We present performance data that demonstrates a mixed control- and data-parallel solution can yield better performance than a strictly data-parallel solution. The system described currently runs on the Intel iWarp multicomputer.

  4. Designing a Software Tool for Fuzzy Logic Programming

    NASA Astrophysics Data System (ADS)

    Abietar, José M.; Morcillo, Pedro J.; Moreno, Ginés

    2007-12-01

    Fuzzy Logic Programming is an interesting and still growing research area that agglutinates the efforts for introducing fuzzy logic into logic programming (LP), in order to incorporate more expressive resources on such languages for dealing with uncertainty and approximated reasoning. The multi-adjoint logic programming approach is a recent and extremely flexible fuzzy logic paradigm for which, unfortunately, we have not found practical tools implemented so far. In this work, we describe a prototype system which is able to directly translate fuzzy logic programs into Prolog code in order to safely execute these residual programs inside any standard Prolog interpreter in a completely transparent way for the final user. We think that the development of such fuzzy languages and programing tools might play an important role in the design of advanced software applications for computational physics, chemistry, mathematics, medicine, industrial control and so on.

  5. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  6. Parallel programming in Split-C

    SciTech Connect

    Culler, D.E.; Dusseau, A.; Goldstein, S.C.; Krishnamurthy, A.; Lumetta, S.; Eicken, T. von; Yelick, K.

    1993-12-31

    The authors introduce the Split-C language, a parallel extension of C intended for high performance programming on distributed memory multiprocessors, and demonstrate the use of the language in optimizing parallel programs. Split-C provides a global address space with a clear concept of locality and unusual assignment operators. These are used as tools to reduce the frequency and cost of remote access. The language allows a mixture of shared memory, message passing, and data parallel programming styles while providing efficient access to the underlying machine. They demonstrate the basic language concepts using regular and irregular parallel programs and give performance results for various stages of program optimization.

  7. Shared-memory parallel programming in C++

    SciTech Connect

    Beck, B. )

    1990-07-01

    This paper discusses how researchers have produced a set of portable parallel-programming constructs for C, implemented in M4 macros. These parallel-programming macros are available under the name Parmacs. The Parmacs macros let one write parallel C programs for shared-memory, distributed-memory, and mixed-memory (shared and distributed) systems. They have been implemented on several machines. Because Parmacs offers useful parallel-programming features, the author has considered how these problems might be overcome or avoided. The author thought that using C++, rather than C, would address these problems adequately, and describes the C++ features exploited. The work described addresses shared-memory constructs.

  8. A Framework for Incorporating Abstraction Mechanisms into the Logic Programming Paradigm.

    DTIC Science & Technology

    1987-08-01

    flexibility is obtained. Modes have also been used to plan the evaluation of queries. [ Dembinski 85] de- scribes a scheme that exploits bi-valued mode... Dembinski 85] P. Dembinski and J. Maluszynski. And-parallelism with Intelligent Backtracking for Annotated Logic Programs. In Proceedings of the 1985

  9. IOPA: I/O-aware parallelism adaption for parallel programs

    PubMed Central

    Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei

    2017-01-01

    With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads. PMID:28278236

  10. Parallel programming with PCN. Revision 1

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  11. Prototyping Parallel and Distributed Programs in Proteus

    DTIC Science & Technology

    1990-10-01

    Cole90, Gibb89]. " Highly-parallel processors - Applications for highly-parallel machines such as the CM- 2 or the iPSC are programmed using data...Programming, (Prentice-Hall, Englewood Cliffs, NJ) 1990. [Gibb89] Gibbons , P.B., "A more practical PRAM model", in: Proceedings of the First ACM

  12. A Programming Environment for Parallel Vision Algorithms

    DTIC Science & Technology

    1990-04-11

    linear parallel speedup. Many appli- cations for the image processing pipeline (including tracking, color histograrmning, feature detection, frame-rate...pure logic. For example, a language based on algebra of real numbers might treat constraints such as "X = Y + Z", "X = Y x Z", and so on as primitives. A...however, time for a more usable version of the language. A front end processor is therefore being written to parse expressions written in an algebraic

  13. Research on teacher education programs: logic model approach.

    PubMed

    Newton, Xiaoxia A; Poon, Rebecca C; Nunes, Nicole L; Stone, Elisa M

    2013-02-01

    Teacher education programs in the United States face increasing pressure to demonstrate their effectiveness through pupils' learning gains in classrooms where program graduates teach. The link between teacher candidates' learning in teacher education programs and pupils' learning in K-12 classrooms implicit in the policy discourse suggests a one-to-one correspondence. However, the logical steps leading from what teacher candidates have learned in their programs to what they are doing in classrooms that may contribute to their pupils' learning are anything but straightforward. In this paper, we argue that the logic model approach from scholarship on evaluation can enhance research on teacher education by making explicit the logical links between program processes and intended outcomes. We demonstrate the usefulness of the logic model approach through our own work on designing a longitudinal study that focuses on examining the process and impact of an undergraduate mathematics and science teacher education program.

  14. Parallel programming of industrial applications

    SciTech Connect

    Heroux, M; Koniges, A; Simon, H

    1998-07-21

    In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from these applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).

  15. Towards Distributed Memory Parallel Program Analysis

    SciTech Connect

    Quinlan, D; Barany, G; Panas, T

    2008-06-17

    This paper presents a parallel attribute evaluation for distributed memory parallel computer architectures where previously only shared memory parallel support for this technique has been developed. Attribute evaluation is a part of how attribute grammars are used for program analysis within modern compilers. Within this work, we have extended ROSE, a open compiler infrastructure, with a distributed memory parallel attribute evaluation mechanism to support user defined global program analysis required for some forms of security analysis which can not be addressed by a file by file view of large scale applications. As a result, user defined security analyses may now run in parallel without the user having to specify the way data is communicated between processors. The automation of communication enables an extensible open-source parallel program analysis infrastructure.

  16. The Application of Logic Programming to Communication Education.

    ERIC Educational Resources Information Center

    Sanford, David L.

    Recommending that communication students be required to learn to use computers not merely as number crunchers, word processors, data bases, and graphics generators, but also as logical inference makers, this paper examines the recently developed technology of logical programing in computer languages. It presents two syllogisms and shows how they…

  17. A survey of parallel programming tools

    NASA Technical Reports Server (NTRS)

    Cheng, Doreen Y.

    1991-01-01

    This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.

  18. Hybrid parallel programming with MPI and Unified Parallel C.

    SciTech Connect

    Dinan, J.; Balaji, P.; Lusk, E.; Sadayappan, P.; Thakur, R.; Mathematics and Computer Science; The Ohio State Univ.

    2010-01-01

    The Message Passing Interface (MPI) is one of the most widely used programming models for parallel computing. However, the amount of memory available to an MPI process is limited by the amount of local memory within a compute node. Partitioned Global Address Space (PGAS) models such as Unified Parallel C (UPC) are growing in popularity because of their ability to provide a shared global address space that spans the memories of multiple compute nodes. However, taking advantage of UPC can require a large recoding effort for existing parallel applications. In this paper, we explore a new hybrid parallel programming model that combines MPI and UPC. This model allows MPI programmers incremental access to a greater amount of memory, enabling memory-constrained MPI codes to process larger data sets. In addition, the hybrid model offers UPC programmers an opportunity to create static UPC groups that are connected over MPI. As we demonstrate, the use of such groups can significantly improve the scalability of locality-constrained UPC codes. This paper presents a detailed description of the hybrid model and demonstrates its effectiveness in two applications: a random access benchmark and the Barnes-Hut cosmological simulation. Experimental results indicate that the hybrid model can greatly enhance performance; using hybrid UPC groups that span two cluster nodes, RA performance increases by a factor of 1.33 and using groups that span four cluster nodes, Barnes-Hut experiences a twofold speedup at the expense of a 2% increase in code size.

  19. Logic Models for Program Design, Implementation, and Evaluation: Workshop Toolkit. REL 2015-057

    ERIC Educational Resources Information Center

    Shakman, Karen; Rodriguez, Sheila M.

    2015-01-01

    The Logic Model Workshop Toolkit is designed to help practitioners learn the purpose of logic models, the different elements of a logic model, and the appropriate steps for developing and using a logic model for program evaluation. Topics covered in the sessions include an overview of logic models, the elements of a logic model, an introduction to…

  20. Fuzzy logic program at SGS-Thomson

    NASA Astrophysics Data System (ADS)

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido

    1993-12-01

    From its conception by Professor Lotfi A. Zadeh in the early '60s, Fuzzy Logic has slowly won acceptance, first in the academic world, then in industry. Its success is mainly due to the different perspective with which problems are tackled. Thanks to Fuzzy Logic we have moved from a numerical/analytical description to a quantitative/qualitative one. It is important to stress that this different perspective not only allows us to solve analysis/control problems at lower costs but can also allow otherwise insoluble problems to be solved at acceptable costs. Of course, it must be stressed that Fuzzy Systems cannot match the computational precision of traditional techniques but seek, instead, to find acceptable solutions in shorter times. Recognizing the enormous importance of fuzzy logic in the markets of the future, SGS-THOMSON intends to produce devices belonging to a new class of machines: Fuzzy Computational Machines. For this purpose a major research project has been established considering the architectural aspects and system implications of fuzzy logic, the development of dedicated VLSI components and supporting software.

  1. Graphics-Based Parallel Programming Tools

    DTIC Science & Technology

    1992-01-01

    the Voyeur system [121. Voyeur is a more conventional tool for displaying application-specific visualizations of parallel programs [131 and it provides...Department. University of Massachusetts (June 1991). 13 David Socha and Mary L. Bailey and David Notkin. "’ Voyeur : Graphi- cal Views of Parallel Programs...Massachusetts (September 1991). Nandakumar Varadaraju. Interfacing Belvedere with Voyeur . Master’s The- sis. COINS Department. University of Massachusetts

  2. Identifying a largest logical plane from a plurality of logical planes formed of compute nodes of a subcommunicator in a parallel computer

    DOEpatents

    Davis, Kristan D.; Faraj, Daniel A.

    2016-07-12

    In a parallel computer, a largest logical plane from a plurality of logical planes formed of compute nodes of a subcommunicator may be identified by: identifying, by each compute node of the subcommunicator, all logical planes that include the compute node; calculating, by each compute node for each identified logical plane that includes the compute node, an area of the identified logical plane; initiating, by a root node of the subcommunicator, a gather operation; receiving, by the root node from each compute node of the subcommunicator, each node's calculated areas as contribution data to the gather operation; and identifying, by the root node in dependence upon the received calculated areas, a logical plane of the subcommunicator having the greatest area.

  3. Integrated Task and Data Parallel Programming

    NASA Technical Reports Server (NTRS)

    Grimshaw, A. S.

    1998-01-01

    This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated

  4. Heterogeneous parallel programming capability. Final report

    SciTech Connect

    Flower, J.W.; Kolawa, A.

    1990-11-30

    In creating a heterogeneous parallel processing capability we are really trying to approach three basic problems with current systems: (1) Supercomputer and parallel computer hardware architectures vary widely but need to support one or two fairly standard programming languages and programming models. A particularly important issue concerns the short life cycle of individual hardware designs; (2) Many algorithms require capabilities beyond the reach of single superconducters but could be approached by several machines working together; and (3) Performing a given task requires integration of a system that may contain many components in addition to the super or parallel computer itself. Peripherals from many different manufacturers must be incorporated.

  5. The PISCES 2 parallel programming environment

    NASA Technical Reports Server (NTRS)

    Pratt, Terrence W.

    1987-01-01

    PISCES 2 is a programming environment for scientific and engineering computations on MIMD parallel computers. It is currently implemented on a flexible FLEX/32 at NASA Langley, a 20 processor machine with both shared and local memories. The environment provides an extended Fortran for applications programming, a configuration environment for setting up a run on the parallel machine, and a run-time environment for monitoring and controlling program execution. This paper describes the overall design of the system and its implementation on the FLEX/32. Emphasis is placed on several novel aspects of the design: the use of a carefully defined virtual machine, programmer control of the mapping of virtual machine to actual hardware, forces for medium-granularity parallelism, and windows for parallel distribution of data. Some preliminary measurements of storage use are included.

  6. Parallel programming with PCN. Revision 2

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  7. Communication Graph Generator for Parallel Programs

    SciTech Connect

    2014-04-08

    Graphator is a collection of relatively simple sequential programs that generate communication graphs/matrices for commonly occurring patterns in parallel programs. Currently, there is support for five communication patterns: two-dimensional 4-point stencil, four-dimensional 8-point stencil, all-to-alls over sub-communicators, random near-neighbor communication, and near-neighbor communication.

  8. Graphics-Based Parallel Programming Tools

    DTIC Science & Technology

    1991-09-01

    more general context by implementing perspective views within the Voyeur system [121. Voyeur is a more conventional tool for displaying application...Varadaraju. Interfacing Belvedere with Voyeur . Master’s Thesis, COINS Department, University of Massachusetts (June 1991). 13 David Socha and Mary L...Bailey and David Notkin, " Voyeur : Graphi- cal Views of Parallel Programs", SIGPLAN Workshop on Parallel and Distributed Debugging, pp. 206-215 (1988). 14

  9. Voyeur: Graphical Views of Parallel Programs

    DTIC Science & Technology

    1988-04-01

    visualization, parallel debugging, moni torino 20. ABSTRACT (Continue ci reveree, eide if necessary and Identify by block number) ~9 Voyeur is a prototype...PAGE Dh- eaa,:~ Voyeur : Graphical Views of Parallel Programs David Socha, Mary Bailey and David Notkin Department of Computer Science, FR-35 University...of Washington Seattle, Washington 98195 TR 88-04-03 April 1988 Voyeur is a prototype system that facilitates the construction of application-specific

  10. Programming Programmable Logic Controller. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Lipsky, Kevin

    This training module on programming programmable logic controllers (PLC) is part of the memory structure and programming unit used in a packaging systems equipment control course. In the course, students assemble, install, maintain, and repair industrial machinery used in industry. The module contains description, objectives, content outline,…

  11. A Probability-Base Alerting Logic for Aircraft on Parallel Approach

    NASA Technical Reports Server (NTRS)

    Carpenter, Brenda D.; Kuchar, James K.

    1997-01-01

    This document discusses the development and evaluation of an airborne collision alerting logic for aircraft on closely-spaced approaches to parallel runways. A novel methodology is used when links alerts to collision probabilities: alerting thresholds are set such that when the probability of a collision exceeds an acceptable hazard level an alert is issued. The logic was designed to limit the hazard level to that estimated for the Precision Runway Monitoring system: one accident in every one thousand blunders which trigger alerts. When the aircraft were constrained to be coaltitude, evaluations of a two-dimensional version of the alerting logic show that the achieved hazard level is approximately one accident in every 250 blunders. Problematic scenarios have been identified and corrections to the logic can be made. The evaluations also show that over eighty percent of all unnecessary alerts were issued during scenarios in which the miss distance would have been less than 1000 ft, indicating that the alerts may have been justified. Also, no unnecessary alerts were generated during normal approaches.

  12. Simulating Billion-Task Parallel Programs

    SciTech Connect

    Perumalla, Kalyan S; Park, Alfred J

    2014-01-01

    In simulating large parallel systems, bottom-up approaches exercise detailed hardware models with effects from simplified software models or traces, whereas top-down approaches evaluate the timing and functionality of detailed software models over coarse hardware models. Here, we focus on the top-down approach and significantly advance the scale of the simulated parallel programs. Via the direct execution technique combined with parallel discrete event simulation, we stretch the limits of the top-down approach by simulating message passing interface (MPI) programs with millions of tasks. Using a timing-validated benchmark application, a proof-of-concept scaling level is achieved to over 0.22 billion virtual MPI processes on 216,000 cores of a Cray XT5 supercomputer, representing one of the largest direct execution simulations to date, combined with a multiplexing ratio of 1024 simulated tasks per real task.

  13. Parallel Volunteer Learning during Youth Programs

    ERIC Educational Resources Information Center

    Lesmeister, Marilyn K.; Green, Jeremy; Derby, Amy; Bothum, Candi

    2012-01-01

    Lack of time is a hindrance for volunteers to participate in educational opportunities, yet volunteer success in an organization is tied to the orientation and education they receive. Meeting diverse educational needs of volunteers can be a challenge for program managers. Scheduling a Volunteer Learning Track for chaperones that is parallel to a…

  14. Relative Debugging of Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Hood, Robert; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We describe a system that simplifies the process of debugging programs produced by computer-aided parallelization tools. The system uses relative debugging techniques to compare serial and parallel executions in order to show where the computations begin to differ. If the original serial code is correct, errors due to parallelization will be isolated by the comparison. One of the primary goals of the system is to minimize the effort required of the user. To that end, the debugging system uses information produced by the parallelization tool to drive the comparison process. In particular, the debugging system relies on the parallelization tool to provide information about where variables may have been modified and how arrays are distributed across multiple processes. User effort is also reduced through the use of dynamic instrumentation. This allows us to modify, the program execution with out changing the way the user builds the executable. The use of dynamic instrumentation also permits us to compare the executions in a fine-grained fashion and only involve the debugger when a difference has been detected. This reduces the overhead of executing instrumentation.

  15. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Hood, Robert; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We describe a system that simplifies the process of debugging programs produced by computer-aided parallelization tools. The system uses relative debugging techniques to compare serial and parallel executions in order to show where the computations begin to differ. If the original serial code is correct, errors due to parallelization will be isolated by the comparison. One of the primary goals of the system is to minimize the effort required of the user. To that end, the debugging system uses information produced by the parallelization tool to drive the comparison process. In particular the debugging system relies on the parallelization tool to provide information about where variables may have been modified and how arrays are distributed across multiple processes. User effort is also reduced through the use of dynamic instrumentation. This allows us to modify the program execution without changing the way the user builds the executable. The use of dynamic instrumentation also permits us to compare the executions in a fine-grained fashion and only involve the debugger when a difference has been detected. This reduces the overhead of executing instrumentation.

  16. Application of Logic Models in a Large Scientific Research Program

    ERIC Educational Resources Information Center

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  17. Concurrency-based approaches to parallel programming

    NASA Technical Reports Server (NTRS)

    Kale, L.V.; Chrisochoides, N.; Kohl, J.; Yelick, K.

    1995-01-01

    The inevitable transition to parallel programming can be facilitated by appropriate tools, including languages and libraries. After describing the needs of applications developers, this paper presents three specific approaches aimed at development of efficient and reusable parallel software for irregular and dynamic-structured problems. A salient feature of all three approaches in their exploitation of concurrency within a processor. Benefits of individual approaches such as these can be leveraged by an interoperability environment which permits modules written using different approaches to co-exist in single applications.

  18. Concurrency-based approaches to parallel programming

    SciTech Connect

    Kale, L.V.; Chrisochoides, N.; Kohl, J.

    1995-07-17

    The inevitable transition to parallel programming can be facilitated by appropriate tools, including languages and libraries. After describing the needs of applications developers, this paper presents three specific approaches aimed at development of efficient and reusable parallel software for irregular and dynamic-structured problems. A salient feature of all three approaches in their exploitation of concurrency within a processor. Benefits of individual approaches such as these can be leveraged by an interoperability environment which permits modules written using different approaches to co-exist in single applications.

  19. Mapping between parallel processor structures and programs

    NASA Technical Reports Server (NTRS)

    Ngai, Tin-Fook; Yan, Jerry C.; Mak, Victor W. K.; Flynn, Michael J.; Lundstrom, Stephen F.

    1987-01-01

    This paper reports some ongoing research efforts at Stanford in allocation of parallel processing resources. Both processor structures and program structures have their own characteristics. Resource allocation binds the two structures during program execution. The mapping problem determines what processor structure and program structure may be combined to obtain maximum speedup. Three approaches to this mapping problem are considered. Two important factors, granularity and interaction delay, are also considered. A new hierarchical approach to structure definition is outlined. Effective and efficient tools are necessary for the study of the mapping problem. A fast turn-around simulation environment developed for investigating partition strategies for distributed computations and a computationally efficient method to predict performance of parallel processor structures are described.

  20. How Learning Logic Programming Affects Recursion Comprehension

    ERIC Educational Resources Information Center

    Haberman, Bruria

    2004-01-01

    Recursion is a central concept in computer science, yet it is difficult for beginners to comprehend. Israeli high-school students learn recursion in the framework of a special modular program in computer science (Gal-Ezer & Harel, 1999). Some of them are introduced to the concept of recursion in two different paradigms: the procedural…

  1. Logic and Lattices for Distributed Programming

    DTIC Science & Technology

    2012-06-22

    Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2012-167 http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley...tion of small, easy-to-analyze lattices into larger programs. 1. INTRODUCTION As cloud computing becomes increasingly common, the inherent difficulties

  2. Scheduling parallel programs in distributed systems

    SciTech Connect

    Rommel, C.G.

    1988-01-01

    Scheduling parallel programs under the processor-sharing discipline for uniprocessors, multiprocessors, and distributed systems was studied. Two classes of parallel programs are considered: those without any IPC (called Fork-Join jobs) and those with asynchronous and uniform IPC (called clusters). The study is divided into two parts: (1) develops analytical solutions for Fork-Join Jobs on uniprocessors and multiprocessors; and (2) develops and evaluates via simulation Fork-Join jobs and clusters on distributed systems. The types of site scheduling studied are TS-PS where tasks of a job are scheduled independently at processor-sharing servers, JS-PS in which tasks of a job are scheduled as a single entity at processor-sharing servers, and FCFS where tasks of a job are scheduled independently by order of arrival. For Poisson job arrivals and exponentially distributed task service times, analytical solutions and computationally efficient bounds were found for Fork-Join TS-PS and JS-PS job response times. An algorithm was developed to schedule parallel programs in distributed systems. Over a wide range of parameters the algorithms was found to be superior to both no-load balancing, NLB, and shortest-queue first scheduling, SQF.

  3. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  4. Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators.

    PubMed

    Tian, Yonghui; Zhang, Lei; Ji, Ruiqiang; Yang, Lin; Zhou, Ping; Chen, Hongtao; Ding, Jianfeng; Zhu, Weiwei; Lu, Yangyang; Jia, Lianxi; Fang, Qing; Yu, Mingbin

    2011-05-01

    We propose and demonstrate a directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators (MRRs). We use two electrical signals representing the two operands of the logical operation to modulate the two MRRs through the thermo-optic effect, respectively. The final operation results are represented by the output optical signals. Both OR/NOR and AND/NAND operations at 10 kbps are demonstrated.

  5. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine–DNA Complex

    PubMed Central

    2015-01-01

    Implementing parallel and multivalued logic operations at the molecular scale has the potential to improve the miniaturization and efficiency of a new generation of nanoscale computing devices. Two-dimensional photon-echo spectroscopy is capable of resolving dynamical pathways on electronic and vibrational molecular states. We experimentally demonstrate the implementation of molecular decision trees, logic operations where all possible values of inputs are processed in parallel and the outputs are read simultaneously, by probing the laser-induced dynamics of populations and coherences in a rhodamine dye mounted on a short DNA duplex. The inputs are provided by the bilinear interactions between the molecule and the laser pulses, and the output values are read from the two-dimensional molecular response at specific frequencies. Our results highlights how ultrafast dynamics between multiple molecular states induced by light–matter interactions can be used as an advantage for performing complex logic operations in parallel, operations that are faster than electrical switching. PMID:25984269

  6. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.

    PubMed

    Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong

    2015-10-05

    We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully.

  7. Inductive logic programming used to discover topological constraints in protein structures

    SciTech Connect

    King, R.D.; Sternberg, M.J.E.; Clark, A.; Shirazi, J.

    1994-12-31

    This paper describes the application of the Inductive Logic Programming (IILP) program GOLEM to the discovery of constraints in the packing of beta-sheets in alpha/beta proteins. These constraints (rules) have a role in understanding the protein folding problem. Constraints were learnt for four features of beta-sheet packing: the winding direction of two sequential strands, whether two consecutive strands pack parallel or anti-parallel, whether two strands pack adjacently, and whether a beta-strand is at an edge. Investigation of the learnt constraints revealed interesting patterns, some of which were previously known, others that were novel. Novel features include the discovery: that the relationship between pairs of sequential strands is in general one of decreasing size, and that more sequential pairs of strands wind in the direction out than the direction in. We conclude that machine learning has a useful place in molecular biology as a pattern discovery tool.

  8. Array distribution in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert; Sheffler, Thomas J.

    1994-01-01

    We consider distribution at compile time of the array data in a distributed-memory implementation of a data-parallel program written in a language like Fortran 90. We allow dynamic redistribution of data and define a heuristic algorithmic framework that chooses distribution parameters to minimize an estimate of program completion time. We represent the program as an alignment-distribution graph. We propose a divide-and-conquer algorithm for distribution that initially assigns a common distribution to each node of the graph and successively refines this assignment, taking computation, realignment, and redistribution costs into account. We explain how to estimate the effect of distribution on computation cost and how to choose a candidate set of distributions. We present the results of an implementation of our algorithms on several test problems.

  9. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  10. Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.

  11. Parallel Programming Strategies for Irregular Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance for such computations. In this work, we examine two typical irregular adaptive applications, Dynamic Remeshing and N-Body, under competing programming methodologies and across various parallel architectures. The Dynamic Remeshing application simulates flow over an airfoil, and refines localized regions of the underlying unstructured mesh. The N-Body experiment models two neighboring Plummer galaxies that are about to undergo a merger. Both problems demonstrate dramatic changes in processor workloads and interprocessor communication with time; thus, dynamic load balancing is a required component.

  12. Flexible Language Constructs for Large Parallel Programs

    DOE PAGES

    Rosing, Matt; Schnabel, Robert

    1994-01-01

    The goal of the research described in this article is to develop flexible language constructs for writing large data parallel numerical programs for distributed memory (multiple instruction multiple data [MIMD]) multiprocessors. Previously, several models have been developed to support synchronization and communication. Models for global synchronization include single instruction multiple data (SIMD), single program multiple data (SPMD), and sequential programs annotated with data distribution statements. The two primary models for communication include implicit communication based on shared memory and explicit communication based on messages. None of these models by themselves seem sufficient to permit the natural and efficient expression ofmore » the variety of algorithms that occur in large scientific computations. In this article, we give an overview of a new language that combines many of these programming models in a clean manner. This is done in a modular fashion such that different models can be combined to support large programs. Within a module, the selection of a model depends on the algorithm and its efficiency requirements. In this article, we give an overview of the language and discuss some of the critical implementation details.« less

  13. Flexible language constructs for large parallel programs

    NASA Technical Reports Server (NTRS)

    Rosing, Matthew; Schnabel, Robert

    1993-01-01

    The goal of the research described is to develop flexible language constructs for writing large data parallel numerical programs for distributed memory (MIMD) multiprocessors. Previously, several models have been developed to support synchronization and communication. Models for global synchronization include SIMD (Single Instruction Multiple Data), SPMD (Single Program Multiple Data), and sequential programs annotated with data distribution statements. The two primary models for communication include implicit communication based on shared memory and explicit communication based on messages. None of these models by themselves seem sufficient to permit the natural and efficient expression of the variety of algorithms that occur in large scientific computations. An overview of a new language that combines many of these programming models in a clean manner is given. This is done in a modular fashion such that different models can be combined to support large programs. Within a module, the selection of a model depends on the algorithm and its efficiency requirements. An overview of the language and discussion of some of the critical implementation details is given.

  14. Knowledge Discovery from Structured Mammography Reports Using Inductive Logic Programming

    PubMed Central

    Burnside, Elizabeth S.; Davis, Jesse; Costa, Vítor Santos; de Castro Dutra, Inês; Kahn, Charles E.; Fine, Jason; Page, David

    2005-01-01

    The development of large mammography databases provides an opportunity for knowledge discovery and data mining techniques to recognize patterns not previously appreciated. Using a database from a breast imaging practice containing patient risk factors, imaging findings, and biopsy results, we tested whether inductive logic programming (ILP) could discover interesting hypotheses that could subsequently be tested and validated. The ILP algorithm discovered two hypotheses from the data that were 1) judged as interesting by a subspecialty-trained mammographer and 2) validated by analysis of the data itself. PMID:16779009

  15. Architecture and data processing alternatives for the TSE computer. Volume 3: Execution of a parallel counting algorithm using array logic (Tse) devices

    NASA Technical Reports Server (NTRS)

    Metcalfe, A. G.; Bodenheimer, R. E.

    1976-01-01

    A parallel algorithm for counting the number of logic-l elements in a binary array or image developed during preliminary investigation of the Tse concept is described. The counting algorithm is implemented using a basic combinational structure. Modifications which improve the efficiency of the basic structure are also presented. A programmable Tse computer structure is proposed, along with a hardware control unit, Tse instruction set, and software program for execution of the counting algorithm. Finally, a comparison is made between the different structures in terms of their more important characteristics.

  16. Software reuse in parallel programming environments

    SciTech Connect

    Lee, Taejae.

    1989-01-01

    To date, reuse of software has not had its anticipated effect on improvements in software productivity. This is because the concepts behind reusability are not fully understood and because there has been relatively little experimentation with reusability systems. In this research the author attacks these problems in three ways: (1) an investigation of the conceptual foundations of reuse for a parallel programming environment based on the Unified Computation Graph Model designed by Dr. James C. Browne at the University of Texas, Austin; (2) a realization of these concepts in a software base management system, ROPE, to support reuse in such an environment; (3) an experimental evaluation of the effectiveness of ROPE. The research addresses each of the fundamental steps of finding, understanding, modifying, and composing reusable components: (1) the problem of finding components is addressed by a new classification method, called the structured relational classification method; (2) for understanding components, the author has introduced design analysis methods which basically flow from the UCGM model itself; (3) modifying components is addressed in several ways. First through a suitable definition of generic designs and secondly through techniques for composing and decomposing graphs; (4) composition of components is discussed in detail and a framework is laid for a calculus of composition of components. The reusability system ROPE was built, tested and used by a variety of people. Each of the concepts discussed above was realized to some degree in the final system though the theory outstripped the implementation in several areas. This was a very substantial programming project. A fairly extensive evaluation of ROPE was done. The initial set of experiments has clearly established the effectiveness of CODE and ROPE in promoting component reuse in programs of modest size and complexity and in delivery of nearly error-free programs with relatively little effort.

  17. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  18. Parallel phase model : a programming model for high-end parallel machines with manycores.

    SciTech Connect

    Wu, Junfeng; Wen, Zhaofang; Heroux, Michael Allen; Brightwell, Ronald Brian

    2009-04-01

    This paper presents a parallel programming model, Parallel Phase Model (PPM), for next-generation high-end parallel machines based on a distributed memory architecture consisting of a networked cluster of nodes with a large number of cores on each node. PPM has a unified high-level programming abstraction that facilitates the design and implementation of parallel algorithms to exploit both the parallelism of the many cores and the parallelism at the cluster level. The programming abstraction will be suitable for expressing both fine-grained and coarse-grained parallelism. It includes a few high-level parallel programming language constructs that can be added as an extension to an existing (sequential or parallel) programming language such as C; and the implementation of PPM also includes a light-weight runtime library that runs on top of an existing network communication software layer (e.g. MPI). Design philosophy of PPM and details of the programming abstraction are also presented. Several unstructured applications that inherently require high-volume random fine-grained data accesses have been implemented in PPM with very promising results.

  19. An interactive parallel programming environment applied in atmospheric science

    SciTech Connect

    Laszewski, G. von

    1996-12-31

    This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.

  20. An interactive parallel programming environment applied in atmospheric science

    NASA Technical Reports Server (NTRS)

    vonLaszewski, G.

    1996-01-01

    This article introduces an interactive parallel programming environment (IPPE) that simplifies the generation and execution of parallel programs. One of the tasks of the environment is to generate message-passing parallel programs for homogeneous and heterogeneous computing platforms. The parallel programs are represented by using visual objects. This is accomplished with the help of a graphical programming editor that is implemented in Java and enables portability to a wide variety of computer platforms. In contrast to other graphical programming systems, reusable parts of the programs can be stored in a program library to support rapid prototyping. In addition, runtime performance data on different computing platforms is collected in a database. A selection process determines dynamically the software and the hardware platform to be used to solve the problem in minimal wall-clock time. The environment is currently being tested on a Grand Challenge problem, the NASA four-dimensional data assimilation system.

  1. Programming parallel architectures - The BLAZE family of languages

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1989-01-01

    This paper gives an overview of the various approaches to programming multiprocessor architectures that are currently being explored. It is argued that two of these approaches, interactive programming environments and functional parallel languages, are particularly attractive, since they remove much of the burden of exploiting parallel architectures from the user. This paper also describes recent work in the design of parallel languages. Research on languages for both shared and nonshared memory multiprocessors is described.

  2. The BLAZE language - A parallel language for scientific programming

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Van Rosendale, John

    1987-01-01

    A Pascal-like scientific programming language, BLAZE, is described. BLAZE contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus BLAZE should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with conceptually sequential control flow. A central goal in the design of BLAZE is portability across a broad range of parallel architectures. The multiple levels of parallelism present in BLAZE code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of BLAZE are described and it is shown how this language would be used in typical scientific programming.

  3. The BLAZE language: A parallel language for scientific programming

    NASA Technical Reports Server (NTRS)

    Mehrotra, P.; Vanrosendale, J.

    1985-01-01

    A Pascal-like scientific programming language, Blaze, is described. Blaze contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus Blaze should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with onceptually sequential control flow. A central goal in the design of Blaze is portability across a broad range of parallel architectures. The multiple levels of parallelism present in Blaze code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of Blaze are described and shows how this language would be used in typical scientific programming.

  4. Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++

    NASA Technical Reports Server (NTRS)

    Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis

    1994-01-01

    Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.

  5. Language constructs and runtime systems for compositional parallel programming

    SciTech Connect

    Foster, I.; Kesselman, C.

    1995-03-01

    In task-parallel programs, diverse activities can take place concurrently, and communication and synchronization patterns are complex and not easily predictable. Previous work has identified compositionality as an important design principle for task-parallel programs. In this paper, we discuss alternative approaches to the realization of this principle. We first provide a review and critical analysis of Strand, an early compositional programming language. We examine the strengths of the Strand approach and also its weaknesses, which we attribute primarily to the use of a specialized language. Then, we present an alternative programming language framework that overcomes these weaknesses. This framework uses simple extensions to existing sequential languages (C++ and Fortran) and a common runtime system to provide a basis for the construction of large, task-parallel programs. We also discuss the runtime system techniques required to support these languages on parallel and distributed computer systems.

  6. Programming parallel architectures: The BLAZE family of languages

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1988-01-01

    Programming multiprocessor architectures is a critical research issue. An overview is given of the various approaches to programming these architectures that are currently being explored. It is argued that two of these approaches, interactive programming environments and functional parallel languages, are particularly attractive since they remove much of the burden of exploiting parallel architectures from the user. Also described is recent work by the author in the design of parallel languages. Research on languages for both shared and nonshared memory multiprocessors is described, as well as the relations of this work to other current language research projects.

  7. MPISH : a parallel shell for MPI programs.

    SciTech Connect

    Desai, M.; Lusk, A.; Bradshaw, R.; Lusk, E.

    2006-01-01

    While previous work has shown MPI to provide capabilities for system software, actual adoption has not widely occurred. We discuss process management shortcomings in MPI implementations and their impact on MPI usability for system software and management tasks. We introduce MPISH, a parallel shell designed to address these issues.

  8. Semantic Language Extensions for Implicit Parallel Programming

    DTIC Science & Technology

    2013-09-01

    xiii 1 Introduction 1 1.1 Approaches to Obtaining Parallelism . . . . . . . . . . . . . . . . . . . . . 5 1.2 Dissertation...clustering of gene sequences . 140 6.14 Speedup over sequential execution for SpectralDrivenCavity . . . . 141 xvii Chapter 1 Introduction Computational...the field study was 11 Field Discipline Count Natural Astrophysics 3 Sciences Atmospheric and Oceanic Sciences 2 Chemistry 5 Ecology and Evolutionary

  9. Knowledge Discovery in Variant Databases Using Inductive Logic Programming

    PubMed Central

    Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D.

    2013-01-01

    Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/. PMID:23589683

  10. Architectural Adaptability in Parallel Programming via Control Abstraction

    DTIC Science & Technology

    1991-01-01

    Technical Report 359 January 1991 Abstract Parallel programming involves finding the potential parallelism in an application, choos - ing an...during the development of this paper. 34 References [Albert et ai, 1988] Eugene Albert, Kathleen Knobe, Joan D. Lukas, and Guy L. Steele, Jr

  11. Multilist Scheduling. A New Parallel Programming Model.

    DTIC Science & Technology

    1993-07-30

    fluid simulation [531; differential equation solving such as weather prediction [24, 25]; digital circuit simulation such as gate-level simulation [201...Champaign, 1986. [53] Johnson, C. Numerical Solutions of Partial Differential Equations by the Finite Element Method. Cambridge University Press, 1987. 131...Ortega, J. and Voigt, R. Solution of Partial Differential Equations on Vector and Parallel Computers. SIAM Review, vol. 27 (1985), pp. 149-240. [73

  12. The FORCE - A highly portable parallel programming language

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    This paper explains why the FORCE parallel programming language is easily portable among six different shared-memory multiprocessors, and how a two-level macro preprocessor makes it possible to hide low-level machine dependencies and to build machine-independent high-level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared-memory multiprocessor executing them.

  13. The FORCE: A highly portable parallel programming language

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Alaghband, Gita; Jakob, Ruediger

    1989-01-01

    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them.

  14. Integrated Task And Data Parallel Programming: Language Design

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; West, Emily A.

    1998-01-01

    his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated

  15. Defining, illustrating and reflecting on logic analysis with an example from a professional development program.

    PubMed

    Tremblay, Marie-Claude; Brousselle, Astrid; Richard, Lucie; Beaudet, Nicole

    2013-10-01

    Program designers and evaluators should make a point of testing the validity of a program's intervention theory before investing either in implementation or in any type of evaluation. In this context, logic analysis can be a particularly useful option, since it can be used to test the plausibility of a program's intervention theory using scientific knowledge. Professional development in public health is one field among several that would truly benefit from logic analysis, as it appears to be generally lacking in theorization and evaluation. This article presents the application of this analysis method to an innovative public health professional development program, the Health Promotion Laboratory. More specifically, this paper aims to (1) define the logic analysis approach and differentiate it from similar evaluative methods; (2) illustrate the application of this method by a concrete example (logic analysis of a professional development program); and (3) reflect on the requirements of each phase of logic analysis, as well as on the advantages and disadvantages of such an evaluation method. Using logic analysis to evaluate the Health Promotion Laboratory showed that, generally speaking, the program's intervention theory appeared to have been well designed. By testing and critically discussing logic analysis, this article also contributes to further improving and clarifying the method.

  16. Characterizing and Mitigating Work Time Inflation in Task Parallel Programs

    DOE PAGES

    Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; ...

    2013-01-01

    Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMAmore » systems. Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less

  17. Is Abstinence Education Theory Based? The Underlying Logic of Abstinence Education Programs in Texas

    ERIC Educational Resources Information Center

    Goodson, Patricia; Pruitt, B. E.; Suther, Sandy; Wilson, Kelly; Buhi, Eric

    2006-01-01

    Authors examined the logic (or the implicit theory) underlying 16 abstinence-only-until-marriage programs in Texas (50% of all programs funded under the federal welfare reform legislation during 2001 and 2002). Defined as a set of propositions regarding the relationship between program activities and their intended outcomes, program staff's…

  18. NavP: Structured and Multithreaded Distributed Parallel Programming

    NASA Technical Reports Server (NTRS)

    Pan, Lei; Xu, Jingling

    2006-01-01

    This slide presentation reviews some of the issues around distributed parallel programming. It compares and contrast two methods of programming: Single Program Multiple Data (SPMD) with the Navigational Programming (NAVP). It then reviews the distributed sequential computing (DSC) method and the methodology of NavP. Case studies are presented. It also reviews the work that is being done to enable the NavP system.

  19. Computing single step operators of logic programming in radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  20. Computing single step operators of logic programming in radial basis function neural networks

    SciTech Connect

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  1. Web Based Parallel Programming Workshop for Undergraduate Education.

    ERIC Educational Resources Information Center

    Marcus, Robert L.; Robertson, Douglass

    Central State University (Ohio), under a contract with Nichols Research Corporation, has developed a World Wide web based workshop on high performance computing entitled "IBN SP2 Parallel Programming Workshop." The research is part of the DoD (Department of Defense) High Performance Computing Modernization Program. The research…

  2. Development of massively parallel quantum chemistry program SMASH

    SciTech Connect

    Ishimura, Kazuya

    2015-12-31

    A massively parallel program for quantum chemistry calculations SMASH was released under the Apache License 2.0 in September 2014. The SMASH program is written in the Fortran90/95 language with MPI and OpenMP standards for parallelization. Frequently used routines, such as one- and two-electron integral calculations, are modularized to make program developments simple. The speed-up of the B3LYP energy calculation for (C{sub 150}H{sub 30}){sub 2} with the cc-pVDZ basis set (4500 basis functions) was 50,499 on 98,304 cores of the K computer.

  3. Application of bistable optical logic gate arrays to all-optical digital parallel processing

    NASA Astrophysics Data System (ADS)

    Walker, A. C.

    1986-05-01

    Arrays of bistable optical gates can form the basis of an all-optical digital parallel processor. Two classes of signal input geometry exist - on- and off-axis - and lead to distinctly different device characteristics. The optical implementation of multisignal fan-in to an array of intrinsically bistable optical gates using the more efficient off-axis option is discussed together with the construction of programmable read/write memories from optically bistable devices. Finally the design of a demonstration all-optical parallel processor incorporating these concepts is presented.

  4. Extending Bayesian Logic Programs for Plan Recognition and Machine Reading

    DTIC Science & Technology

    2011-05-01

    involving several objects, their properties, and their relationships with other objects (Russell & Norvig , 2003). A term in first-order logic is a symbol that...Conference on Artificial Intel- ligence (IJCAI-95), pp. 1146–1152, Montreal, Canada. Russell, S., & Norvig , P. (2003). Artificial Intelligence: A Modern

  5. Deadlock and fictitiousness problem in parallel program specifications

    SciTech Connect

    Panfilenko, V.P.

    1995-05-01

    One of the directions of modern programming based on algebraic methods takes its origin in V.M. Glushkov`s theory of systems of algorithmic algebras (SAA). The SAA apparatus with appropriately interpreted operations is used for program design and allows compact structured representation of program schemas in the form of algebraic formulas. Modified systems of algorithmic algebras (SAA-M) additionally represent parallelism description tools.

  6. Exploiting loop level parallelism in nonprocedural dataflow programs

    NASA Technical Reports Server (NTRS)

    Gokhale, Maya B.

    1987-01-01

    Discussed are how loop level parallelism is detected in a nonprocedural dataflow program, and how a procedural program with concurrent loops is scheduled. Also discussed is a program restructuring technique which may be applied to recursive equations so that concurrent loops may be generated for a seemingly iterative computation. A compiler which generates C code for the language described below has been implemented. The scheduling component of the compiler and the restructuring transformation are described.

  7. Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.

    2000-01-01

    Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining

  8. Development of LGA & LBE 2D Parallel Programs

    NASA Astrophysics Data System (ADS)

    Ujita, Hiroshi; Nagata, Satoru; Akiyama, Minoru; Naitoh, Masanori; Ohashi, Hirotada

    A lattice-gas Automata two-dimensional program was developed for analysis of single and two-phase flow behaviors, to support the development of integrated software modules for Nuclear Power Plant mechanistic simulations. The program has single-color, which includes FHP I, II, and III models, two-color (Immiscible lattice gas), and two-velocity methods including a gravity effect model. Parameter surveys have been performed for Karman vortex street, two-phase separation for understanding flow regimes, and natural circulation flow for demonstrating passive reactor safety due to the chimney structure vessel. In addition, lattice-Boltzmann Equation two-dimensional programs were also developed. For analyzing single-phase flow behavior, a lattice-Boltzmann-BGK program was developed, which has multi-block treatments. A Finite Differential lattice-Boltzmann Equation program of parallelized version was introduced to analyze boiling two-phase flow behaviors. Parameter surveys have been performed for backward facing flow, Karman vortex street, bent piping flow with/without obstacles for piping system applications, flow in the porous media for demonstrating porous debris coolability, Couette flow, and spinodal decomposition to understand basic phase separation mechanisms. Parallelization was completed by using a domain decomposition method for all of the programs. An increase in calculation speed of at least 25 times, by parallel processing on 32 processors, demonstrated high parallelization efficiency. Application fields for microscopic model simulation to hypothetical severe conditions in large plants were also discussed.

  9. Execution models for mapping programs onto distributed memory parallel computers

    NASA Technical Reports Server (NTRS)

    Sussman, Alan

    1992-01-01

    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.

  10. Monitors, messages, and clusters : the p4 parallel programming system.

    SciTech Connect

    Butler, R. M.; Lusk, E. T.; Mathematics and Computer Science; Univ. of North Florida

    1994-01-01

    p4 is a portable library of C and Fortran subroutines for programming parallel computers. It is the current version of a system that has been in use since 1984. It includes features for explicit parallel programming of shared-memory machines, distributed-memory machines (including heterogeneous networks of workstations), and clusters, by which we mean shared-memory multiprocessors communicating via message passing. We discuss here the design goals, history, and system architecture of p4 and describe briefly a diverse collection of applications that have demonstrated the utility of p4.

  11. A Digital Logic Simulator with Concurrent Programming Considerations.

    DTIC Science & Technology

    1987-12-01

    distribution unlimited % % Acknowledgments Perhaps one of the greatest lessons learned from an intensive period of research and study , such as this thesis...greater run time performance as a goal, this new.’ simulator was studied and adapted to produce a concurrent . implementation. Here, several roadblocks...of a logic simulator - as a functional by-product. This study improves on an existing simulator called LOGSIM which was developed at the University of

  12. Assessment of Evidence-based Management Training Program: Application of a Logic Model.

    PubMed

    Guo, Ruiling; Farnsworth, Tracy J; Hermanson, Patrick M

    2016-06-01

    The purposes of this study were to apply a logic model to plan and implement an evidence-based management (EBMgt) educational training program for healthcare administrators and to examine whether a logic model is a useful tool for evaluating the outcomes of the educational program. The logic model was used as a conceptual framework to guide the investigators in developing an EBMgt educational training program and evaluating the outcomes of the program. The major components of the logic model were constructed as inputs, outputs, and outcomes/impacts. The investigators delineated the logic model based on the results of the needs assessment survey. Two 3-hour training workshops were delivered to 30 participants. To assess the outcomes of the EBMgt educational program, pre- and post-tests and self-reflection surveys were conducted. The data were collected and analyzed descriptively and inferentially, using the IBM Statistical Package for the Social Sciences (SPSS) 22.0. A paired sample t-test was performed to compare the differences in participants' EBMgt knowledge and skills prior to and after the training. The assessment results showed that there was a statistically significant difference in participants' EBMgt knowledge and information searching skills before and after the training (p< 0.001). Participants' confidence in using the EBMgt approach for decision-making was significantly increased after the training workshops (p< 0.001). Eighty-three percent of participants indicated that the knowledge and skills they gained through the training program could be used for future management decision-making in their healthcare organizations. The overall evaluation results of the program were positive. It is suggested that the logic model is a useful tool for program planning, implementation, and evaluation, and it also improves the outcomes of the educational program.

  13. Center for Programming Models for Scalable Parallel Computing

    SciTech Connect

    John Mellor-Crummey

    2008-02-29

    Rice University's achievements as part of the Center for Programming Models for Scalable Parallel Computing include: (1) design and implemention of cafc, the first multi-platform CAF compiler for distributed and shared-memory machines, (2) performance studies of the efficiency of programs written using the CAF and UPC programming models, (3) a novel technique to analyze explicitly-parallel SPMD programs that facilitates optimization, (4) design, implementation, and evaluation of new language features for CAF, including communication topologies, multi-version variables, and distributed multithreading to simplify development of high-performance codes in CAF, and (5) a synchronization strength reduction transformation for automatically replacing barrier-based synchronization with more efficient point-to-point synchronization. The prototype Co-array Fortran compiler cafc developed in this project is available as open source software from http://www.hipersoft.rice.edu/caf.

  14. A computer program for the generation of logic networks from task chart data

    NASA Technical Reports Server (NTRS)

    Herbert, H. E.

    1980-01-01

    The Network Generation Program (NETGEN), which creates logic networks from task chart data is presented. NETGEN is written in CDC FORTRAN IV (Extended) and runs in a batch mode on the CDC 6000 and CYBER 170 series computers. Data is input via a two-card format and contains information regarding the specific tasks in a project. From this data, NETGEN constructs a logic network of related activities with each activity having unique predecessor and successor nodes, activity duration, descriptions, etc. NETGEN then prepares this data on two files that can be used in the Project Planning Analysis and Reporting System Batch Network Scheduling program and the EZPERT graphics program.

  15. How Young Children Learn to Program with Sensor, Action, and Logic Blocks

    ERIC Educational Resources Information Center

    Wyeth, Peta

    2008-01-01

    Electronic Blocks are a new programming environment designed specifically for children aged between 3 and 8 years. These physical, stackable blocks include sensor blocks, action blocks, and logic blocks. By connecting these blocks, children can program a wide variety of structures that interact with one another and the environment. Electronic…

  16. Logic Models: A Tool for Designing and Monitoring Program Evaluations. REL 2014-007

    ERIC Educational Resources Information Center

    Lawton, Brian; Brandon, Paul R.; Cicchinelli, Louis; Kekahio, Wendy

    2014-01-01

    introduction to logic models as a tool for designing program evaluations defines the major components of education programs--resources, activities, outputs, and short-, mid-, and long-term outcomes--and uses an example to demonstrate the relationships among them. This quick…

  17. Modelling parallel programs and multiprocessor architectures with AXE

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.

    1991-01-01

    AXE, An Experimental Environment for Parallel Systems, was designed to model and simulate for parallel systems at the process level. It provides an integrated environment for specifying computation models, multiprocessor architectures, data collection, and performance visualization. AXE is being used at NASA-Ames for developing resource management strategies, parallel problem formulation, multiprocessor architectures, and operating system issues related to the High Performance Computing and Communications Program. AXE's simple, structured user-interface enables the user to model parallel programs and machines precisely and efficiently. Its quick turn-around time keeps the user interested and productive. AXE models multicomputers. The user may easily modify various architectural parameters including the number of sites, connection topologies, and overhead for operating system activities. Parallel computations in AXE are represented as collections of autonomous computing objects known as players. Their use and behavior is described. Performance data of the multiprocessor model can be observed on a color screen. These include CPU and message routing bottlenecks, and the dynamic status of the software.

  18. Advanced parallel programming models research and development opportunities.

    SciTech Connect

    Wen, Zhaofang.; Brightwell, Ronald Brian

    2004-07-01

    There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.

  19. Testing New Programming Paradigms with NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Schultz, M.; Yan, J.

    2000-01-01

    Over the past decade, high performance computing has evolved rapidly, not only in hardware architectures but also with increasing complexity of real applications. Technologies have been developing to aim at scaling up to thousands of processors on both distributed and shared memory systems. Development of parallel programs on these computers is always a challenging task. Today, writing parallel programs with message passing (e.g. MPI) is the most popular way of achieving scalability and high performance. However, writing message passing programs is difficult and error prone. Recent years new effort has been made in defining new parallel programming paradigms. The best examples are: HPF (based on data parallelism) and OpenMP (based on shared memory parallelism). Both provide simple and clear extensions to sequential programs, thus greatly simplify the tedious tasks encountered in writing message passing programs. HPF is independent of memory hierarchy, however, due to the immaturity of compiler technology its performance is still questionable. Although use of parallel compiler directives is not new, OpenMP offers a portable solution in the shared-memory domain. Another important development involves the tremendous progress in the internet and its associated technology. Although still in its infancy, Java promisses portability in a heterogeneous environment and offers possibility to "compile once and run anywhere." In light of testing these new technologies, we implemented new parallel versions of the NAS Parallel Benchmarks (NPBs) with HPF and OpenMP directives, and extended the work with Java and Java-threads. The purpose of this study is to examine the effectiveness of alternative programming paradigms. NPBs consist of five kernels and three simulated applications that mimic the computation and data movement of large scale computational fluid dynamics (CFD) applications. We started with the serial version included in NPB2.3. Optimization of memory and cache usage

  20. Methodologies and Tools for Tuning Parallel Programs: Facts and Fantasies

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessors. However, without effective means to monitor (and analyze) program execution, tuning the performance of parallel programs becomes exponentially difficult as program complexity and machine size increase. The recent introduction of performance tuning tools from various supercomputer vendors (Intel's ParAide, TMC's PRISM, CRI's Apprentice, and Convex's CXtrace) seems to indicate the maturity of performance tool technologies and vendors'/customers' recognition of their importance. However, a few important questions remain: What kind of performance bottlenecks can these tools detect (or correct)? How time consuming is the performance tuning process? What are some important technical issues that remain to be tackled in this area? This workshop reviews the fundamental concepts involved in analyzing and improving the performance of parallel and heterogeneous message-passing programs. Several alternative strategies will be contrasted, and for each we will describe how currently available tuning tools (e.g. AIMS, ParAide, PRISM, Apprentice, CXtrace, ATExpert, Pablo, IPS-2) can be used to facilitate the process. We will characterize the effectiveness of the tools and methodologies based on actual user experiences at NASA Ames Research Center. Finally, we will discuss their limitations and outline recent approaches taken by vendors and the research community to address them.

  1. Performance Evaluation Methodologies and Tools for Massively Parallel Programs

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Sarukkai, Sekhar; Tucker, Deanne (Technical Monitor)

    1994-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessors. However, without effective means to monitor (and analyze) program execution, tuning the performance of parallel programs becomes exponentially difficult as program complexity and machine size increase. The recent introduction of performance tuning tools from various supercomputer vendors (Intel's ParAide, TMC's PRISM, CSI'S Apprentice, and Convex's CXtrace) seems to indicate the maturity of performance tool technologies and vendors'/customers' recognition of their importance. However, a few important questions remain: What kind of performance bottlenecks can these tools detect (or correct)? How time consuming is the performance tuning process? What are some important technical issues that remain to be tackled in this area? This workshop reviews the fundamental concepts involved in analyzing and improving the performance of parallel and heterogeneous message-passing programs. Several alternative strategies will be contrasted, and for each we will describe how currently available tuning tools (e.g., AIMS, ParAide, PRISM, Apprentice, CXtrace, ATExpert, Pablo, IPS-2)) can be used to facilitate the process. We will characterize the effectiveness of the tools and methodologies based on actual user experiences at NASA Ames Research Center. Finally, we will discuss their limitations and outline recent approaches taken by vendors and the research community to address them.

  2. Final Report: Center for Programming Models for Scalable Parallel Computing

    SciTech Connect

    Mellor-Crummey, John

    2011-09-13

    As part of the Center for Programming Models for Scalable Parallel Computing, Rice University collaborated with project partners in the design, development and deployment of language, compiler, and runtime support for parallel programming models to support application development for the “leadership-class” computer systems at DOE national laboratories. Work over the course of this project has focused on the design, implementation, and evaluation of a second-generation version of Coarray Fortran. Research and development efforts of the project have focused on the CAF 2.0 language, compiler, runtime system, and supporting infrastructure. This has involved working with the teams that provide infrastructure for CAF that we rely on, implementing new language and runtime features, producing an open source compiler that enabled us to evaluate our ideas, and evaluating our design and implementation through the use of benchmarks. The report details the research, development, findings, and conclusions from this work.

  3. On the utility of threads for data parallel programming

    NASA Technical Reports Server (NTRS)

    Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush

    1995-01-01

    Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.

  4. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  5. A Different Kind of Language: Prolog, Programming in Logic.

    ERIC Educational Resources Information Center

    Cabrol, D.

    1986-01-01

    Prolog is one of the most successful "very high level languages." Describes this programming language (a product of artificial intelligence research) and attempts to show how it functions by using some short examples to illustrate its essential features. (JN)

  6. Drawing Analogies between Logic Programming and Natural Language Argumentation Texts to Scaffold Learners' Understanding

    ERIC Educational Resources Information Center

    Ragonis, Noa; Shilo, Gila

    2014-01-01

    The paper presents a theoretical investigational study of the potential advantages that secondary school learners may gain from learning two different subjects, namely, logic programming within computer science studies and argumentation texts within linguistics studies. The study suggests drawing an analogy between the two subjects since they both…

  7. MLP: A Parallel Programming Alternative to MPI for New Shared Memory Parallel Systems

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    1999-01-01

    Recent developments at the NASA AMES Research Center's NAS Division have demonstrated that the new generation of NUMA based Symmetric Multi-Processing systems (SMPs), such as the Silicon Graphics Origin 2000, can successfully execute legacy vector oriented CFD production codes at sustained rates far exceeding processing rates possible on dedicated 16 CPU Cray C90 systems. This high level of performance is achieved via shared memory based Multi-Level Parallelism (MLP). This programming approach, developed at NAS and outlined below, is distinct from the message passing paradigm of MPI. It offers parallelism at both the fine and coarse grained level, with communication latencies that are approximately 50-100 times lower than typical MPI implementations on the same platform. Such latency reductions offer the promise of performance scaling to very large CPU counts. The method draws on, but is also distinct from, the newly defined OpenMP specification, which uses compiler directives to support a limited subset of multi-level parallel operations. The NAS MLP method is general, and applicable to a large class of NASA CFD codes.

  8. Development of a Logic Model to Guide Evaluations of the ASCA National Model for School Counseling Programs

    ERIC Educational Resources Information Center

    Martin, Ian; Carey, John

    2014-01-01

    A logic model was developed based on an analysis of the 2012 American School Counselor Association (ASCA) National Model in order to provide direction for program evaluation initiatives. The logic model identified three outcomes (increased student achievement/gap reduction, increased school counseling program resources, and systemic change and…

  9. An informal introduction to program transformation and parallel processors

    SciTech Connect

    Hopkins, K.W.

    1994-08-01

    In the summer of 1992, I had the opportunity to participate in a Faculty Research Program at Argonne National Laboratory. I worked under Dr. Jim Boyle on a project transforming code written in pure functional Lisp to Fortran code to run on distributed-memory parallel processors. To perform this project, I had to learn three things: the transformation system, the basics of distributed-memory parallel machines, and the Lisp programming language. Each of these topics in computer science was unfamiliar to me as a mathematician, but I found that they (especially parallel processing) are greatly impacting many fields of mathematics and science. Since most mathematicians have some exposure to computers, but.certainly are not computer scientists, I felt it was appropriate to write a paper summarizing my introduction to these areas and how they can fit together. This paper is not meant to be a full explanation of the topics, but an informal introduction for the ``mathematical layman.`` I place myself in that category as well as my previous use of computers was as a classroom demonstration tool.

  10. Users manual for the Chameleon parallel programming tools

    SciTech Connect

    Gropp, W.; Smith, B.

    1993-06-01

    Message passing is a common method for writing programs for distributed-memory parallel computers. Unfortunately, the lack of a standard for message passing has hampered the construction of portable and efficient parallel programs. In an attempt to remedy this problem, a number of groups have developed their own message-passing systems, each with its own strengths and weaknesses. Chameleon is a second-generation system of this type. Rather than replacing these existing systems, Chameleon is meant to supplement them by providing a uniform way to access many of these systems. Chameleon`s goals are to (a) be very lightweight (low over-head), (b) be highly portable, and (c) help standardize program startup and the use of emerging message-passing operations such as collective operations on subsets of processors. Chameleon also provides a way to port programs written using PICL or Intel NX message passing to other systems, including collections of workstations. Chameleon is tracking the Message-Passing Interface (MPI) draft standard and will provide both an MPI implementation and an MPI transport layer. Chameleon provides support for heterogeneous computing by using p4 and PVM. Chameleon`s support for homogeneous computing includes the portable libraries p4, PICL, and PVM and vendor-specific implementation for Intel NX, IBM EUI (SP-1), and Thinking Machines CMMD (CM-5). Support for Ncube and PVM 3.x is also under development.

  11. Structured approach in PLC (programmable logic controller) programming for water/wastewater applications.

    PubMed

    Keskar, P Y

    1990-01-01

    This paper describes a methodology for efficient implementation of PLC programming for water/wastewater applications. The PLC was interfaced with a supervisory host computer which used touch screen equipped color monitors as operator interfaces. PLC ladder logic had to be designed to process real-world hardwired I/O as well as the I/O received from the host computer and/or touch screens, via a communications link. Standard "templates" of PLC networks were developed for (a) pump controls including provision for touch screen I/O; (b) PID control; (c) alarms; (d) motor run times; (e) square root extraction; (f) signal conversion, and (g) flow totalization. All logic was implemented using the standard templates. This structured approach led to efficient implementation, easy debugging/start-up, and easy to read uniform ladder logic.

  12. Automatic Analysis of the Logical Structure of Programs,

    DTIC Science & Technology

    1978-12-01

    this program is discussed in much more detail in chapters VI and VII. 1 C PURPOSE 2 C INTEGRATES A FIRST ORDER DIFFERENTIAL EQUATION 3 C DY/DX=FUN(X.Y...discussed in chapters VI and VII. Richard C. Waters - 195 - A Mini Programmer’s Apprentice 1 C PURPOSE 2 C INTEGRATES A FIRST ORDER DIFFERENTIAL EQUATION 3 C...113]. Zilles [116] and Guttag (40] have developed a formal descriptive system, called a data algebra, for describing the behavior of a data

  13. Automated Performance Prediction of Message-Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.

  14. NavP: Structured and Multithreaded Distributed Parallel Programming

    NASA Technical Reports Server (NTRS)

    Pan, Lei

    2007-01-01

    We present Navigational Programming (NavP) -- a distributed parallel programming methodology based on the principles of migrating computations and multithreading. The four major steps of NavP are: (1) Distribute the data using the data communication pattern in a given algorithm; (2) Insert navigational commands for the computation to migrate and follow large-sized distributed data; (3) Cut the sequential migrating thread and construct a mobile pipeline; and (4) Loop back for refinement. NavP is significantly different from the current prevailing Message Passing (MP) approach. The advantages of NavP include: (1) NavP is structured distributed programming and it does not change the code structure of an original algorithm. This is in sharp contrast to MP as MP implementations in general do not resemble the original sequential code; (2) NavP implementations are always competitive with the best MPI implementations in terms of performance. Approaches such as DSM or HPF have failed to deliver satisfying performance as of today in contrast, even if they are relatively easy to use compared to MP; (3) NavP provides incremental parallelization, which is beyond the reach of MP; and (4) NavP is a unifying approach that allows us to exploit both fine- (multithreading on shared memory) and coarse- (pipelined tasks on distributed memory) grained parallelism. This is in contrast to the currently popular hybrid use of MP+OpenMP, which is known to be complex to use. We present experimental results that demonstrate the effectiveness of NavP.

  15. A scalable parallel algorithm for multiple objective linear programs

    NASA Technical Reports Server (NTRS)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  16. Parallelization and checkpointing of GPU applications through program transformation

    SciTech Connect

    Solano-Quinde, Lizandro Damian

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and

  17. Start/Pat; A parallel-programming toolkit

    SciTech Connect

    Appelbe, B.; Smith, K. ); McDowell, C. )

    1989-07-01

    How can you make Fortran code parallel without isolating the programmer from learning to understand and exploit parallelism effectively. With an interactive toolkit that automates parallelization as it educates. This paper discusses the Start/Pat toolkit.

  18. Automated Performance Prediction of Message Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Mehra, Pankaj; Sarukkai, Sekhar; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    As the trend toward massively parallel processing continues, the need for tools that can predict scalability trends becomes greater. While high level languages Eke HPF have come into greater use, explicit message-passing programs proliferate, and will probably do so for some time, thanks to the onslaught of standards such as MPI. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require a substantial manual effort to represent an application in the model's format. The YAPP ("Yet Another Performance Predictor") tool is an attempt to automate the formation of first-order expressions for completion time, with a minimum of programmer assistance. The content of this paper is as follows: First, we explore the implementation details of YAPP, and illustrate with examples some of the reasons that automatic prediction is difficult. In the following sections, we present the results of four applications, using execution traces on the Intel i860, analyze the error in YAPP's predictions, explain the limitations of our implementation, and mention possible future additions. In particular, we illustrate techniques used to identify pipeline communication patterns, and demonstrate how compiler analysis and regression are combined to automate the prediction process.

  19. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  20. An empirical study of FORTRAN programs for parallelizing compilers

    NASA Technical Reports Server (NTRS)

    Shen, Zhiyu; Li, Zhiyuan; Yew, Pen-Chung

    1990-01-01

    Some results are reported from an empirical study of program characteristics that are important in parallelizing compiler writers, especially in the area of data dependence analysis and program transformations. The state of the art in data dependence analysis and some parallel execution techniques are examined. The major findings are included. Many subscripts contain symbolic terms with unknown values. A few methods of determining their values at compile time are evaluated. Array references with coupled subscripts appear quite frequently; these subscripts must be handled simultaneously in a dependence test, rather than being handled separately as in current test algorithms. Nonzero coefficients of loop indexes in most subscripts are found to be simple: they are either 1 or -1. This allows an exact real-valued test to be as accurate as an exact integer-valued test for one-dimensional or two-dimensional arrays. Dependencies with uncertain distance are found to be rather common, and one of the main reasons is the frequent appearance of symbolic terms with unknown values.

  1. Center for Programming Models for Scalable Parallel Computing: Future Programming Models

    SciTech Connect

    Gao, Guang, R.

    2008-07-24

    The mission of the pmodel center project is to develop software technology to support scalable parallel programming models for terascale systems. The goal of the specific UD subproject is in the context developing an efficient and robust methodology and tools for HPC programming. More specifically, the focus is on developing new programming models which facilitate programmers in porting their application onto parallel high performance computing systems. During the course of the research in the past 5 years, the landscape of microprocessor chip architecture has witnessed a fundamental change – the emergence of multi-core/many-core chip architecture appear to become the mainstream technology and will have a major impact to for future generation parallel machines. The programming model for shared-address space machines is becoming critical to such multi-core architectures. Our research highlight is the in-depth study of proposed fine-grain parallelism/multithreading support on such future generation multi-core architectures. Our research has demonstrated the significant impact such fine-grain multithreading model can have on the productivity of parallel programming models and their efficient implementation.

  2. Decidable Order-Sorted Logic Programming for Ontologies and Rules with Argument Restructuring

    NASA Astrophysics Data System (ADS)

    Kaneiwa, Ken; Nguyen, Philip H. P.

    This paper presents a decidable fragment for combining ontologies and rules in order-sorted logic programming. We describe order-sorted logic programming with sort, predicate, and meta-predicate hierarchies for deriving predicate and meta-predicate assertions. Meta-level predicates (predicates of predicates) are useful for representing relationships between predicate formulas, and further, they conceptually yield a hierarchy similar to the hierarchies of sorts and predicates. By extending the order-sorted Horn-clause calculus, we develop a query-answering system that can answer queries such as atoms and meta-atoms generalized by containing predicate variables. We show that the expressive query-answering system computes every generalized query in single exponential time, i.e., the complexity of our query system is equal to that of DATALOG.

  3. A Parallel Vector Machine for the PM Programming Language

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2016-04-01

    PM is a new programming language which aims to make the writing of computational geoscience models on parallel hardware accessible to scientists who are not themselves expert parallel programmers. It is based around the concept of communicating operators: language constructs that enable variables local to a single invocation of a parallelised loop to be viewed as if they were arrays spanning the entire loop domain. This mechanism enables different loop invocations (which may or may not be executing on different processors) to exchange information in a manner that extends the successful Communicating Sequential Processes idiom from single messages to collective communication. Communicating operators avoid the additional synchronisation mechanisms, such as atomic variables, required when programming using the Partitioned Global Address Space (PGAS) paradigm. Using a single loop invocation as the fundamental unit of concurrency enables PM to uniformly represent different levels of parallelism from vector operations through shared memory systems to distributed grids. This paper describes an implementation of PM based on a vectorised virtual machine. On a single processor node, concurrent operations are implemented using masked vector operations. Virtual machine instructions operate on vectors of values and may be unmasked, masked using a Boolean field, or masked using an array of active vector cell locations. Conditional structures (such as if-then-else or while statement implementations) calculate and apply masks to the operations they control. A shift in mask representation from Boolean to location-list occurs when active locations become sufficiently sparse. Parallel loops unfold data structures (or vectors of data structures for nested loops) into vectors of values that may additionally be distributed over multiple computational nodes and then split into micro-threads compatible with the size of the local cache. Inter-node communication is accomplished using

  4. Programming a massively parallel, computation universal system: Static behavior

    NASA Astrophysics Data System (ADS)

    Lapedes, Alan; Farber, Robert

    1986-08-01

    Massively parallel systems are presently the focus of intense interest for a variety of reasons. A key problem is how to control, or ``program'' these systems. In previous work by the authors, the ``optimum finding'' properties of Hopfield neural nets were applied to the nets themselves to create a ``neural compiler.'' This was done in such a way that the problem of programming the attractors of one neural net (called the Slave net) was expressed as an optimization problem that was in turn solved by a second neural net (the Master net). The procedure is effective and efficient. In this series of papers we extend that approach to programming nets that contain interneurons (sometimes called ``hidden neurons''), and thus we deal with nets capable of universal computation. Our work is closely related to recent work of Rummelhart et al. (also Parker, and LeChun), which may be viewed as a special case of this formalism and therefore of ``computing with attractors.'' In later papers in this series, we present the theory for programming time dependent behavior, and consider practical implementations. One may expect numerous applications in view of the computation universality of these networks.

  5. Using fuzzy logic in test case prioritization for regression testing programs with assertions.

    PubMed

    Alakeel, Ali M

    2014-01-01

    Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  6. Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming.

    PubMed

    Ostrowski, M; Paulevé, L; Schaub, T; Siegel, A; Guziolowski, C

    2016-11-01

    Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logic models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scalable training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that end, we identify a necessary condition that must be satisfied by the dynamics of a Boolean network to be consistent with a discretized time series trace. Based on this condition, we use Answer Set Programming to compute an over-approximation of the set of Boolean networks which fit best with experimental data and provide the corresponding encodings. Combined with model-checking approaches, we end up with a global learning algorithm. Our approach is able to learn logic models with a true positive rate higher than 78% in two case studies of mammalian signaling networks; for a larger case study, our method provides optimal answers after 7min of computation. We quantified the gain in our method predictions precision compared to learning approaches based on static data. Finally, as an application, our method proposes erroneous time-points in the time series data with respect to the optimal learned logic models.

  7. The Father Friendly Initiative within Families: Using a logic model to develop program theory for a father support program.

    PubMed

    Gervais, Christine; de Montigny, Francine; Lacharité, Carl; Dubeau, Diane

    2015-10-01

    The transition to fatherhood, with its numerous challenges, has been well documented. Likewise, fathers' relationships with health and social services have also begun to be explored. Yet despite the problems fathers experience in interactions with healthcare services, few programs have been developed for them. To explain this, some authors point to the difficulty practitioners encounter in developing and structuring the theory of programs they are trying to create to promote and support father involvement (Savaya, R., & Waysman, M. (2005). Administration in Social Work, 29(2), 85), even when such theory is key to a program's effectiveness (Chen, H.-T. (2005). Practical program evaluation. Thousand Oaks, CA: Sage Publications). The objective of the present paper is to present a tool, the logic model, to bridge this gap and to equip practitioners for structuring program theory. This paper addresses two questions: (1) What would be a useful instrument for structuring the development of program theory in interventions for fathers? (2) How would the concepts of a father involvement program best be organized? The case of the Father Friendly Initiative within Families (FFIF) program is used to present and illustrate six simple steps for developing a logic model that are based on program theory and demonstrate its relevance.

  8. Parallel functional programming in Sisal: Fictions, facts, and future

    SciTech Connect

    McGraw, J.R.

    1993-07-01

    This paper provides a status report on the progress of research and development on the functional language Sisal. This project focuses on providing a highly effective method of writing large scientific applications that can efficiently execute on a spectrum of different multiprocessors. The paper includes sections on the language definition, compilation strategies, and programming techniques intended for readers with little or no background with Sisal. The section on performance presents our most recent results on execution speed for shared-memory multiprocessors, our findings using Sisal to develop codes, and our experiences migrating the same source code to different machines. For large programs, the execution performance of Sisal (with minimal supporting advice from the programmer) usually exceeds that of the best available automatic, vector/parallel Fortran compilers. Our evidence also indicates that Sisal programs tend to be shorter in length, faster to write, and dearer to understand than equivalent algorithms in Fortran. The paper concludes with a substantial discussion of common criticisms of the language and our plans for addressing them. Most notably, efficient implementations for distributed memory machines are lacking; an issue we plan to remedy.

  9. Digital signal processor and programming system for parallel signal processing

    SciTech Connect

    Van den Bout, D.E.

    1987-01-01

    This thesis describes an integrated assault upon the problem of designing high-throughput, low-cost digital signal-processing systems. The dual prongs of this assault consist of: (1) the design of a digital signal processor (DSP) which efficiently executes signal-processing algorithms in either a uniprocessor or multiprocessor configuration, (2) the PaLS programming system which accepts an arbitrary algorithm, partitions it across a group of DSPs, synthesizes an optimal communication link topology for the DSPs, and schedules the partitioned algorithm upon the DSPs. The results of applying a new quasi-dynamic analysis technique to a set of high-level signal-processing algorithms were used to determine the uniprocessor features of the DSP design. For multiprocessing applications, the DSP contains an interprocessor communications port (IPC) which supports simple, flexible, dataflow communications while allowing the total communication bandwidth to be incrementally allocated to achieve the best link utilization. The net result is a DSP with a simple architecture that is easy to program for both uniprocessor and multi-processor modes of operation. The PaLS programming system simplifies the task of parallelizing an algorithm for execution upon a multiprocessor built with the DSP.

  10. Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Sarukkai, Sekhar R.; Mehra, Pankaj; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper presents a methodology for debugging the performance of message-passing programs on both tightly coupled and loosely coupled distributed-memory machines. The AIMS (Automated Instrumentation and Monitoring System) toolkit, a suite of software tools for measurement and analysis of performance, is introduced and its application illustrated using several benchmark programs drawn from the field of computational fluid dynamics. AIMS includes (i) Xinstrument, a powerful source-code instrumentor, which supports both Fortran77 and C as well as a number of different message-passing libraries including Intel's NX Thinking Machines' CMMD, and PVM; (ii) Monitor, a library of timestamping and trace -collection routines that run on supercomputers (such as Intel's iPSC/860, Delta, and Paragon and Thinking Machines' CM5) as well as on networks of workstations (including Convex Cluster and SparcStations connected by a LAN); (iii) Visualization Kernel, a trace-animation facility that supports source-code clickback, simultaneous visualization of computation and communication patterns, as well as analysis of data movements; (iv) Statistics Kernel, an advanced profiling facility, that associates a variety of performance data with various syntactic components of a parallel program; (v) Index Kernel, a diagnostic tool that helps pinpoint performance bottlenecks through the use of abstract indices; (vi) Modeling Kernel, a facility for automated modeling of message-passing programs that supports both simulation -based and analytical approaches to performance prediction and scalability analysis; (vii) Intrusion Compensator, a utility for recovering true performance from observed performance by removing the overheads of monitoring and their effects on the communication pattern of the program; and (viii) Compatibility Tools, that convert AIMS-generated traces into formats used by other performance-visualization tools, such as ParaGraph, Pablo, and certain AVS/Explorer modules.

  11. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds

    NASA Astrophysics Data System (ADS)

    Cannon, Edward O.; Amini, Ata; Bender, Andreas; Sternberg, Michael J. E.; Muggleton, Stephen H.; Glen, Robert C.; Mitchell, John B. O.

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly ( p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  12. Satisfiability of logic programming based on radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-07-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  13. Satisfiability of logic programming based on radial basis function neural networks

    SciTech Connect

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  14. Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming

    PubMed Central

    Guziolowski, Carito; Videla, Santiago; Eduati, Federica; Thiele, Sven; Cokelaer, Thomas; Siegel, Anne; Saez-Rodriguez, Julio

    2013-01-01

    Motivation: Logic modeling is a useful tool to study signal transduction across multiple pathways. Logic models can be generated by training a network containing the prior knowledge to phospho-proteomics data. The training can be performed using stochastic optimization procedures, but these are unable to guarantee a global optima or to report the complete family of feasible models. This, however, is essential to provide precise insight in the mechanisms underlaying signal transduction and generate reliable predictions. Results: We propose the use of Answer Set Programming to explore exhaustively the space of feasible logic models. Toward this end, we have developed caspo, an open-source Python package that provides a powerful platform to learn and characterize logic models by leveraging the rich modeling language and solving technologies of Answer Set Programming. We illustrate the usefulness of caspo by revisiting a model of pro-growth and inflammatory pathways in liver cells. We show that, if experimental error is taken into account, there are thousands (11 700) of models compatible with the data. Despite the large number, we can extract structural features from the models, such as links that are always (or never) present or modules that appear in a mutual exclusive fashion. To further characterize this family of models, we investigate the input–output behavior of the models. We find 91 behaviors across the 11 700 models and we suggest new experiments to discriminate among them. Our results underscore the importance of characterizing in a global and exhaustive manner the family of feasible models, with important implications for experimental design. Availability: caspo is freely available for download (license GPLv3) and as a web service at http://caspo.genouest.org/. Supplementary information: Supplementary materials are available at Bioinformatics online. Contact: santiago.videla@irisa.fr PMID:23853063

  15. Calculation of the exchange ratio for the Adaptive Maneuvering Logic program

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1985-01-01

    Improvements were made to the Adaptive Maneuvering Logic (AML) computer program, a computer-generated, air-to-air combat opponent. The primary improvement was incorporating a measure of performance, the exchange ratio, defined as the statistical measure of number of enemy kills divided by number of friendly losses. This measure was used to test a new modification of the AML's combat tactics. When the new version of the AML competed against the old version, the new version won with an exchange ratio of 1.4.

  16. Application of a logic model to an evidence-based practice training program for speech-language pathologists and audiologists.

    PubMed

    Guo, Ruiling; Bain, Barbara A; Willer, Janene

    2011-01-01

    The purpose of this study was to present the application of a logic model in planning, implementing, and evaluating an evidence-based practice (EBP) training program for speech-language pathologists (SLPs) and audiologists. A logic model was used as a guide in developing the EBP training program. The program investigators delineated the core components of the logic model based on the results of a needs assessment survey of SLPs and audiologists as well as literature reviews. The major components of the logic model were constructed as inputs, activities, outputs, and outcomes/impacts. Statistical analysis using repeated measures ANOVA for the pre-test and post-test indicated that the participants increased their EBP knowledge, information searching skills, and confidence in using EBP in their clinical practice (p < 0.001). Five of the eight program objectives were met by having at least 75% of the participants achieve the objectives. The logic model is a useful tool for grant application and program planning, implementation, and evaluation.

  17. Automatic Program Verification 4: Proof of Termination within a Weak Logic of Programs

    DTIC Science & Technology

    1975-10-01

    Here we give a simple application of the method of Virtual Programming which pertrr’s strong statements of termination (e.g. program A halts and Q is...the program is straightforward (and is not the "real" verification problem) this method of virtual programming presents an ^asy and natural way to

  18. A parallel algorithm for multi-level logic synthesis using the transduction method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lim, Chieng-Fai

    1991-01-01

    The Transduction Method has been shown to be a powerful tool in the optimization of multilevel networks. Many tools such as the SYLON synthesis system (X90), (CM89), (LM90) have been developed based on this method. A parallel implementation is presented of SYLON-XTRANS (XM89) on an eight processor Encore Multimax shared memory multiprocessor. It minimizes multilevel networks consisting of simple gates through parallel pruning, gate substitution, gate merging, generalized gate substitution, and gate input reduction. This implementation, called Parallel TRANSduction (PTRANS), also uses partitioning to break large circuits up and performs inter- and intra-partition dynamic load balancing. With this, good speedups and high processor efficiencies are achievable without sacrificing the resulting circuit quality.

  19. A parallel dynamic programming algorithm for multi-reservoir system optimization

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wei, Jiahua; Li, Tiejian; Wang, Guangqian; Yeh, William W.-G.

    2014-05-01

    This paper develops a parallel dynamic programming algorithm to optimize the joint operation of a multi-reservoir system. First, a multi-dimensional dynamic programming (DP) model is formulated for a multi-reservoir system. Second, the DP algorithm is parallelized using a peer-to-peer parallel paradigm. The parallelization is based on the distributed memory architecture and the message passing interface (MPI) protocol. We consider both the distributed computing and distributed computer memory in the parallelization. The parallel paradigm aims at reducing the computation time as well as alleviating the computer memory requirement associated with running a multi-dimensional DP model. Next, we test the parallel DP algorithm on the classic, benchmark four-reservoir problem on a high-performance computing (HPC) system with up to 350 cores. Results indicate that the parallel DP algorithm exhibits good performance in parallel efficiency; the parallel DP algorithm is scalable and will not be restricted by the number of cores. Finally, the parallel DP algorithm is applied to a real-world, five-reservoir system in China. The results demonstrate the parallel efficiency and practical utility of the proposed methodology.

  20. Portable programming on parallel/networked computers using the Application Portable Parallel Library (APPL)

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Cole, Gary L.; Blech, Richard A.

    1993-01-01

    The Application Portable Parallel Library (APPL) is a subroutine-based library of communication primitives that is callable from applications written in FORTRAN or C. APPL provides a consistent programmer interface to a variety of distributed and shared-memory multiprocessor MIMD machines. The objective of APPL is to minimize the effort required to move parallel applications from one machine to another, or to a network of homogeneous machines. APPL encompasses many of the message-passing primitives that are currently available on commercial multiprocessor systems. This paper describes APPL (version 2.3.1) and its usage, reports the status of the APPL project, and indicates possible directions for the future. Several applications using APPL are discussed, as well as performance and overhead results.

  1. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  2. Logic model use in developing a survey instrument for program evaluation: emergency preparedness summits for schools of nursing in Georgia.

    PubMed

    Torghele, Karen; Buyum, Arielle; Dubruiel, Nicole; Augustine, Jill; Houlihan, Catherine; Alperin, Melissa; Miner, Kathleen R

    2007-01-01

    The objective of this paper is to describe a method for using a logic model to guide program evaluation by detailing the steps used, providing diagrams that visually depict the process, and giving an example based on the evaluation of emergency preparedness nursing summits in Georgia. Developing a logic model is an ideal way to visually depict the inputs, activities, outputs, and outcomes of a program, thus providing a clear framework of the workings and functions of the program. In planning a comprehensive evaluation, being able to view all the elements in a program and how they interrelate makes it easier to determine the areas that should be addressed. When a survey is part of a program evaluation, determining that the goals, objectives, research questions, logic model, and survey questions maintain consistency in the way they relate and lead to each other can help document the completeness and symmetry of the assessment. By showing these linkages, the utility of the logic model is maximized and the stakeholders in the assessment of the program have clear evidence that their expectations and needs have been met for a valuable, useful evaluation product.

  3. Retargeting of existing FORTRAN program and development of parallel compilers

    NASA Technical Reports Server (NTRS)

    Agrawal, Dharma P.

    1988-01-01

    The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.

  4. Parallel implementation of a Monte Carlo molecular stimulation program

    PubMed

    Carvalho; Gomes; Cordeiro

    2000-05-01

    Molecular simulation methods such as molecular dynamics and Monte Carlo are fundamental for the theoretical calculation of macroscopic and microscopic properties of chemical and biochemical systems. These methods often rely on heavy computations, and one sometimes feels the need to run them in powerful massively parallel machines. For moderate problem sizes, however, a not so powerful and less expensive solution based on a network of workstations may be quite satisfactory. In the present work, the strategy adopted in the development of a parallel version is outlined, using the message passing model, of a molecular simulation code to be used in a network of workstations. This parallel code is the adaptation of an older sequential code using the Metropolis Monte Carlo method. In this case, the message passing interface was used as the interprocess communications library, although the code could be easily adapted for other message passing systems such as the parallel virtual machine. For simple systems it is shown that speedups of 2 can be achieved for four processes with this cheap solution. For bigger and more complex simulated systems, even better speedups might be obtained, which indicates that the presented approach is appropriate for the efficient use of a network of workstations in parallel processing.

  5. An adaptive maneuvering logic computer program for the simulation of one-to-one air-to-air combat. Volume 2: Program description

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Owens, A. J.

    1975-01-01

    A detailed description is presented of the computer programs in order to provide an understanding of the mathematical and geometrical relationships as implemented in the programs. The individual sbbroutines and their underlying mathematical relationships are described, and the required input data and the output provided by the program are explained. The relationship of the adaptive maneuvering logic program with the program to drive the differential maneuvering simulator is discussed.

  6. Challenge problems focusing on equality and combinatory logic: Evaluating automated theorem-proving programs

    SciTech Connect

    Wos, L.; McCune, W.

    1988-01-01

    In this paper, we offer a set of problems for evaluating the power of automated theorem-proving programs and the potential of new ideas. Since the problems published in the proceedings of the first CADE conference proved to be so useful, and since researchers are now far more disposed to implementing and testing their ideas, a new set of problems to complement those that have been widely studied is in order. In general, the new problems provide a far greater challenge for an automated theorem-proving program than those in the first set do. Indeed, to our knowledge, five of the six problems we propose for study have never been proved with a theorem-proving program. For each problem, we give a set of statements that can easily be translated into a standard set of clauses. We also state each problem in its mathematical and logical form. In many cases, we also provide a proof of the theorem from which a problem is taken so that one can measure a program's progress in its attempt to solve the problem. Two of the theorems we discuss are of especial interest in that they answer questions that had been open concerning the constructibility of two types of combinator. We also include a brief description of a new strategy for restricting the application of paramodulation. All of the problems we propose for study emphasize the role of equality. This paper is tutorial in nature.

  7. Accelerate Performance on the Parallel Programming Super Highway

    DTIC Science & Technology

    2010-04-01

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Instruments ,11500 N Mopac Expwy,Austin,TX,78759-3504 8. PERFORMING...standards) National  Instruments  LabVIEW Agilent VEE Northwoods Software Sanscript Many others… 19 Market is demanding smaller, cheaper, faster targets...need  or  multiple development  tools 21 Increasingly parallel embedded hardware warrants  new methods of parallel software development Dataflow

  8. PRAM C:a new programming environment for fine-grain and coarse-grain parallelism.

    SciTech Connect

    Brown, Jonathan Leighton; Wen, Zhaofang.

    2004-11-01

    In the search for ''good'' parallel programming environments for Sandia's current and future parallel architectures, they revisit a long-standing open question. Can the PRAM parallel algorithms designed by theoretical computer scientists over the last two decades be implemented efficiently? This open question has co-existed with ongoing efforts in the HPC community to develop practical parallel programming models that can simultaneously provide ease of use, expressiveness, performance, and scalability. Unfortunately, no single model has met all these competing requirements. Here they propose a parallel programming environment, PRAM C, to bridge the gap between theory and practice. This is an attempt to provide an affirmative answer to the PRAM question, and to satisfy these competing practical requirements. This environment consists of a new thin runtime layer and an ANSI C extension. The C extension has two control constructs and one additional data type concept, ''shared''. This C extension should enable easy translation from PRAM algorithms to real parallel programs, much like the translation from sequential algorithms to C programs. The thin runtime layer bundles fine-grained communication requests into coarse-grained communication to be served by message-passing. Although the PRAM represents SIMD-style fine-grained parallelism, a stand-alone PRAM C environment can support both fine-grained and coarse-grained parallel programming in either a MIMD or SPMD style, interoperate with existing MPI libraries, and use existing hardware. The PRAM C model can also be integrated easily with existing models. Unlike related efforts proposing innovative hardware with the goal to realize the PRAM, ours can be a pure software solution with the purpose to provide a practical programming environment for existing parallel machines; it also has the potential to perform well on future parallel architectures.

  9. Development of a logic model for a physical activity-based employee wellness program for mass transit workers.

    PubMed

    Das, Bhibha M; Petruzzello, Steven J; Ryan, Katherine E

    2014-07-17

    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity-based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development.

  10. Using RUFDATA to guide a logic model for a quality assurance process in an undergraduate university program.

    PubMed

    Sherman, Paul David

    2016-04-01

    This article presents a framework to identify key mechanisms for developing a logic model blueprint that can be used for an impending comprehensive evaluation of an undergraduate degree program in a Canadian university. The evaluation is a requirement of a comprehensive quality assurance process mandated by the university. A modified RUFDATA (Saunders, 2000) evaluation model is applied as an initiating framework to assist in decision making to provide a guide for conceptualizing a logic model for the quality assurance process. This article will show how an educational evaluation is strengthened by employing a RUFDATA reflective process in exploring key elements of the evaluation process, and then translating this information into a logic model format that could serve to offer a more focussed pathway for the quality assurance activities. Using preliminary program evaluation data from two key stakeholders of the undergraduate program as well as an audit of the curriculum's course syllabi, a case is made for, (1) the importance of inclusivity of key stakeholders participation in the design of the evaluation process to enrich the authenticity and accuracy of program participants' feedback, and (2) the diversification of data collection methods to ensure that stakeholders' narrative feedback is given ample exposure. It is suggested that the modified RUFDATA/logic model framework be applied to all academic programs at the university undergoing the quality assurance process at the same time so that economies of scale may be realized.

  11. Object-Oriented NeuroSys: Parallel Programs for Simulating Large Networks of Biologically Accurate Neurons

    SciTech Connect

    Pacheco, P; Miller, P; Kim, J; Leese, T; Zabiyaka, Y

    2003-05-07

    Object-oriented NeuroSys (ooNeuroSys) is a collection of programs for simulating very large networks of biologically accurate neurons on distributed memory parallel computers. It includes two principle programs: ooNeuroSys, a parallel program for solving the large systems of ordinary differential equations arising from the interconnected neurons, and Neurondiz, a parallel program for visualizing the results of ooNeuroSys. Both programs are designed to be run on clusters and use the MPI library to obtain parallelism. ooNeuroSys also includes an easy-to-use Python interface. This interface allows neuroscientists to quickly develop and test complex neuron models. Both ooNeuroSys and Neurondiz have a design that allows for both high performance and relative ease of maintenance.

  12. Communications oriented programming of parallel iterative solutions of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Patrick, M. L.; Pratt, T. W.

    1986-01-01

    Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.

  13. A C++ Thread Package for Concurrent and Parallel Programming

    SciTech Connect

    Jie Chen; William Watson

    1999-11-01

    Recently thread libraries have become a common entity on various operating systems such as Unix, Windows NT and VxWorks. Those thread libraries offer significant performance enhancement by allowing applications to use multiple threads running either concurrently or in parallel on multiprocessors. However, the incompatibilities between native libraries introduces challenges for those who wish to develop portable applications.

  14. Programming environment for parallel-vision algorithms. Final technical report, February 1988-December 1989

    SciTech Connect

    Brown, C.

    1990-04-11

    This contract developed and disseminated papers, ideas, algorithms, analysis, software, applications, and implementations for parallel programming environments for computer vision and for vision applications. The work has been widely reported and highly influential. The most significant work centered on the Butterfly Parallel Processor, the MaxVideo pipelined parallel image processor, and the development of the real-time computer vision laboratory. For the Butterfly, the Psyche multi-model operating system was developed and the CONSUL autoparallelizing compiler was designed. Much basic and influential performance monitoring and debugging work was completed, resulting in working systems and novel algorithms. There was also significant research in systems and applications using other parallel architectures in the laboratory, such as the MaxVideo parallel pipelined image processor. The contract developed a heterogeneous parallel architecture involving pipelined and MIMD parallelism and integrated it with a robot head.

  15. CRBLASTER: a fast parallel-processing program for cosmic ray rejection

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.

    2008-08-01

    Many astronomical image-analysis programs are based on algorithms that can be described as being embarrassingly parallel, where the analysis of one subimage generally does not affect the analysis of another subimage. Yet few parallel-processing astrophysical image-analysis programs exist that can easily take full advantage of todays fast multi-core servers costing a few thousands of dollars. A major reason for the shortage of state-of-the-art parallel-processing astrophysical image-analysis codes is that the writing of parallel codes has been perceived to be difficult. I describe a new fast parallel-processing image-analysis program called crblaster which does cosmic ray rejection using van Dokkum's L.A.Cosmic algorithm. crblaster is written in C using the industry standard Message Passing Interface (MPI) library. Processing a single 800×800 HST WFPC2 image takes 1.87 seconds using 4 processes on an Apple Xserve with two dual-core 3.0-GHz Intel Xeons; the efficiency of the program running with the 4 processors is 82%. The code can be used as a software framework for easy development of parallel-processing image-anlaysis programs using embarrassing parallel algorithms; the biggest required modification is the replacement of the core image processing function with an alternative image-analysis function based on a single-processor algorithm. I describe the design, implementation and performance of the program.

  16. Buffered coscheduling for parallel programming and enhanced fault tolerance

    SciTech Connect

    Petrini, Fabrizio; Feng, Wu-chun

    2006-01-31

    A computer implemented method schedules processor jobs on a network of parallel machine processors or distributed system processors. Control information communications generated by each process performed by each processor during a defined time interval is accumulated in buffers, where adjacent time intervals are separated by strobe intervals for a global exchange of control information. A global exchange of the control information communications at the end of each defined time interval is performed during an intervening strobe interval so that each processor is informed by all of the other processors of the number of incoming jobs to be received by each processor in a subsequent time interval. The buffered coscheduling method of this invention also enhances the fault tolerance of a network of parallel machine processors or distributed system processors

  17. Fostering and Inspiring Research Engagement (FIRE): program logic of a research incubator scheme for allied health students.

    PubMed

    Ziviani, Jenny; Feeney, Rachel; Schabrun, Siobhan; Copland, David; Hodges, Paul

    2014-08-01

    The purpose of this study was to present the application of a logic model in depicting the underlying theory of an undergraduate research scheme for occupational therapy, physiotherapy, and speech pathology university students in Queensland, Australia. Data gathered from key written documents on the goals and intended operation of the research incubator scheme were used to create a draft (unverified) logic model. The major components of the logic model were inputs and resources, activities/outputs, and outcomes (immediate/learning, intermediate/action, and longer term/impacts). Although immediate and intermediate outcomes chiefly pertained to students' participation in honours programs, longer-term outcomes (impacts) concerned their subsequent participation in research higher-degree programs and engagement in research careers. Program logic provided an effective means of clarifying program objectives and the mechanisms by which the research incubator scheme was designed to achieve its intended outcomes. This model was developed as the basis for evaluation of the effectiveness of the scheme in achieving its stated goals.

  18. F-Nets and Software Cabling: Deriving a Formal Model and Language for Portable Parallel Programming

    NASA Technical Reports Server (NTRS)

    DiNucci, David C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Parallel programming is still being based upon antiquated sequence-based definitions of the terms "algorithm" and "computation", resulting in programs which are architecture dependent and difficult to design and analyze. By focusing on obstacles inherent in existing practice, a more portable model is derived here, which is then formalized into a model called Soviets which utilizes a combination of imperative and functional styles. This formalization suggests more general notions of algorithm and computation, as well as insights into the meaning of structured programming in a parallel setting. To illustrate how these principles can be applied, a very-high-level graphical architecture-independent parallel language, called Software Cabling, is described, with many of the features normally expected from today's computer languages (e.g. data abstraction, data parallelism, and object-based programming constructs).

  19. Computer simulation program for parallel SITAN. [Sandia Inertia Terrain-Aided Navigation, in FORTRAN

    SciTech Connect

    Andreas, R.D.; Sheives, T.C.

    1980-11-01

    This computer program simulates the operation of parallel SITAN using digitized terrain data. An actual trajectory is modeled including the effects of inertial navigation errors and radar altimeter measurements.

  20. Logic Models in Out-of-School Time Programs: What Are They and Why Are They Important? Research-to-Results Brief. Publication #2007-01

    ERIC Educational Resources Information Center

    Hamilton, Jenny; Bronte-Tinkew, Jacinta

    2007-01-01

    A logic model, also called a conceptual model and theory-of-change model, is a visual representation of how a program is expected to "work." It relates resources, activities, and the intended changes or impacts that a program is expected to create. Typically, logic models are diagrams or flow charts with illustrations, text, and arrows that…

  1. Resolutions of the Coulomb operator: VIII. Parallel implementation using the modern programming language X10.

    PubMed

    Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P

    2014-10-30

    Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine.

  2. A comparison using APPL and PVM for a parallel implementation of an unstructured grid generation program

    NASA Technical Reports Server (NTRS)

    Arthur, Trey; Bockelie, Michael J.

    1993-01-01

    Efforts to parallelize the VGRIDSG unstructured surface grid generation program are described. The inherent parallel nature of the grid generation algorithm used in VGRIDSG was exploited on a cluster of Silicon Graphics IRIS 4D workstations using the message passing libraries Application Portable Parallel Library (APPL) and Parallel Virtual Machine (PVM). Comparisons of speed up are presented for generating the surface grid of a unit cube and a Mach 3.0 High Speed Civil Transport. It was concluded that for this application, both APPL and PVM give approximately the same performance, however, APPL is easier to use.

  3. Aquarius Project: Research in the System Architecture of Accelerators for the High Performance Execution of Logic Programs.

    DTIC Science & Technology

    1991-05-31

    University of California c/o Sponsored Projects Office University of California Berkeley, California 94720 Subcontractor: Electrical Engineering Systems...for the high perfor- mance execution of logic programs. It was conducted by the Electrical Engineering - Systems Department of the University of...program ( engine ) module, and a knowledge base. Each level accepts a specification in a formal specialized language and produces a more detailed and

  4. Backtracking and Re-execution in the Automatic Debugging of Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Matthews, Gregory; Hood, Robert; Johnson, Stephen; Leggett, Peter; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this work we describe a new approach using relative debugging to find differences in computation between a serial program and a parallel version of th it program. We use a combination of re-execution and backtracking in order to find the first difference in computation that may ultimately lead to an incorrect value that the user has indicated. In our prototype implementation we use static analysis information from a parallelization tool in order to perform the backtracking as well as the mapping required between serial and parallel computations.

  5. Comparative Study of Message Passing and Shared Memory Parallel Programming Models in Neural Network Training

    SciTech Connect

    Vitela, J.; Gordillo, J.; Cortina, L; Hanebutte, U.

    1999-12-14

    It is presented a comparative performance study of a coarse grained parallel neural network training code, implemented in both OpenMP and MPI, standards for shared memory and message passing parallel programming environments, respectively. In addition, these versions of the parallel training code are compared to an implementation utilizing SHMEM the native SGI/CRAY environment for shared memory programming. The multiprocessor platform used is a SGI/Cray Origin 2000 with up to 32 processors. It is shown that in this study, the native CRAY environment outperforms MPI for the entire range of processors used, while OpenMP shows better performance than the other two environments when using more than 19 processors. In this study, the efficiency is always greater than 60% regardless of the parallel programming environment used as well as of the number of processors.

  6. Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Weeks, Cindy Lou

    1986-01-01

    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.

  7. Multiprocessor speed-up, Amdahl's Law, and the Activity Set Model of parallel program behavior

    NASA Technical Reports Server (NTRS)

    Gelenbe, Erol

    1988-01-01

    An important issue in the effective use of parallel processing is the estimation of the speed-up one may expect as a function of the number of processors used. Amdahl's Law has traditionally provided a guideline to this issue, although it appears excessively pessimistic in the light of recent experimental results. In this note, Amdahl's Law is amended by giving a greater importance to the capacity of a program to make effective use of parallel processing, but also recognizing the fact that imbalance of the workload of each processor is bound to occur. An activity set model of parallel program behavior is then introduced along with the corresponding parallelism index of a program, leading to upper and lower bounds to the speed-up.

  8. Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming.

    PubMed Central

    King, R D; Srinivasan, A

    1996-01-01

    The machine learning program Progol was applied to the problem of forming the structure-activity relationship (SAR) for a set of compounds tested for carcinogenicity in rodent bioassays by the U.S. National Toxicology Program (NTP). Progol is the first inductive logic programming (ILP) algorithm to use a fully relational method for describing chemical structure in SARs, based on using atoms and their bond connectivities. Progol is well suited to forming SARs for carcinogenicity as it is designed to produce easily understandable rules (structural alerts) for sets of noncongeneric compounds. The Progol SAR method was tested by prediction of a set of compounds that have been widely predicted by other SAR methods (the compounds used in the NTP's first round of carcinogenesis predictions). For these compounds no method (human or machine) was significantly more accurate than Progol. Progol was the most accurate method that did not use data from biological tests on rodents (however, the difference in accuracy is not significant). The Progol predictions were based solely on chemical structure and the results of tests for Salmonella mutagenicity. Using the full NTP database, the prediction accuracy of Progol was estimated to be 63% (+/- 3%) using 5-fold cross validation. A set of structural alerts for carcinogenesis was automatically generated and the chemical rationale for them investigated- these structural alerts are statistically independent of the Salmonella mutagenicity. Carcinogenicity is predicted for the compounds used in the NTP's second round of carcinogenesis predictions. The results for prediction of carcinogenesis, taken together with the previous successful applications of predicting mutagenicity in nitroaromatic compounds, and inhibition of angiogenesis by suramin analogues, show that Progol has a role to play in understanding the SARs of cancer-related compounds. PMID:8933051

  9. Using CLIPS in the domain of knowledge-based massively parallel programming

    NASA Technical Reports Server (NTRS)

    Dvorak, Jiri J.

    1994-01-01

    The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.

  10. Public health program planning logic model for community engaged type 2 diabetes management and prevention.

    PubMed

    West, Joseph F

    2014-02-01

    Diabetes remains a growing epidemic with widening health inequity gaps in disease management, self-management knowledge, access to care and outcomes. Yet there is a paucity of evaluation tools for community engaged interventions aimed at closing the gaps and improving health. The Guide to Community Preventive Services (the Community Guide) developed by the Task Force on Community Preventive Services (the Task Force) at the Centers for Disease Control and Prevention (CDC) recommends two healthcare system level interventions, case management interventions and disease management programs, to improve glycemic control. However, as a public health resource guide for diabetes interventions a model for community engagement is a glaringly absent component of the Community Guide recommendations. In large part there are few evidence-based interventions featuring community engagement as a practice and system-level focus of chronic disease and Type 2 diabetes management. The central argument presented in this paper is that the absence of these types of interventions is due to the lack of tools for modeling and evaluating such interventions, especially among disparate and poor populations. A conceptual model emphasizing action-oriented micro-level community engagement is needed to complement the Community Guide and serve as the basis for testing and evaluation of these kinds of interventions. A unique logic model advancing the Community Guide diabetes recommendations toward measureable and sustainable community engagement for improved Type 2 diabetes outcomes is presented.

  11. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis

    PubMed Central

    Hall, Benjamin A.; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-01-01

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or ‘retrodict’, compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. PMID:24966232

  12. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    PubMed

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data.

  13. Programming a massively parallel, computation universal system: static behavior

    SciTech Connect

    Lapedes, A.; Farber, R.

    1986-01-01

    In previous work by the authors, the ''optimum finding'' properties of Hopfield neural nets were applied to the nets themselves to create a ''neural compiler.'' This was done in such a way that the problem of programming the attractors of one neural net (called the Slave net) was expressed as an optimization problem that was in turn solved by a second neural net (the Master net). In this series of papers that approach is extended to programming nets that contain interneurons (sometimes called ''hidden neurons''), and thus deals with nets capable of universal computation. 22 refs.

  14. Parallel Goals of the Early Childhood Music Program.

    ERIC Educational Resources Information Center

    Cohen, Veronica Wolf

    Early childhood music programs should be based on two interacting goals: (1) to teach those skills most appropriate to a particular level and (2) to nurture musical creativity and self-expression. Early childhood is seen as the optimum time for acquiring certain musical skills, of which the ability to sing in tune is considered primary. The vocal…

  15. Source-Level Debugging of Automatically Parallelized Programs

    DTIC Science & Technology

    1992-10-23

    the tesi . 1.1 Debugging issues: an example debugging session Them is a wide specum of progral ming models and machine arhitecnusm Program- ming models...generated effi- ciendy. The new indexes awl functions of dte old index so the new indexes will stll be linea functions of loop counters if the original

  16. Discovering rules for protein-ligand specificity using support vector inductive logic programming.

    PubMed

    Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2009-09-01

    Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.

  17. Managing Parallelism and Resources in Scientific Dataflow Programs

    DTIC Science & Technology

    1990-03-01

    Fortunately, the programmer has the most intuition at that level and can offer guidance through simple annotations. At middle levels, where analysis is...hard and the programmer is likely to have little intuition, we can generally do well with rather crude analysis. Finally, in Chapter 9, we take a...recurrences into the innermost loop. This may be particularly important when a very high-level programming style is adopted and the programmer has not

  18. Concurrent Programming Using Actors: Exploiting Large-Scale Parallelism,

    DTIC Science & Technology

    1985-10-07

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK* Artificial Inteligence Laboratory AREA Is WORK UNIT NUMBERS 545 Technology Square...D-R162 422 CONCURRENT PROGRMMIZNG USING f"OS XL?ITP TEH l’ LARGE-SCALE PARALLELISH(U) NASI AC E Al CAMBRIDGE ARTIFICIAL INTELLIGENCE L. G AGHA ET AL...RESOLUTION TEST CHART N~ATIONAL BUREAU OF STANDA.RDS - -96 A -E. __ _ __ __’ .,*- - -- •. - MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL

  19. Parallelizing Deadlock Resolution in Symbolic Synthesis of Distributed Programs

    DTIC Science & Technology

    2008-01-01

    follows. In Sections 2 and 3, we present precise defini- tions for distributed programs, specifications, and fault- tolerance. We formally state the...Subsequently, experimental results and analysis are presented in Section 6. Related work is discussed in Section 7. Finally, we conclude in Section...infinite com- putation by stuttering at sl. On the other hand, if there exists a state sd such that there is no outgoing transition (or a self-loop

  20. Parallel programming of saccades during natural scene viewing: evidence from eye movement positions.

    PubMed

    Wu, Esther X W; Gilani, Syed Omer; van Boxtel, Jeroen J A; Amihai, Ido; Chua, Fook Kee; Yen, Shih-Cheng

    2013-10-24

    Previous studies have shown that saccade plans during natural scene viewing can be programmed in parallel. This evidence comes mainly from temporal indicators, i.e., fixation durations and latencies. In the current study, we asked whether eye movement positions recorded during scene viewing also reflect parallel programming of saccades. As participants viewed scenes in preparation for a memory task, their inspection of the scene was suddenly disrupted by a transition to another scene. We examined whether saccades after the transition were invariably directed immediately toward the center or were contingent on saccade onset times relative to the transition. The results, which showed a dissociation in eye movement behavior between two groups of saccades after the scene transition, supported the parallel programming account. Saccades with relatively long onset times (>100 ms) after the transition were directed immediately toward the center of the scene, probably to restart scene exploration. Saccades with short onset times (<100 ms) moved to the center only one saccade later. Our data on eye movement positions provide novel evidence of parallel programming of saccades during scene viewing. Additionally, results from the analyses of intersaccadic intervals were also consistent with the parallel programming hypothesis.

  1. Method for resource control in parallel environments using program organization and run-time support

    NASA Technical Reports Server (NTRS)

    Ekanadham, Kattamuri (Inventor); Moreira, Jose Eduardo (Inventor); Naik, Vijay Krishnarao (Inventor)

    2001-01-01

    A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently.

  2. Method for resource control in parallel environments using program organization and run-time support

    NASA Technical Reports Server (NTRS)

    Ekanadham, Kattamuri (Inventor); Moreira, Jose Eduardo (Inventor); Naik, Vijay Krishnarao (Inventor)

    1999-01-01

    A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently.

  3. Describing, using 'recognition cones'. [parallel-series model with English-like computer program

    NASA Technical Reports Server (NTRS)

    Uhr, L.

    1973-01-01

    A parallel-serial 'recognition cone' model is examined, taking into account the model's ability to describe scenes of objects. An actual program is presented in an English-like language. The concept of a 'description' is discussed together with possible types of descriptive information. Questions regarding the level and the variety of detail are considered along with approaches for improving the serial representations of parallel systems.

  4. Flight Design System-1 System Design Document. Volume 9: Executive logic flow, program design language

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The detailed logic flow for the Flight Design System Executive is presented. The system is designed to provide the hardware/software capability required for operational support of shuttle flight planning.

  5. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  6. CRBLASTER: A Fast Parallel-Processing Program for Cosmic Ray Rejection in Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Mighell, K.

    Many astronomical image analysis tasks are based on algorithms that can be described as being embarrassingly parallel - where the analysis of one subimage generally does not affect the analysis of another subimage. Yet few parallel-processing astrophysical image-analysis programs exist that can easily take full advantage of today's fast multi-core servers costing a few thousands of dollars. One reason for the shortage of state-of-the-art parallel processing astrophysical image-analysis codes is that the writing of parallel codes has been perceived to be difficult. I describe a new fast parallel-processing image-analysis program called CRBLASTER which does cosmic ray rejection using van Dokkum's L.A.Cosmic algorithm. CRBLASTER is written in C using the industry standard Message Passing Interface library. Processing a single 800 x 800 Hubble Space Telescope Wide-Field Planetary Camera 2 (WFPC2) image takes 1.9 seconds using 4 processors on an Apple Xserve with two dual-core 3.0-GHz Intel Xeons; the efficiency of the program running with the 4 cores is 82%. The code has been designed to be used as a software framework for the easy development of parallel-processing image-analysis programs using embarrassing parallel algorithms; all that needs to be done is to replace the core image processing task (in this case the C function that performs the L.A.Cosmic algorithm) with an alternative image analysis task based on a single processor algorithm. I describe the design and implementation of the program and then discuss how it could possibly be used to quickly do time-critical analysis applications such as those involved with space surveillance or do complex calibration tasks as part of the pipeline processing of images from large focal plane arrays.

  7. Distributed Logics

    DTIC Science & Technology

    2014-10-03

    introduce distributed logics. Distributed logics lift the distribution structure of a distributed system directly into the logic, thereby parameterizing...the logic by the distribution structure itself. Each domain supports a “local modal logic.” The connections between domains are realized as...There are also multi- agent logic systems [12]. What distinguishes distributed logics from these are that the morphisms, i.e., the nbd maps, have

  8. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  9. Summer institute in parallel programming (Organized by Ewing Lusk and William Gropp)

    SciTech Connect

    Pieper, G.W.

    1992-01-01

    On September 3--13, 1991, Argonne National Laboratory hosted a Summer Institute in Parallel Programming. The institute was organized by the Mathematics and Computer Science Division and was supported in part by the National Science Foundation and by the US Department of Energy. The objective of the institute was to familiarize graduate students and postdoctoral researchers with new methods and tools for parallel programming and to provide hands-on experience with a diverse array of advanced-computer architectures. This report summarizes the activities that took place during the ten-day institute.

  10. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent.

  11. High performance parallel computers for science: New developments at the Fermilab advanced computer program

    SciTech Connect

    Nash, T.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Deppe, J.; Edel, M.; Fischler, M.; Gaines, I.; Hance, R.

    1988-08-01

    Fermilab's Advanced Computer Program (ACP) has been developing highly cost effective, yet practical, parallel computers for high energy physics since 1984. The ACP's latest developments are proceeding in two directions. A Second Generation ACP Multiprocessor System for experiments will include $3500 RISC processors each with performance over 15 VAX MIPS. To support such high performance, the new system allows parallel I/O, parallel interprocess communication, and parallel host processes. The ACP Multi-Array Processor, has been developed for theoretical physics. Each $4000 node is a FORTRAN or C programmable pipelined 20 MFlops (peak), 10 MByte single board computer. These are plugged into a 16 port crossbar switch crate which handles both inter and intra crate communication. The crates are connected in a hypercube. Site oriented applications like lattice gauge theory are supported by system software called CANOPY, which makes the hardware virtually transparent to users. A 256 node, 5 GFlop, system is under construction. 10 refs., 7 figs.

  12. Architecture-Adaptive Computing Environment: A Tool for Teaching Parallel Programming

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2002-01-01

    Recently, networked and cluster computation have become very popular. This paper is an introduction to a new C based parallel language for architecture-adaptive programming, aCe C. The primary purpose of aCe (Architecture-adaptive Computing Environment) is to encourage programmers to implement applications on parallel architectures by providing them the assurance that future architectures will be able to run their applications with a minimum of modification. A secondary purpose is to encourage computer architects to develop new types of architectures by providing an easily implemented software development environment and a library of test applications. This new language should be an ideal tool to teach parallel programming. In this paper, we will focus on some fundamental features of aCe C.

  13. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  14. 76 FR 66309 - Pilot Program for Parallel Review of Medical Products; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... HUMAN SERVICES Centers for Medicare and Medicaid Services Food and Drug Administration Pilot Program for Parallel Review of Medical Products; Correction AGENCY: Food and Drug Administration, Centers for Medicare and Medicaid Services, HHS. ACTION: Notice; correction. SUMMARY: The Food and Drug Administration...

  15. 76 FR 62808 - Pilot Program for Parallel Review of Medical Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... HUMAN SERVICES Centers for Medicare and Medicaid Services Food and Drug Administration Pilot Program for Parallel Review of Medical Products AGENCY: Food and Drug Administration, Centers for Medicare and Medicaid Services, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) and the Centers for...

  16. Coping with Logical Fallacies: A Developmental Training Program for Learning to Reason

    ERIC Educational Resources Information Center

    Christoforides, Michael; Spanoudis, George; Demetriou, Andreas

    2016-01-01

    This study trained children to master logical fallacies and examined how learning is related to processing efficiency and fluid intelligence (gf). A total of one hundred and eighty 8- and 11-year-old children living in Cyprus were allocated to a control, a limited (LI), and a full instruction (FI) group. The LI group learned the notion of logical…

  17. A DNAzyme-mediated logic gate for programming molecular capture and release on DNA origami.

    PubMed

    Li, Feiran; Chen, Haorong; Pan, Jing; Cha, Tae-Gon; Medintz, Igor L; Choi, Jong Hyun

    2016-06-28

    Here we design a DNA origami-based site-specific molecular capture and release platform operated by a DNAzyme-mediated logic gate process. We show the programmability and versatility of this platform with small molecules, proteins, and nanoparticles, which may also be controlled by external light signals.

  18. Log(F): An Optimal Combination of Logic Programming, Rewriting, and Lazy Evaluation

    DTIC Science & Technology

    1988-04-01

    References conference on automated deduction. Frege , G. [ 1879]. Begriffsschrift. A formula language, modelled upon that of arithmetic, for pure thought...In From Frege to Goedel: A source book in mathematical logic, 1879- 1931. Harvard University Press, Cambridge, MA. Fribourg, L. [1984]. Oriented

  19. Contrastive analysis of three parallel modes in multi-dimensional dynamic programming and its application in cascade reservoirs operation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanke; Jiang, Zhiqiang; Ji, Changming; Sun, Ping

    2015-10-01

    The "curse of dimensionality" of dynamic programming (DP) has always been a great challenge to the cascade reservoirs operation optimization (CROO) because computer memory and computational time increase exponentially with the increasing number of reservoirs. It is an effective measure to combine DP with the parallel processing technology to improve the performance. This paper proposes three parallel modes for multi-dimensional dynamic programming (MDP) based on .NET4 Parallel Extensions, i.e., the stages parallel mode, state combinations parallel mode and hybrid parallel mode. A cascade reservoirs of Li Xiangjiang River in China is used as the study instance in this paper, and a detailed contrastive analysis of the three parallel modes on run-time, parallel acceleration ratio, parallel efficiency and memory usage has been implemented based on the parallel computing results. Results show that all the three parallel modes can effectively shorten the run-time so that to alleviate the "curse of dimensionality" of MDP, but relatively, the state combinations parallel mode is the optimal, the hybrid parallel is suboptimal and the stages parallel mode is poor.

  20. A library-based approach to portable, parallel, object-oriented programming: Interface, implementation, and application

    SciTech Connect

    Parkes, S.; Chandy, J.A.; Banerjee, P.

    1994-12-31

    The use of parallel platforms, despite increasing availability, remains largely restricted to well-structured, numeric applications. The authors address the issue of facilitating the use of parallel platforms on unstructured problems through object-oriented design techniques and the actor model of concurrent computation. They present a multi-level approach to expressing parallelism for unstructured applications: a high-level interface based on the actor model of concurrent object-oriented programming and a low-level interface which provides an object-oriented interface to system services across a wide range of parallel architectures. The high- and low-level interfaces are implemented as part of the ProperCAD II C++ class library which supports shared-memory, message-passing, and hybrid architectures. The authors demonstrate their approach through a detailed examination of the parallelization process for an existing unstructured serial application, a state-of-the-art VLSI computer-aided design application. They compare and contrast the library-based actor approach to other methods for expressing parallelism in C++ on a number of applications and kernels.

  1. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    SciTech Connect

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; Sato, Mitsuhisa; Tang, William; Wang, Bei

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensional gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.

  2. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  3. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  4. LDRD final report on massively-parallel linear programming : the parPCx system.

    SciTech Connect

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runs on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We

  5. Exact Sciences' experience with the FDA and CMS parallel review program.

    PubMed

    Ridge, John R; Statz, Sandra

    2015-01-01

    Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer death among men and women combined in the USA. Although the benefits of early CRC detection are widely recognized, screening rates are suboptimal. Cologuard is a multitarget stool DNA screening test that offers a unique non-invasive option for CRC screening. Cologuard was the first product to be reviewed under a pilot parallel review program jointly conducted by the US FDA and the Centers for Medicare & Medicaid Services (CMS). This parallel review process shortened the overall review for Cologuard and resulted in a preliminary National Coverage Determination that coincided with FDA approval.

  6. Speedup properties of phases in the execution profile of distributed parallel programs

    SciTech Connect

    Carlson, B.M.; Wagner, T.D.; Dowdy, L.W.; Worley, P.H.

    1992-08-01

    The execution profile of a distributed-memory parallel program specifies the number of busy processors as a function of time. Periods of homogeneous processor utilization are manifested in many execution profiles. These periods can usually be correlated with the algorithms implemented in the underlying parallel code. Three families of methods for smoothing execution profile data are presented. These approaches simplify the problem of detecting end points of periods of homogeneous utilization. These periods, called phases, are then examined in isolation, and their speedup characteristics are explored. A specific workload executed on an Intel iPSC/860 is used for validation of the techniques described.

  7. Method, systems, and computer program products for implementing function-parallel network firewall

    DOEpatents

    Fulp, Errin W [Winston-Salem, NC; Farley, Ryan J [Winston-Salem, NC

    2011-10-11

    Methods, systems, and computer program products for providing function-parallel firewalls are disclosed. According to one aspect, a function-parallel firewall includes a first firewall node for filtering received packets using a first portion of a rule set including a plurality of rules. The first portion includes less than all of the rules in the rule set. At least one second firewall node filters packets using a second portion of the rule set. The second portion includes at least one rule in the rule set that is not present in the first portion. The first and second portions together include all of the rules in the rule set.

  8. Static Analysis of Run-Time Errors in Embedded Critical Parallel C Programs

    NASA Astrophysics Data System (ADS)

    Miné, Antoine

    We present a static analysis by Abstract Interpretation to check for run-time errors in parallel C programs. Following our work on Astrée, we focus on embedded critical programs without recursion nor dynamic memory allocation, but extend the analysis to a static set of threads. Our method iterates a slightly modified non-parallel analysis over each thread in turn, until thread interferences stabilize. We prove the soundness of the method with respect to a sequential consistent semantics and a reasonable weakly consistent memory semantics. We then show how to take into account mutual exclusion and thread priorities through partitioning over the scheduler state. We present preliminary experimental results analyzing a real program with our prototype, Thésée, and demonstrate the scalability of our approach.

  9. The Role of PROLOG (PROgramming and LOGic) in Natural Language Processing.

    DTIC Science & Technology

    1988-03-01

    14 5. Bottom Up Parser (BUP) ... ......... . 19 6. Modular Logic Grammars (MLG) ........ . 22 7. Zen, Haiku and PROLOG...Both of these are welcome extensions to the Chat methodology. - 23 - CHAPTER 7 Zen, Haiku and PROLOG The intent of this chapter is two fold. First, the...34cut away the superfluous and what is left is reality". A realization of the spirit of Zen can be found in haiku . Haiku are short poems that strive for

  10. PINCA: A scalable parallel program for compressible gas dynamics with nonequilibrium chemistry

    NASA Astrophysics Data System (ADS)

    Wong, C. C.; Blottner, F. G.; Payne, J. L.; Soetrisno, M.; Imlay, S. T.

    1995-04-01

    This report documents an exploratory research work, funded by the Laboratory Directed Research and Development (LDRD) office at Sandia National Laboratories, to develop an advanced, general purpose, robust compressible flow solver for handling large, complex, chemically reacting gas dynamics problems. The deliverable of this project, a computer program called PINCA (Parallel INtegrated Computer Analysis) will run on massively parallel computers such as the Intel/Gamma and Intel/Paragon. With the development of this parallel compressible flow solver, engineers will be better able to address large three-dimensional scientific arid engineering problems involving multi-component gas mixtures with finite rate chemistry. These problems occur in high temperature industrial processes, combustion, and hypersonic: reentry of space-crafts.

  11. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, Joseph P.

    1994-07-21

    SASIL is used to program the EPLD's (Erasable Programmable Logic Devices) and PAL's (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  12. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Gussow, S.; Oglesby, R.

    1974-01-01

    Procedure performs all work required for logic design of digital counters or sequential circuits and simplification of Boolean expressions. Program provides simple, accurate, and comprehensive logic design capability to users both experienced and totally inexperienced in logic design

  13. Methodologies and Tools for Tuning Parallel Programs: 80% Art, 20% Science, and 10% Luck

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Bailey, David (Technical Monitor)

    1996-01-01

    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessors. However, without effective means to monitor (and analyze) program execution, tuning the performance of parallel programs becomes exponentially difficult as program complexity and machine size increase. In the past few years, the ubiquitous introduction of performance tuning tools from various supercomputer vendors (Intel's ParAide, TMC's PRISM, CRI's Apprentice, and Convex's CXtrace) seems to indicate the maturity of performance instrumentation/monitor/tuning technologies and vendors'/customers' recognition of their importance. However, a few important questions remain: What kind of performance bottlenecks can these tools detect (or correct)? How time consuming is the performance tuning process? What are some important technical issues that remain to be tackled in this area? This workshop reviews the fundamental concepts involved in analyzing and improving the performance of parallel and heterogeneous message-passing programs. Several alternative strategies will be contrasted, and for each we will describe how currently available tuning tools (e.g. AIMS, ParAide, PRISM, Apprentice, CXtrace, ATExpert, Pablo, IPS-2) can be used to facilitate the process. We will characterize the effectiveness of the tools and methodologies based on actual user experiences at NASA Ames Research Center. Finally, we will discuss their limitations and outline recent approaches taken by vendors and the research community to address them.

  14. A computer program based on parallel line assay for analysis of skin tests.

    PubMed

    Martín, S; Cuesta, P; Rico, P; Cortés, C

    1997-01-01

    A computer program for the analysis of differences or changes in skin sensitivity has been developed. It is based on parallel line assay, and its main features are its ability to conduct a validation process which ensures that the data from skin tests conform to the conditions imposed by the analysis which is carried out (regression, parallelism, etc.), the estimation of the difference or change in skin sensitivity, and the determination of the 95% and 99% confidence intervals of this estimation. This program is capable of managing data from independent groups, as well as paired data, and it may be applied to the comparison of allergen extracts, with the aim of determining their biologic activity, as well as to the analysis of changes in skin sensitivity appearing as a consequence of treatment such as immunotherapy.

  15. Enabling Requirements-Based Programming for Highly-Dependable Complex Parallel and Distributed Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    The manual application of formal methods in system specification has produced successes, but in the end, despite any claims and assertions by practitioners, there is no provable relationship between a manually derived system specification or formal model and the customer's original requirements. Complex parallel and distributed system present the worst case implications for today s dearth of viable approaches for achieving system dependability. No avenue other than formal methods constitutes a serious contender for resolving the problem, and so recognition of requirements-based programming has come at a critical juncture. We describe a new, NASA-developed automated requirement-based programming method that can be applied to certain classes of systems, including complex parallel and distributed systems, to achieve a high degree of dependability.

  16. Class Notes: Programming Parallel Algorithms CS 15-840B (Fall 1992)

    DTIC Science & Technology

    1993-02-01

    840: Programming Parallel Algorithms Lecture #15 Scribe: Bob Wheeler Thursday, 6 Nov 92 Overview * Connected components (continued). * Minimum spanning...Sriram Sethuraman Singular value decomposition Ken Tew EEG analysis Eric Thayer Speech recognition Xuemei Wang & Bob Wheeler Matrix operations Matt...Computing, 14(4):862-874, 1985. [33] L. W. Tucker, C. R. Feynman , and D. M. Fritzsche. Object recognition using the Connection Machine. Proceedings CVPR 󈨜

  17. Dynamic programming in parallel boundary detection with application to ultrasound intima-media segmentation.

    PubMed

    Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin

    2013-12-01

    Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency.

  18. The Effect of Scratch- and Lego Mindstorms Ev3-Based Programming Activities on Academic Achievement, Problem-Solving Skills and Logical-Mathematical Thinking Skills of Students

    ERIC Educational Resources Information Center

    Korkmaz, Özgen

    2016-01-01

    The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…

  19. Support of Multidimensional Parallelism in the OpenMP Programming Model

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele

    2003-01-01

    OpenMP is the current standard for shared-memory programming. While providing ease of parallel programming, the OpenMP programming model also has limitations which often effect the scalability of applications. Examples for these limitations are work distribution and point-to-point synchronization among threads. We propose extensions to the OpenMP programming model which allow the user to easily distribute the work in multiple dimensions and synchronize the workflow among the threads. The proposed extensions include four new constructs and the associated runtime library. They do not require changes to the source code and can be implemented based on the existing OpenMP standard. We illustrate the concept in a prototype translator and test with benchmark codes and a cloud modeling code.

  20. Development, Verification and Validation of Parallel, Scalable Volume of Fluid CFD Program for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    West, Jeff; Yang, H. Q.

    2014-01-01

    There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.

  1. The FORCE: A portable parallel programming language supporting computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Brehm, Juergen; Ramanan, Aruna

    1989-01-01

    This project supports the conversion of codes in Computational Structural Mechanics (CSM) to a parallel form which will efficiently exploit the computational power available from multiprocessors. The work is a part of a comprehensive, FORTRAN-based system to form a basis for a parallel version of the NICE/SPAR combination which will form the CSM Testbed. The software is macro-based and rests on the force methodology developed by the principal investigator in connection with an early scientific multiprocessor. Machine independence is an important characteristic of the system so that retargeting it to the Flex/32, or any other multiprocessor on which NICE/SPAR might be imnplemented, is well supported. The principal investigator has experience in producing parallel software for both full and sparse systems of linear equations using the force macros. Other researchers have used the Force in finite element programs. It has been possible to rapidly develop software which performs at maximum efficiency on a multiprocessor. The inherent machine independence of the system also means that the parallelization will not be limited to a specific multiprocessor.

  2. Concurrent Collections (CnC): A new approach to parallel programming

    ScienceCinema

    None

    2016-07-12

    A common approach in designing parallel languages is to provide some high level handles to manipulate the use of the parallel platform. This exposes some aspects of the target platform, for example, shared vs. distributed memory. It may expose some but not all types of parallelism, for example, data parallelism but not task parallelism. This approach must find a balance between the desire to provide a simple view for the domain expert and provide sufficient power for tuning. This is hard for any given architecture and harder if the language is to apply to a range of architectures. Either simplicity or power is lost. Instead of viewing the language design problem as one of providing the programmer with high level handles, we view the problem as one of designing an interface. On one side of this interface is the programmer (domain expert) who knows the application but needs no knowledge of any aspects of the platform. On the other side of the interface is the performance expert (programmer or program) who demands maximal flexibility for optimizing the mapping to a wide range of target platforms (parallel / serial, shared / distributed, homogeneous / heterogeneous, etc.) but needs no knowledge of the domain. Concurrent Collections (CnC) is based on this separation of concerns. The talk will present CnC and its benefits. About the speaker Kathleen Knobe has focused throughout her career on parallelism especially compiler technology, runtime system design and language design. She worked at Compass (aka Massachusetts Computer Associates) from 1980 to 1991 designing compilers for a wide range of parallel platforms for Thinking Machines, MasPar, Alliant, Numerix, and several government projects. In 1991 she decided to finish her education. After graduating from MIT in 1997, she joined Digital Equipment’s Cambridge Research Lab (CRL). She stayed through the DEC/Compaq/HP mergers and when CRL was acquired and absorbed by Intel. She currently works in the Software and

  3. Purposeful Program Theory: Effective Use of Theories of Change and Logic Models

    ERIC Educational Resources Information Center

    Funnell, Sue C.; Rogers, Patricia J.

    2011-01-01

    Between good intentions and great results lies a program theory--not just a list of tasks but a vision of what needs to happen, and how. Now widely used in government and not-for-profit organizations, program theory provides a coherent picture of how change occurs and how to improve performance. "Purposeful Program Theory" shows how to develop,…

  4. Exploiting parallel computing with limited program changes using a network of microcomputers

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.

    1985-01-01

    Network computing and multiprocessor computers are two discernible trends in parallel processing. The computational behavior of an iterative distributed process in which some subtasks are completed later than others because of an imbalance in computational requirements is of significant interest. The effects of asynchronus processing was studied. A small existing program was converted to perform finite element analysis by distributing substructure analysis over a network of four Apple IIe microcomputers connected to a shared disk, simulating a parallel computer. The substructure analysis uses an iterative, fully stressed, structural resizing procedure. A framework of beams divided into three substructures is used as the finite element model. The effects of asynchronous processing on the convergence of the design variables are determined by not resizing particular substructures on various iterations.

  5. Performance measurement and analysis techniques for parallel and distributed programs. Technical progress report, August 1, 1993--July 31, 1994

    SciTech Connect

    Miller, B.P.; Larus, J.R.

    1994-08-01

    During the first of our grant, we have made substantial progress on our performance tools research. We have concentrated on our techniques for dynamic program instrumentation and on support of high-level parallel languages and environments. In addition, we have performed an interesting, study in a related area, virtual memory scheduling for parallel systems.

  6. Hardware-software-co-design of parallel and distributed systems using a behavioural programming and multi-process model with high-level synthesis

    NASA Astrophysics Data System (ADS)

    Bosse, Stefan

    2011-05-01

    A new design methodology for parallel and distributed embedded systems is presented using the behavioural hardware compiler ConPro providing an imperative programming model based on concurrently communicating sequential processes (CSP) with an extensive set of interprocess-communication primitives and guarded atomic actions. The programming language and the compiler-based synthesis process enables the design of constrained power- and resourceaware embedded systems with pure Register-Transfer-Logic (RTL) efficiently mapped to FPGA and ASIC technologies. Concurrency is modelled explicitly on control- and datapath level. Additionally, concurrency on data-path level can be automatically explored and optimized by different schedulers. The CSP programming model can be synthesized to hardware (SoC) and software (C,ML) models and targets. A common source for both hardware and software implementation with identical functional behaviour is used. Processes and objects of the entire design can be distributed on different hardware and software platforms, for example, several FPGA components and software executed on several microprocessors, providing a parallel and distributed system. Intersystem-, interprocess-, and object communication is automatically implemented with serial links, not visible on programming level. The presented design methodology has the benefit of high modularity, freedom of choice of target technologies, and system architecture. Algorithms can be well matched to and distributed on different suitable execution platforms and implementation technologies, using a unique programming model, providing a balance of concurrency and resource complexity. An extended case study of a communication protocol used in high-density sensor-actuator networks should demonstrate and compare the design of a hardware and software target. The communication protocol is suited for high-density intra-and interchip networks.

  7. Implementation and performance of parallel Prolog interpreter

    SciTech Connect

    Wei, S.; Kale, L.V.; Balkrishna, R. . Dept. of Computer Science)

    1988-01-01

    In this paper, the authors discuss the implementation of a parallel Prolog interpreter on different parallel machines. The implementation is based on the REDUCE--OR process model which exploits both AND and OR parallelism in logic programs. It is machine independent as it runs on top of the chare-kernel--a machine-independent parallel programming system. The authors also give the performance of the interpreter running a diverse set of benchmark pargrams on parallel machines including shared memory systems: an Alliant FX/8, Sequent and a MultiMax, and a non-shared memory systems: Intel iPSC/32 hypercube, in addition to its performance on a multiprocessor simulation system.

  8. Eighth SIAM conference on parallel processing for scientific computing: Final program and abstracts

    SciTech Connect

    1997-12-31

    This SIAM conference is the premier forum for developments in parallel numerical algorithms, a field that has seen very lively and fruitful developments over the past decade, and whose health is still robust. Themes for this conference were: combinatorial optimization; data-parallel languages; large-scale parallel applications; message-passing; molecular modeling; parallel I/O; parallel libraries; parallel software tools; parallel compilers; particle simulations; problem-solving environments; and sparse matrix computations.

  9. When Is a Program Ready for Rigorous Impact Evaluation? The Role of a Falsifiable Logic Model

    ERIC Educational Resources Information Center

    Epstein, Diana; Klerman, Jacob Alex

    2012-01-01

    Background: Recent reviews suggest that many plausible programs are found to have at best small impacts not commensurate with their cost, and often have no detectable positive impacts at all. Even programs with initial rigorous impact evaluation (RIE) that show them to be effective often fail a second test with an expanded population or at…

  10. The Logic of Evaluation.

    ERIC Educational Resources Information Center

    Welty, Gordon A.

    The logic of the evaluation of educational and other action programs is discussed from a methodological viewpoint. However, no attempt is made to develop methods of evaluating programs. In Part I, the structure of an educational program is viewed as a system with three components--inputs, transformation of inputs into outputs, and outputs. Part II…

  11. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  12. Experiences with different parallel programming paradigms for Monte Carlo particle transport leads to a portable toolkit for parallel Monte Carlo

    SciTech Connect

    Martin, W.R.; Majumdar, A. . Dept. of Nuclear Engineering); Rathkopf, J.A. ); Litvin, M. )

    1993-04-01

    Monte Carlo particle transport is easy to implement on massively parallel computers relative to other methods of transport simulation. This paper describes experiences of implementing a realistic demonstration Monte Carlo code on a variety of parallel architectures. Our pool of tasks'' technique, which allows reproducibility from run to run regardless of the number of processors, is discussed. We present detailed timing studies of simulations performed on the 128 processor BBN-ACI TC2000 and preliminary timing results for the 32 processor Kendall Square Research KSR-1. Given sufficient workload to distribute across many computational nodes, the BBN achieves nearly linear speedup for a large number of nodes. The KSR, with which we have had less experience, performs poorly with more than ten processors. A simple model incorporating known causes of overhead accurately predicts observed behavior. A general-purpose communication and control package to facilitate the implementation of existing Monte Carlo packages is described together with timings on the BBN. This package adds insignificantly to the computational costs of parallel simulations.

  13. Experiences with different parallel programming paradigms for Monte Carlo particle transport leads to a portable toolkit for parallel Monte Carlo

    SciTech Connect

    Martin, W.R.; Majumdar, A.; Rathkopf, J.A.; Litvin, M.

    1993-04-01

    Monte Carlo particle transport is easy to implement on massively parallel computers relative to other methods of transport simulation. This paper describes experiences of implementing a realistic demonstration Monte Carlo code on a variety of parallel architectures. Our ``pool of tasks`` technique, which allows reproducibility from run to run regardless of the number of processors, is discussed. We present detailed timing studies of simulations performed on the 128 processor BBN-ACI TC2000 and preliminary timing results for the 32 processor Kendall Square Research KSR-1. Given sufficient workload to distribute across many computational nodes, the BBN achieves nearly linear speedup for a large number of nodes. The KSR, with which we have had less experience, performs poorly with more than ten processors. A simple model incorporating known causes of overhead accurately predicts observed behavior. A general-purpose communication and control package to facilitate the implementation of existing Monte Carlo packages is described together with timings on the BBN. This package adds insignificantly to the computational costs of parallel simulations.

  14. Parallelization of the NAS Conjugate Gradient Benchmark Using the Global Arrays Shared Memory Programming Model

    SciTech Connect

    Zhang, Yeliang; Tipparaju, Vinod; Nieplocha, Jarek; Hariri, Salim

    2005-04-08

    The NAS Conjugate Gradient (CG) benchmark is an important scientific kernel used to evaluate machine performance and compare characteristics of different programming models. Global Arrays (GA) toolkit supports a shared memory programming paradigm— even on distributed memory systems— and offers the programmer control over the distribution and locality that are important for optimizing performance on scalable architectures. In this paper, we describe and compare two different parallelization strategies of the CG benchmark using GA and report performance results on a shared-memory system as well as on a cluster. Performance benefits of using shared memory for irregular/sparse computations have been demonstrated before in context of the CG benchmark using OpenMP. Similarly, the GA implementation outperforms the standard MPI implementation on shared memory system, in our case the SGI Altix. However, with GA these benefits are extended to distributed memory systems and demonstrated on a Linux cluster with Myrinet.

  15. Efficient iteration in data-parallel programs with irregular and dynamically distributed data structures

    SciTech Connect

    Littlefield, R.J.

    1990-02-01

    To implement an efficient data-parallel program on a non-shared memory MIMD multicomputer, data and computations must be properly partitioned to achieve good load balance and locality of reference. Programs with irregular data reference patterns often require irregular partitions. Although good partitions may be easy to determine, they can be difficult or impossible to implement in programming languages that provide only regular data distributions, such as blocked or cyclic arrays. We are developing Onyx, a programming system that provides a shared memory model of distributed data structures and extends the concept of data distribution to include irregular and dynamic distributions. This provides a powerful means to specify irregular partitions. Perhaps surprisingly, programs using it can also execute efficiently. In this paper, we describe and evaluate the Onyx implementation of a model problem that repeatedly executes an irregular but fixed data reference pattern. On an NCUBE hypercube, the speed of the Onyx implementation is comparable to that of carefully handwritten message-passing code.

  16. Computerized logic design of digital circuits

    NASA Technical Reports Server (NTRS)

    Sussow, S.; Oglesby, R.

    1973-01-01

    This manual presents a computer program that performs all the work required for the logic design of digital counters or sequential circuits and the simplification of Boolean logic expressions. The program provides both the experienced and inexperienced logic designer with a comprehensive logic design capability. The manual contains Boolean simplification and sequential design theory, detailed instructions for use of the program, a large number of illustrative design examples, and complete program documentation.

  17. A Device for Logic Information Processing.

    ERIC Educational Resources Information Center

    Levinskiy, L. S.; Vissonova, I. A.

    Two essential components of the information-logic problem are: (1) choosing some known part of the total information block for parallel review of the entire block and (2) parallel logic processing of a sequence of codes. The described device fulfills these essential components thereby improving information processing and increasing the speed of…

  18. On the Run-Time Optimization of the Boolean Logic of a Program.

    ERIC Educational Resources Information Center

    Cadolino, C.; Guazzo, M.

    1982-01-01

    Considers problem of optimal scheduling of Boolean expression (each Boolean variable represents binary outcome of program module) on single-processor system. Optimization discussed consists of finding operand arrangement that minimizes average execution costs representing consumption of resources (elapsed time, main memory, number of…

  19. Dispositional logic

    NASA Technical Reports Server (NTRS)

    Le Balleur, J. C.

    1988-01-01

    The applicability of conventional mathematical analysis (based on the combination of two-valued logic and probability theory) to problems in which human judgment, perception, or emotions play significant roles is considered theoretically. It is shown that dispositional logic, a branch of fuzzy logic, has particular relevance to the common-sense reasoning typical of human decision-making. The concepts of dispositionality and usuality are defined analytically, and a dispositional conjunctive rule and dispositional modus ponens are derived.

  20. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets

    PubMed Central

    Shrimankar, D. D.; Sathe, S. R.

    2016-01-01

    Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today’s supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures. PMID:27932868

  1. Analysis of Parallel Algorithms on SMP Node and Cluster of Workstations Using Parallel Programming Models with New Tile-based Method for Large Biological Datasets.

    PubMed

    Shrimankar, D D; Sathe, S R

    2016-01-01

    Sequence alignment is an important tool for describing the relationships between DNA sequences. Many sequence alignment algorithms exist, differing in efficiency, in their models of the sequences, and in the relationship between sequences. The focus of this study is to obtain an optimal alignment between two sequences of biological data, particularly DNA sequences. The algorithm is discussed with particular emphasis on time, speedup, and efficiency optimizations. Parallel programming presents a number of critical challenges to application developers. Today's supercomputer often consists of clusters of SMP nodes. Programming paradigms such as OpenMP and MPI are used to write parallel codes for such architectures. However, the OpenMP programs cannot be scaled for more than a single SMP node. However, programs written in MPI can have more than single SMP nodes. But such a programming paradigm has an overhead of internode communication. In this work, we explore the tradeoffs between using OpenMP and MPI. We demonstrate that the communication overhead incurs significantly even in OpenMP loop execution and increases with the number of cores participating. We also demonstrate a communication model to approximate the overhead from communication in OpenMP loops. Our results are astonishing and interesting to a large variety of input data files. We have developed our own load balancing and cache optimization technique for message passing model. Our experimental results show that our own developed techniques give optimum performance of our parallel algorithm for various sizes of input parameter, such as sequence size and tile size, on a wide variety of multicore architectures.

  2. DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program

    SciTech Connect

    Dr. Dale M. Snider

    2011-02-28

    This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendly environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and

  3. Improving the human readability of Arden Syntax medical logic modules using a concept-oriented terminology and object-oriented programming expressions.

    PubMed

    Choi, Jeeyae; Bakken, Suzanne; Lussier, Yves A; Mendonça, Eneida A

    2006-01-01

    Medical logic modules are a procedural representation for sharing task-specific knowledge for decision support systems. Based on the premise that clinicians may perceive object-oriented expressions as easier to read than procedural rules in Arden Syntax-based medical logic modules, we developed a method for improving the readability of medical logic modules. Two approaches were applied: exploiting the concept-oriented features of the Medical Entities Dictionary and building an executable Java program to replace Arden Syntax procedural expressions. The usability evaluation showed that 66% of participants successfully mapped all Arden Syntax rules to Java methods. These findings suggest that these approaches can play an essential role in the creation of human readable medical logic modules and can potentially increase the number of clinical experts who are able to participate in the creation of medical logic modules. Although our approaches are broadly applicable, we specifically discuss the relevance to concept-oriented nursing terminologies and automated processing of task-specific nursing knowledge.

  4. Mobile and replicated alignment of arrays in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  5. The Fortran-P Translator: Towards Automatic Translation of Fortran 77 Programs for Massively Parallel Processors

    DOE PAGES

    O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...

    1995-01-01

    Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less

  6. The effect of preventive educational program in cigarette smoking: Extended Parallel Process Model

    PubMed Central

    Gharlipour, Zabihollah; Hazavehei, Seyed Mohammad Mehdi; Moeini, Babak; Nazari, Mahin; Beigi, Abbas Moghim; Tavassoli, Elahe; Heydarabadi, Akbar Babaei; Reisi, Mahnoush; Barkati, Hasan

    2015-01-01

    Background: Cigarette smoking is one of the preventable causes of diseases and deaths. The most important preventive measure is technique to resist against peer pressure. Any educational program should design with an emphasis upon theories of behavioral change and based on effective educational program. To investigate the interventions through educational program in prevention of cigarette smoking, this paper has used the Extended Parallel Process Model (EPPM). Materials and Methods: This study is a quasi-experimental study. Two middle schools were randomly selected from male students in Shiraz. Therefore, we randomly selected 120 students for the experimental group and 120 students for the control group. After diagnostic evaluation, educational interventions on the consequences of smoking and preventive skills were applied. Results: Our results indicated that there was a significant difference between students in the control and experimental groups in the means of perceived susceptibility (P < 0.000, t = 6.84), perceived severity (P < 0.000, t = −11.46), perceived response efficacy (P < 0.000, t = −7.07), perceived self-efficacy (P < 0.000, t = −11.64), and preventive behavior (P < 0.000, t = −24.36). Conclusions: EPPM along with educating skills necessary to resist against peer pressure had significant level of efficiency in improving preventive behavior of cigarette smoking among adolescents. However, this study recommends further studies on ways of increasing perceived susceptibility in cigarette smoking among adolescents. PMID:25767815

  7. Event-Based Study of the Effect of Execution Environments on Parallel Program Performance

    NASA Technical Reports Server (NTRS)

    Sarukkai, Sekhar R.; Yan, Jerry C.; Craw, James (Technical Monitor)

    1995-01-01

    In this paper we seek to demonstrate the importance of studying the effect of changes in execution environment parameters, on parallel applications executed on state-of-the-art multiprocessors. A comprehensive methodology for event-based analysis of program behavior is introduced. This methodology is used to study the performance significance of various system parameters such as processor speed, message-buffer size, buffer copy speed, network bandwidth, communication latency, interrupt overheads and other system parameters. With the help cf a few CFD examples, we illustrate the use of our technique in determining suitable parameter values of the execution environment for three applications. We also demonstrate how this approach can be used to predict performance across architectures and illustrate the use of visual and profile-like feedback to expose the effect of system parameters changes on the performance of specific applications module.

  8. Parallel Conjugate Gradient: Effects of Ordering Strategies, Programming Paradigms, and Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Heber, Gerd; Biswas, Rupak

    2000-01-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations within a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming paradigms and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multi-threaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.

  9. Parallel conjugate gradient: effects of ordering strategies, programming paradigms, and architectural platforms

    SciTech Connect

    Oliker, L.; Li, X.; Heber, G.; Biswas, R.

    2000-05-01

    The Conjugate Gradient (CG) algorithm is perhaps the best-known iterative technique to solve sparse linear systems that are symmetric and positive definite. A sparse matrix-vector multiply (SPMV) usually accounts for most of the floating-point operations with a CG iteration. In this paper, we investigate the effects of various ordering and partitioning strategies on the performance of parallel CG and SPMV using different programming and architectures. Results show that for this class of applications, ordering significantly improves overall performance, that cache reuse may be more important than reducing communication, and that it is possible to achieve message passing performance using shared memory constructs through careful data ordering and distribution. However, a multithreaded implementation of CG on the Tera MTA does not require special ordering or partitioning to obtain high efficiency and scalability.

  10. SASIL. Sandia ATM SONET Interface Logic

    SciTech Connect

    Kitta, J P

    1994-07-01

    SASIL is used to program the EPLD`s (Erasable Programmable Logic Devices) and PAL`s (Programmable Array Logic) that make up a large percentage of the Sandia ATM SONET Interface (OC3 version) for the INTEL Paragon.

  11. A pattern recognition system for prostate mass spectra discrimination based on the CUDA parallel programming model

    NASA Astrophysics Data System (ADS)

    Kostopoulos, Spiros; Glotsos, Dimitris; Sidiropoulos, Konstantinos; Asvestas, Pantelis; Cavouras, Dionisis; Kalatzis, Ioannis

    2014-03-01

    The aim of the present study was to implement a pattern recognition system for the discrimination of healthy from malignant prostate tumors from proteomic Mass Spectroscopy (MS) samples and to identify m/z intervals of potential biomarkers associated with prostate cancer. One hundred and six MS-spectra were studied in total. Sixty three spectra corresponded to healthy cases (PSA < 1) and forty three spectra were cancerous (PSA > 10). The MS-spectra are publicly available from the NCI Clinical Proteomics Database. The pre-processing comprised the steps: denoising, normalization, peak extraction and peak alignment. Due to the enormous number of features that rose from MS-spectra as informative peaks, and in order to secure optimum system design, the classification task was performed by programming in parallel the multiprocessors of an nVIDIA GPU card, using the CUDA framework. The proposed system achieved 98.1% accuracy. The identified m/z intervals displayed significant statistical differences between the two classes and were found to possess adequate discriminatory power in characterizing prostate samples, when employed in the design of the classification system. Those intervals should be further investigated since they might lead to the identification of potential new biomarkers for prostate cancer.

  12. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  13. Programmable Logic Controllers. Teacher Edition.

    ERIC Educational Resources Information Center

    Rauh, Bob; Kaltwasser, Stan

    These materials were developed for a seven-unit secondary or postsecondary education course on programmable logic controllers (PLCs) that treats most of the skills needed to work effectively with PLCs as programming skills. The seven units of the course cover the following topics: fundamentals of programmable logic controllers; contracts, timers,…

  14. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  15. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  16. The universal magnetic tunnel junction logic gates representing 16 binary Boolean logic operations

    NASA Astrophysics Data System (ADS)

    Lee, Junwoo; Suh, Dong Ik; Park, Wanjun

    2015-05-01

    The novel devices are expected to shift the paradigm of a logic operation by their own nature, replacing the conventional devices. In this study, the nature of our fabricated magnetic tunnel junction (MTJ) that responds to the two external inputs, magnetic field and voltage bias, demonstrated seven basic logic operations. The seven operations were obtained by the electric-field-assisted switching characteristics, where the surface magnetoelectric effect occurs due to a sufficiently thin free layer. The MTJ was transformed as a universal logic gate combined with three supplementary circuits: A multiplexer (MUX), a Wheatstone bridge, and a comparator. With these circuits, the universal logic gates demonstrated 16 binary Boolean logic operations in one logic stage. A possible further approach is parallel computations through a complimentary of MUX and comparator, capable of driving multiple logic gates. A reconfigurable property can also be realized when different logic operations are produced from different level of voltages applying to the same configuration of the logic gate.

  17. ParallelStructure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers.

    PubMed

    Besnier, Francois; Glover, Kevin A

    2013-01-01

    This software package provides an R-based framework to make use of multi-core computers when running analyses in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses among combinations of populations within a single data set without the need to manually produce multiple projects, as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and parallel_structure() as well as an example data file. We compared the performance in computing time for this example data on two computer architectures and showed that the use of the present functions can result in several-fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/projects/parallstructure/.

  18. A component analysis based on serial results analyzing performance of parallel iterative programs

    SciTech Connect

    Richman, S.C.

    1994-12-31

    This research is concerned with the parallel performance of iterative methods for solving large, sparse, nonsymmetric linear systems. Most of the iterative methods are first presented with their time costs and convergence rates examined intensively on sequential machines, and then adapted to parallel machines. The analysis of the parallel iterative performance is more complicated than that of serial performance, since the former can be affected by many new factors, such as data communication schemes, number of processors used, and Ordering and mapping techniques. Although the author is able to summarize results from data obtained after examining certain cases by experiments, two questions remain: (1) How to explain the results obtained? (2) How to extend the results from the certain cases to general cases? To answer these two questions quantitatively, the author introduces a tool called component analysis based on serial results. This component analysis is introduced because the iterative methods consist mainly of several basic functions such as linked triads, inner products, and triangular solves, which have different intrinsic parallelisms and are suitable for different parallel techniques. The parallel performance of each iterative method is first expressed as a weighted sum of the parallel performance of the basic functions that are the components of the method. Then, one separately examines the performance of basic functions and the weighting distributions of iterative methods, from which two independent sets of information are obtained when solving a given problem. In this component approach, all the weightings require only serial costs not parallel costs, and each iterative method for solving a given problem is represented by its unique weighting distribution. The information given by the basic functions is independent of iterative method, while that given by weightings is independent of parallel technique, parallel machine and number of processors.

  19. Logic synthesis from DDL description

    NASA Technical Reports Server (NTRS)

    Shiva, S. G.

    1980-01-01

    The implementation of DDLTRN and DDLSIM programs on SEL-2 computer system is reported. These programs were tested with DDL descriptions of various complexity. An algorithm to synthesize the combinational logic using the cells available in the standard IC cell library was formulated. The algorithm is implemented as a FORTRAN program and a description of the program is given.

  20. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

    PubMed

    Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao

    2015-03-11

    An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

  1. Diagnosable structured logic array

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  2. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  3. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    SciTech Connect

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve further as more functionality is added in the future.

  4. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGES

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  5. Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Harper, Richard

    1989-01-01

    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.

  6. CLUSTEREASY: A program for lattice simulations of scalar fields in an expanding universe on parallel computing clusters

    NASA Astrophysics Data System (ADS)

    Felder, Gary

    2008-10-01

    We describe an MPI C++ program that we have written and made available for calculating the evolution of interacting scalar fields in an expanding universe on parallel clusters. The program is a parallel programming extension of the simulation program LATTICEEASY. The ability to run these simulations on parallel clusters, however, greatly extends the range of scales and times that can be simulated. The program is particularly useful for the study of reheating and thermalization after inflation. The program and its full documentation are available on the Web at http://www.science.smith.edu/departments/Physics/fstaff/gfelder/latticeeasy/. In this paper we provide a brief overview of what the program does and what it is useful for. Catalogue identifier: AEBJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7469 No. of bytes in distributed program, including test data, etc.: 613 334 Distribution format: tar.gz Programming language: C++/MPI Computer: Cluster. Must have the library FFTW installed Operating system: Any RAM: Typically 4 MB to 1 GB per processor Classification: 1.9 External routines: A single-precision version of the FFTW library (http://www.fftw.org/) must be available on the target machine. Nature of problem: After inflation the universe consisted of interacting fields in a high energy, nonthermal state [1]. The evolution of these fields cannot be described with standard approximation techniques such as linearization, kinetic theory, or Hartree expansion, and must thus be simulated numerically. Fortunately, the fields rapidly acquire large occupation numbers over a range of frequencies, so their evolution can be accurately modeled with classical field theory [2]. The specific fields and

  7. Scalable parallel programming for high performance seismic simulation on petascale heterogeneous supercomputers

    NASA Astrophysics Data System (ADS)

    Zhou, Jun

    The 1994 Northridge earthquake in Los Angeles, California, killed 57 people, injured over 8,700 and caused an estimated $20 billion in damage. Petascale simulations are needed in California and elsewhere to provide society with a better understanding of the rupture and wave dynamics of the largest earthquakes at shaking frequencies required to engineer safe structures. As the heterogeneous supercomputing infrastructures are becoming more common, numerical developments in earthquake system research are particularly challenged by the dependence on the accelerator elements to enable "the Big One" simulations with higher frequency and finer resolution. Reducing time to solution and power consumption are two primary focus area today for the enabling technology of fault rupture dynamics and seismic wave propagation in realistic 3D models of the crust's heterogeneous structure. This dissertation presents scalable parallel programming techniques for high performance seismic simulation running on petascale heterogeneous supercomputers. A real world earthquake simulation code, AWP-ODC, one of the most advanced earthquake codes to date, was chosen as the base code in this research, and the testbed is based on Titan at Oak Ridge National Laboraratory, the world's largest hetergeneous supercomputer. The research work is primarily related to architecture study, computation performance tuning and software system scalability. An earthquake simulation workflow has also been developed to support the efficient production sets of simulations. The highlights of the technical development are an aggressive performance optimization focusing on data locality and a notable data communication model that hides the data communication latency. This development results in the optimal computation efficiency and throughput for the 13-point stencil code on heterogeneous systems, which can be extended to general high-order stencil codes. Started from scratch, the hybrid CPU/GPU version of AWP

  8. Abstract quantum computing machines and quantum computational logics

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  9. Parallel implementation of inverse adding-doubling and Monte Carlo multi-layered programs for high performance computing systems with shared and distributed memory

    NASA Astrophysics Data System (ADS)

    Chugunov, Svyatoslav; Li, Changying

    2015-09-01

    Parallel implementation of two numerical tools popular in optical studies of biological materials-Inverse Adding-Doubling (IAD) program and Monte Carlo Multi-Layered (MCML) program-was developed and tested in this study. The implementation was based on Message Passing Interface (MPI) and standard C-language. Parallel versions of IAD and MCML programs were compared to their sequential counterparts in validation and performance tests. Additionally, the portability of the programs was tested using a local high performance computing (HPC) cluster, Penguin-On-Demand HPC cluster, and Amazon EC2 cluster. Parallel IAD was tested with up to 150 parallel cores using 1223 input datasets. It demonstrated linear scalability and the speedup was proportional to the number of parallel cores (up to 150x). Parallel MCML was tested with up to 1001 parallel cores using problem sizes of 104-109 photon packets. It demonstrated classical performance curves featuring communication overhead and performance saturation point. Optimal performance curve was derived for parallel MCML as a function of problem size. Typical speedup achieved for parallel MCML (up to 326x) demonstrated linear increase with problem size. Precision of MCML results was estimated in a series of tests - problem size of 106 photon packets was found optimal for calculations of total optical response and 108 photon packets for spatially-resolved results. The presented parallel versions of MCML and IAD programs are portable on multiple computing platforms. The parallel programs could significantly speed up the simulation for scientists and be utilized to their full potential in computing systems that are readily available without additional costs.

  10. Solar cell welded interconnection development program. [parallel gap and ultrasonic metal-metal bonding

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1974-01-01

    Parallel gap welding and ultrasonic bonding techniques were developed for joining selected interconnect materials (silver, aluminum, copper, silver plated molybdenum and Kovar) to silver-titanium and aluminum contact cells. All process variables have been evaluated leading to establishment of optimum solar cell, interconnect, electrodes and equipment criteria for obtainment of consistent high quality welds. Applicability of nondestructive testing of solar cell welds has been studied. A pre-weld monitoring system is being built and will be utilized in the numerically controlled parallel gap weld station.

  11. Implementing the PM Programming Language using MPI and OpenMP - a New Tool for Programming Geophysical Models on Parallel Systems

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2015-04-01

    PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental and geophysical models. The language is intended to enable implementers to concentrate on the science behind the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer in control - all parallelisation is explicit and the parallel structure of any given program may be deduced directly from the code. This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisation and increased communication overhead. In order to maximise portability, the implementation stays within the MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover, it does not assume a thread-safe implementation of MPI. PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capable of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms such as work stealing. While tasks may move between hardware elements within a PM processor, they may not move between processors without specific programmer intervention. Tasks are assigned to processors using a nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available processors. When the program enters a parallel statement then either processors are divided out among the newly generated tasks (number of new tasks < number of processors

  12. Electronic logic for enhanced switch reliability

    DOEpatents

    Cooper, J.A.

    1984-01-20

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  13. Strength analysis of parallel robot components in PLM Siemens NX 8.5 program

    NASA Astrophysics Data System (ADS)

    Ociepka, P.; Herbus, K.

    2015-11-01

    This article presents a series of numerical analyses in order to identify the states of stress in elements, which arise during the operation of the mechanism. The object of the research was parallel robot, which is the basis for the prototype of a driving simulator. To conduct the dynamic analysis was used the Motion Simulation module and the RecurDyn solver. In this module were created the joints which occur in the mechanism of a parallel robot. Next dynamic analyzes were performed to determine the maximal forces that will applied to the analyzed elements. It was also analyzed the platform motion during the simulation a collision of a car with a wall. In the next step, basing on the results obtained in the dynamic analysis, were performed the strength analyzes in the Advanced Simulation module. For calculation the NX Nastran solver was used.

  14. Logic, Probability, and Human Reasoning

    DTIC Science & Technology

    2015-01-01

    logics developed in artificial intelligence, which allow conclusions to be withdrawn [38–42]. Second, conditional assertions (e.g., ‘If she insulted him...N. (2014) Probabilistic single function dual process theory and logic programming as approaches to non- monotonicity in human vs artificial reasoning...How can we solve this crisis? Leibniz dreamed of a calculus that settles any argument. Can cognitive scientists devise such a system? Feature

  15. Application Portable Parallel Library

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott

    1995-01-01

    Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.

  16. Temperature Control with Two Parallel Small Loop Heat Pipes for GLM Program

    NASA Technical Reports Server (NTRS)

    Khrustalev, Dmitry; Stouffer, Chuck; Ku, Jentung; Hamilton, Jon; Anderson, Mark

    2014-01-01

    The concept of temperature control of an electronic component using a single Loop Heat Pipe (LHP) is well established for Aerospace applications. Using two LHPs is often desirable for redundancy/reliability reasons or for increasing the overall heat source-sink thermal conductance. This effort elaborates on temperature controlling operation of a thermal system that includes two small ammonia LHPs thermally coupled together at the evaporator end as well as at the condenser end and operating "in parallel". A transient model of the LHP system was developed on the Thermal Desktop (TradeMark) platform to understand some fundamental details of such parallel operation of the two LHPs. Extensive thermal-vacuum testing was conducted with two thermally coupled LHPs operating simultaneously as well as with only one LHP operating at a time. This paper outlines the temperature control procedures for two LHPs operating simultaneously with widely varying sink temperatures. The test data obtained during the thermal-vacuum testing, with both LHPs running simultaneously in comparison with only one LHP operating at a time, are presented with detailed explanations.

  17. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  18. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    PubMed

    García-Grajales, Julián A; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  19. Generating local addresses and communication sets for data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Long, Fred J. E.; Schreiber, Robert; Teng, Shang-Hua

    1993-01-01

    Generating local addresses and communication sets is an important issue in distributed-memory implementations of data-parallel languages such as High Performance Fortran. We show that for an array A affinely aligned to a template that is distributed across p processors with a cyclic(k) distribution, and a computation involving the regular section A, the local memory access sequence for any processor is characterized by a finite state machine of at most k states. We present fast algorithms for computing the essential information about these state machines, and extend the framework to handle multidimensional arrays. We also show how to generate communication sets using the state machine approach. Performance results show that this solution requires very little runtime overhead and acceptable preprocessing time.

  20. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    PubMed

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  1. Parallel and Distributed Computing.

    DTIC Science & Technology

    1986-12-12

    program was devoted to parallel and distributed computing . Support for this part of the program was obtained from the present Army contract and a...Umesh Vazirani. A workshop on parallel and distributed computing was held from May 19 to May 23, 1986 and drew 141 participants. Keywords: Mathematical programming; Protocols; Randomized algorithms. (Author)

  2. Aptamer-controlled biofuel cells in logic systems and used as self-powered and intelligent logic aptasensors.

    PubMed

    Zhou, Ming; Du, Yan; Chen, Chaogui; Li, Bingling; Wen, Dan; Dong, Shaojun; Wang, Erkang

    2010-02-24

    This communication demonstrates for the first time the controlled power release of biofuel cells (BFCs) by aptamer logic systems processed according to the Boolean logic operations "programmed" into the biocomputing systems. On the basis of the built-in Boolean NAND logic, the fabricated aptamer-based BFCs logically controlled by biochemical signals enabled us to construct self-powered and intelligent logic aptasensors that can determine whether the two specific targets are both present in a sample.

  3. Using a logic model to evaluate the Kids Together early education inclusion program for children with disabilities and additional needs.

    PubMed

    Clapham, Kathleen; Manning, Claire; Williams, Kathryn; O'Brien, Ginger; Sutherland, Margaret

    2017-04-01

    Despite clear evidence that learning and social opportunities for children with disabilities and special needs are more effective in inclusive not segregated settings, there are few known effective inclusion programs available to children with disabilities, their families or teachers in the early years within Australia. The Kids Together program was developed to support children with disabilities/additional needs aged 0-8 years attending mainstream early learning environments. Using a key worker transdisciplinary team model, the program aligns with the individualised package approach of the National Disability Insurance Scheme (NDIS).

  4. Parallel Debugging Using Graphical Views

    DTIC Science & Technology

    1988-03-01

    Voyeur , a prototype system for creating graphical views of parallel programs, provid(s a cost-effective way to construct such views for any parallel...programming system. We illustrate Voyeur by discussing four views created for debugging Poker programs. One is a vteneral trace facility for any Poker...Graphical views are essential for debugging parallel programs because of the large quan- tity of state information contained in parallel programs. Voyeur

  5. Acceleration of the Geostatistical Software Library (GSLIB) by code optimization and hybrid parallel programming

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar; Ortiz, Julián M.; Herrero, José R.

    2015-12-01

    The Geostatistical Software Library (GSLIB) has been used in the geostatistical community for more than thirty years. It was designed as a bundle of sequential Fortran codes, and today it is still in use by many practitioners and researchers. Despite its widespread use, few attempts have been reported in order to bring this package to the multi-core era. Using all CPU resources, GSLIB algorithms can handle large datasets and grids, where tasks are compute- and memory-intensive applications. In this work, a methodology is presented to accelerate GSLIB applications using code optimization and hybrid parallel processing, specifically for compute-intensive applications. Minimal code modifications are added decreasing as much as possible the elapsed time of execution of the studied routines. If multi-core processing is available, the user can activate OpenMP directives to speed up the execution using all resources of the CPU. If multi-node processing is available, the execution is enhanced using MPI messages between the compute nodes.Four case studies are presented: experimental variogram calculation, kriging estimation, sequential gaussian and indicator simulation. For each application, three scenarios (small, large and extra large) are tested using a desktop environment with 4 CPU-cores and a multi-node server with 128 CPU-nodes. Elapsed times, speedup and efficiency results are shown.

  6. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  7. What Multilevel Parallel Programs do when you are not Watching: A Performance Analysis Case Study Comparing MPI/OpenMP, MLP, and Nested OpenMP

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    With the current trend in parallel computer architectures towards clusters of shared memory symmetric multi-processors, parallel programming techniques have evolved that support parallelism beyond a single level. When comparing the performance of applications based on different programming paradigms, it is important to differentiate between the influence of the programming model itself and other factors, such as implementation specific behavior of the operating system (OS) or architectural issues. Rewriting-a large scientific application in order to employ a new programming paradigms is usually a time consuming and error prone task. Before embarking on such an endeavor it is important to determine that there is really a gain that would not be possible with the current implementation. A detailed performance analysis is crucial to clarify these issues. The multilevel programming paradigms considered in this study are hybrid MPI/OpenMP, MLP, and nested OpenMP. The hybrid MPI/OpenMP approach is based on using MPI [7] for the coarse grained parallelization and OpenMP [9] for fine grained loop level parallelism. The MPI programming paradigm assumes a private address space for each process. Data is transferred by explicitly exchanging messages via calls to the MPI library. This model was originally designed for distributed memory architectures but is also suitable for shared memory systems. The second paradigm under consideration is MLP which was developed by Taft. The approach is similar to MPi/OpenMP, using a mix of coarse grain process level parallelization and loop level OpenMP parallelization. As it is the case with MPI, a private address space is assumed for each process. The MLP approach was developed for ccNUMA architectures and explicitly takes advantage of the availability of shared memory. A shared memory arena which is accessible by all processes is required. Communication is done by reading from and writing to the shared memory.

  8. General Logics

    DTIC Science & Technology

    1989-01-01

    and Func- tional Programming. Pitman, London, 1986. [14] Valeria C.V. de Paiva. The Dialectica Categories. PhD thesis, Mathematics Department...Columbia University. [461 F.W. Lawvere. Adjointness in foundations. Dialectica , 23(3/4):281-296, 1969. [471 Saunders MacLane. Categories for the

  9. Projection-free parallel quadratic programming for linear model predictive control

    NASA Astrophysics Data System (ADS)

    Di Cairano, S.; Brand, M.; Bortoff, S. A.

    2013-08-01

    A key component in enabling the application of model predictive control (MPC) in fields such as automotive, aerospace, and factory automation is the availability of low-complexity fast optimisation algorithms to solve the MPC finite horizon optimal control problem in architectures with reduced computational capabilities. In this paper, we introduce a projection-free iterative optimisation algorithm and discuss its application to linear MPC. The algorithm, originally developed by Brand for non-negative quadratic programs, is based on a multiplicative update rule and it is shown to converge to a fixed point which is the optimum. An acceleration technique based on a projection-free line search is also introduced, to speed-up the convergence to the optimum. The algorithm is applied to MPC through the dual of the quadratic program (QP) formulated from the MPC finite time optimal control problem. We discuss how termination conditions with guaranteed degree of suboptimality can be enforced, and how the algorithm performance can be optimised by pre-computing the matrices in a parametric form. We show computational results of the algorithm in three common case studies and we compare such results with the results obtained by other available free and commercial QP solvers.

  10. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Barto, Rod L.; Erickson, Ken

    1999-01-01

    This paper presents a look at logic design from early in the US Space Program and examines faults in recent logic designs. Most examples are based on flight hardware failures and analysis of new tools and techniques. The paper is presented in viewgraph form.

  11. Parallel unification scheduling in Prolog. Technical report

    SciTech Connect

    Citrin

    1986-09-18

    Unification, the fundamental operation in the Prolog logic programming language can take up to 50% of the execution time of a typical Prolog system. One approach to speeding up the unification operation is to perform it on parallel hardware. Although it has been shown that, in general, there is no parallel algorithm for unification that is better than the best sequential algorithm, there is a substantial subset of unification which may be done in parallel. Identifying these subsets involves gathering data using an extension of Chang's static data-dependency analysis (SDDA), then using that data to schedule the components of a unification for parallel unification. Improvements to the information gathered by SDDA may be achieved through procedures splitting, a source-level transformation of the program. This thesis describes and evaluates the above-mentioned techniques and their implementation. Results are compared to other techniques for speeding up unification. Ways in which these techniques may be applied to the Berkeley PLM machine are also described.

  12. Nonvolatile ``AND,'' ``OR,'' and ``NOT'' Boolean logic gates based on phase-change memory

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-12-01

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  13. Minuteman Weapon System Test Set logic replacement

    NASA Astrophysics Data System (ADS)

    Royse, S. D.

    In the late 1960s, the Minuteman Weapon System Test Set was constructed as a part of the Minuteman development program. The missile Reentry Vehicle is that portion of the Minuteman missile system which reenters the atmosphere with the nuclear warhead. The test set has the objective to test the electrical/electro-mechanical systems and components of the reentry vehicle at both the repair depot and missile maintenance squadron levels. With the recent advances in semiconductor technologies, the Diode Transistor Logic (DTL) technology used to implement the test set logic became obsolete. The present paper is concerned with efforts to develop a prototype replacement for the test set logic. Attention is given to the functions of the test set, the documentation of existing logic, and the prototype design approach, which involves the subdivision of the logic into three basic functional groups. The logic replacement is based on the utilization of a multiple microprocessor system.

  14. Parallel Lisp simulator

    SciTech Connect

    Weening, J.S.

    1988-05-01

    CSIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It models a shared-memory multiprocessor executing programs written in Common Lisp, extended with several primitives for creating and controlling processes. This paper describes the structure of the simulator, measures its performance, and gives an example of its use with a parallel Lisp program.

  15. Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures

    PubMed Central

    Suchard, Marc A.; Wang, Quanli; Chan, Cliburn; Frelinger, Jacob; Cron, Andrew; West, Mike

    2010-01-01

    This article describes advances in statistical computation for large-scale data analysis in structured Bayesian mixture models via graphics processing unit (GPU) programming. The developments are partly motivated by computational challenges arising in fitting models of increasing heterogeneity to increasingly large datasets. An example context concerns common biological studies using high-throughput technologies generating many, very large datasets and requiring increasingly high-dimensional mixture models with large numbers of mixture components. We outline important strategies and processes for GPU computation in Bayesian simulation and optimization approaches, give examples of the benefits of GPU implementations in terms of processing speed and scale-up in ability to analyze large datasets, and provide a detailed, tutorial-style exposition that will benefit readers interested in developing GPU-based approaches in other statistical models. Novel, GPU-oriented approaches to modifying existing algorithms software design can lead to vast speed-up and, critically, enable statistical analyses that presently will not be performed due to compute time limitations in traditional computational environments. Supplemental materials are provided with all source code, example data, and details that will enable readers to implement and explore the GPU approach in this mixture modeling context. PMID:20877443

  16. Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2010-12-01

    Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer

  17. Center for Programming Models for Scalable Parallel Computing - Towards Enhancing OpenMP for Manycore and Heterogeneous Nodes

    SciTech Connect

    Barbara Chapman

    2012-02-01

    OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close to DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.

  18. Binary Arithmetic Using Optical Symbolic Substitution and Cascadable Surface-Emitting Laser Logic Devices,

    DTIC Science & Technology

    LOGIC DEVICES, *OPTICAL CIRCUITS, *OPTICAL SWITCHING, HETEROJUNCTIONS, PHOTOTRANSISTORS, ELECTROOPTICS, LASER CAVITIES, OPTICAL PROCESSING, PARALLEL PROCESSING, BISTABLE DEVICES, GATES(CIRCUITS), VOLTAGE, BINARY ARITHMETIC .

  19. A new approach for investigating protein flexibility based on Constraint Logic Programming. The first application in the case of the estrogen receptor.

    PubMed

    Dal Palú, Alessandro; Spyrakis, Francesca; Cozzini, Pietro

    2012-03-01

    We describe the potential of a novel method, based on Constraint Logic Programming (CLP), developed for an exhaustive sampling of protein conformational space. The CLP framework proposed here has been tested and applied to the estrogen receptor, whose activity and function is strictly related to its intrinsic, and well known, dynamics. We have investigated in particular the flexibility of H12, focusing on the pathways followed by the helix when moving from one stable crystallographic conformation to the others. Millions of geometrically feasible conformations were generated, selected and the traces connecting the different forms were determined by using a shortest path algorithm. The preliminary analyses showed a marked agreement between the crystallographic agonist-like, antagonist-like and hypothetical apo forms, and the corresponding conformations identified by the CLP framework. These promising results, together with the short computational time required to perform the analyses, make this constraint-based approach a valuable tool for the study of protein folding prediction. The CLP framework enables one to consider various structural and energetic scenarious, without changing the core algorithm. To show the feasibility of the method, we intentionally choose a pure geometric setting, neglecting the energetic evaluation of the poses, in order to be independent from a specific force field and to provide the possibility of comparing different behaviours associated with various energy models.

  20. Synchronous universal droplet logic and control

    NASA Astrophysics Data System (ADS)

    Katsikis, Georgios; Cybulski, James S.; Prakash, Manu

    2015-07-01

    Droplets are versatile digital materials; they can be produced at high throughput, perform chemical reactions as miniature beakers and carry biological entities. Droplets have been manipulated with electric, optical, acoustic and magnetic forces, but all these methods use serial controls to address individual droplets. An alternative is algorithmic manipulation based on logic operations that automatically compute where droplets are stored or directed, thereby enabling parallel control. However, logic previously implemented in low-Reynolds-number droplet hydrodynamics is asynchronous and thus prone to errors that prevent scaling up the complexity of logic operations. Here we present a platform for error-free physical computation via synchronous universal logic. Our platform uses a rotating magnetic field that enables parallel manipulation of arbitrary numbers of ferrofluid droplets on permalloy tracks. Through the coupling of magnetic and hydrodynamic interaction forces between droplets, we developed AND, OR, XOR, NOT and NAND logic gates, fanouts, a full adder, a flip-flop and a finite-state machine. Our platform enables large-scale integration of droplet logic, analogous to the scaling seen in digital electronics, and opens new avenues in mesoscale material processing.

  1. Nixie tube display unit employs time-shared logic

    NASA Technical Reports Server (NTRS)

    Gray, J.

    1966-01-01

    Cathodes of display tubes wired in parallel achieve input switching simplification of a Nixie tube display system. Use of time- shared logic energizes the appropriate anode and inhibits all unnecessary cathodes.

  2. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  3. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  4. Reactive programming of simulations in physics

    NASA Astrophysics Data System (ADS)

    Boussinot, Frédéric; Monasse, Bernard; Susini, Jean-Ferdy

    2015-04-01

    We consider the Reactive Programming (RP) approach to simulate physical systems. The choice of RP is motivated by the fact that RP genuinely offers logical parallelism, instantaneously broadcast events, and dynamic creation/destruction of parallel components and events. To illustrate our approach, we consider the implementation of a system of Molecular Dynamics, in the context of Java with the Java3D library for 3D visualization.

  5. Remote origins of interannual variability in the Indonesian Throughflow region from data and a global Parallel Ocean Program simulation

    NASA Astrophysics Data System (ADS)

    McClean, Julie L.; Ivanova, Detelina P.; Sprintall, Janet

    2005-10-01

    The mean and interannual variability of the thermal structure of the World Ocean Circulation Experiment (WOCE) repeat IX1-expendable bathythermograph (XBT) transect between Java and Western Australia were compared statistically for the years 1987-1997 with concurrent, co-located output from a global eddy-permitting configuration of the Parallel Ocean Program (POP) model forced with realistic surface fluxes. Dominant variability at long timescales for both model and data in the southern IX1 region was associated with Pacific El Niño-Southern Oscillation (ENSO) events; at the northern end it was due to remote equatorial Indian Ocean forcing and Indian Ocean Dipole Mode events. In the Indo-Pacific domain the model reproduced the structure and magnitude of observed low-frequency variability. Event analyses following the warm ENSO phase showed low-frequency off-equatorial Rossby waves interacting with the North Pacific western maritime boundary to reflect onto the equator and excite a coastally trapped response that propagated through the Indonesian seas and along the northwest coast of Australia. In turn, the signal progressively propagated away from this coast as free baroclinic Rossby waves to 90°E. Cross-spectral analyses confirmed that on interannual timescales, both off-equatorial and equatorial signals remotely forced in the Pacific were largely responsible for the strong observed and modeled variability at the southern end of IX1.

  6. Runtime Analysis of Linear Temporal Logic Specifications

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus

    2001-01-01

    This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  7. QDP++: Data Parallel Interface for QCD

    SciTech Connect

    Robert Edwards

    2003-03-01

    This is a user's guide for the C++ binding for the QDP Data Parallel Applications Programmer Interface developed under the auspices of the US Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The QDP Level 2 API has the following features: (1) Provides data parallel operations (logically SIMD) on all sites across the lattice or subsets of these sites. (2) Operates on lattice objects, which have an implementation-dependent data layout that is not visible above this API. (3) Hides details of how the implementation maps onto a given architecture, namely how the logical problem grid (i.el lattice) is mapped onto the machine architecture. (4) Allows asynchronous (non-blocking) shifts of lattice level objects over any permutation map of site sonto sites. However, from the user's view these instructions appear blocking and in fact may be so in some implementation. (5) Provides broadcast operations (filling a lattice quantity from a scalar value(s)), global reduction operations, and lattice-wide operations on various data-type primitives, such as matrices, vectors, and tensor products of matrices (propagators). (6) Operator syntax that support complex expression constructions.

  8. An interval logic for higher-level temporal reasoning

    NASA Technical Reports Server (NTRS)

    Schwartz, R. L.; Melliar-Smith, P. M.; Vogt, F. H.; Plaisted, D. A.

    1983-01-01

    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included.

  9. DNA logic gates.

    PubMed

    Okamoto, Akimitsu; Tanaka, Kazuo; Saito, Isao

    2004-08-04

    A conceptually new logic gate based on DNA has been devised. Methoxybenzodeazaadenine ((MD)A), an artificial nucleobase which we recently developed for efficient hole transport through DNA, formed stable base pairs with T and C. However, a reasonable hole-transport efficiency was observed in the reaction for the duplex containing an (MD)A/T base pair, whereas the hole transport was strongly suppressed in the reaction using a duplex where the base opposite (MD)A was replaced by C. The influence of complementary pyrimidines on the efficiency of hole transport through (MD)A was quite contrary to the selectivity observed for hole transport through G. The orthogonality of the modulation of these hole-transport properties by complementary pyrimidine bases is promising for the design of a new molecular logic gate. The logic gate system was executed by hole transport through short DNA duplexes, which consisted of the "logic gate strand", containing hole-transporting nucleobases, and the "input strand", containing pyrimidines which modulate the hole-transport efficiency of logic bases. A logic gate strand containing multiple (MD)A bases in series provided the basis for a sharp AND logic action. On the other hand, for OR logic and combinational logic, conversion of Boolean expressions to standard sum-of-product (SOP) expressions was indispensable. Three logic gate strands were designed for OR logic according to each product term in the standard SOP expression of OR logic. The hole-transport efficiency observed for the mixed sample of logic gate strands exhibited an OR logic behavior. This approach is generally applicable to the design of other complicated combinational logic circuits such as the full-adder.

  10. Broadcasting a message in a parallel computer

    DOEpatents

    Berg, Jeremy E.; Faraj, Ahmad A.

    2011-08-02

    Methods, systems, and products are disclosed for broadcasting a message in a parallel computer. The parallel computer includes a plurality of compute nodes connected together using a data communications network. The data communications network optimized for point to point data communications and is characterized by at least two dimensions. The compute nodes are organized into at least one operational group of compute nodes for collective parallel operations of the parallel computer. One compute node of the operational group assigned to be a logical root. Broadcasting a message in a parallel computer includes: establishing a Hamiltonian path along all of the compute nodes in at least one plane of the data communications network and in the operational group; and broadcasting, by the logical root to the remaining compute nodes, the logical root's message along the established Hamiltonian path.

  11. Reversible logic for supercomputing.

    SciTech Connect

    DeBenedictis, Erik P.

    2005-05-01

    This paper is about making reversible logic a reality for supercomputing. Reversible logic offers a way to exceed certain basic limits on the performance of computers, yet a powerful case will have to be made to justify its substantial development expense. This paper explores the limits of current, irreversible logic for supercomputers, thus forming a threshold above which reversible logic is the only solution. Problems above this threshold are discussed, with the science and mitigation of global warming being discussed in detail. To further develop the idea of using reversible logic in supercomputing, a design for a 1 Zettaflops supercomputer as required for addressing global climate warming is presented. However, to create such a design requires deviations from the mainstream of both the software for climate simulation and research directions of reversible logic. These deviations provide direction on how to make reversible logic practical.

  12. Local rollback for fault-tolerance in parallel computing systems

    DOEpatents

    Blumrich, Matthias A [Yorktown Heights, NY; Chen, Dong [Yorktown Heights, NY; Gara, Alan [Yorktown Heights, NY; Giampapa, Mark E [Yorktown Heights, NY; Heidelberger, Philip [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Steinmacher-Burow, Burkhard [Boeblingen, DE; Sugavanam, Krishnan [Yorktown Heights, NY

    2012-01-24

    A control logic device performs a local rollback in a parallel super computing system. The super computing system includes at least one cache memory device. The control logic device determines a local rollback interval. The control logic device runs at least one instruction in the local rollback interval. The control logic device evaluates whether an unrecoverable condition occurs while running the at least one instruction during the local rollback interval. The control logic device checks whether an error occurs during the local rollback. The control logic device restarts the local rollback interval if the error occurs and the unrecoverable condition does not occur during the local rollback interval.

  13. TSE computers - A means for massively parallel computations

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III

    1976-01-01

    A description is presented of hardware concepts for building a massively parallel processing system for two-dimensional data. The processing system is to use logic arrays of 128 x 128 elements which perform over 16 thousand operations simultaneously. Attention is given to image data, logic arrays, basic image logic functions, a prototype negator, an interleaver device, image logic circuits, and an image memory circuit.

  14. Appendix E: Parallel Pascal development system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Parallel Pascal Development System enables Parallel Pascal programs to be developed and tested on a conventional computer. It consists of several system programs, including a Parallel Pascal to standard Pascal translator, and a library of Parallel Pascal subprograms. The library includes subprograms for using Parallel Pascal on a parallel system with a fixed degree of parallelism, such as the Massively Parallel Processor, to conveniently manipulate arrays which have dimensions than the hardware. Programs can be conveninetly tested with small sized arrays on the conventional computer before attempting to run on a parallel system.

  15. Object-oriented concurrent programming

    SciTech Connect

    Yonezawa, A.; Tokoro, M.

    1986-01-01

    This book deals with a major theme of the Japanese Fifth Generation Project, which emphasizes logic programming, parallelism, and distributed systems. It presents a collection of tutorials and research papers on a new programming and design methodology in which the system to be constructed is modeled as a collection of abstract entities called ''objects'' and concurrent messages passing among objects. The book includes proposals for programming languages that support this methodology, as well as the applications of object-oriented concurrent programming to such areas as artificial intelligence, software engineering, music synthesis, office information systems, and system programming.

  16. Optical logic array processor using shadowgrams

    NASA Astrophysics Data System (ADS)

    Tanida, J.; Ichioka, Y.

    1983-06-01

    On the basis of a lensless shadow-casting technique, a new, simple method of optically implementing digital logic gates has been developed. These gates are capable of performimg a complete set of logical operations on a large array of binary variables in parallel, i.e., the pattern logics. A light-emitting diode (LED) array is used as an incoherent light source in the lensless shadow-casting system. Sixteen possible functions of two binary variables are simply realizable with these gates in parallel by controlling the switching modes of the LEDs. Experimental results demonstrate the feasibility of various gate arrays, such as AND, OR, NOR, XOR, and NAND. As an example of application of the proposed method, an optical logic array processor is constructed that can implement parallel operations of addition or subtraction for two binary variables without considering the carry mechanisms. Use of the light-modulated LED array means that the proposed method can be applied to combinational circuits.

  17. Work stealing for GPU-accelerated parallel programs in a global address space framework: WORK STEALING ON GPU-ACCELERATED SYSTEMS

    SciTech Connect

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram; Balaji, Pavan; Sadayappan, P.

    2016-01-06

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a function of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.

  18. Software Safety Assurance of Programmable Logic

    NASA Technical Reports Server (NTRS)

    Berens, Kalynnda

    2002-01-01

    Programmable Logic (PLC, FPGA, ASIC) devices are hybrids - hardware devices that are designed and programmed like software. As such, they fall in an assurance gray area. Programmable Logic is usually tested and verified as hardware, and the software aspects are ignored, potentially leading to safety or mission success concerns. The objective of this proposal is to first determine where and how Programmable Logic (PL) is used within NASA and document the current methods of assurance. Once that is known, raise awareness of the PL software aspects within the NASA engineering community and provide guidance for the use and assurance of PL form a software perspective.

  19. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  20. Optical Logic Gates

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.; Dowler, W. L.

    1985-01-01

    Logic gates for light signals constructed from combinations of prisms, polarizing plates, and quarterwave plates. Optical logic gate performs elementary logic operation on light signals received along two optical fibers. Whether gate performs OR function or exclusive-OR function depends on orientation of analyzer. Nonbinary truth tables also obtained by rotating polarizer or analyzer to other positions or inserting other quarter-wave plates.

  1. Digital Holographic Logic

    NASA Technical Reports Server (NTRS)

    Preston, K., Jr.

    1972-01-01

    The characteristics of the holographic logic computer are discussed. The holographic operation is reviewed from the Fourier transform viewpoint, and the formation of holograms for use in performing digital logic are described. The operation of the computer with an experiment in which the binary identity function is calculated is discussed along with devices for achieving real-time performance. An application in pattern recognition using neighborhood logic is presented.

  2. Ferrite logic reliability study

    NASA Technical Reports Server (NTRS)

    Baer, J. A.; Clark, C. B.

    1973-01-01

    Development and use of digital circuits called all-magnetic logic are reported. In these circuits the magnetic elements and their windings comprise the active circuit devices in the logic portion of a system. The ferrite logic device belongs to the all-magnetic class of logic circuits. The FLO device is novel in that it makes use of a dual or bimaterial ferrite composition in one physical ceramic body. This bimaterial feature, coupled with its potential for relatively high speed operation, makes it attractive for high reliability applications. (Maximum speed of operation approximately 50 kHz.)

  3. Survey of new vector computers: The CRAY 1S from CRAY research; the CYBER 205 from CDC and the parallel computer from ICL - architecture and programming

    NASA Technical Reports Server (NTRS)

    Gentzsch, W.

    1982-01-01

    Problems which can arise with vector and parallel computers are discussed in a user oriented context. Emphasis is placed on the algorithms used and the programming techniques adopted. Three recently developed supercomputers are examined and typical application examples are given in CRAY FORTRAN, CYBER 205 FORTRAN and DAP (distributed array processor) FORTRAN. The systems performance is compared. The addition of parts of two N x N arrays is considered. The influence of the architecture on the algorithms and programming language is demonstrated. Numerical analysis of magnetohydrodynamic differential equations by an explicit difference method is illustrated, showing very good results for all three systems. The prognosis for supercomputer development is assessed.

  4. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  5. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  6. Fundamentals of Digital Logic.

    ERIC Educational Resources Information Center

    Noell, Monica L.

    This course is designed to prepare electronics personnel for further training in digital techniques, presenting need to know information that is basic to any maintenance course on digital equipment. It consists of seven study units: (1) binary arithmetic; (2) boolean algebra; (3) logic gates; (4) logic flip-flops; (5) nonlogic circuits; (6)…

  7. Programmable Logic Controllers.

    ERIC Educational Resources Information Center

    Insolia, Gerard; Anderson, Kathleen

    This document contains a 40-hour course in programmable logic controllers (PLC), developed for a business-industry technology resource center for firms in eastern Pennsylvania by Northampton Community College. The 10 units of the course cover the following: (1) introduction to programmable logic controllers; (2) DOS primer; (3) prerequisite…

  8. Promoting Logical Ability

    ERIC Educational Resources Information Center

    Osborne, Alan R.

    1973-01-01

    This article reports one search for factors or conditions shaping the child's growth in logical ability. The search indicated the existence of a relationship between the quantity of teacher talk that contains the language of logic and the change exhibited by students. Implications for classroom practice are discussed. (JA)

  9. Use of LOGIC to support lidar operations

    NASA Astrophysics Data System (ADS)

    Davis-Lunde, Kimberley; Jugan, Laurie A.; Shoemaker, J. Todd

    1999-10-01

    The Naval Oceanographic Office (NAVOCEANO) and Planning Systems INcorporated are developing the Littoral Optics Geospatial Integrated Capability (LOGIC). LOGIC supports NAVOCEANO's directive to assess the impact of the environment on Fleet systems in areas of operational interest. LOGIC is based in the Geographic Information System (GIS) ARC/INFO and offers a method to view and manipulate optics and ancillary data to support emerging Fleet lidar systems. LOGIC serves as a processing (as required) and quality-checking mechanism for data entering NAVOCEANO's Data Warehouse and handles both remotely sensed and in-water data. LOGIC provides a link between these data and the GIS-based Graphical User Interface, allowing the user to select data manipulation routines and/or system support products. The results of individual modules are displayed via the GIS to provide such products as lidar system performance, laser penetration depth, and asset vulnerability from a lidar threat. LOGIC is being developed for integration into other NAVOCEANO programs, most notably for Comprehensive Environmental Assessment System, an established tool supporting sonar-based systems. The prototype for LOGIC was developed for the Yellow Sea, focusing on a diver visibility support product.

  10. Microelectromechanical reprogrammable logic device

    NASA Astrophysics Data System (ADS)

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-03-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  11. Microelectromechanical reprogrammable logic device

    PubMed Central

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  12. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  13. Regulatory Conformance Checking: Logic and Logical Form

    ERIC Educational Resources Information Center

    Dinesh, Nikhil

    2010-01-01

    We consider the problem of checking whether an organization conforms to a body of regulation. Conformance is studied in a runtime verification setting. The regulation is translated to a logic, from which we synthesize monitors. The monitors are evaluated as the state of an organization evolves over time, raising an alarm if a violation is…

  14. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  15. A systolic array parallelizing compiler

    SciTech Connect

    Tseng, P.S. )

    1990-01-01

    This book presents a completely new approach to the problem of systolic array parallelizing compiler. It describes the AL parallelizing compiler for the Warp systolic array, the first working systolic array parallelizing compiler which can generate efficient parallel code for complete LINPACK routines. This book begins by analyzing the architectural strength of the Warp systolic array. It proposes a model for mapping programs onto the machine and introduces the notion of data relations for optimizing the program mapping. Also presented are successful applications of the AL compiler in matrix computation and image processing. A complete listing of the source program and compiler-generated parallel code are given to clarify the overall picture of the compiler. The book concludes that systolic array parallelizing compiler can produce efficient parallel code, almost identical to what the user would have written by hand.

  16. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  17. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  18. A novel parallel architecture for real-time image processing

    NASA Astrophysics Data System (ADS)

    Hu, Junhong; Zhang, Tianxu; Zhong, Sheng; Chen, Xujun

    2009-10-01

    A novel DSP/FPGA-based parallel architecture for real-time image processing is presented in this paper, DSPs are the main processing unit and FPGAs are used to be logic units for image interface protocol, image processing, image display, synchronization communication portocol of DSPs and DSP's reprogramming interface of 422/485. The presented architecture is composed of two modules: the preprocessing module and the processing module, and the latter is extendable for better performance. Modules are connected by LINK communication port, whose LVDS protocol has the ability of anti-jamming. And DSP's programs can be updated easily by 422/485 with PC's serial port. Analysis and experiments result shows that the prototype with the proposed parallel architecture has many promising charactersitics such as powerful computing capability, broad data transfer bandwidth, and is easy to be extended and updated.

  19. Design of a Ferroelectric Programmable Logic Gate Array

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen

    2003-01-01

    A programmable logic gate array has been designed utilizing ferroelectric field effect transistors. The design has only a small number of gates, but this could be scaled up to a more useful size. Using FFET's in a logic array gives several advantages. First, it allows real-time programmability to the array to give high speed reconfiguration. It also allows the array to be configured nearly an unlimited number of times, unlike a FLASH FPGA. Finally, the Ferroelectric Programmable Logic Gate Array (FPLGA) can be implemented using a smaller number of transistors because of the inherent logic characteristics of an FFET. The device was only designed and modeled using Spice models of the circuit, including the FFET. The actual device was not produced. The design consists of a small array of NAND and NOR logic gates. Other gates could easily be produced. They are linked by FFET's that control the logic flow. Timing and logic tables have been produced showing the array can produce a variety of logic combinations at a real time usable speed. This device could be a prototype for a device that could be put into imbedded systems that need the high speed of hardware implementation of logic and the complexity to need to change the logic algorithm. Because of the non-volatile nature of the FFET, it would also be useful in situations that needed to program a logic array once and use it repeatedly after the power has been shut off.

  20. Event Logic Assistant (Elan)

    DTIC Science & Technology

    2008-07-14

    as a basis for Phase II research. 2 Background 2.1 Event logic 2.1.1 Event structures Intuitively, an event structure is an abstract algebraic ...Theoretical Computer Science, 149:257–298, 1995. [2] Uri Abraham. Models for Concurrency, volume 11 of Algebra , Logic and Applications Series. Gordon...the ordering of events in a distributed system. Comms. ACM, 21(7):558–65, 1978. [28] Leslie Lamport. Hybrid systems in TLA+. In Grossman , Nerode, Ravn

  1. mm_par2.0: An object-oriented molecular dynamics simulation program parallelized using a hierarchical scheme with MPI and OPENMP

    NASA Astrophysics Data System (ADS)

    Oh, Kwang Jin; Kang, Ji Hoon; Myung, Hun Joo

    2012-02-01

    We have revised a general purpose parallel molecular dynamics simulation program mm_par using the object-oriented programming. We parallelized the revised version using a hierarchical scheme in order to utilize more processors for a given system size. The benchmark result will be presented here. New version program summaryProgram title: mm_par2.0 Catalogue identifier: ADXP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 390 858 No. of bytes in distributed program, including test data, etc.: 25 068 310 Distribution format: tar.gz Programming language: C++ Computer: Any system operated by Linux or Unix Operating system: Linux Classification: 7.7 External routines: We provide wrappers for FFTW [1], Intel MKL library [2] FFT routine, and Numerical recipes [3] FFT, random number generator, and eigenvalue solver routines, SPRNG [4] random number generator, Mersenne Twister [5] random number generator, space filling curve routine. Catalogue identifier of previous version: ADXP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 560 Does the new version supersede the previous version?: Yes Nature of problem: Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales. Solution method: Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation. Reasons for new version: First, object-oriented programming has been used, which is known to be open for extension and closed for modification. It is also known to be better for maintenance. Second, version 1.0 was based on atom decomposition and domain decomposition scheme [6] for parallelization. However, atom

  2. Threshold-Logic Devices Consisting of Subthreshold CMOS Circuits

    NASA Astrophysics Data System (ADS)

    Ogawa, Taichi; Hirose, Tetsuya; Asai, Tetsuya; Amemiya, Yoshihito

    A threshold-logic gate device consisting of subthreshold MOSFET circuits is proposed. The gate device performs threshold-logic operation, using the technique of current-mode addition and subtraction. Sample digital subsystems, i.e., adders and morphological operation cells based on threshold logic, are designed using the gate devices, and their operations are confirmed by computer simulation. The device has a simple structure and operates at low power dissipation, so it is suitable for constructing cell-based, parallel processing LSIs such as cellular-automaton and neural-network LSIs.

  3. 4MOST: science operations for a large spectroscopic survey program with multiple science cases executed in parallel

    NASA Astrophysics Data System (ADS)

    Walcher, C. Jakob; de Jong, Roelof S.; Dwelly, Tom; Bellido, Olga; Boller, Thomas; Chiappini, Cristina; Feltzing, Sofia; Irwin, Mike; McMahon, Richard; Merloni, Andrea; Schnurr, Olivier; Walton, Nicholas A.

    2016-07-01

    The 4MOST instrument is a multi-object spectrograph to be mounted to the VISTA telescope at ESOs La- Silla-Paranal observatory. 4MOST will deliver several 10s of millions of spectra from surveys typically lasting 5 years. 4MOST will address Galactic and extra-galactic science cases simultaneously, i.e. by observing targets from a large number of different surveys within one science exposure. This parallel mode of operations as well as the survey nature of 4MOST require some 4MOST-specific operations features within the overall operations model of ESO. These features are necessary to minimize any changes to the ESO operations model at the La- Silla-Paranal observatory on the one hand, and to enable parallel science observing and thus the most efficient use of the instrument on the other hand. The main feature is that the 4MOST consortium will not only deliver the instrument, but also contractual services to the user community, which is why 4MOST is also described as a 'facility'. We describe the operations model for 4MOST as seen by the consortium building the instrument. Among others this encompasses: 1) A joint science team for all participating surveys (i.e. including community surveys as well as those from the instrument-building consortium). 2) Common centralized tasks in observing preparation and data management provided as service by the consortium. 3) Transparency of all decisions to all stakeholders. 4) Close interaction between science and facility operations. Here we describe our efforts to make parallel observing mode efficient, flexible, and manageable.

  4. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  5. Proceedings of the workshop on Compilation of (Symbolic) Languages for Parallel Computers

    SciTech Connect

    Foster, I.; Tick, E.

    1991-11-01

    This report comprises the abstracts and papers for the talks presented at the Workshop on Compilation of (Symbolic) Languages for Parallel Computers, held October 31--November 1, 1991, in San Diego. These unreferred contributions were provided by the participants for the purpose of this workshop; many of them will be published elsewhere in peer-reviewed conferences and publications. Our goal is planning this workshop was to bring together researchers from different disciplines with common problems in compilation. In particular, we wished to encourage interaction between researchers working in compilation of symbolic languages and those working on compilation of conventional, imperative languages. The fundamental problems facing researchers interested in compilation of logic, functional, and procedural programming languages for parallel computers are essentially the same. However, differences in the basic programming paradigms have led to different communities emphasizing different species of the parallel compilation problem. For example, parallel logic and functional languages provide dataflow-like formalisms in which control dependencies are unimportant. Hence, a major focus of research in compilation has been on techniques that try to infer when sequential control flow can safely be imposed. Granularity analysis for scheduling is a related problem. The single- assignment property leads to a need for analysis of memory use in order to detect opportunities for reuse. Much of the work in each of these areas relies on the use of abstract interpretation techniques.

  6. Parallel Pascal - An extended Pascal for parallel computers

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.

    1984-01-01

    Parallel Pascal is an extended version of the conventional serial Pascal programming language which includes a convenient syntax for specifying array operations. It is upward compatible with standard Pascal and involves only a small number of carefully chosen new features. Parallel Pascal was developed to reduce the semantic gap between standard Pascal and a large range of highly parallel computers. Two important design goals of Parallel Pascal were efficiency and portability. Portability is particularly difficult to achieve since different parallel computers frequently have very different capabilities.

  7. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  8. Logical and pseudo-logical optical fibre networks based on two-state (binary) optical fibre sensors for industrial monitoring and control systems

    NASA Astrophysics Data System (ADS)

    Szczot, Feliks

    2005-09-01

    The possibilities of development of logical and pseudo-logical optical fibre networks for monitoring and control of equipment and industrial sites are presented. Such networks composed of simple binary attenuation and optical fibre communication lines may also be used as fast and reliable systems developing a final command signal - logical and/or pseudo-logical, depending or the architecture of network and the type of located sensors. They realise the process similar to standard electronic logical sets but use the optical signal directly on the monitored or controlled device. The analysis of serial and parallel networks was carried out in the "dark" mode detection. The examples of networks in power industry were presented where technical and economical merits of logical and pseudo-logical monitoring and controlling networks are clearly visible.

  9. A CS1 pedagogical approach to parallel thinking

    NASA Astrophysics Data System (ADS)

    Rague, Brian William

    Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within a discrete computational context are presented. Logical thinking is highlighted, guided primarily by a sequential approach to algorithm development and made manifest by typically using the latest, commercially successful programming language. In response to the most recent developments in accessible multicore computers, instructors of these introductory classes may wish to include training on how to design workable parallel code. Novel issues arise when programming concurrent applications which can make teaching these concepts to beginning programmers a seemingly formidable task. Student comprehension of design strategies related to parallel systems should be monitored to ensure an effective classroom experience. This research investigated the feasibility of integrating parallel computing concepts into the first-year CS classroom. To quantitatively assess student comprehension of parallel computing, an experimental educational study using a two-factor mixed group design was conducted to evaluate two instructional interventions in addition to a control group: (1) topic lecture only, and (2) topic lecture with laboratory work using a software visualization Parallel Analysis Tool (PAT) specifically designed for this project. A new evaluation instrument developed for this study, the Perceptions of Parallelism Survey (PoPS), was used to measure student learning regarding parallel systems. The results from this educational study show a statistically significant main effect among the repeated measures, implying that student comprehension levels of parallel concepts as measured by the PoPS improve immediately after the delivery of

  10. Blade row dynamic digital compressor program. Volume 1: J85 clean inlet flow and parallel compressor models

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.

  11. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    SciTech Connect

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  12. Parallel machines: Parallel machine languages

    SciTech Connect

    Iannucci, R.A. )

    1990-01-01

    This book presents a framework for understanding the tradeoffs between the conventional view and the dataflow view with the objective of discovering the critical hardware structures which must be present in any scalable, general-purpose parallel computer to effectively tolerate latency and synchronization costs. The author presents an approach to scalable general purpose parallel computation. Linguistic Concerns, Compiling Issues, Intermediate Language Issues, and hardware/technological constraints are presented as a combined approach to architectural Develoement. This book presents the notion of a parallel machine language.

  13. Executing a gather operation on a parallel computer

    DOEpatents

    Archer, Charles J [Rochester, MN; Ratterman, Joseph D [Rochester, MN

    2012-03-20

    Methods, apparatus, and computer program products are disclosed for executing a gather operation on a parallel computer according to embodiments of the present invention. Embodiments include configuring, by the logical root, a result buffer or the logical root, the result buffer having positions, each position corresponding to a ranked node in the operational group and for storing contribution data gathered from that ranked node. Embodiments also include repeatedly for each position in the result buffer: determining, by each compute node of an operational group, whether the current position in the result buffer corresponds with the rank of the compute node, if the current position in the result buffer corresponds with the rank of the compute node, contributing, by that compute node, the compute node's contribution data, if the current position in the result buffer does not correspond with the rank of the compute node, contributing, by that compute node, a value of zero for the contribution data, and storing, by the logical root in the current position in the result buffer, results of a bitwise OR operation of all the contribution data by all compute nodes of the operational group for the current position, the results received through the global combining network.

  14. Final Report, Center for Programming Models for Scalable Parallel Computing: Co-Array Fortran, Grant Number DE-FC02-01ER25505

    SciTech Connect

    Robert W. Numrich

    2008-04-22

    The major accomplishment of this project is the production of CafLib, an 'object-oriented' parallel numerical library written in Co-Array Fortran. CafLib contains distributed objects such as block vectors and block matrices along with procedures, attached to each object, that perform basic linear algebra operations such as matrix multiplication, matrix transpose and LU decomposition. It also contains constructors and destructors for each object that hide the details of data decomposition from the programmer, and it contains collective operations that allow the programmer to calculate global reductions, such as global sums, global minima and global maxima, as well as vector and matrix norms of several kinds. CafLib is designed to be extensible in such a way that programmers can define distributed grid and field objects, based on vector and matrix objects from the library, for finite difference algorithms to solve partial differential equations. A very important extra benefit that resulted from the project is the inclusion of the co-array programming model in the next Fortran standard called Fortran 2008. It is the first parallel programming model ever included as a standard part of the language. Co-arrays will be a supported feature in all Fortran compilers, and the portability provided by standardization will encourage a large number of programmers to adopt it for new parallel application development. The combination of object-oriented programming in Fortran 2003 with co-arrays in Fortran 2008 provides a very powerful programming model for high-performance scientific computing. Additional benefits from the project, beyond the original goal, include a programto provide access to the co-array model through access to the Cray compiler as a resource for teaching and research. Several academics, for the first time, included the co-array model as a topic in their courses on parallel computing. A separate collaborative project with LANL and PNNL showed how to extend the

  15. Nonlinear dynamics based digital logic and circuits.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two.

  16. Nonlinear dynamics based digital logic and circuits

    PubMed Central

    Kia, Behnam; Lindner, John. F.; Ditto, William L.

    2015-01-01

    We discuss the role and importance of dynamics in the brain and biological neural networks and argue that dynamics is one of the main missing elements in conventional Boolean logic and circuits. We summarize a simple dynamics based computing method, and categorize different techniques that we have introduced to realize logic, functionality, and programmability. We discuss the role and importance of coupled dynamics in networks of biological excitable cells, and then review our simple coupled dynamics based method for computing. In this paper, for the first time, we show how dynamics can be used and programmed to implement computation in any given base, including but not limited to base two. PMID:26029096

  17. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  18. Development of Parallel GSSHA

    DTIC Science & Technology

    2013-09-01

    C en te r Paul R. Eller , Jing-Ru C. Cheng, Aaron R. Byrd, Charles W. Downer, and Nawa Pradhan September 2013 Approved for public release...Program ERDC TR-13-8 September 2013 Development of Parallel GSSHA Paul R. Eller and Jing-Ru C. Cheng Information Technology Laboratory US Army Engineer...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paul Eller , Ruth Cheng, Aaron Byrd, Chuck Downer, and Nawa Pradhan 5d. PROJECT NUMBER

  19. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  20. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  1. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Barto, Rod L.; Erickson, K.

    1997-01-01

    Logic design errors have been observed in space flight missions and the final stages of ground test. The technologies used by designers and their design/analysis methodologies will be analyzed. This will give insight to the root causes of the failures. These technologies include discrete integrated circuit based systems, systems based on field and mask programmable logic, and the use computer aided engineering (CAE) systems. State-of-the-art (SOTA) design tools and methodologies will be analyzed with respect to high-reliability spacecraft design and potential pitfalls are discussed. Case studies of faults from large expensive programs to "smaller, faster, cheaper" missions will be used to explore the fundamental reasons for logic design problems.

  2. Temporal logics meet telerobotics

    NASA Technical Reports Server (NTRS)

    Rutten, Eric; Marce, Lionel

    1989-01-01

    The specificity of telerobotics being the presence of a human operator, decision assistance tools are necessary for the operator, especially in hostile environments. In order to reduce execution hazards due to a degraded ability for quick and efficient recovery of unexpected dangerous situations, it is of importance to have the opportunity, amongst others, to simulate the possible consequences of a plan before its actual execution, in order to detect these problematic situations. Hence the idea of providing the operator with a simulator enabling him to verify the temporal and logical coherence of his plans. Therefore, the power of logical formalisms is used for representation and deduction purposes. Starting from the class of situations that are represented, a STRIPS (the STanford Research Institute Problem Solver)-like formalism and its underlying logic are adapted to the simulation of plans of actions in time. The choice of a temporal logic enables to build a world representation, on which the effects of plans, grouping actions into control structures, will be transcribed by the simulation, resulting in a verdict and information about the plan's coherence.

  3. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    2000-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will start a series of notes concentrating on analysis techniques with this issues section discussing worst-case analysis requirements.

  4. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Day, John H. (Technical Monitor)

    2001-01-01

    This report will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter will continue a series of notes concentrating on analysis techniques with this issue's section discussing the use of Root-Sum-Square calculations for digital delays.

  5. Radiation tolerant combinational logic cell

    NASA Technical Reports Server (NTRS)

    Maki, Gary R. (Inventor); Gambles, Jody W. (Inventor); Whitaker, Sterling (Inventor)

    2009-01-01

    A system has a reduced sensitivity to Single Event Upset and/or Single Event Transient(s) compared to traditional logic devices. In a particular embodiment, the system includes an input, a logic block, a bias stage, a state machine, and an output. The logic block is coupled to the input. The logic block is for implementing a logic function, receiving a data set via the input, and generating a result f by applying the data set to the logic function. The bias stage is coupled to the logic block. The bias stage is for receiving the result from the logic block and presenting it to the state machine. The state machine is coupled to the bias stage. The state machine is for receiving, via the bias stage, the result generated by the logic block. The state machine is configured to retain a state value for the system. The state value is typically based on the result generated by the logic block. The output is coupled to the state machine. The output is for providing the value stored by the state machine. Some embodiments of the invention produce dual rail outputs Q and Q'. The logic block typically contains combinational logic and is similar, in size and transistor configuration, to a conventional CMOS combinational logic design. However, only a very small portion of the circuits of these embodiments, is sensitive to Single Event Upset and/or Single Event Transients.

  6. A Communication Framework for Fault-Tolerant Parallel Execution

    NASA Astrophysics Data System (ADS)

    Kanna, Nagarajan; Subhlok, Jaspal; Gabriel, Edgar; Rohit, Eshwar; Anderson, David

    PC grids represent massive computation capacity at a low cost, but are challenging to employ for parallel computing because of variable and unpredictable performance and availability. A communicating parallel program must employ checkpoint-restart and/or process redundancy to make continuous forward progress in such an unreliable environment. A communication model based on one-sided Put/Get calls, pioneered by the Linda system, is a good match as processes can execute their communication operations independently and asynchronously. However, Linda and its many variants are not designed for communicating processes that are replicated or independently restarted from checkpoints. The key problem is that a single logical operation that impacts the global program state may be executed by different instances of the same process at different times leading to semantic inconsistency. This paper presents the design, execution model, implementation, and validation of a communication layer for robust execution on volatile nodes. The research leads to a practical way to employ idle PCs for latency tolerant parallel computing applications.

  7. 16 Boolean logics in three steps with two anti-serially connected memristors

    NASA Astrophysics Data System (ADS)

    Zhou, Yaxiong; Li, Yi; Xu, Lei; Zhong, Shujing; Sun, Huajun; Miao, Xiangshui

    2015-06-01

    Memristor based logic gates that can execute memory and logic operations are regarded as building blocks for non Von Neumann computation architecture. In this letter, Ta/GeTe/Ag memristors were fabricated and showed reproducible binary switches between high-resistance and low-resistance states. Utilizing a structure with two anti-serially connected memristors, we propose a logic operation methodology, based on which arbitrary Boolean logic can be realized in three steps, and the logic result can be nonvolatilely stored. A functionally complete logic operation: NAND is further verified by HSPICE simulation and experiments. The implementation of logic-in-memory unit may stimulate the development of future massive parallel computing.

  8. Stacked resistive switches for AND/OR logic gates

    NASA Astrophysics Data System (ADS)

    Kim, Myung Ju; Son, Kyung Rock; Park, Ju Hyun; Kim, Tae Geun

    2017-06-01

    This paper reports the use of stacked resistive switches as logic gates for implementing the ;AND; and ;OR; operations. These stacked resistive switches consist of two resistive switches that share a middle electrode, and they operate based on the difference in resistance between the low and high resistance states indicating the logical states of ;0; and ;1;, respectively. The stacked resistive switches can perform either AND or OR operation, using two read schemes in one device. To perform the AND (or OR) operation, two resistive switches are arranged in a serial (or parallel) connection. AND and OR operations have been successfully demonstrated using the stacked resistive switches. The use of stacked resistive switches as logic gates that utilize the advantages of memristive devices shows the possibility of stateful logic circuits.

  9. Conditional Logic and Primary Children.

    ERIC Educational Resources Information Center

    Ennis, Robert H.

    Conditional logic, as interpreted in this paper, means deductive logic characterized by "if-then" statements. This study sought to investigate the knowledge of conditional logic possessed by primary children and to test their readiness to learn such concepts. Ninety students were designated the experimental group and participated in a…

  10. The Logic of Life.

    PubMed

    Pascal, Robert; Pross, Addy

    2016-11-01

    In this paper we propose a logical connection between the physical and biological worlds, one resting on a broader understanding of the stability concept. We propose that stability manifests two facets - time and energy, and that stability's time facet, expressed as persistence, is more general than its energy facet. That insight leads to the logical formulation of the Persistence Principle, which describes the general direction of material change in the universe, and which can be stated most simply as: nature seeks persistent forms. Significantly, the principle is found to express itself in two mathematically distinct ways: in the replicative world through Malthusian exponential growth, and in the 'regular' physical/chemical world through Boltzmann's probabilistic considerations. By encompassing both 'regular' and replicative worlds, the principle appears to be able to help reconcile two of the major scientific theories of the 19th century - the Second Law of Thermodynamics and Darwin's theory of evolution - within a single conceptual framework.

  11. The Logic of Life

    NASA Astrophysics Data System (ADS)

    Pascal, Robert; Pross, Addy

    2016-11-01

    In this paper we propose a logical connection between the physical and biological worlds, one resting on a broader understanding of the stability concept. We propose that stability manifests two facets - time and energy, and that stability's time facet, expressed as persistence, is more general than its energy facet. That insight leads to the logical formulation of the Persistence Principle, which describes the general direction of material change in the universe, and which can be stated most simply as: nature seeks persistent forms. Significantly, the principle is found to express itself in two mathematically distinct ways: in the replicative world through Malthusian exponential growth, and in the `regular' physical/chemical world through Boltzmann's probabilistic considerations. By encompassing both `regular' and replicative worlds, the principle appears to be able to help reconcile two of the major scientific theories of the 19th century - the Second Law of Thermodynamics and Darwin's theory of evolution - within a single conceptual framework.

  12. ProperCAD: A portable object-oriented parallel environment for VLSI CAD

    NASA Technical Reports Server (NTRS)

    Ramkumar, Balkrishna; Banerjee, Prithviraj

    1993-01-01

    Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.

  13. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, and some total dose results.

  14. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1998-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter's column will include some announcements and some recent radiation test results and evaluations of interest. Specifically, the following topics will be covered: the Military and Aerospace Applications of Programmable Devices and Technologies Conference to be held at GSFC in September, 1998, proton test results, heavy ion test results, and some total dose results.

  15. Parallel Quality Assessment of Emergency Departments by European Foundation for Quality Management Model and Iranian National Program for Hospital Evaluation

    PubMed Central

    IMANI NASAB, Mohammad Hasan; MOHAGHEGH, Bahram; KHALESI, Nader; JAAFARIPOOYAN, Ebrahim

    2013-01-01

    Background European Foundation for Quality Management (EFQM) model is a widely used quality management system (QMS) worldwide, including Iran. Current study aims to verify the quality assessment results of Iranian National Program for Hospital Evaluation (INPHE) based on those of EFQM. Methods: This cross-sectional study was conducted in 2012 on a sample of emergency departments (EDs) affiliated with Tehran University of Medical Sciences (TUMS), Iran. The standard questionnaire of EFQM (V-2010) was used to gather appropriate data. The results were compared with those of INPHE. MS Excel was used to classify and display the findings. Results: The average assessment score of the EDs based on the INPHE and EFQM model were largely different (i.e. 86.4% and 31%, respectively). In addition, the variation range among five EDs’ scores according to each model was also considerable (22% for EFQM against 7% of INPHE), especially in the EDs with and without prior record of applying QMSs. Conclusion: The INPHE’s assessment results were not confirmed by EFQM model. Moreover, the higher variation range among EDs’ scores using EFQM model could allude to its more differentiation power in assessing the performance comparing with INPHE. Therefore, a need for improvement in the latter drawing on other QMSs’ (such as EFQM) strengths, given the results emanated from its comparison with EFQM seems indispensable. PMID:23967429

  16. File concepts for parallel I/O

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1989-01-01

    The subject of input/output (I/O) was often neglected in the design of parallel computer systems, although for many problems I/O rates will limit the speedup attainable. The I/O problem is addressed by considering the role of files in parallel systems. The notion of parallel files is introduced. Parallel files provide for concurrent access by multiple processes, and utilize parallelism in the I/O system to improve performance. Parallel files can also be used conventionally by sequential programs. A set of standard parallel file organizations is proposed, organizations are suggested, using multiple storage devices. Problem areas are also identified and discussed.

  17. Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans

    PubMed Central

    Denning, Daniel P.; Hatch, Victoria; Horvitz, H. Robert

    2013-01-01

    Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to

  18. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control

  19. The Availability of Logical Operation Induced by Dichotomous Noise for a Nonlinear Bistable System

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Jin, Xiaoqin; Zhang, Huiqing; Yang, Tingting

    2013-08-01

    Instead of a continuous system driven by Gaussian white noise, logical stochastic resonance will be investigated in a nonlinear bistable system with two thresholds driven by dichotomous noise, which shows a phenomenon different from Gaussian white noise. We can realize two parallel logical operations by simply adjusting the values of these two thresholds. Besides, to quantify the reliability of obtaining the correct logic output, we numerically calculate the success probability, and effects of dichotomous noise on the success probability are observed, these observations show that the reliability of realizing logical operation in the bistable system can be improved through optimizing parameters of dichotomous noise.

  20. Realization of morphing logic gates in a repressilator with quorum sensing feedback

    NASA Astrophysics Data System (ADS)

    Agrawal, Vidit; Kang, Shivpal Singh; Sinha, Sudeshna

    2014-03-01

    We demonstrate how a genetic ring oscillator network with quorum sensing feedback can operate as a robust logic gate. Specifically we show how a range of logic functions, namely AND/NAND, OR/NOR and XOR/XNOR, can be realized by the system, thus yielding a versatile unit that can morph between different logic operations. We further demonstrate the capacity of this system to yield complementary logic operations in parallel. Our results then indicate the computing potential of this biological system, and may lead to bio-inspired computing devices.

  1. Surface-confined assemblies and polymers for molecular logic.

    PubMed

    de Ruiter, Graham; van der Boom, Milko E

    2011-08-16

    Stimuli responsive materials are capable of mimicking the operation characteristics of logic gates such as AND, OR, NOR, and even flip-flops. Since the development of molecular sensors and the introduction of the first AND gate in solution by de Silva in 1993, Molecular (Boolean) Logic and Computing (MBLC) has become increasingly popular. In this Account, we present recent research activities that focus on MBLC with electrochromic polymers and metal polypyridyl complexes on a solid support. Metal polypyridyl complexes act as useful sensors to a variety of analytes in solution (i.e., H(2)O, Fe(2+/3+), Cr(6+), NO(+)) and in the gas phase (NO(x) in air). This information transfer, whether the analyte is present, is based on the reversible redox chemistry of the metal complexes, which are stable up to 200 °C in air. The concurrent changes in the optical properties are nondestructive and fast. In such a setup, the input is directly related to the output and, therefore, can be represented by one-input logic gates. These input-output relationships are extendable for mimicking the diverse functions of essential molecular logic gates and circuits within a set of Boolean algebraic operations. Such a molecular approach towards Boolean logic has yielded a series of proof-of-concept devices: logic gates, multiplexers, half-adders, and flip-flop logic circuits. MBLC is a versatile and, potentially, a parallel approach to silicon circuits: assemblies of these molecular gates can perform a wide variety of logic tasks through reconfiguration of their inputs. Although these developments do not require a semiconductor blueprint, similar guidelines such as signal propagation, gate-to-gate communication, propagation delay, and combinatorial and sequential logic will play a critical role in allowing this field to mature. For instance, gate-to-gate communication by chemical wiring of the gates with metal ions as electron carriers results in the integration of stand-alone systems: the

  2. Iris Recognition Using Parallel and Sequential Logic in a Reconfigurable Logic Device

    DTIC Science & Technology

    2009-05-05

    UNLIMITED 13. SUPPLEMENTARY NOTES 14. ABSTRACT Iris recognition demonstrates superior performance as a biometric , far exceeding fingerprint...host system for processing. 15. SUBJECT TERMS Biometrics , Iris Recognition, Systolic Architecture, Finite Impulse Response Filtering, Binary...signature) _________________ (date) USNA-1531-2 1 Abstract Biometrics technologies have grown considerably

  3. Logic Functions for Cryptography - A Tutorial

    DTIC Science & Technology

    2009-05-01

    Logic Functions for Cryptography - A Tutorial Jon T. Butler Tsutomu Sasao Department of Electrical Department of Computer Science and Computer ... of Computer Programming, Vol- ume 4” [9]. Definition 2.1 A linear function is the constant 0 function or the Exclusive OR of one or more variables...S) AND ADDRESS(ES) Naval Postgraduate School,Department of Electrical and Computer Engineering,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT

  4. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  5. Flexible programmable logic module

    DOEpatents

    Robertson, Perry J.; Hutchinson, Robert L.; Pierson, Lyndon G.

    2001-01-01

    The circuit module of this invention is a VME board containing a plurality of programmable logic devices (PLDs), a controlled impedance clock tree, and interconnecting buses. The PLDs are arranged to permit systolic processing of a problem by offering wide data buses and a plurality of processing nodes. The board contains a clock reference and clock distribution tree that can drive each of the PLDs with two critically timed clock references. External clock references can be used to drive additional circuit modules all operating from the same synchronous clock reference.

  6. Substructural Logical Specifications

    DTIC Science & Technology

    2012-11-14

    a more natural correspondence with our physical intuitions about consumable resources. Linear conjunction A ⊗ B (“A tensor B”) represents the...sketch a radically different, vaguely Feynman - diagram-inspired, way of presenting traces in Figure 4.14. Resources are the edges in the DAG and steps or...70th Birthday, volume 17 of Studies in Logic. College Publications, 2008. 3.3.3, 4.1.2, 4.7.3 [Pfe12a] Frank Pfenning. Lecture notes on backtracking

  7. Programmable Logic Application Notes

    NASA Technical Reports Server (NTRS)

    Katz, Richard

    1999-01-01

    This column will be provided each quarter as a source for reliability, radiation results, NASA capabilities, and other information on programmable logic devices and related applications. This quarter the focus is on some experimental data on low voltage drop out regulators to support mixed 5 and 3.3 volt systems. A discussion of the Small Explorer WIRE spacecraft will also be given. Lastly, we show take a first look at robust state machines in Hardware Description Languages (VHDL) and their use in critical systems. If you have information that you would like to submit or an area you would like discussed or researched, please give me a call or e-mail.

  8. Photonic encryption using all optical logic.

    SciTech Connect

    Blansett, Ethan L.; Schroeppel, Richard Crabtree; Tang, Jason D.; Robertson, Perry J.; Vawter, Gregory Allen; Tarman, Thomas David; Pierson, Lyndon George

    2003-12-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines two classes of all optical logic (SEED, gain competition) and how each discrete logic element can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of the SEED and gain competition devices in an optical circuit were modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model of the SEED or gain competition device takes certain parameters (reflectance, intensity, input response), and models the optical ripple and time delay characteristics. These 'black box' models are interconnected and cascaded in an

  9. Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block

    NASA Astrophysics Data System (ADS)

    Dari, Anna; Kia, Behnam; Bulsara, Adi R.; Ditto, William L.

    2011-12-01

    Following the advent of synthetic biology, several gene networks have been engineered to emulate digital devices, with the ability to program cells for different applications. In this work, we adapt the concept of logical stochastic resonance to a synthetic gene network derived from a bacteriophage λ. The intriguing results of this study show that it is possible to build a biological logic block that can emulate or switch from the AND to the OR gate functionalities through externally tuning the system parameters. Moreover, this behavior and the robustness of the logic gate are underpinned by the presence of an optimal amount of random fluctuations. We extend our earlier work in this field, by taking into account the effects of correlated external (additive) and internal (multiplicative or state-dependent) noise. Results obtained through analytical calculations as well as numerical simulations are presented.

  10. Logical Form as a Determinant of Cognitive Processes

    NASA Astrophysics Data System (ADS)

    van Lambalgen, Michiel

    We discuss a research program on reasoning patterns in subjects with autism, showing that they fail to engage in certain forms of non-monotonic reasoning that come naturally to neurotypical subjects. The striking reasoning patterns of autists occur both in verbal and in non-verbal tasks. Upon formalising the relevant non-verbal tasks, one sees that their logical form is the same as that of the verbal tasks. This suggests that logical form can play a causal role in cognitive processes, and we suggest that this logical form is actually embodied in the cognitive capacity called 'executive function'.

  11. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  12. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    DOEpatents

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  13. An SEU immune logic family

    NASA Technical Reports Server (NTRS)

    Canaris, J.

    1991-01-01

    A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.

  14. Parallelizing Data-Centric Programs

    DTIC Science & Technology

    2013-09-25

    is undesirable. As a motivating example, 6 Figure 5: A visual path from Il Vittoriano to the Colosseum in our Forum dataset. Each consecutive image...images of Rome (out of a collection of nearly 75K images) connecting two landmarks, the Il Vittoriano Monument and the Colosseum . While both these

  15. Fuzzy logic and coarse coding using programmable logic devices

    NASA Astrophysics Data System (ADS)

    Brooks, Geoffrey

    2009-05-01

    Naturally-occurring sensory signal processing algorithms, such as those that inspired fuzzy-logic control, can be integrated into non-naturally-occurring high-performance technology, such as programmable logic devices, to realize novel bio-inspired designs. Research is underway concerning an investigation into using field programmable logic devices (FPLD's) to implement fuzzy logic sensory processing. A discussion is provided concerning the commonality between bio-inspired fuzzy logic algorithms and coarse coding that is prevalent in naturally-occurring sensory systems. Undergraduate design projects using fuzzy logic for an obstacle-avoidance robot has been accomplished at our institution and other places; numerous other successful fuzzy logic applications can be found as well. The long-term goal is to leverage such biomimetic algorithms for future applications. This paper outlines a design approach for implementing fuzzy-logic algorithms into reconfigurable computing devices. This paper is presented in an effort to connect with others who may be interested in collaboration as well as to establish a starting point for future research.

  16. EFFICIENT SCHEDULING OF PARALLEL JOBS ON MASSIVELY PARALLEL SYSTEMS

    SciTech Connect

    F. PETRINI; W. FENG

    1999-09-01

    We present buffered coscheduling, a new methodology to multitask parallel jobs in a message-passing environment and to develop parallel programs that can pave the way to the efficient implementation of a distributed operating system. Buffered coscheduling is based on three innovative techniques: communication buffering, strobing, and non-blocking communication. By leveraging these techniques, we can perform effective optimizations based on the global status of the parallel machine rather than on the limited knowledge available locally to each processor. The advantages of buffered coscheduling include higher resource utilization, reduced communication overhead, efficient implementation of low-control strategies and fault-tolerant protocols, accurate performance modeling, and a simplified yet still expressive parallel programming model. Preliminary experimental results show that buffered coscheduling is very effective in increasing the overall performance in the presence of load imbalance and communication-intensive workloads.

  17. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  18. Pecan Research and Outreach in New Mexico: Logic Model Development and Change in Communication Paradigms

    ERIC Educational Resources Information Center

    Sammis, Theodore W.; Shukla, Manoj K.; Mexal, John G.; Wang, Junming; Miller, David R.

    2013-01-01

    Universities develop strategic planning documents, and as part of that planning process, logic models are developed for specific programs within the university. This article examines the long-standing pecan program at New Mexico State University and the deficiencies and successes in the evolution of its logic model. The university's agricultural…

  19. A Logical Process Calculus

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents the Logical Process Calculus (LPC), a formalism that supports heterogeneous system specifications containing both operational and declarative subspecifications. Syntactically, LPC extends Milner's Calculus of Communicating Systems with operators from the alternation-free linear-time mu-calculus (LT(mu)). Semantically, LPC is equipped with a behavioral preorder that generalizes Hennessy's and DeNicola's must-testing preorder as well as LT(mu's) satisfaction relation, while being compositional for all LPC operators. From a technical point of view, the new calculus is distinguished by the inclusion of: (1) both minimal and maximal fixed-point operators and (2) an unimple-mentability predicate on process terms, which tags inconsistent specifications. The utility of LPC is demonstrated by means of an example highlighting the benefits of heterogeneous system specification.

  20. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  1. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  2. New NAS Parallel Benchmarks Results

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Saphir, William; VanderWijngaart, Rob; Woo, Alex; Kutler, Paul (Technical Monitor)

    1997-01-01

    NPB2 (NAS (NASA Advanced Supercomputing) Parallel Benchmarks 2) is an implementation, based on Fortran and the MPI (message passing interface) message passing standard, of the original NAS Parallel Benchmark specifications. NPB2 programs are run with little or no tuning, in contrast to NPB vendor implementations, which are highly optimized for specific architectures. NPB2 results complement, rather than replace, NPB results. Because they have not been optimized by vendors, NPB2 implementations approximate the performance a typical user can expect for a portable parallel program on distributed memory parallel computers. Together these results provide an insightful comparison of the real-world performance of high-performance computers. New NPB2 features: New implementation (CG), new workstation class problem sizes, new serial sample versions, more performance statistics.

  3. Broadcasting a message in a parallel computer

    DOEpatents

    Archer, Charles J; Faraj, Daniel A

    2014-11-18

    Methods, systems, and products are disclosed for broadcasting a message in a parallel computer that includes: transmitting, by the logical root to all of the nodes directly connected to the logical root, a message; and for each node except the logical root: receiving the message; if that node is the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received; if that node received the message from a parent node and if that node is not a leaf node, then transmitting the message to all of the child nodes; and if that node received the message from a child node and if that node is not the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received and transmitting the message to the parent node.

  4. Broadcasting a message in a parallel computer

    DOEpatents

    Archer, Charles J; Faraj, Ahmad A

    2013-04-16

    Methods, systems, and products are disclosed for broadcasting a message in a parallel computer that includes: transmitting, by the logical root to all of the nodes directly connected to the logical root, a message; and for each node except the logical root: receiving the message; if that node is the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received; if that node received the message from a parent node and if that node is not a leaf node, then transmitting the message to all of the child nodes; and if that node received the message from a child node and if that node is not the physical root, then transmitting the message to all of the child nodes except the child node from which the message was received and transmitting the message to the parent node.

  5. Logic, reasoning, and verbal behavior

    PubMed Central

    Terrell, Dudley J.; Johnston, J. M.

    1989-01-01

    This paper analyzes the traditional concepts of logic and reasoning from the perspective of radical behaviorism and in the terms of Skinner's treatment of verbal behavior. The topics covered in this analysis include the proposition, premises and conclusions, logicality and rules, and deductive and inductive reasoning. PMID:22478015

  6. Binary logic is rich enough

    SciTech Connect

    Zapatrin, R.R.

    1992-02-01

    Given a finite ortholattice L, the *-semigroup is explicitly built whose annihilator ortholattice is isomorphic to L. Thus, it is shown that any finite quantum logic is the additive part of a binary logic. Some areas of possible applications are outlined. 7 refs.

  7. Logic and the National Curriculum.

    ERIC Educational Resources Information Center

    Nelson, David

    2000-01-01

    Reviews the historic relationship between logic and the mathematics curriculum. Proposes a list of logical elements for modern school mathematics. Checks the current national curriculum against this list and finds it to be deficient, especially in relation to the development of ideas of proof. Presents arguments for reform. (Contains 29…

  8. Weighted Automata and Weighted Logics

    NASA Astrophysics Data System (ADS)

    Droste, Manfred; Gastin, Paul

    In automata theory, a fundamental result of Büchi and Elgot states that the recognizable languages are precisely the ones definable by sentences of monadic second order logic. We will present a generalization of this result to the context of weighted automata. We develop syntax and semantics of a quantitative logic; like the behaviors of weighted automata, the semantics of sentences of our logic are formal power series describing ‘how often’ the sentence is true for a given word. Our main result shows that if the weights are taken in an arbitrary semiring, then the behaviors of weighted automata are precisely the series definable by sentences of our quantitative logic. We achieve a similar characterization for weighted Büchi automata acting on infinite words, if the underlying semiring satisfies suitable completeness assumptions. Moreover, if the semiring is additively locally finite or locally finite, then natural extensions of our weighted logic still have the same expressive power as weighted automata.

  9. Power optimization in logic isomers

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.

  10. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  11. Address tracing for parallel machines

    NASA Technical Reports Server (NTRS)

    Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent

    1991-01-01

    Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.

  12. Debugging in a parallel environment

    SciTech Connect

    Wasserman, H.J.; Griffin, J.H.

    1985-01-01

    This paper describes the preliminary results of a project investigating approaches to dynamic debugging in parallel processing systems. Debugging programs in a multiprocessing environment is particularly difficult because of potential errors in synchronization of tasks, data dependencies, sharing of data among tasks, and irreproducibility of specific machine instruction sequences from one job to the next. The basic methodology involved in predicate-based debuggers is given as well as other desirable features of dynamic parallel debugging. 13 refs.

  13. Parallel eigenanalysis of finite element models in a completely connected architecture

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Morel, M. R.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.

  14. An architecture for a wafer-scale-implemented MIMD parallel computer

    SciTech Connect

    Wang, Chiajiu.

    1988-01-01

    In this dissertation, a general-purpose parallel computer architecture is proposed and studied. The proposed architecture, called the modified mesh-connected parallel computer (MMCPC) is obtained by enhancing a mesh-connected parallel computer with row buses and column buses. The MMCPC is a multiple instruction multiple data parallel machine. Because of the regular structure and distributed control mechanisms, the MMCPC is suitable for VLSI or WSI implementation. The bus structure of the MMCPC lends itself to configurability and fault tolerance. The MMCPC can be logically configured as a number of different parallel computer topologies. The MMCPC can tolerate as many faulty PE's, located randomly, as there are available spares, resulting in 100% redundancy utilization. The performance of the MMCPC was analyzed by applying a generalized stochastic Petri net graph to the MMCPC. The GSPN performance modeling results show a need for a new processing element (PE). A new PE architecture, able to handle data processing and message passing concurrently, is proposed and the silicon overhead is estimated in comparison with transputer-like PE's. Based upon the proposed PE, optimum sizes of the MMCPC for different program structures are derived. Two routing algorithms for the MMCPC were proposed and studied. Routing analysis was carried out through simulation. The simulation results show that the dynamic routing algorithm out performs the deterministic routing algorithm.

  15. Multigrid on massively parallel architectures

    SciTech Connect

    Falgout, R D; Jones, J E

    1999-09-17

    The scalable implementation of multigrid methods for machines with several thousands of processors is investigated. Parallel performance models are presented for three different structured-grid multigrid algorithms, and a description is given of how these models can be used to guide implementation. Potential pitfalls are illustrated when moving from moderate-sized parallelism to large-scale parallelism, and results are given from existing multigrid codes to support the discussion. Finally, the use of mixed programming models is investigated for multigrid codes on clusters of SMPs.

  16. An experimental APL compiler for a distributed memory parallel machine

    SciTech Connect

    Ching, W.M.; Katz, A.

    1994-12-31

    The authors developed an experimental APL compiler for the IBM SP1 distributed memory parallel machine. It accepts classical APL programs, without additional directives, and generates parallelized C code for execution on the SP1 machine. The compiler exploits data parallelism in APL programs based on parallel high level primitives. Program variables are either replicated or partitioned. They also present performance data for five moderate size programs running on the SP1.

  17. Advantages of a programmed temperature vaporizer inlet and parallel factor analysis in the determination of triazines in the presence of non-intentionally added substances by gas chromatography.

    PubMed

    Rubio, L; Sarabia, L A; Herrero, A; Ortiz, M C

    2012-05-01

    Non-intentionally added substances (NIASs) are usually detected by acquiring mass spectra in full scan mode and then identifying the compounds corresponding to the unexpected peaks. High-resolution mass spectrometry detectors are frequently used, but this does not solve the problem that an NIAS can contribute to the abundance at m/z ratios that correspond to the fragmentation of other molecules. This problem leads to false negatives when identifying compounds, even in target analysis when the maximum permitted tolerances for relative ion abundances (SANCO/10684/2009) are taken into account. In this work, the introduction of different volumes of a test sample onto a GC/MS system that has a programmed temperature vaporizer inlet and is operating in full scan mode provides a data tensor. The proposed approach consists of considering the structure of the matrix of abundances of K m/z ratios acquired at J elution times for each chromatographic peak. Upon concatenating I of such matrices, a three-way tensor X is obtained, which is then decomposed using parallel factor analysis into as many factors as there are substances coeluting, thus providing the mass spectrum and the chromatographic profile for each of them. If the amount of an analyte changes significantly during the I injections, then it can be unequivocally identified. This procedure thus identifies coeluting NIASs, provides information about their mass spectra, and guarantees the identification and quantification of target compounds. In this work, it is used to determine five triazines in the presence of NIASs which match some of the m/z ratios of the triazines and coelute with them. Decision limits (CCα) of between 7.5 and 25.0 μg L(-1) were obtained.

  18. Feasibility study for a generalized gate logic software simulator

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.

    1983-01-01

    Unit-delay simulation, event driven simulation, zero-delay simulation, simulation techniques, 2-valued versus multivalued logic, network initialization, gate operations and alternate network representations, parallel versus serial mode simulation fault modelling, extension of multiprocessor systems, and simulation timing are discussed. Functional level networks, gate equivalent circuits, the prototype BDX-930 network model, fault models, identifying detected faults for BGLOSS are discussed. Preprocessor tasks, postprocessor tasks, executive tasks, and a library of bliss coded macros for GGLOSS are also discussed.

  19. A logic model framework for community nutrition education.

    PubMed

    Medeiros, Lydia C; Butkus, Sue Nicholson; Chipman, Helen; Cox, Ruby H; Jones, Larry; Little, Deborah

    2005-01-01

    Logic models are a practical method for systematically collecting impact data for community nutrition efforts, such as the Food Stamp Nutrition Education program. This report describes the process used to develop and test the Community Nutrition Education Logic Model and the results of a pilot study to determine whether national evaluation data could be captured without losing flexibility of programming and evaluation at the state level. The objectives were to develop an evaluation framework based on the Logic Model to include dietary quality, food safety, food security, and shopping behavior/food resource management and to develop a training mechanism for use. The portability feature of the model should allow application to a variety of community education programs.

  20. Parallel pivoting combined with parallel reduction

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita

    1987-01-01

    Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.

  1. Task parallelism and high-performance languages

    SciTech Connect

    Foster, I.

    1996-03-01

    The definition of High Performance Fortran (HPF) is a significant event in the maturation of parallel computing: it represents the first parallel language that has gained widespread support from vendors and users. The subject of this paper is to incorporate support for task parallelism. The term task parallelism refers to the explicit creation of multiple threads of control, or tasks, which synchronize and communicate under programmer control. Task and data parallelism are complementary rather than competing programming models. While task parallelism is more general and can be used to implement algorithms that are not amenable to data-parallel solutions, many problems can benefit from a mixed approach, with for example a task-parallel coordination layer integrating multiple data-parallel computations. Other problems admit to both data- and task-parallel solutions, with the better solution depending on machine characteristics, compiler performance, or personal taste. For these reasons, we believe that a general-purpose high-performance language should integrate both task- and data-parallel constructs. The challenge is to do so in a way that provides the expressivity needed for applications, while preserving the flexibility and portability of a high-level language. In this paper, we examine and illustrate the considerations that motivate the use of task parallelism. We also describe one particular approach to task parallelism in Fortran, namely the Fortran M extensions. Finally, we contrast Fortran M with other proposed approaches and discuss the implications of this work for task parallelism and high-performance languages.

  2. A single nano cantilever as a reprogrammable universal logic gate

    NASA Astrophysics Data System (ADS)

    Chappanda, K. N.; Ilyas, S.; Kazmi, S. N. R.; Holguin-Lerma, J.; Batra, N. M.; Costa, P. M. F. J.; Younis, M. I.

    2017-04-01

    The current transistor-based computing circuits use multiple interconnected transistors to realize a single Boolean logic gate. This leads to higher power requirements and delayed computing. Transistors are not suitable for applications in harsh environments and require complicated thermal management systems due to excessive heat dissipation. Also, transistor circuits lack the ability to dynamically reconfigure their functionality in real time, which is desirable for enhanced computing capability. Further, the miniaturization of transistors to improve computational power is reaching its ultimate physical limits. As a step towards overcoming the limitations of transistor-based computing, here we demonstrate a reprogrammable universal Boolean logic gate based on a nanoelectromechanical cantilever (NC) oscillator. The fundamental XOR, AND, NOR, OR and NOT logic gates are condensed in a single NC, thereby reducing electrical interconnects between devices. The device is dynamically switchable between any logic gates at the same drive frequency without the need for any change in the circuit. It is demonstrated to operate at elevated temperatures minimizing the need for thermal management systems. It has a tunable bandwidth of 5 MHz enabling parallel and dynamically reconfigurable logic device for enhanced computing.

  3. Using LogicWorks to Teach Logic Design.

    ERIC Educational Resources Information Center

    Spoerri, Peter

    1988-01-01

    Discusses a computer simulation to teach logic design using a Macintosh computer which allows circuits to be built piece by piece. Describes features of the simulation and presents several schematics drawn by the software. (MVL)

  4. Suicide as social logic.

    PubMed

    Kral, M J

    1994-01-01

    Although suicide is not viewed as a mental disorder per se, it is viewed by many if not most clinicians, researchers, and lay people as a real or natural symptom of depression. It is at least most typically seen as the unfortunate, severe, yet logical end result of a chain of negative self-appraisals, negative events, and hopelessness. Extending an approach articulated by the early French sociologist Gabriel Tarde, in this paper I argue that suicide is merely an idea, albeit a very bad one, having more in common with societal beliefs and norms regarding such things as divorce, abortion, sex, politics, consumer behavior, and fashion. I make a sharp contrast between perturbation and lethality, concepts central to Edwin S. Shneidman's theory of suicide. Evidence supportive of suicide as an idea is discussed based on what we are learning from the study of history and culture, and about contagion/cluster phenomena, media/communication, and choice of method. It is suggested that certain individuals are more vulnerable to incorporate the idea and act of suicide into their concepts of self, based on the same principles by which ideas are spread throughout society. Just as suicide impacts on society, so does society impact on suicide.

  5. The Logic of Reachability

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Jonsson, Ari K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In recent years, Graphplan style reachability analysis and mutual exclusion reasoning have been used in many high performance planning systems. While numerous refinements and extensions have been developed, the basic plan graph structure and reasoning mechanisms used in these systems are tied to the very simple STRIPS model of action. In 1999, Smith and Weld generalized the Graphplan methods for reachability and mutex reasoning to allow actions to have differing durations. However, the representation of actions still has some severe limitations that prevent the use of these techniques for many real-world planning systems. In this paper, we 1) separate the logic of reachability from the particular representation and inference methods used in Graphplan, and 2) extend the notions of reachability and mutual exclusion to more general notions of time and action. As it turns out, the general rules for mutual exclusion reasoning take on a remarkably clean and simple form. However, practical instantiations of them turn out to be messy, and require that we make representation and reasoning choices.

  6. A hierarchical cellular logic for pyramid computers

    SciTech Connect

    Tanimoto, S.L.

    1984-11-01

    Hierarchical structure occurs in biological vision systems and there is good reason to incorporate it into a model of computation for processing binary images. A mathematical formalism is presented which can describe a wide variety of operations useful in image processing and graphics. The formalism allows for two kinds of simple transformations on the values (called pyramids) of a set of cells called a hierarchical domain: the first are binary operations on boolean values, and the second are neighborhood-matching operations. The implied model of computation is more structured than previously discussed pyramidal models, and is more readily realized in parallel hardware, while it remains sufficiently rich to provide efficient solutions to a wide variety of problems. The model has a simplicity which is due to the restricted nature of the operations and the implied synchronization across the hierarchical domain. A corresponding algebraic simplicity in the logic makes possible the concise representation of many cellular-data operations.

  7. Formalized Epistemology, Logic, and Grammar

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    The task of a formal epistemology is defined. It appears that a formal epistemology must be a generalization of "logic" in the sense of Wittgenstein's Tractatus. The generalization is required because, whereas logic presupposes a strict relation between activity and language, this relation may be broken in some domains of experimental enquiry (e.g., in microscopic physics). However, a formal epistemology should also retain a major feature of Wittgenstein's "logic": It must not be a discourse about scientific knowledge, but rather a way of making manifest the structures usually implicit in knowledge-gaining activity. This strategy is applied to the formalism of quantum mechanics.

  8. Gang scheduling a parallel machine

    SciTech Connect

    Gorda, B.C.; Brooks, E.D. III.

    1991-03-01

    Program development on parallel machines can be a nightmare of scheduling headaches. We have developed a portable time sharing mechanism to handle the problem of scheduling gangs of processors. User program and their gangs of processors are put to sleep and awakened by the gang scheduler to provide a time sharing environment. Time quantums are adjusted according to priority queues and a system of fair share accounting. The initial platform for this software is the 128 processor BBN TC2000 in use in the Massively Parallel Computing Initiative at the Lawrence Livermore National Laboratory. 2 refs., 1 fig.

  9. Gang scheduling a parallel machine

    SciTech Connect

    Gorda, B.C.; Brooks, E.D. III.

    1991-12-01

    Program development on parallel machines can be a nightmare of scheduling headaches. We have developed a portable time sharing mechanism to handle the problem of scheduling gangs of processes. User programs and their gangs of processes are put to sleep and awakened by the gang scheduler to provide a time sharing environment. Time quantum are adjusted according to priority queues and a system of fair share accounting. The initial platform for this software is the 128 processor BBN TC2000 in use in the Massively Parallel Computing Initiative at the Lawrence Livermore National Laboratory.

  10. File Searching Problems in Logic Programming Systems.

    DTIC Science & Technology

    1983-02-01

    106 flambda 57 float 107 floatp 106 fntype 65 frunno 145 fuzz 86 gc 14 genchar 7 gensym 37 get 93 gettun 65 getval 42 go 77 greaterp 87 grinu 168 gts...tuzz gc 9c god gctlm genchar gensym greaterp greaterp, grind grirxet grini MU grinprops MU gts hairpri k~lcor (u) h~hend (M hghorg (uI) hprnim ibas

  11. Logic Programming in Digital Circuit Design

    DTIC Science & Technology

    1991-12-01

    facts. Computers using AI software can be useful in discovering design mistakes before they become a problem [46]. AFIT currently supports research ...and the objectives of this research along with an overall view of assumptions and methodologies are stated. Chapter 2 presents a brief history of...chapter, Chapter 7, discusses the strengths and weaknesses of the algorithms presented and makes recommendations for the direction of future research

  12. Logic Programming and Knowledge Base Maintenance.

    DTIC Science & Technology

    1986-09-30

    but not exhaustively, surveyed much of the literature , and became convinced that many of the advantages of frames and semantic nets can be captured in...consists of. needs(john,money). married_to~john,mary). loves(john,mary). (mary is the dead victim in this thriller .) The victim’s sister sara consists of

  13. A Programming Logic for Distributed Systems

    DTIC Science & Technology

    2007-11-02

    with developers of distributed real-time systems. It can be thought of as a generalization of "message sequence charts." This formalism greatly sim...structures, which formalize and generalize the notion of "message sequence charts" and provide a very natural setting for specification and...formalism is to leave the message au- tomata implicit. The user reasons in terms of event structures (message sequence charts) and the system extracts

  14. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using

  15. Digital logic testing and testability

    NASA Astrophysics Data System (ADS)

    Debany, Warren H., Jr.

    1991-02-01

    Electronic hardware is subject to defects that are introduced at the time of manufacture and failures that occur in the field. Because of the complexity of digital logic circuits, they are difficult to test. This report provides an overview of digital logic testing. It provides access to the literature and unifies terminology and concepts that have evolved in this field. It discusses the types and causes of failures in digital logic. This report presents the topics of logic and fault simulation, fault grading, test generation algorithms, and fault isolation. The discussion of testability measurement is useful for understanding testability requirements and analysis techniques. Design-for-testability and built in test techniques are presented.

  16. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  17. Emerging Standards for Medical Logic

    PubMed Central

    Clayton, Paul D.; Hripcsak, George; Pryor, T. Allan

    1990-01-01

    Sharing medical logic has traditionally occurred in the form of lectures, conversations, books and journals. As knowledge based computer systems have demonstrated their utility in the health care arena, individuals have pondered the best way to transfer knowledge in a computer based representation (1). A simple representation which allows the knowledge to be shared can be constructed when the knowledge base is modular. Within this representation, units have been named Medical Logic Modules (MLM's) and a syntax has emerged which would allow multiple users to create, criticize, and share those types of medical logic which can be represented in this format. In this paper we talk about why standards exist and why they emerge in some areas and not in others. The appropriateness of using the proposed standards for medical logic modules is then examined against this broader context.

  18. Reactivity measurement using a programmable logic controller

    SciTech Connect

    Bobek, L.M.; Miraglia, P.Q.

    1995-12-31

    The application of digital systems for measuring reactor dynamics has been used at experimental and research reactors for almost 30 yr. At the Worcester Polytechnic Institute (WPI) nuclear reactor facility (NRF), a recent modernization effort included the installation of a programmable logic controller (PLC) and an operator interface terminal (OIT). The PLC systems are increasingly being used to replace relay-based monitoring and control systems at nuclear power plants. At WPI, the PLC and OIT provide a digital reactor monitoring system that is remote from the reactor`s analog control instrumentation. The NRF staff has programmed the monitoring system for several reactor-related applications, including reactivity measurement.

  19. Heat exchanger expert system logic

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1988-01-01

    The reduction is described of the operation and fault diagnostics of a Deep Space Network heat exchanger to a rule base by the application of propositional calculus to a set of logic statements. The value of this approach lies in the ease of converting the logic and subsequently implementing it on a computer as an expert system. The rule base was written in Process Intelligent Control software.

  20. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  1. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  2. PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles

    1999-01-01

    In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.

  3. Tribotronic Logic Circuits and Basic Operations.

    PubMed

    Zhang, Chi; Zhang, Li Min; Tang, Wei; Han, Chang Bao; Wang, Zhong Lin

    2015-06-17

    A tribotronic logic device is fabricated to convert external mechanical stimuli into logic level signals, and tribotronic logic circuits such as NOT, AND, OR, NAND, NOR, XOR, and XNOR gates are demonstrated for performing mechanical-electrical coupled tribotronic logic operations, which realize the direct interaction between the external environment and the current silicon integrated circuits.

  4. Optical Digital Parallel Truth-Table Look-Up Processing

    NASA Astrophysics Data System (ADS)

    Mirsalehi, Mir Mojtaba

    During the last decade, a number of optical digital processors have been proposed that combine the parallelism and speed of optics with the accuracy and flexibility of a digital representation. In this thesis, two types of such processors (an EXCLUSIVE OR-based processor and a NAND-based processor) that function as content-addressable memories (CAM's) are analyzed. The main factors that affect the performance of the EXCLUSIVE OR-based processor are found to be the Gaussian nature of the reference beam and the finite square aperture of the crystal. A quasi-one-dimensional model is developed to analyze the effect of the Gaussian reference beam, and a circular aperture is used to increase the dynamic range in the output power. The main factors that affect the performance of the NAND-based processor are found to be the variations in the amplitudes and the relative phase of the laser beams during the recording process. A mathematical model is developed for analyzing the probability of error in the output of the processor. Using this model, the performance of the processor for some practical cases is analyzed. Techniques that have been previously used to reduce the number of reference patterns in a CAM include: using the residue number system and applying logical minimization methods. In the present work, these and additional techniques are investigated. A systematic procedure is developed for selecting the optimum set of moduli. The effect of coding is investigated and it is shown that multi-level coding, when used in conjunction with logical minimization techniques, significantly reduces the number of reference patterns. The Quine-McCluskey method is extended to multiple -valued logic and a computer program based on this extension is used for logical minimization. The results show that for moduli expressable as p('n), where p is a prime number and n is an integer greater than one, p-level coding provides significant reduction. The NAND-based processor is modified for

  5. Parallel Eclipse Project Checkout

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas M.; Joswig, Joseph C.; Shams, Khawaja S.; Powell, Mark W.; Bachmann, Andrew G.

    2011-01-01

    Parallel Eclipse Project Checkout (PEPC) is a program written to leverage parallelism and to automate the checkout process of plug-ins created in Eclipse RCP (Rich Client Platform). Eclipse plug-ins can be aggregated in a feature project. This innovation digests a feature description (xml file) and automatically checks out all of the plug-ins listed in the feature. This resolves the issue of manually checking out each plug-in required to work on the project. To minimize the amount of time necessary to checkout the plug-ins, this program makes the plug-in checkouts parallel. After parsing the feature, a request to checkout for each plug-in in the feature has been inserted. These requests are handled by a thread pool with a configurable number of threads. By checking out the plug-ins in parallel, the checkout process is streamlined before getting started on the project. For instance, projects that took 30 minutes to checkout now take less than 5 minutes. The effect is especially clear on a Mac, which has a network monitor displaying the bandwidth use. When running the client from a developer s home, the checkout process now saturates the bandwidth in order to get all the plug-ins checked out as fast as possible. For comparison, a checkout process that ranged from 8-200 Kbps from a developer s home is now able to saturate a pipe of 1.3 Mbps, resulting in significantly faster checkouts. Eclipse IDE (integrated development environment) tries to build a project as soon as it is downloaded. As part of another optimization, this innovation programmatically tells Eclipse to stop building while checkouts are happening, which dramatically reduces lock contention and enables plug-ins to continue downloading until all of them finish. Furthermore, the software re-enables automatic building, and forces Eclipse to do a clean build once it finishes checking out all of the plug-ins. This software is fully generic and does not contain any NASA-specific code. It can be applied to any

  6. FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data—Part 1: Algorithm

    NASA Astrophysics Data System (ADS)

    Sourbier, Florent; Operto, Stéphane; Virieux, Jean; Amestoy, Patrick; L'Excellent, Jean-Yves

    2009-03-01

    This is the first paper in a two-part series that describes a massively parallel code that performs 2D frequency-domain full-waveform inversion of wide-aperture seismic data for imaging complex structures. Full-waveform inversion methods, namely quantitative seismic imaging methods based on the resolution of the full wave equation, are computationally expensive. Therefore, designing efficient algorithms which take advantage of parallel computing facilities is critical for the appraisal of these approaches when applied to representative case studies and for further improvements. Full-waveform modelling requires the resolution of a large sparse system of linear equations which is performed with the massively parallel direct solver MUMPS for efficient multiple-shot simulations. Efficiency of the multiple-shot solution phase (forward/backward substitutions) is improved by using the BLAS3 library. The inverse problem relies on a classic local optimization approach implemented with a gradient method. The direct solver returns the multiple-shot wavefield solutions distributed over the processors according to a domain decomposition driven by the distribution of the LU factors. The domain decomposition of the wavefield solutions is used to compute in parallel the gradient of the objective function and the diagonal Hessian, this latter providing a suitable scaling of the gradient. The algorithm allows one to test different strategies for multiscale frequency inversion ranging from successive mono-frequency inversion to simultaneous multifrequency inversion. These different inversion strategies will be illustrated in the following companion paper. The parallel efficiency and the scalability of the code will also be quantified.

  7. California Geriatric Education Center Logic Model: An Evaluation and Communication Tool

    ERIC Educational Resources Information Center

    Price, Rachel M.; Alkema, Gretchen E.; Frank, Janet C.

    2009-01-01

    A logic model is a communications tool that graphically represents a program's resources, activities, priority target audiences for change, and the anticipated outcomes. This article describes the logic model development process undertaken by the California Geriatric Education Center in spring 2008. The CGEC is one of 48 Geriatric Education…

  8. Studies in optical parallel processing. [All optical and electro-optic approaches

    NASA Technical Reports Server (NTRS)

    Lee, S. H.

    1978-01-01

    Threshold and A/D devices for converting a gray scale image into a binary one were investigated for all-optical and opto-electronic approaches to parallel processing. Integrated optical logic circuits (IOC) and optical parallel logic devices (OPA) were studied as an approach to processing optical binary signals. In the IOC logic scheme, a single row of an optical image is coupled into the IOC substrate at a time through an array of optical fibers. Parallel processing is carried out out, on each image element of these rows, in the IOC substrate and the resulting output exits via a second array of optical fibers. The OPAL system for parallel processing which uses a Fabry-Perot interferometer for image thresholding and analog-to-digital conversion, achieves a higher degree of parallel processing than is possible with IOC.

  9. Fuzzy logic control of telerobot manipulators

    NASA Technical Reports Server (NTRS)

    Franke, Ernest A.; Nedungadi, Ashok

    1992-01-01

    Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.

  10. Project ALPHA (Advanced Learning Program in the Humanities and Arts): Logic. Study and Practice in Critical Thinking. A Study Unit Designed for Education of the Gifted in the Humanities and the Arts.

    ERIC Educational Resources Information Center

    Le Storti, Anthony J.; And Others

    The set of three units, designed for middle and junior high school gifted students, includes 30 lessons on logic and critical thinking. Each lesson includes information on objectives, materials, and teaching presentation suggestions. Ten deductive reasoning lessons focus on such topics as fact and opinion, tests for validity of deductive…

  11. Nexus: An interoperability layer for parallel and distributed computer systems

    SciTech Connect

    Foster, I.; Kesselman, C.; Olson, R.; Tuecke, S.

    1994-05-01

    Nexus is a set of services that can be used to implement various task-parallel languages, data-parallel languages, and message-passing libraries. Nexus is designed to permit the efficient portable implementation of individual parallel programming systems and the interoperability of programs developed with different tools. Nexus supports lightweight threading and active message technology, allowing integration of message passing and threads.

  12. Logic Models: Evaluating Education Doctorates in Educational Administration

    ERIC Educational Resources Information Center

    Creighton, Theodore

    2008-01-01

    The author suggests the Logic Model, used especially in the Health Science field, as a model for evaluating the quality of the educational doctorate (i.e., EdD). The manuscript highlights the newly developed EdD program at Virginia Tech.

  13. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  14. Experimental demonstration of programmable multi-functional spin logic cell based on spin Hall effect

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, C. H.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Wu, H.; Zhang, Q. T.; Tao, B. S.; Han, X. F.

    2017-04-01

    Confronting with the gigantic volume of data produced every day, raising integration density by reducing the size of devices becomes harder and harder to meet the ever-increasing demand for high-performance computers. One feasible path is to actualize more logic functions in one cell. In this respect, we experimentally demonstrate a prototype spin-orbit torque based spin logic cell integrated with five frequently used logic functions (AND, OR, NOT, NAND and NOR). The cell can be easily programmed and reprogrammed to perform desired function. Furthermore, the information stored in cells is symmetry-protected, making it possible to expand into logic gate array where the cell can be manipulated one by one without changing the information of other undesired cells. This work provides a prospective example of multi-functional spin logic cell with reprogrammability and nonvolatility, which will advance the application of spin logic devices.

  15. Reasoning with Computer Code: a new Mathematical Logic

    NASA Astrophysics Data System (ADS)

    Pissanetzky, Sergio

    2013-01-01

    A logic is a mathematical model of knowledge used to study how we reason, how we describe the world, and how we infer the conclusions that determine our behavior. The logic presented here is natural. It has been experimentally observed, not designed. It represents knowledge as a causal set, includes a new type of inference based on the minimization of an action functional, and generates its own semantics, making it unnecessary to prescribe one. This logic is suitable for high-level reasoning with computer code, including tasks such as self-programming, objectoriented analysis, refactoring, systems integration, code reuse, and automated programming from sensor-acquired data. A strong theoretical foundation exists for the new logic. The inference derives laws of conservation from the permutation symmetry of the causal set, and calculates the corresponding conserved quantities. The association between symmetries and conservation laws is a fundamental and well-known law of nature and a general principle in modern theoretical Physics. The conserved quantities take the form of a nested hierarchy of invariant partitions of the given set. The logic associates elements of the set and binds them together to form the levels of the hierarchy. It is conjectured that the hierarchy corresponds to the invariant representations that the brain is known to generate. The hierarchies also represent fully object-oriented, self-generated code, that can be directly compiled and executed (when a compiler becomes available), or translated to a suitable programming language. The approach is constructivist because all entities are constructed bottom-up, with the fundamental principles of nature being at the bottom, and their existence is proved by construction. The new logic is mathematically introduced and later discussed in the context of transformations of algorithms and computer programs. We discuss what a full self-programming capability would really mean. We argue that self-programming

  16. Logic, probability, and human reasoning.

    PubMed

    Johnson-Laird, P N; Khemlani, Sangeet S; Goodwin, Geoffrey P

    2015-04-01

    This review addresses the long-standing puzzle of how logic and probability fit together in human reasoning. Many cognitive scientists argue that conventional logic cannot underlie deductions, because it never requires valid conclusions to be withdrawn - not even if they are false; it treats conditional assertions implausibly; and it yields many vapid, although valid, conclusions. A new paradigm of probability logic allows conclusions to be withdrawn and treats conditionals more plausibly, although it does not address the problem of vapidity. The theory of mental models solves all of these problems. It explains how people reason about probabilities and postulates that the machinery for reasoning is itself probabilistic. Recent investigations accordingly suggest a way to integrate probability and deduction.

  17. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  18. RCCPAC: A parallel relativistic coupled-cluster program for closed-shell and one-valence atoms and ions in FORTRAN

    NASA Astrophysics Data System (ADS)

    Mani, B. K.; Chattopadhyay, S.; Angom, D.

    2017-04-01

    We report the development of a parallel FORTRAN code, RCCPAC, to solve the relativistic coupled-cluster equations for closed-shell and one-valence atoms and ions. The parallelization is implemented through the use of message passing interface, which is suitable for distributed memory computers. The coupled-cluster equations are defined in terms of the reduced matrix elements, and solved iteratively using Jacobi method. The ground and excited states of coupled-cluster wave functions obtained from the code could be used to compute different properties of closed-shell and one-valence atom or ion. As an example we compute the ground state correlation energy, attachment energies, E1 reduced matrix elements and hyperfine structure constants.

  19. Logical design of anti-prion agents using NAGARA.

    PubMed

    Ma, Biao; Yamaguchi, Keiichi; Fukuoka, Mayuko; Kuwata, Kazuo

    2016-01-22

    To accelerate the logical drug design procedure, we created the program "NAGARA," a plugin for PyMOL, and applied it to the discovery of small compounds called medical chaperones (MCs) that stabilize the cellular form of a prion protein (PrP(C)). In NAGARA, we constructed a single platform to unify the docking simulation (DS), free energy calculation by molecular dynamics (MD) simulation, and interfragment interaction energy (IFIE) calculation by quantum chemistry (QC) calculation. NAGARA also enables large-scale parallel computing via a convenient graphical user interface. Here, we demonstrated its performance and its broad applicability from drug discovery to lead optimization with full compatibility with various experimental methods including Western blotting (WB) analysis, surface plasmon resonance (SPR), and nuclear magnetic resonance (NMR) measurements. Combining DS and WB, we discovered anti-prion activities for two compounds and tegobuvir (TGV), a non-nucleoside non-structural protein NS5B polymerase inhibitor showing activity against hepatitis C virus genotype 1. Binding profiles predicted by MD and QC are consistent with those obtained by SPR and NMR. Free energy analyses showed that these compounds stabilize the PrP(C) conformation by decreasing the conformational fluctuation of the PrP(C). Because TGV has been already approved as a medicine, its extension to prion diseases is straightforward. Finally, we evaluated the affinities of the fragmented regions of TGV using QC and found a clue for its further optimization. By repeating WB, MD, and QC recursively, we were able to obtain the optimum lead structure.

  20. Parallel Large-scale Semidefinite Programming for Strong Electron Correlation: Using Correlation and Entanglement in the Design of Efficient Energy-Transfer Mechanisms

    DTIC Science & Technology

    2014-09-24

    RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Chicago 5801 South Ellis Avenue Chicago , IL 60637 -5418 1 ABSTRACT Final Report: Parallel Large-scale...supported 2012: Promotion of PI to Full Professor at The University of Chicago 2014: Quantrell Award to PI from The University of Chicago ...sponsored research. 9 Final Report 2014 David A. Mazziotti The University of Chicago Statement of the Problem Solved Challenges addressed by the