Sample records for parallel metallic plates

  1. Electrically-induced stresses and deflection in multiple plates

    NASA Astrophysics Data System (ADS)

    Hu, Jih-Perng; Tichler, P. R.

    1992-04-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  2. Electrically-induced stresses and deflection in multiple plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jih-Perng; Tichler, P.R.

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less

  3. Artificial dielectric stepped-refractive-index lens for the terahertz region.

    PubMed

    Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M

    2018-02-05

    In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.

  4. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  5. Tunable Patch Antennas Using Microelectromechanical Systems

    DTIC Science & Technology

    2011-05-11

    Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended

  6. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  7. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  8. THz wavefront manipulation based on metal waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua

    2018-07-01

    In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.

  9. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  10. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.

    1990-01-01

    An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.

  11. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  12. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.

    1990-11-13

    An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.

  13. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-04-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  14. Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

    NASA Astrophysics Data System (ADS)

    delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer

    2018-06-01

    The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

  15. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.

    2018-03-01

    For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  16. Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys

    NASA Astrophysics Data System (ADS)

    Kitkamthorn, Usanee

    In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.

  17. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  18. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C. K.; Bane, K. L.F.

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters longmore » in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.« less

  19. Parallel Plate System for Collecting Data Used to Determine Viscosity

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C. (Inventor); Kaukler, William (Inventor)

    2013-01-01

    A parallel-plate system collects data used to determine viscosity. A first plate is coupled to a translator so that the first plate can be moved along a first direction. A second plate has a pendulum device coupled thereto such that the second plate is suspended above and parallel to the first plate. The pendulum device constrains movement of the second plate to a second direction that is aligned with the first direction and is substantially parallel thereto. A force measuring device is coupled to the second plate for measuring force along the second direction caused by movement of the second plate.

  20. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  1. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D; Mills, M; Wang, B

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, wemore » quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.« less

  2. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  3. Glass matrix armor

    DOEpatents

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  4. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  5. Multipactor saturation in parallel-plate waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less

  6. Amplitude and Wavelength Measurement of Sound Waves in Free Space using a Sound Wave Phase Meter

    NASA Astrophysics Data System (ADS)

    Ham, Sounggil; Lee, Kiwon

    2018-05-01

    We developed a sound wave phase meter (SWPM) and measured the amplitude and wavelength of sound waves in free space. The SWPM consists of two parallel metal plates, where the front plate was operated as a diaphragm. An aluminum perforated plate was additionally installed in front of the diaphragm, and the same signal as that applied to the sound source was applied to the perforated plate. The SWPM measures both the sound wave signal due to the diaphragm vibration and the induction signal due to the electric field of the aluminum perforated plate. Therefore, the two measurement signals interfere with each other due to the phase difference according to the distance between the sound source and the SWPM, and the amplitude of the composite signal that is output as a result is periodically changed. We obtained the wavelength of the sound wave from this periodic amplitude change measured in the free space and compared it with the theoretically calculated values.

  7. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor.

    PubMed

    Sánchez-De la Torre, Fernando; De la Rosa, Javier Rivera; Kharisov, Boris I; Lucio-Ortiz, Carlos J

    2013-09-30

    Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N₂ physisorption isotherms were also determined. The Ni/Al₂O₃ sample reveled agglomerated (1 μm) of nanoparticles of Ni (30-80 nm) however, NiO particles were also identified, probably for the low temperature during the H 2 reduction treatment (350 °C), the Cu/Al₂O₃ sample presented agglomerates (1-1.5 μm) of nanoparticles (70-150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH₃ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption.

  8. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Zhang, Wei; Mittleman, Daniel M

    2017-07-19

    We demonstrate a simple and effective strategy for implementing a polarizing beamsplitter for the terahertz spectral region, based on an artificial dielectric medium that is scalable to a range of desired frequencies. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, which is electromagnetically equivalent to a stacked array of parallel-plate waveguides. The operation of the device relies on both the lowest-order, transverse-electric and transverse-magnetic modes of the parallel-plate waveguide. This is in contrast to previous work that relied solely on the transverse-electric mode. The fabricated polarizing beamsplitter exhibits extinction ratios as high as 42 dB along with insertion losses as low as 0.18 dB. Building on the same idea, we also demonstrate an isolator with non-reciprocal transmission, providing high isolation and low insertion loss at a select design frequency. The performance of our isolator far exceeds that of other experimentally demonstrated terahertz isolators, and indeed, even rivals that of commercially available isolators for optical wavelengths. Because these waveguide-based artificial dielectrics are low loss, inexpensive, and easy to fabricate, this approach offers a promising new route for polarization control of free-space terahertz beams.

  9. A comparison between orthogonal and parallel plating methods for distal humerus fractures: a prospective randomized trial.

    PubMed

    Lee, Sang Ki; Kim, Kap Jung; Park, Kyung Hoon; Choy, Won Sik

    2014-10-01

    With the continuing improvements in implants for distal humerus fractures, it is expected that newer types of plates, which are anatomically precontoured, thinner and less irritating to soft tissue, would have comparable outcomes when used in a clinical study. The purpose of this study was to compare the clinical and radiographic outcomes in patients with distal humerus fractures who were treated with orthogonal and parallel plating methods using precontoured distal humerus plates. Sixty-seven patients with a mean age of 55.4 years (range 22-90 years) were included in this prospective study. The subjects were randomly assigned to receive 1 of 2 treatments: orthogonal or parallel plating. The following results were assessed: operating time, time to fracture union, presence of a step or gap at the articular margin, varus-valgus angulation, functional recovery, and complications. No intergroup differences were observed based on radiological and clinical results between the groups. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes, mean operation time, union time, or complication rates. There were no cases of fracture nonunion in either group; heterotrophic ossification was found 3 patients in orthogonal plating group and 2 patients in parallel plating group. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes or complication rates. However, orthogonal plating method may be preferred in cases of coronal shear fractures, where posterior to anterior fixation may provide additional stability to the intraarticular fractures. Additionally, parallel plating method may be the preferred technique used for fractures that occur at the most distal end of the humerus.

  10. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  11. Slotted Waveguide and Antenna Study for HPM and RF Applications

    DTIC Science & Technology

    2017-07-25

    parallel metal plates separated by lmm, depending on the particular characteristics of the case (waveguide dimensions, SEY (secondary e lectron yield...waveguide antenna, shown in Figure 23, was studied . A new feed ing network based on a composite right-hand/left-hand (CRLH) waveguide structure was...approach is based on the assumption that the external coupling between the array elements is negligible, which is acceptable in the case of the

  12. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate. The top clamping plate is brought into contact with the bottom plate so that the narrow section of the metal strips on the top clamp plate aligns with the metal contact pads on the cantilever. When the parts are clamped together, the metal strips provide electrical connections between the Wheatstone-bridge contact points and the sides the trenches that constitute the socket for the multipin electrical plug. Hence, to connect the Wheatstone bridge to external circuitry for processing of the anemometer readout, one need only insert the plug in the socket. In operation, the cantilever end of the stainless-steel housing is mounted flush with an engine wall and the unclamped portion of the cantilever is exposed into the flow. The cantilever is deflected in direct proportion to the force induced by component of flow parallel to the engine wall and perpendicular to the broad exposed face of the cantilever. The maximum strain on the cantilever occurs at the clamped edge and is measured by the piezoresistors, which are located there. The corresponding changes in resistance manifest themselves in the output of the Wheatstone bridge.

  13. Parallel Electrochemical Treatment System and Application for Identifying Acid-Stable Oxygen Evolution Electrocatalysts

    DOE PAGES

    Jones, Ryan J. R.; Shinde, Aniketa; Guevarra, Dan; ...

    2015-01-05

    There are many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. We found that imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts int he parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operationmore » of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed metal oxides to oxygen evolution conditions in 1M sulfuric acid for 2h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements.« less

  14. Strength of Rectangular Flat Plates Under Edge Compression

    NASA Technical Reports Server (NTRS)

    Schuman, Louis; Back, Goldie

    1931-01-01

    Flat rectangular plates of duralumin, stainless iron, monel metal, and nickel were tested under loads applied at two opposite edges and acting in the plane of the plate. The edges parallel to the direction of loading were supported in V grooves. The plates were all 24 inches long and varied in width from 4 to 24 inches by steps of 4 inches, and in thickness from 0.015 to 0.095 inch by steps of approximately 0.015 inch. There were also a few 1, 2, 3, and 6 inch wide specimens. The loads were applied in the testing machine at the center of a bar which rested along the top of the plate. Load was applied until the plate failed to take any more load. The tests show that the loads carried by the plates generally reached a maximum for the 8 or 12 inch width and that there was relatively small drop in load for the greater widths. Deflection and set measurement perpendicular to the plane of the plate were taken and the form of the buckle determined. The number of buckles were found to correspond in general to that predicted by the theory of buckling of a plate uniformly loaded at two opposite edges and simply supported at the edges.

  15. Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid

    NASA Astrophysics Data System (ADS)

    Fan, G. J.; Fecht, H.-J.; Lavernia, E. J.

    2004-01-01

    The equilibrium viscosity of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid was measured over a wide temperature range from the equilibrium supercooled liquid state to the glass transition region using parallel-plate rheometry and three-point beam bending. Based on the measured viscosity data, the fragility of this liquid was quantitatively determined. The Pd43Ni10Cu27P20 alloy, despite exhibiting the best glass-forming ability reported thus far, is relatively fragile compared with other bulk glass-forming liquids, such as Vit 1 and Vit 4.

  16. Preparation and Characterization of Cu and Ni on Alumina Supports and Their Use in the Synthesis of Low-Temperature Metal-Phthalocyanine Using a Parallel-Plate Reactor

    PubMed Central

    Sánchez-De la Torre, Fernando; De la Rosa, Javier Rivera; Kharisov, Boris I.; Lucio-Ortiz, Carlos J.

    2013-01-01

    Ni- and Cu/alumina powders were prepared and characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), and N2 physisorption isotherms were also determined. The Ni/Al2O3 sample reveled agglomerated (1 μm) of nanoparticles of Ni (30–80 nm) however, NiO particles were also identified, probably for the low temperature during the H2 reduction treatment (350 °C), the Cu/Al2O3 sample presented agglomerates (1–1.5 μm) of nanoparticles (70–150 nm), but only of pure copper. Both surface morphologies were different, but resulted in mesoporous material, with a higher specificity for the Ni sample. The surfaces were used in a new proposal for producing copper and nickel phthalocyanines using a parallel-plate reactor. Phthalonitrile was used and metallic particles were deposited on alumina in ethanol solution with CH3ONa at low temperatures; ≤60 °C. The mass-transfer was evaluated in reaction testing with a recent three-resistance model. The kinetics were studied with a Langmuir-Hinshelwood model. The activation energy and Thiele modulus revealed a slow surface reaction. The nickel sample was the most active, influenced by the NiO morphology and phthalonitrile adsorption. PMID:28788334

  17. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    PubMed

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  18. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  19. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  20. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  1. Three-Dimensional Solution of the Free Vibration Problem for Metal-Ceramic Shells Using the Method of Sampling Surfaces

    NASA Astrophysics Data System (ADS)

    Kulikov, G. M.; Plotnikova, S. V.

    2017-03-01

    The possibility of using the method of sampling surfaces (SaS) for solving the free vibration problem of threedimensional elasticity for metal-ceramic shells is studied. According to this method, in the shell body, an arbitrary number of SaS parallel to its middle surface are selected in order to take displacements of these surfaces as unknowns. The SaS pass through the nodes of a Chebyshev polynomial, which improves the convergence of the SaS method significantly. As a result, the SaS method can be used to obtain analytical solutions of the vibration problem for metal-ceramic plates and cylindrical shells that asymptotically approach the exact solutions of elasticity as the number of SaS tends to infinity.

  2. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Huang, J. Y.; Bie, B. X.

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  3. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE PAGES

    E, J. C.; Huang, J. Y.; Bie, B. X.; ...

    2016-08-02

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  4. Multiple internal seal right micro-electro-mechanical system vacuum package

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Wiberg, Dean V. (Inventor); Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Bae, Youngsam (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2007-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum package that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  5. Multiple internal seal ring micro-electro-mechanical system vacuum packaging method

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Yee, Karl Y. (Inventor); Shcheglov, Kirill V. (Inventor); Bae, Youngsam (Inventor); Wiberg, Dean V. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.

  6. A broadband polarization-insensitive cloak based on mode conversion

    PubMed Central

    Gu, Chendong; Xu, Yadong; Li, Sucheng; Lu, Weixin; Li, Jensen; Chen, Huanyang; Hou, Bo

    2015-01-01

    In this work, we demonstrate an one-dimensional cloak consisting of parallel-plated waveguide with two slabs of gradient index metamaterials attached to its metallic walls. In it objects are hidden without limitation of polarizations, and good performance is observed for a broadband of frequencies. The experiments at microwave frequencies are carried out, supporting the theoretical results very well. The essential principle behind the proposed cloaking device is based on mode conversion, which provides a new strategy to manipulate wave propagation. PMID:26175114

  7. Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.

    2015-01-01

    A photonic choke joint structure with a wide-stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm that the structure can provide broadband suppression of more than 56dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.

  8. Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.

    2015-01-01

    A photonic choke joint structure with a wide- stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm the structure can provide broadband suppression, more than 56 dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.

  9. Atomic-scale bonding of bulk metallic glass to crystalline aluminum

    NASA Astrophysics Data System (ADS)

    Liu, K. X.; Liu, W. D.; Wang, J. T.; Yan, H. H.; Li, X. J.; Huang, Y. J.; Wei, X. S.; Shen, J.

    2008-08-01

    A Ti40Zr25Cu12Ni3Be20 bulk metallic glass (BMG) was welded to a crystalline aluminum by the parallel plate explosive welding method. Experimental evidence and numerical simulation show that atomic-scale bonding between the BMG and the crystalline aluminum can be achieved, and the weldment on the BMG side can retain its amorphous state without any indication of crystallization in the welding process. Nanoindentation tests reveal that the interface of the explosive joints exhibits a significant increase in hardness compared to the matrix on its two sides. The joining of BMG and crystalline materials opens a window to the applications of BMGs in engineering.

  10. Bipolar resistive switching in metal-insulator-semiconductor nanostructures based on silicon nitride and silicon oxide

    NASA Astrophysics Data System (ADS)

    Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.

    2018-03-01

    Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.

  11. Biomechanical comparison of orthogonal versus parallel double plating systems in intraarticular distal humerus fractures.

    PubMed

    Atalar, Ata C; Tunalı, Onur; Erşen, Ali; Kapıcıoğlu, Mehmet; Sağlam, Yavuz; Demirhan, Mehmet S

    2017-01-01

    In intraarticular distal humerus fractures, internal fixation with double plates is the gold standard treatment. However the optimal plate configuration is not clear in the literature. The aim of this study was to compare the biomechanical stability of the parallel and the orthogonal anatomical locking plating systems in intraarticular distal humerus fractures in artificial humerus models. Intraarticular distal humerus fracture (AO13-C2) with 5 mm metaphyseal defect was created in sixteen artificial humeral models. Models were fixed with either orthogonal or parallel plating systems with locking screws (Acumed elbow plating systems). Both systems were tested for their stiffness with loads in axial compression, varus, valgus, anterior and posterior bending. Then plastic deformation after cyclic loading in posterior bending and load to failure in posterior bending were tested. The failure mechanisms of all the samples were observed. Stiffness values in every direction were not significantly different among the orthogonal and the parallel plating groups. There was no statistical difference between the two groups in plastic deformation values (0.31 mm-0.29 mm) and load to failure tests in posterior bending (372.4 N-379.7 N). In the orthogonal plating system most of the failures occurred due to the proximal shaft fracture, whereas in the parallel plating system failure occurred due to the shift of the most distal screw in proximal fragment. Our study showed that both plating systems had similar biomechanical stabilities when anatomic plates with distal locking screws were used in intraarticular distal humerus fractures in artificial humerus models. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  12. Charge-flow structures as polymeric early-warning fire alarm devices. M.S. Thesis; [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Sechen, C. M.; Senturia, S. D.

    1977-01-01

    The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.

  13. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less

  14. Resistance of a plate in parallel flow at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Janour, Zbynek

    1951-01-01

    The present paper gives the results of measurements of the resistance of a plate placed parallel to the flow in the range of Reynolds numbers from 10 to 2300; in this range the resistance deviates from the formula of Blasius. The lower limit of validity of the Blasius formula is determined and also the increase in resistance at the edges parallel to the flow in the case of a plate of finite width.

  15. Intercondylar humerus fracture- parallel plating and its results.

    PubMed

    Kumar, Sanjiv; Singh, Sudhir; Kumar, Dharmender; Kumar, Neeraj; Verma, Reetu

    2015-01-01

    Intercondylar fracture of humerus is one of the commonest fractures of young adult and counts for about 30% of all elbow fractures. The treatment of these fractures continues to present challenges despite advances in internal fixation. Although orthogonal plating use to provid adequate functional results in these fractures, parallel plating is said to be mechanically more stable construct thus allowing early mobilization and better range of motion. AIM of the study is to assess the clinical as well functional results of these fractures treated with parallel plating. Prospective study in a tertiary care hospital. A total of 23 fresh patients of intercondylar fracture of humerus from Jan 2013 to May 2014 were included in the study and were treated with parallel plating. These patients were followed at 3, 6, 12, 24 weeks and at 1year of follow up and assessed in terms of time for union, range of motion, MAYO score, DASH score and complication rate. At final follow up Mayo score was 96.32±04.96 from 5.00±01.26 and DASH SCORE was 31.42±2.04 which dropped from 150±05.34, Range of motion improved from 21.38±05.70 to 116.1±07.92 with 100% union rate and complications less than 19%. Parallel plating for intercondylar fracture of humerus is excellent method of fixation and results are similar to those treated with orthogonal plating.

  16. Omni-directional railguns

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  17. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  18. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  19. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  20. [Meta analysis of parallel versus perpendicular double plating for distal humerus fracture of type C in adults].

    PubMed

    Li, B B; Lin, F; Cai, L H; Chen, Y; Lin, Z J

    2017-08-01

    Objective: To evaluate the effects of parallel versus perpendicular double plating for distal humerus fracture of type C. Methods: A standardized comprehensive literature search was performed by PubMed, Embase, Cochrane library, CMB, CNKI and Medline datebase.Randomized controlled studies on comparison between parallel versus perpendicular double plating for distal humerus fracture of type C before December 2015 were enrolled in the study.All date were analyzed by the RevMan 5.2 software. Results: Six studies, including 284 patients, met the inclusion criteria.There were 155 patients in perpendicular double plating group, 129 patients in parallel double plating group.The results of Meta-analysis indicated that there were statistically significant difference between the two groups in complications ( OR =2.59, 95% CI : 1.03 to 6.53, P =0.04). There was no significant difference between the two groups in surgical duration ( MD =-1.84, 95% CI : -9.06 to 5.39, P =0.62), bone union time ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Mayo Elbow Performance Score ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Range of Motions ( MD =-0.92, 95% CI : -4.65 to 2.81, P =0.63) and the rate of excellent and good results ( OR =0.64, 95% CI : 0.27 to 1.52, P =0.31). Conclusion: Both perpendicular and parallel double plating are effective in distal humerus fracture of type C, parallel double plating has less complications.

  1. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    PubMed Central

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  2. Efficient electron open boundaries for simulating electrochemical cells

    NASA Astrophysics Data System (ADS)

    Zauchner, Mario G.; Horsfield, Andrew P.; Todorov, Tchavdar N.

    2018-01-01

    Nonequilibrium electrochemistry raises new challenges for atomistic simulation: we need to perform molecular dynamics for the nuclear degrees of freedom with an explicit description of the electrons, which in turn must be free to enter and leave the computational cell. Here we present a limiting form for electron open boundaries that we expect to apply when the magnitude of the electric current is determined by the drift and diffusion of ions in a solution and which is sufficiently computationally efficient to be used with molecular dynamics. We present tight-binding simulations of a parallel-plate capacitor with nothing, a dimer, or an atomic wire situated in the space between the plates. These simulations demonstrate that this scheme can be used to perform molecular dynamics simulations when there is an applied bias between two metal plates with, at most, weak electronic coupling between them. This simple system captures some of the essential features of an electrochemical cell, suggesting this approach might be suitable for simulations of electrochemical cells out of equilibrium.

  3. Direct Machining of Low-Loss THz Waveguide Components With an RF Choke.

    PubMed

    Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J

    2014-12-01

    We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 μm.

  4. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  5. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  6. Perforated plates for cryogenic regenerators and method of fabrication

    DOEpatents

    Hendricks, J.B.

    1994-03-29

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a [open quotes]wire drawing[close quotes] process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er[sub 3]Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er[sub 3]Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures.

  7. Perforated plates for cryogenic regenerators and method of fabrication

    DOEpatents

    Hendricks, John B.

    1994-01-01

    Perforated plates (10) having very small holes (14) with a uniform diameter throughout the plate thickness are prepared by a "wire drawing" process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er.sub.3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans (20) containing erbium and nickel metals in a stacked array (53) with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er.sub.3 Ni. Perforated plates having two sizes of perforations (38, 42), one of which is small enough for storage of helium, are also disclosed.

  8. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    NASA Astrophysics Data System (ADS)

    Angelico, E.; Seiss, T.; Adams, B.; Elagin, A.; Frisch, H.; Spieglan, E.

    2017-02-01

    We have designed and tested a robust 20×20 cm2 thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al2O3 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm2 array of 2-dimensional square 'pads' with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  9. Omni-directional railguns

    DOEpatents

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  10. Effect of adhesive applied to the tooth-wood interface on metal-plate connections loaded in tension

    Treesearch

    Leslie H. Groom

    1991-01-01

    The structural behavior of metal-plate connections (MPCs) is affected not only by the isolated properties of the adjoining wood members and metal plate but also by the interfacial region between individual teeth and the surrounding wood. This study looked at maintaining a good interface by applying an epoxy adhesive to metal-plate teeth immediately preceding joint...

  11. CORRIGENDUM: Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.

    2010-03-01

    Figures 1, 2 and 5 of this paper are reprinted from the authors' previous paper, Zhang X-Y, Wang P, Sheng S, Xu F and Ong C K 2008 Ferroelectric BaxSr1 - xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications J. Appl. Phys. 104 124110, copyright 2008, with permission from the American Institute of Physics.

  12. Unsteady stokes flow of dusty fluid between two parallel plates through porous medium in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Sasikala, R.; Govindarajan, A.; Gayathri, R.

    2018-04-01

    This paper focus on the result of dust particle between two parallel plates through porous medium in the presence of magnetic field with constant suction in the upper plate and constant injection in the lower plate. The partial differential equations governing the flow are solved by similarity transformation. The velocity of the fluid and the dust particle decreases when there is an increase in the Hartmann number.

  13. Mantle flow through a tear in the Nazca slab inferred from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh

    2017-07-01

    A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.

  14. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  15. Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Mozaffari, Hossein

    2017-10-01

    In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).

  16. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  17. Laser-driven flyer plate

    DOEpatents

    Paisley, Dennis L.

    1991-01-01

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  18. Numerical and experimental simulation of linear shear piezoelectric phased arrays for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Zhang, Hui; Lynch, Jerome P.; Cesnik, Carlos E. S.; Li, Hui

    2017-04-01

    A novel d36-type piezoelectric wafer fabricated from lead magnesium niobate-lead titanate (PMN-PT) is explored for the generation of in-plane horizontal shear waves in plate structures. The study focuses on the development of a linear phased array (PA) of PMN-PT wafers to improve the damage detection capabilities of a structural health monitoring (SHM) system. An attractive property of in-plane horizontal shear waves is that they are nondispersive yet sensitive to damage. This study characterizes the directionality of body waves (Lamb and horizontal shear) created by a single PMN-PT wafer bonded to the surface of a metallic plate structure. Second, a linear PA is designed from PMN-PT wafers to steer and focus Lamb and horizontal shear waves in a plate structure. Numerical studies are conducted to explore the capabilities of a PMN-PT-based PA to detect damage in aluminum plates. Numerical simulations are conducted using the Local Interaction Simulation Approach (LISA) implemented on a parallelized graphical processing unit (GPU) for high-speed execution. Numerical studies are further validated using experimental tests conducted with a linear PA. The study confirms the ability of an PMN-PT phased array to accurately detect and localize damage in aluminum plates.

  19. Scattered radiation from dental metallic crowns in head and neck radiotherapy.

    PubMed

    Shimozato, T; Igarashi, Y; Itoh, Y; Yamamoto, N; Okudaira, K; Tabushi, K; Obata, Y; Komori, M; Naganawa, S; Ueda, M

    2011-09-07

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  20. Scattered radiation from dental metallic crowns in head and neck radiotherapy

    NASA Astrophysics Data System (ADS)

    Shimozato, T.; Igarashi, Y.; Itoh, Y.; Yamamoto, N.; Okudaira, K.; Tabushi, K.; Obata, Y.; Komori, M.; Naganawa, S.; Ueda, M.

    2011-09-01

    We aimed to estimate the scattered radiation from dental metallic crowns during head and neck radiotherapy by irradiating a jaw phantom with external photon beams. The phantom was composed of a dental metallic plate and hydroxyapatite embedded in polymethyl methacrylate. We used radiochromic film measurement and Monte Carlo simulation to calculate the radiation dose and dose distribution inside the phantom. To estimate dose variations in scattered radiation under different clinical situations, we altered the incident energy, field size, plate thickness, plate depth and plate material. The simulation results indicated that the dose at the incident side of the metallic dental plate was approximately 140% of that without the plate. The differences between dose distributions calculated with the radiation treatment-planning system (TPS) algorithms and the data simulation, except around the dental metallic plate, were 3% for a 4 MV photon beam. Therefore, we should carefully consider the dose distribution around dental metallic crowns determined by a TPS.

  1. Surface rejuvenation for multilayer metal deposition on polymer microspheres via self-seeded electroless plating

    NASA Astrophysics Data System (ADS)

    Karagoz, Bunyamin; Sirkecioglu, Okan; Bicak, Niyazi

    2013-11-01

    A surface rejuvenation process was developed for generation variable thickness of metal deposits on polymer microspheres via electroless plating. Thus, Ni(II), Cu(II) and Ag(I) complexes formed on triethylenetetramine (TETA) functional crosslinked poly(glycidyl methacrylate) (PGMA) microspheres were reduced to zero-valent metals. The resulting metals (1.1-1.5 mmol g-1) were employed as seed points for electroless metal plating (self-seeding) without using Pd or tin pre-activating species. Treatment of the metalized surfaces with hydrazine or hydrazinium formate was demonstrated to reactivate (rejuvenate) the surface and allows further metal deposition from electroless plating solutions. Followed repeating of the surface rejuvenation-metalization steps resulted in step wise increasing of the metal deposits (90-290 mg per g in each cycle), as inferred from metal analyses, ESEM and XPS analysis. Experiments showed that, after 6 times of cycling the metal deposits exceed 1 g per g of the microspheres on average. The process seemed to be promising for tuning up of the metal thickness by stepwise electroless plating.

  2. The theoretical simulation on electrostatic distribution of 1st proximity region in proximity focusing low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo

    2015-03-01

    Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement trajectory in 1st proximity region will be better simulated when the electronic electrostatic fields are simulated.

  3. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  4. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOEpatents

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  5. Dilemma in pediatric mandible fractures: resorbable or metallic plates?

    PubMed

    Taylan Filinte, Gaye; Akan, İsmail Mithat; Ayçiçek Çardak, Gülçin Nujen; Özkaya Mutlu, Özay; Aköz, Tayfun

    2015-12-01

    The aim of this study was to compare the efficiency of resorbable and metallic plates in open reduction and internal fixation of mandible fractures in children. Thirty-one patients (mean age, 8.05 years; range 20 months-14 years) were operated on various fractures of the mandible (26 [60.4%] symphysis- parasymphysis, 12 [27.9%] condylar-subcondylar fractures, 5 [11.6%] angulus and ramus fractures). Twelve patients were treated with resorbable plates and 19 patients with metallic plates. Mean follow-up time was 41 months (11-74 months) in the metallic hardware group and was 22 months (8-35 months) in the resorbable plate group. Both groups were investigated for primary bone healing, complications, number of operations, and mandibular growth. The results were discussed below. Both groups demonstrated primary bone healing. Minor complications were similar in both groups. The metallic group involved secondary operations for plate removal. Mandibular growth was satisfactory in both groups. Resorbable plates cost more than the metallic ones; however, when the secondary operations are included in the total cost, resorbable plates were favourable. As mandibular growth and complication parameters are similar in both groups, resorbable plates are favored due to avoidance of potential odontogenic injury, elimination of long-term foreign body retention and provision of adequate stability for rapid bone healing. However, learning curve and concerns for decreased stability against heavy forces of mastication accompanied with the resorbable plates when compared to the metallic ones should be kept in mind.

  6. Metallic glass coating on metals plate by adjusted explosive welding technique

    NASA Astrophysics Data System (ADS)

    Liu, W. D.; Liu, K. X.; Chen, Q. Y.; Wang, J. T.; Yan, H. H.; Li, X. J.

    2009-09-01

    Using an adjusted explosive welding technique, an aluminum plate has been coated by a Fe-based metallic glass foil in this work. Scanning electronic micrographs reveal a defect-free metallurgical bonding between the Fe-based metallic glass foil and the aluminum plate. Experimental evidence indicates that the Fe-based metallic glass foil almost retains its amorphous state and mechanical properties after the explosive welding process. Additionally, the detailed explosive welding process has been simulated by a self-developed hydro-code and the bonding mechanism has been investigated by numerical analysis. The successful welding between the Fe-based metallic glass foil and the aluminum plate provides a new way to obtain amorphous coating on general metal substrates.

  7. Electroless-plated Ni pattern with catalyst printing on indium-gallium-zinc oxide surface

    NASA Astrophysics Data System (ADS)

    Onoue, Miki; Ogura, Shintaro; Kusaka, Yasuyuki; Fukuda, Nobuko; Yamamoto, Noritaka; Kojima, Keisuke; Chikama, Katsumi; Ushijima, Hirobumi

    2017-05-01

    Electroless plated metals have been used for wiring and electrodes in the manufacture of electronic devices. To obtain plated patterns, etching and photoresist are generally used. However, through catalyst patterning by printing, we can obtain metal patterns without etching and photoresists by electroless plating. Solution-processed indium-gallium-zinc oxide (IGZO) has received significant attention for showing high performance and ease of preparation in air atmosphere. In this study, we prepared an electroless plated pattern by catalyst printing as electrodes of IGZO TFT. There are few reports on the application of plated metal electrodes prepared by catalyst printing to the source and drain electrodes of IGZO TFT. The prepared IGZO TFT exhibits a typical current-voltage (I-V) curve. The plated electrodes caused many problems such as performance degradation. However, our result showed that the plated metal electrodes can drive IGZO TFT. In addition, we confirm plated metal growth into the catalyst layer by cross sectional scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS) of the plated Ni. We discuss the relevance of the measured work function (WF) of the electrode materials and the performance of IGZO TFT.

  8. Process for metallization of a substrate by irradiative curing of a catalyst applied thereto

    DOEpatents

    Chen, Ken S.; Morgan, William P.; Zich, John L.

    1999-01-01

    An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.

  9. Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K.; Braff, William

    2009-01-01

    In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.

  10. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps.

    PubMed

    Su, Xiaoshi; Norris, Andrew N

    2016-06-01

    Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed.

  11. Extraordinary optical transmission inside a waveguide: spatial mode dependence.

    PubMed

    Reichel, Kimberly S; Lu, Peter Y; Backus, Sterling; Mendis, Rajind; Mittleman, Daniel M

    2016-12-12

    We study the influence of the input spatial mode on the extraordinary optical transmission (EOT) effect. By placing a metal screen with a 1D array of subwavelength holes inside a terahertz (THz) parallel-plate waveguide (PPWG), we can directly compare the transmission spectra with different input waveguide modes. We observe that the transmitted spectrum depends strongly on the input mode. A conventional description of EOT based on the excitation of surface plasmons is not predictive in all cases. Instead, we utilize a formalism based on impedance matching, which accurately predicts the spectral resonances for both TEM and non-TEM input modes.

  12. Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements

    NASA Astrophysics Data System (ADS)

    Decca, R. S.; Fischbach, E.; Klimchitskaya, G. L.; Krause, D. E.; López, D.; Mostepanenko, V. M.

    2003-12-01

    We report new constraints on extra-dimensional models and other physics beyond the standard model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2 1.2 μm. The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of ≈0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton’s law of gravity are strengthened by more than an order of magnitude in the range 56 330 nm.

  13. Simultaneous measurements of ion and electron currents using a novel compact electrostatic end-loss-current detector

    NASA Astrophysics Data System (ADS)

    Hirata, M.; Miyake, Y.; Cho, T.; Kohagura, J.; Numakura, T.; Shimizu, K.; Ito, M.; Kiminami, S.; Morimoto, N.; Hirai, K.; Yamagishi, T.; Miyata, Y.; Nakashima, Y.; Miyoshi, S.; Ogura, K.; Kondoh, T.; Kariya, T.

    2006-10-01

    For the purpose of end-loss-ion and -electron analyses in open-field plasmas, a compact-sized electrostatic end-loss-current detector is proposed on the basis of a self-collection principle for suppressing the effects of secondary-electron emission from a metal collector. For employing this specific method, it is worth noting that no further additional magnetic systems except the ambient open-ended magnetic fields are required in the detector operation. This characteristic property provides a compactness of the total detection system and availability for its use in plasma confinement devices without disturbing plasma-confining magnetic fields. The detector consists of a set of parallel metal plates with respect to lines of ambient magnetic forces of a plasma device for analyzing incident ion currents along with a grid for shielding the collector against strays due to the metal-plate biasing. The characterization experiments are carried out by the use of a test-ion-beam line along with an additional use of a Helmholtz coil system for the formation of open magnetic fields similar to those in the GAMMA 10 end region. The applications of the developed end-loss-current detector in the GAMMA 10 plasma experiments are demonstrated under the conditions with simultaneous incidence of energetic electrons produced by electron-cyclotron heatings for end-loss-plugging potential formation.

  14. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-01

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  15. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  16. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  17. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  18. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  19. Reducing chromium losses from a chromium plating bath. 1987 summer intern report. Project conducted at New Dimension Plating, Hutchinson, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achman, D.

    1987-12-31

    The company employs about forty people and operates for one or two eight hour shifts with an average of 315 racks of chrome plating per eight hour day. They plate a variety of metals including copper, nickel, gold, brass and chromium. Chromium is the major metal plated and is usually the last step in plating cycle. Most parts are copper plated and then nickel plated in preparation for chrome plating. The main difference between New Dimension Plating and other plating shops is the variety of parts plated. As New Dimension Plating is a job shop, a wide range of partsmore » such as motorcycle accessories, stove parts, and custom items are metal finished. The plating lines are manual, meaning employees dip the racks into the tanks by hand. This fact along with the fact that parts vary greatly in size and shape accounts for the significant drag-out on the chromium plating line.« less

  20. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  1. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    PubMed

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  2. Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles.

    PubMed

    Mondin, Giovanni; Wisser, Florian M; Leifert, Annika; Mohamed-Noriega, Nasser; Grothe, Julia; Dörfler, Susanne; Kaskel, Stefan

    2013-12-01

    A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.

    PubMed

    Bagheri, Zahra S; Tavakkoli Avval, Pouria; Bougherara, Habiba; Aziz, Mina S R; Schemitsch, Emil H; Zdero, Radovan

    2014-09-01

    Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.

  4. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    PubMed Central

    2017-01-01

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040

  5. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    PubMed

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  6. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  7. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  8. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  9. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    PubMed

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  10. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    NASA Astrophysics Data System (ADS)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  11. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  12. Process for metallization of a substrate by curing a catalyst applied thereto

    DOEpatents

    Chen, Ken S.; Morgan, William P.; Zich, John L.

    2002-10-08

    An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.

  13. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  14. Reduced dynamical model of the vibrations of a metal plate

    NASA Astrophysics Data System (ADS)

    Moreno, D.; Barrientos, Bernardino; Perez-Lopez, Carlos; Mendoza-Santoyo, Fernando; Guerrero, J. A.; Funes, M.

    2005-02-01

    The Proper Orthogonal Decomposition (POD) method is applied to the vibrations analysis of a metal plate. The data obtained from the metal plate under vibrations were measured with a laser vibrometer. The metal plate was subject to vibrations with an electrodynamical shaker in a range of frequencies from 100 to 5000 Hz. The deformation measurements were taken on a quarter of the plate in a rectangular grid of 7 x 8 points. The plate deformation measurements were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the deformation is contained within the first six POD modes. The essential features of the deformation are thus described by only the six first eigenfunctions. A reduced order model for the dynamical behavior is then constructed using Galerkin projection of the equation of motion for the vertical displacement of a plate.

  15. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  16. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.

    PubMed

    Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M

    2012-12-03

    We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.

  17. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  18. Surface dose measurements from air gaps under a bolus by using a MOSFET dosimeter in clinical oblique photon beams

    NASA Astrophysics Data System (ADS)

    Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo

    2012-10-01

    This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.

  19. Plating by glass-bead peening

    NASA Technical Reports Server (NTRS)

    Babecki, A. J.; Haehner, C. L.

    1971-01-01

    Technique permits plating of primarily metallic substrates with either metals or nonmetals at normal temperature. Peening uses compressed air to apply concurrent streams of small glass beads and powdered plating material to the substrate.

  20. Ion plating seals microcracks or porous metal components

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Buckley, D. H.; Brainard, W. A.

    1972-01-01

    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability.

  1. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.

    PubMed

    Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K

    2011-09-01

    We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.

  2. Fiber optic mounted laser driven flyer plates

    DOEpatents

    Paisley, Dennis L.

    1991-01-01

    A laser driven flyer plate where the flyer plate is deposited directly onto the squared end of an optical fiber. The plasma generated by a laser pulse drives the flyer plate toward a target. In another embodiment, a first metal layer is deposited onto the squared end of an optical fiber, followed by a layer of a dielectric material and a second metal layer. The laser pulse generates a plasma in the first metal layer, but the plasma is kept away from the second metal layer by the dielectric layer until the pressure reaches the point where shearing occurs.

  3. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  4. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    PubMed Central

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-01-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471

  5. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration

    NASA Astrophysics Data System (ADS)

    Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi

    2016-06-01

    Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel-zinc batteries with good power rate (20 mA cm-2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.

  6. FUEL ASSEMBLY FOR A NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-29

    A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.

  7. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  8. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  9. Development of an Anti-Corrosion Conductive Nano Carbon Coating Layer on Metal Bipolar Plates.

    PubMed

    Yeo, Kiho; Kim, Juyong; Kim, Jongryoul

    2018-09-01

    For automotive applications of polymer electrolyte membrane fuel cells, the enhancement of the corrosion resistance of metal bipolar plates has been a critical issue with regard to the lifespan of fuel cell stacks. In this paper, we present a novel method for increasing the lifespan by means of a conductive carbon coating on bipolar plates. Conductive carbon films were plasma coated onto metal bipolar plates in a vacuum at various temperatures. As a result, 316L stainless plates with a 10-nm-thick carbon coating layer on a 20-nm-thick CrN undercoat layer showed-contact resistance of 10.71 mΩcm2@10 kgf/cm2 and a corrosion current of 0.5 μA/cm2@0.6 V. This thin coating layer with high conductivity and excellent corrosion resistance suggests a new, effective coating method for the mass production of metal bipolar plates.

  10. Electrode Plate For An Eletrlchemical Cell And Having A Metal Foam Type Support, And A Method Of Obtaining Such An Electrode

    DOEpatents

    Verhoog, Roelof; Precigout, Claude; Stewart, Donald

    1996-05-21

    The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.

  11. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  12. A mode-matching analysis of dielectric-filled resonant cavities coupled to terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M

    2012-09-10

    We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.

  13. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  14. WET EFFLUENT PARALLEL PLATE DIFFUSION DENUDER COUPLED CAPILLARY ION CHROMATOGRAPH FOR THE DETERMINATION OF ATMOSPHERIC TRACE GASES. (R825344)

    EPA Science Inventory

    We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...

  15. Design of metallic bipolar plates for PEM fuel cells.

    DOT National Transportation Integrated Search

    2012-01-01

    This project focused on the design and production of metallic bipolar plates for use in PEM fuel cells. Different metals were explored : and stainless steel was found out to be best suited to our purpose. Following the selection of metal, it was calc...

  16. 25-Gb/s broadband silicon modulator with 0.31-V·cm VπL based on forward-biased PIN diodes embedded with passive equalizer.

    PubMed

    Baba, Takeshi; Akiyama, Suguru; Imai, Masahiko; Usuki, Tatsuya

    2015-12-28

    We investigated the broadband operations of a silicon Mach-Zehnder modulator (MZM) based on a forward-biased-PIN diode. The phase shifter was integrated with a passive-circuit equalizer to compensate for the narrowband characteristics of the diodes, which consists of a simple resistance of doped silicon and a parallel-plate metal capacitance. The device structure was simple and fabricated using standard CMOS processes. The measured results for a 50-Ω driver indicated there was a small VπL of 0.31 V·cm and a flat frequency response for a 3-dB bandwidth (f(3dB)) of 17 GHz, which agree well with the designed values. A 25-Gb/s large-signal operation was obtained using binary signals without pre-emphasis. The modulator showed a linear modulation property to the applied voltage, due to the metal capacitance of the equalizer.

  17. METHOD OF MAKING FUEL ELEMENTS

    DOEpatents

    Bean, C.H.; Macherey, R.E.

    1959-12-01

    A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.

  18. Carbon-assisted flyer plates

    DOEpatents

    Stahl, D.B.; Paisley, D.L.

    1994-04-12

    A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.

  19. All-Optical Two-Dimensional Serial-to-Parallel Pulse Converter Using an Organic Film with Femtosecond Optical Response

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Wada, Osamu; Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun

    2001-04-01

    In this study, we introduce a new concept of all-optical two-dimensional serial-to-parallel pulse converters. Femtosecond optical pulses can be understood as thin plates of light traveling in space. When a femtosecond signal-pulse train and a single gate pulse were fed onto a material with a finite incident angle, each signal-pulse plate met the gate-pulse plate at different locations in the material due to the time-of-flight effect. Meeting points can be made two-dimensional by adding a partial time delay to the gate pulse. By placing a nonlinear optical material at an appropriate position, two-dimensional serial-to-parallel conversion of a signal-pulse train can be achieved with a single gate pulse. We demonstrated the detection of parallel outputs from a 1-Tb/s optical-pulse train through the use of a BaB2O4 crystal. We also succeeded in demonstrating 1-Tb/s serial-to-parallel operation through the use of a novel organic nonlinear optical material, squarylium-dye J-aggregate film, which exhibits ultrafast recovery of bleached absorption.

  20. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    NASA Technical Reports Server (NTRS)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  1. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  2. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  3. Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.

    2007-04-01

    In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique

  4. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  5. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.

    PubMed

    McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel

    2015-10-19

    We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.

  6. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  7. Three-Point Gear/Lead Screw Positioning

    NASA Technical Reports Server (NTRS)

    Calco, Frank S.

    1993-01-01

    Triple-ganged-lead-screw positioning mechanism drives movable plate toward or away from fixed plate and keeps plates parallel to each other. Designed for use in tuning microwave resonant cavity. Other potential applications include adjustable bed plates and cantilever tail stocks in machine tools, adjustable platforms for optical equipment, and lifting platforms.

  8. Industrialization of the ion plating process

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1976-01-01

    A new process referred to as ion plating by induction heating (IPIH) is described, which combines the advantages of both ion plating and induction heating. The IPIH apparatus consists of the specimen (cathode) to be coated and the evaporation heating source, which is a ceramic crucible containing the metal to be heated. The specimen is an internal part of the high-voltage ceramic-metal vacuum feedthrough and is connected to the negative terminal of the high-voltage power supply, the positive terminal of the power supply being grounded. The plating conditions are the same as those most commonly used in industrial ion plating. A number of metals - such as nickel, iron, platinum - which were practically impossible to deposit by resistance heating evaporation can now be effectively evaporated and deposited to any desired thickness. Excellent adherence is observed for many metals deposited on various metal surfaces in thicknesses from 0.15 to 50 microns, regardless of the materials selected for coating and substrate.

  9. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  10. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Astrophysics Data System (ADS)

    Wang, Pao-Lien

    1992-09-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  11. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  12. Clinico-radiological Outcome Analysis of Parallel Plating with Perpendicular Plating in Distal Humeral Intra-articular Fractures: Prospective Randomised Study

    PubMed Central

    Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar

    2017-01-01

    Introduction The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. Aim To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. Materials and Methods A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. Results In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Conclusion Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques. PMID:28384948

  13. Clinico-radiological Outcome Analysis of Parallel Plating with Perpendicular Plating in Distal Humeral Intra-articular Fractures: Prospective Randomised Study.

    PubMed

    Govindasamy, Ramachandran; Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar

    2017-02-01

    The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques.

  14. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  15. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  16. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    PubMed

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  17. The buckling response of symmetrically laminated composite plates having a trapezoidal planform area. M.S. Thesis Interim Report No. 98, Aug. 1990 - May 1994

    NASA Technical Reports Server (NTRS)

    Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.

    1994-01-01

    The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the analytical results regarding the buckling load and the prebuckling plate stiffness. However, the experimental results show that for some cases the analysis underpredicts the number of halfwaves in the buckled mode shape. In the context of the definitions of taper ratio and aspect ratio used in this study, it is concluded that the buckling load always increases as taper ratio increases for a given aspect ratio for plates having simply supported boundary conditions on the parallel ends. There are combinations of plate geometry and ply stackling sequences, however, that reverse this trend for plates having clamped boundary conditions on the parallel ends such that an increase in the taper ratio causes a decrease in the buckling load. The clamped boundary conditions on the parallel ends of the plate are shown to increase the buckling load compared to simply supported boundary conditions. Also, anisotropy (the D16 and D26 terms) is shown to decrease the buckling load and skew the buckled mode shape for both the simply supported and clamped boundary conditions.

  18. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  19. Method and mold for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  20. Method for casting thin metal objects

    DOEpatents

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  1. Metal Whiskers: A Discussion of Risks and Mitigation

    DTIC Science & Technology

    2010-11-30

    efforts to investigate – Chromate conversion finishes DO NOT appear to stop whisker formation [4] S. Arnold, "Repressing the Growth of Tin Whiskers...November 30, 2010 Metal Whiskers 10 Examples of Metal Whiskers Zinc-Plated Steel Bus Rail with Yellow Chromate Conversion Finish Zinc whiskers grew...Metal Whiskers 11 Examples of Metal Whiskers Tin-Plated D-Sub Connector Shell Connector Advertised as “RoHS Compliant” November 30, 2010 Metal

  2. Design and Calibration of a X-Ray Millibeam

    DTIC Science & Technology

    2005-12-01

    developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The

  3. The restoring force on a dielectric in a parallel plate capacitor

    NASA Astrophysics Data System (ADS)

    Staunton, L. P.

    2014-09-01

    We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.

  4. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  5. Applications of surface plasmon polaritons in terahertz spectral regime

    NASA Astrophysics Data System (ADS)

    Zhan, Hui

    This thesis presents the experimental work on the applications of surface plasmon polariton (SPP) in terahertz (THz) spectral range. Apertureless near-field optical microscopy (ANSOM) has been widely used to study the localized SPP on various material surfaces. THz ANSOM technique was recently developed to combine the THz time-domain spectroscopy and the ANSOM technique to provide a near-field detection on the localized THz surface waves with improved spatial resolution and signal-noise ratio. We have studied the metal-insulator transition in vanadium dioxide (VO2) thin film using THz ANSOM. We observe a variation of the terahertz amplitude due to the phase transition induced by an applied voltage across the sample. The change of the terahertz signal is related to the abrupt change of the conductivity of the VO2 film at the metal-insulator transition. The subwavelength spatial resolution of this near-field microscopy makes it possible to detect signatures of metallic domains, which exist in the VO2 thin films in the vicinity of the phase transition. We experimentally investigate the propagation of guided waves in finite-width parallel-plate waveguides (PPWGs) in the terahertz spectral range. We observe the propagation of SPPs in this guiding structure, instead of the fundamental transverse electromagnetic (TEM) mode. We find that the two-dimensional (2-D) energy confinement within the finite-width PPWG increases exponentially as the plate separation is reduced. We speculate that edge plasmons play an important role in the energy confinement in this open-structure waveguide. For comparison, the infinite-width PPWGs, the plates of which are much wider than the THz beam size, are also studied with several plate separations. The free-space beam diffraction produces a Gaussian profile along the unconfined direction. The unusual electric field profiles along the vertical direction, perpendicular to the plate are observed. The field enhancement near the metal surfaces are also explained by the SPPs coupled to the metal surfaces. Based on the 2-D energy confinement in the finite-width PPWGs, we design the tapered slot waveguide by slowly tapering the plate width and slot gap. We first study the transverse component of the THz electric field, where a subwavelength 2-D energy confinement is observed. The output spot size strongly depends on the output facet size, where the slot gap and the tip width are in the same scale range. Subwavelength confinement is obtained, corresponding to lambda/4. Further confinement is limited by the spatial resolution of the detecting technique. To overcome this problem, we adapt the THz ASNOM setup to scattering-probe imaging technique, which has been proven to obtain deep subwavelength spatial resolution and great signal-noise ratio. Scattering-probe imaging setup measures the longitudinal component of the electric field of SPPs in the tapered slot waveguides. By slowly tapering the tip width and the slot gap, we squeeze a single-cycle THz pulse down to a size of 10 mum (lambda/260) by 18 mum (lambda/145), a mode area of only 2.6 x 10-5lambda2. We also observe a polarity reversal for the electric field between the guiding region near the upper and lower plates of the waveguide. This polarity flip is similar to that associated with the symmetric plasmon mode of slot waveguides.

  6. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    NASA Astrophysics Data System (ADS)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  7. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  8. Effects Of Heat Sinks On VPPA Welds

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.; Steranka, Paul O., Jr.

    1991-01-01

    Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.

  9. Method of bonding

    DOEpatents

    Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.

    1987-12-01

    1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.

  10. International Symposium on Numerical Methods in Engineering, 5th, Ecole Polytechnique Federale de Lausanne, Switzerland, Sept. 11-15, 1989, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul

    Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.

  11. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  12. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  13. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  14. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements.

    PubMed

    Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J

    2008-04-01

    Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.

  15. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  16. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.

  17. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    PubMed

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  18. Metallization of Large Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1978-01-01

    A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.

  19. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  20. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse

    PubMed Central

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young

    2017-01-01

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100–700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material. PMID:28976931

  1. Study on the Shielding Effectiveness of an Arc Thermal Metal Spraying Method against an Electromagnetic Pulse.

    PubMed

    Lee, Han-Seung; Choe, Hong-Bok; Baek, In-Young; Singh, Jitendra Kumar; Ismail, Mohamed A

    2017-10-04

    An electromagnetic pulse (EMP) explodes in real-time and causes critical damage within a short period to not only electric devices, but also to national infrastructures. In terms of EMP shielding rooms, metal plate has been used due to its excellent shielding effectiveness (SE). However, it has difficulties in manufacturing, as the fabrication of welded parts of metal plates and the cost of construction are non-economical. The objective of this study is to examine the applicability of the arc thermal metal spraying (ATMS) method as a new EMP shielding method to replace metal plate. The experimental parameters, metal types (Cu, Zn-Al), and coating thickness (100-700 μm) used for the ATMS method were considered. As an experiment, a SE test against an EMP in the range of 103 to 1010 Hz was conducted. Results showed that the ATMS coating with Zn-Al had similar shielding performance in comparison with metal plate. In conclusion, the ATMS method is judged to have a high possibility of actual application as a new EMP shielding material.

  2. Investigation on Tensile Fatigue Characteristics of Meshed GUM Metal Plates for Bone Graft Applications

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Koki; He, Jianmei

    2017-11-01

    GUM Metal has characteristics of lower elasticity rigidity, large elastic deformation, higher strength and biocompatibility etc. When it is used for implant applications, there is still problem like overloading on the natural-bone because of its high rigidity compared with the human bones. Therefore, the purpose of this study is to create more flexible meshed plates for implant applications from the viewpoints of elastic rigidity and volume density. Basic mesh shapes are designed, devised and applied for meshed GUM Metal plates using three dimensional (3D) CAD tools. Experimental evaluation on tensile fatigue characteristics of meshed GUM Metal plate specimens are carried out. Analytical approaches on stress evaluation are also executed through finite element method to obtain the S-N curve for fatigue characteristic evaluation.

  3. Modeling blur in various detector geometries for MeV radiography

    NASA Astrophysics Data System (ADS)

    Winch, Nicola M.; Watson, Scott A.; Hunter, James F.

    2017-03-01

    Monte Carlo transport codes have been used to model the detector blur and energy deposition in various detector geometries for applications in MeV radiography. Segmented scintillating detectors, where low Z scintillators combined with a high-Z metal matrix, can be designed in which the resolution increases with increasing metal fraction. The combination of various types of metal intensification screens and storage phosphor imaging plates has also been studied. A storage phosphor coated directly onto a metal intensification screen has superior performance over a commercial plate. Stacks of storage phosphor plates and tantalum intensification screens show an increase in energy deposited and detective quantum efficiency with increasing plate number, at the expense of resolution. Select detector geometries were tested by comparing simulation and experimental modulation transfer functions to validate the approach.

  4. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    NASA Astrophysics Data System (ADS)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.

  5. Finite Element Analysis of Magnetoelastic Plate Problems.

    DTIC Science & Technology

    1981-08-01

    deformation and in the incremental large deformation analysis, respectively. The classical Kirchhoff assumption of the undeformable normal to the midsurface is...current density , is constant across the thickness of the plate and is parallel to the midsurface of the plate; (2) the normal component of the

  6. Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces

    NASA Astrophysics Data System (ADS)

    Rubio López, Adrián E.; Poggi, Pablo M.; Lombardo, Fernando C.; Giannini, Vincenzo

    2018-04-01

    In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR . We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d ), showing the scale at which each magnitude converges to the value of infinite thickness (d →+∞ ) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications.

  7. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  8. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  9. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    NASA Astrophysics Data System (ADS)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-01

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  10. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  11. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  12. Electroless metal plating of plastics

    DOEpatents

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  13. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  14. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  15. Biomechanical analysis of a newly designed bioabsorbable anterior cervical plate. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2005.

    PubMed

    Ames, Christopher P; Acosta, Frank L; Chamberlain, Robert H; Larios, Adolfo Espinoza; Crawford, Neil R

    2005-12-01

    The authors present a biomechanical analysis of a newly designed bioabsorbable anterior cervical plate (ACP) for the treatment of one-level cervical degenerative disc disease. They studied anterior cervical discectomy and fusion (ACDF) in a human cadaveric model, comparing the stability of the cervical spine after placement of the bioabsorbable fusion plate, a bioabsorbable mesh, and a more traditional metallic ACP. Seven human cadaveric specimens underwent a C6-7 fibular graft-assisted ACDF placement. A one-level resorbable ACP was then placed and secured with bioabsorbable screws. Flexibility testing was performed on both intact and instrumented specimens using a servohydraulic system to create flexion-extension, lateral bending, and axial rotation motions. After data analysis, three parameters were calculated: angular range of motion, lax zone, and stiff zone. The results were compared with those obtained in a previous study of a resorbable fusion mesh and with those acquired using metallic fusion ACPs. For all parameters studied, the resorbable plate consistently conferred greater stability than the resorbable mesh. Moreover, it offered comparable stability with that of metallic fusion ACPs. Bioabsorbable plates provide better stability than resorbable mesh. Although the results of this study do not necessarily indicate that a resorbable plate confers equivalent stability to a metal plate, the resorbable ACP certainly yielded better results than the resorbable mesh. Bioabsorbable fusion ACPs should therefore be considered as alternatives to metal plates when a graft containment device is required.

  16. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  17. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  18. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  19. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.

  20. Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

    NASA Astrophysics Data System (ADS)

    Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory

    2017-10-01

    The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

  1. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  2. Evaluation of Metal Connector Plates for Repair of Wood Pallet Stringers

    Treesearch

    John W. Clarke; Thomas E. McLain; Marshall S. White; Philip A. Araman

    1993-01-01

    Repair of damaged pallets with metal connector plates (MCPs or plates) may reduce woodwaste while providing high quality, economical pallets. This study evaluated some effects of MCP repair on the performance of pallet components and some provisions of a preliminary standard for MCP repair of pallets. Whole pallet stringers and notched segments of stringers were tested...

  3. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    PubMed Central

    Rehman, Atteq ur; Lee, Soo Hong

    2014-01-01

    Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed. PMID:28788516

  4. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells.

    PubMed

    Rehman, Atteq Ur; Lee, Soo Hong

    2014-02-18

    Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  5. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    NASA Technical Reports Server (NTRS)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  6. Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall

    NASA Astrophysics Data System (ADS)

    Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru

    2018-07-01

    We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.

  7. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy.

    PubMed

    Jang, Young Woong; Lim, DoHyung; Seo, Hansol; Lee, Myung Chul; Lee, O-Sung; Lee, Yong Seuk

    2018-07-01

    Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability. A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model. The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block. The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the healing of the medial cortex.

  8. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  9. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Smith, John F.; Lee, Seung S.; Li, Yan

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet.

  10. Method of ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Taejon Ch'ungmam; Yan Li.

    1993-10-12

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improves reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figures.

  11. Semi-automatic for ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Smith, J.F.; Lee, S.S.; Li, Y.

    1990-02-13

    A method for measuring texture of metal plates or sheets using non-destructive ultrasonic investigation includes measuring the velocity of ultrasonic energy waves in lower order plate modes in one or more directions, and measuring phase velocity dispersion of higher order modes of the plate or sheet if needed. Texture or preferred grain orientation can be derived from these measurements with improved reliability and accuracy. The method can be utilized in production on moving metal plate or sheet. 9 figs.

  12. Exciting Reflectionless, Unidirectional Edge Mode in Bianisotropic Meta-waveguide Using Rotating Dipole Antenna

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady

    Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).

  13. Two-Piece Screens for Decontaminating Granular Material

    NASA Technical Reports Server (NTRS)

    Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis

    2009-01-01

    Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.

  14. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    NASA Astrophysics Data System (ADS)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  15. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  16. Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems

    NASA Technical Reports Server (NTRS)

    Chen, Hsin-Chu; He, Ai-Fang

    1993-01-01

    The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.

  17. Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Li, Y.

    2015-02-03

    This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.

  18. Exploratory Experiments in the Tribological Behavior of Engineering Surfaces with Nano-Coating Using a Tribo-Rheometer

    DTIC Science & Technology

    2008-05-30

    Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel . Tribo. Lett., 19(2):119-125, 2005. D-2 ...with a stainless steel parallel plate configuration as shown in figure 1. Due to the radial variation of the local shear stress T in the parallel...using a force transducer that is mounted below the surface. B-1 Exploded View Stainless Steel Plate Lower Fixture Microscale View Figure 1:

  19. A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed

    2017-04-01

    This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.

  20. Performance evaluation of pilot scale sulfur-oxidizing denitrification for treatment of metal plating wastewater.

    PubMed

    Flores, Angel S P; Gwon, Eun-Mi; Sim, Dong-Min; Nisola, Grace; Galera, Melvin M; Chon, Seung-Se; Chung, Wook-Jin; Pak, Dae-Won; Ahn, Zou Sam

    2006-01-01

    A full-scale and two pilot-scale upflow sulfur-oxidizing denitrification (SOD) columns were evaluated using metal plating wastewater as feed. The sludge was autotrophically enriched, and inoculated in the SOD columns attached to the effluent line of three metal plating wastewater treatment facilities. The effects of activated carbon and aeration were also studied, and found effective for the removal of suspended solids and ammonia, respectively. The results showed that the constituents, such as the total nitrogen, nitrates, nitrites, ammonia, chemical oxygen demand (COD), and heavy metals, were effectively removed. The pH was observed to be maintained at 7-8 due to the alkalinity supplied by the sulfur-calcium carbonate (SC) pellet. The denitrification efficiency and start-up period were observed to be affected by the influent quality. Chromium, iron, nickel, copper, and zinc--the major heavy metal components of the influent--were effectively reduced at certain concentrations. Other metal ions were also detected and reduced to undetectable concentrations, but no trends in the comparison with denitrification were observed. From the results it can be concluded that SOD is effective for the removal of nitrogen, particularly nitrates, without a drastic pH change, and can effectively remove minute concentrations of heavy metals and COD in metal plating wastewaters.

  1. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  2. Performance-related test for asphalt emulsions.

    DOT National Transportation Integrated Search

    2004-10-01

    Yield stress was investigated as a potential quality control parameter for asphalt emulsions. Viscometric data were determined using the concentric cylinder, parallel plate, and cone and plate geometries with rotational rheometers. We also investigat...

  3. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  4. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.

  5. Microgravity

    NASA Image and Video Library

    2000-07-29

    An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  6. Bone generation in the reconstruction of a critical size calvarial defect in an experimental model.

    PubMed

    Por, Yong-Chen; Barceló, C Raul; Salyer, Kenneth E; Genecov, David G; Troxel, Karen; Gendler, El; Elsalanty, Mohammed E; Opperman, Lynne A

    2008-03-01

    This study was designed to investigate the optimal combination of known osteogenic biomaterials with shape conforming struts to achieve calvarial vault reconstruction, using a canine model. Eighteen adolescent beagles were divided equally into 6 groups. A critical-size defect of 6 x 2 cm traversed the sagittal suture. The biomaterials used for calvarial reconstruction were demineralized perforated bone matrix (DBM), recombinant human bone morphogenetic protein 2 (rhBMP2), and autogenous platelet-rich plasma (PRP). The struts used were cobalt chrome (metal) or resorbable plate. The groupings were as follows: 1) DBM + metal, 2) DBM + PRP + metal, 3) DBM + PRP + resorbable plate, 4) DBM + rhBMP2 + metal, 5) DBM + rhBMP2 + PRP + metal, and 6) DBM + rhBMP2 + resorbable plate. Animals were killed at 3 months after surgery. There was no mortality or major complications. Analysis was performed macroscopically and histologically and with computed tomography. There was complete bony regeneration in the rhBMP2 groups only. Non-rhBMP2 groups had minimal bony ingrowth from the defect edges and on the dural surface, a finding confirmed by computed tomographic scan and histology. Platelet-rich plasma did not enhance bone regeneration. Shape conformation was good with both metal and resorbable plate. rhBMP2, but not PRP, accelerated calvarial regeneration in 3 months. The DBMs in the rhBMP2 groups were substituted by new trabecular bone. Shape molding was good with both metal and resorbable plate.

  7. High-Dose Neutron Detector Development Using 10B Coated Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Henzlova, Daniela

    2016-11-08

    During FY16 the boron-lined parallel-plate technology was optimized to fully benefit from its fast timing characteristics in order to enhance its high count rate capability. To facilitate high count rate capability, a novel fast amplifier with timing and operating properties matched to the detector characteristics was developed and implemented in the 8” boron plate detector that was purchased from PDT. Each of the 6 sealed-cells was connected to a fast amplifier with corresponding List mode readout from each amplifier. The FY16 work focused on improvements in the boron-10 coating materials and procedures at PDT to significantly improve the neutron detectionmore » efficiency. An improvement in the efficiency of a factor of 1.5 was achieved without increasing the metal backing area for the boron coating. This improvement has allowed us to operate the detector in gamma-ray backgrounds that are four orders of magnitude higher than was previously possible while maintaining a relatively high counting efficiency for neutrons. This improvement in the gamma-ray rejection is a key factor in the development of the high dose neutron detector.« less

  8. Development of a beam ion velocity detector for the heavy ion beam probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R.

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected bymore » the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.« less

  9. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results aremore » related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.« less

  10. Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.

    PubMed

    Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M

    2010-04-26

    We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).

  11. Method of beam welding metallic parts together and apparatus for doing same

    DOEpatents

    Lewandowski, Edward F.; Cassidy, Dale A.; Sommer, Robert G.

    1987-01-01

    The disclosed method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. Such exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extruding beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  12. Method of beam welding metallic parts together and apparatus for doing same

    DOEpatents

    Lewandowski, E.F.; Cassidy, D.A.; Sommer, R.G.

    1985-11-29

    This method provides for temporarily clamping a metallic piece to one side of a metallic plate while leaving the opposite side of the plate exposed, and providing a heat conductive heat sink body configured to engage the adjacent portions of such one side of the plate and the piece at all regions proximate to but not at the interface between these components. The exposed side of such plate is then subjected to an electron welding beam, in exact registry with but opposite to the piece. The electron welding beam is supplied with adequate energy for penetrating through the plate, across the interface, and into the piece, whereby the electron welding beam produces molten material from both the plate and the piece in the region of the interface. The molten material flows into any interstices that may exist in the interface, and upon cooling solidifies to provide a welded joint between the plate and piece, where the interface was, virtually without any interstices. The heat sink material prevents the molten material from extrucing beyond what was the interface, to provide a clean welded joint. The heat sink body also mechanically holds the plate and piece together prior to the actual welding.

  13. Modeling of laser welding of steel and titanium plates with a composite insert

    NASA Astrophysics Data System (ADS)

    Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.

    2017-10-01

    A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.

  14. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  15. Evaluation of resolution and periodic errors of a flatbed scanner used for digitizing spectroscopic photographic plates

    PubMed Central

    Wyatt, Madison; Nave, Gillian

    2017-01-01

    We evaluated the use of a commercial flatbed scanner for digitizing photographic plates used for spectroscopy. The scanner has a bed size of 420 mm by 310 mm and a pixel size of about 0.0106 mm. Our tests show that the closest line pairs that can be resolved with the scanner are 0.024 mm apart, only slightly larger than the Nyquist resolution of 0.021 mm expected by the 0.0106 mm pixel size. We measured periodic errors in the scanner using both a calibrated length scale and a photographic plate. We find no noticeable periodic errors in the direction parallel to the linear detector in the scanner, but errors with an amplitude of 0.03 mm to 0.05 mm in the direction perpendicular to the detector. We conclude that large periodic errors in measurements of spectroscopic plates using flatbed scanners can be eliminated by scanning the plates with the dispersion direction parallel to the linear detector by placing the plate along the short side of the scanner. PMID:28463262

  16. Three-dimensional analytical solution for the instability of a parallel array of mutually attracting identical simply supported piezoelectric microplates

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xu

    2017-12-01

    Three-dimensional analytical solutions are derived for the structural instability of a parallel array of mutually attracting identical simply supported orthotropic piezoelectric rectangular microplates by means of a linear perturbation analysis. The two surfaces of each plate can be either insulating or conducting. By considering the fact that the shear stresses and the normal electric displacement (or electric potential) are zero on the two surfaces of each plate, a 2 × 2 transfer matrix for a plate can be obtained directly from the 8 × 8 fundamental piezoelectricity matrix without resolving the original Stroh eigenrelation. The critical interaction coefficient can be determined by solving the resulting generalized eigenvalue problem for the piezoelectric plate array. Also considered in our analysis is the in-plane uniform edge compression acting on the four sides of each piezoelectric plate. Our results indicate that the stabilizing influence of the piezoelectric effect on the structural instability is unignorable; the edge compression always plays a destabilizing role in the structural instability of the plate array with interactions.

  17. Evaluation of Caenorhabditis elegans as an acute lethality and a neurotoxicity screening model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1988-01-01

    This investigation evaluated C. elegans as a lethality and neurotoxicity screening model. The lethality experiments were performed in both agar and an aquatic medium. The salts of 8 metals (Hg, Be, Al, Cu, Zn, Pb, Cd, and Sr) were used in the agar studies and the salts of 14 metals (Ag, Hg, Cu, Be, Al, Pb, Cr, As, Tl, Zn, Cd, Ni, Sr, and Sb) were used in the aquatic tests. In each of these tests an LC50 value was determined. The data from the agar plates were compared to the published mammalian oral LD50 values for salts of themore » same metals. Within this set of chemicals C. elegans was found to be a predictor of mammalian acute lethality, generating LC50 values parallel to the rat and mouse LD50 values. The aquatic data were compared to data from EPA Ambient Water Quality Criteria documents. C. elegans was found to be less sensitive than Daphnia but generally more sensitive than the other invertebrate organisms that are presently used. The neurotoxicity testing also was performed in both agar and an aquatic media. The testing in agar was conducted with the salts of 4 metals (Cu, Be, Pb, and Hg) and 2 organophosphate pesticides (malathion and vapona). The studies in an aquatic medium tested the salts of 4 metals (Cu, Be, Pb, and Hg).« less

  18. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  19. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  20. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  1. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  2. Clean Metal Finishing Alternatives

    DTIC Science & Technology

    2006-05-01

    Cr, must heat treat for hardness 4 4 Trivalent chrome Trivalent plating chemistry Varying success, some must be brush plate 3 3 Alloy plating...metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition/ Alloying (ESD/ ESA) Microarc welding Localized repair of non...Alternatives to chromate conversion coatings Al TriChrome Pretreatment (TCP)* – AnoChem TCP, Aluminescent, TCP-HF Trivalent Cr3+ conversion with Zr

  3. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  4. Corrosion resistant metallic bipolar plate

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Schneibel, Joachim H [Knoxville, TN; Pint, Bruce A [Knoxville, TN; Maziasz, Philip J [Oak Ridge, TN

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  5. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  6. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  7. Parallel-plate transmission line type of EMP simulators: Systematic review and recommendations

    NASA Astrophysics Data System (ADS)

    Giri, D. V.; Liu, T. K.; Tesche, F. M.; King, R. W. P.

    1980-05-01

    This report presents various aspects of the two-parallel-plate transmission line type of EMP simulator. Much of the work is the result of research efforts conducted during the last two decades at the Air Force Weapons Laboratory, and in industries/universities as well. The principal features of individual simulator components are discussed. The report also emphasizes that it is imperative to hybridize our understanding of individual components so that we can draw meaningful conclusions of simulator performance as a whole.

  8. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  9. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  10. Phase 2 of the array automated assembly task for the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Petersen, R. C.

    1980-01-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.

  11. Rapidly solidified metal coatings by peen plating

    NASA Technical Reports Server (NTRS)

    Chu, H. P.

    1987-01-01

    Specimens of 7075-T6 aluminum alloy were peen plated with rapidly solidified tin-lead and aluminum powders, and the cross-sections of the coated specimens were examined by light and electron microscopy. The properties of the peen plated specimens were also compared with those of shot peened specimens without any coating. It is found that peen plating with rapidly solidified metals improves the fatigue properties of the coated samples to a greater extent than shot peening alone. Specimens of 7075-T6 alloy peen plated with rapidly solidified tin-lead and aluminum exhibited better fatigue resistance than shot peened specimens in both air and salt water.

  12. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  13. Effect of Plate Hardening Behavior on the Deformation of Stainless Steel Metal Bellows

    NASA Astrophysics Data System (ADS)

    Hao, Zengliang; Luo, Shuyi; Zhao, He; Zhang, Chunxiang; Luo, Junting

    2017-11-01

    Tensile tests of original plate samples from three types of stainless steel metal bellows were performed at room temperature. The constitutive equations for the three hardening curves were obtained and fitted. The analysis results of the microstructure and fracture morphology of the tensile specimens show that the grain size of the plate with a high logarithmic-exponential hardening rate is uneven and the dimple of the shear fracture is elongated into an ellipse. By contrast, the grain size of the plate with a relatively low linear hardening rate is even and the dimple of the fracture is uniformly equiaxial. Finite element simulations of the hydraulic bulging and repeated limit bending deformation of the metal bellows of the three types of materials were also conducted. The repeated limit bending deformation process was tested experimentally. Although the effect of the hardening exponent on the residual stress of the metal bellows after hydraulic bulging is minimal, this exponent considerably influences the repeated limit bending deformation of the metal bellows after subsequent use. The trough hardening phenomenon is serious in the repeated limit bending process. Moreover, when the hardening exponent of the original plate is high, the resistance to bending fracture at the trough area is poor.

  14. Metallization of Kevlar fibers with gold.

    PubMed

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  15. Parallelism measurement for base plate of standard artifact with multiple tactile approaches

    NASA Astrophysics Data System (ADS)

    Ye, Xiuling; Zhao, Yan; Wang, Yiwen; Wang, Zhong; Fu, Luhua; Liu, Changjie

    2018-01-01

    Nowadays, as workpieces become more precise and more specialized which results in more sophisticated structures and higher accuracy for the artifacts, higher requirements have been put forward for measuring accuracy and measuring methods. As an important method to obtain the size of workpieces, coordinate measuring machine (CMM) has been widely used in many industries. In order to achieve the calibration of a self-developed CMM, it is found that the parallelism of the base plate used for fixing the standard artifact is an important factor which affects the measurement accuracy in the process of studying self-made high-precision standard artifact. And aimed to measure the parallelism of the base plate, by using the existing high-precision CMM, gauge blocks, dial gauge and marble platform with the tactile approach, three methods for parallelism measurement of workpieces are employed, and comparisons are made within the measurement results. The results of experiments show that the final accuracy of all the three methods is able to reach micron level and meets the measurement requirements. Simultaneously, these three approaches are suitable for different measurement conditions which provide a basis for rapid and high-precision measurement under different equipment conditions.

  16. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    PubMed

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as P<.05. The mean stiffness (±SD) values of both mini-fragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  17. Space Research Benefits Demonstrated

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An entranced youngster watches a demonstration of the enhanced resilience of undercooled metal alloys as compared to conventional alloys. Steel bearings are dropped onto plates made of steel, titanium alloy, and zirconium liquid metal alloy, so-called because its molecular structure is amorphous and not crystalline. The bearing on the liquid metal plate bounces for a minute or more longer than on the other plates. Experiments aboard the Space Shuttle helped scientists refine their understanding of the physical properties of certain metal alloys when undercooled (i.e., kept liquid below their normal solidification temperature). This new knowledge then allowed scientists to modify a terrestrial production method so they can now make limited quantities marketed under the Liquid Metal trademark. The exhibit was a part of the NASA outreach activity at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  18. MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Song, Weixing

    2018-01-01

    We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.

  19. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  20. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  1. Quasisubharmonic vibrations in metal plates excited by high-power ultrasonic pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-jiang; Zhang, Shu-yi; Zheng, Kai; Kuo, Pao-kuang

    2009-07-01

    Strongly nonlinear vibration phenomena in metal plates excited by high-power ultrasonic pulses in different conditions are studied experimentally and theoretically. The experimental conditions for generating quasisubharmonics and subharmonics are found and discussed. The plate vibrations are characterized by waveforms, frequency spectra, pseudostate portraits, and Poincaré maps. Then, a three-degree-of-freedom vibroimpact-dynamic model is presented to explore the generation mechanisms of the quasisubharmonic and subharmonic vibrations in the plates. According to the model, the intermittent contact-impact forces caused by the interactions between the transducer horn tip and the plate are considered as the main source for generating the complex nonlinear vibration in the plate. The numerical calculation results can explain reasonably the observed experimental phenomena.

  2. Experimental and Numerical Analysis of Electric Currents and Electromagnetic Blunting of Cracks in Thin Plates

    DTIC Science & Technology

    1984-12-01

    currents are assumed to flow parallel to midsurface of the plate. 6. The normal component of the induced magnetic field does not vary across the...is coincident with the midsurface of the plate. The relationship between the two coordinates is given by: X = x(a, B) ^ y = y(c’, e) Z

  3. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    PubMed

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  4. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-07-01

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  5. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    PubMed

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  6. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  7. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  8. SLIDING DIRECTION-DEPENDENCE OF POLYETHYLENE WEAR FOR METAL COUNTERFACE TRAVERSE OF SEVERE SCRATCHES

    PubMed Central

    Glennon, Liam P.; Baer, Thomas E.; Martin, James A.; Lack, William D.; Brown, Thomas D.

    2008-01-01

    Third body effects appear to be responsible for an appreciable portion of the wear rate variability within cohorts of patients with metal-on-polyethylene joint replacements. The parameters dominating the rate of polyethylene debris liberation by counterface scratches are not fully understood, but one seemingly contributory factor is the scratch’s orientation relative to the direction of instantaneous local surface sliding. To study this influence, arrays of 550 straight parallel scratches each representative of the severe end of the clinical range were diamond stylus-ruled onto the surface of polished stainless steel plates. These ruled plates were then worn reciprocally against polyethylene pins (both conventional and highly cross-linked) at traverse angles varied parametrically relative to the scratch direction. Wear was measured gravimetrically, and particulate debris was harvested and morphologically characterized. Both of the polyethylene variants tested showed pronounced wear rate peaks at acute scratch traverse angles (15º for conventional, 5º for cross-linked), and had nominally comparable absolute wear rate magnitudes. The particulate debris from this very aggressive test regime primarily consisted of extremely large and elongated strands, often tens or even hundreds of microns in length. These data suggest that counterface damage regions with preferential scratch directionality can liberate large amounts of polyethylene debris, apparently by a slicing/shearing mechanism, at critical (acute) attack angles. However, the predominant manifestation of this wear volume was in the form of particles far beyond the most osteolytically potent size range. PMID:19045513

  9. Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater.

    PubMed

    El Khalil, Hicham; El Hamiani, Ouafae; Bitton, Gabriel; Ouazzani, Naaila; Boularbah, Ali

    2008-01-01

    The aim of the present work is the assessment of metal toxicity in runoff, in their contaminated soils and in the groundwater sampled from two mining areas in the region of Marrakech using a microbial bioassay MetPLATE. This bioassay is based on the specific inhibition of the beta-galactosidase enzyme of a mutant strain of Escherichia coli, by the metallic pollutants. The stream waters from all sampling stations in the two mines were all very toxic and displayed percent enzyme inhibition exceeding 87% except SWA4 and SWB1 stations in mine C. Their high concentrations of copper (Cu) and zinc (Zn) confirm the acute toxicity shown by MetPLATE. The pH of stream waters from mine B and C varied between 2.1 and 6.2 and was probably responsible for metal mobilization, suggesting a problem of acid mine drainage in these mining areas. The bioassay MetPLATE was also applied to mine tailings and to soils contaminated by the acidic waters. The results show that the high toxicity of these soils and tailings was mainly due to the relatively concentration of soluble Zn and Cu. The use of MetPLATE in groundwater toxicity testing shows that, most of the samples exhibited low metal toxicity (2.7-45.5% inhibition) except GW3 of the mine B (95.3% inhibition during the wet season and 82.9% inhibition during the dry season). This high toxicity is attributed to the higher than usual concentrations of Cu (189 microg Cu l(-1)) and Zn (1505 microg Zn l(-1)). These results show the potential risk of the contamination of different ecosystems situated to the vicinity of these two metalliferous sites. The general trend observed was an increase in metal toxicity measured by the MetPLATE with increasing total and mobile metal concentrations in the studied matrices. Therefore, the MetPLATE bioassay is a reliable and fast bioassay to estimate the metals toxicity in the aquatic and solids samples.

  10. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-plate machine.

    PubMed

    Scholes, S C; Unsworth, A

    2007-04-01

    In an attempt to prolong the lives of rubbing implantable devices, several 'new' materials have been examined to determine their suitability as joint couplings. Tests were performed on a multidirectional pin-on-plate machine to determine the wear of both pitch and PAN (polyacrylonitrile)-based carbon fibre reinforced-polyetheretherketone (CFR-PEEK-OPTIMA) pins articulating against both BioLox Delta and BioLox Forte plates (ceramic materials). Both reciprocation and rotational motion were applied to the samples. The tests were conducted using 24.5 per cent bovine serum as the lubricant (protein concentration 15 g/l). Although all four material combinations gave similar low wear with no statistically significant difference (p > 0.25), the lowest average total wear of these pin-on-plate tests was provided by CFR-PEEK-OPTIMA pitch pins versus BioLox Forte plates. This was much lower than the wear produced by conventional joint materials (metal-on-polyethylene) and metal-on-metal combinations when tested on the pin-on-plate machine. This therefore indicates optimism that these PEEK-OPTIMA-based material combinations may perform well in joint applications.

  11. Detection and characterization of fatigue cracks in thin metal plates by low frequency resonant model analysis

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Birt, E. A.

    1992-01-01

    Low-frequency resonant model analysis, a technique for the detection and characterization of fatigue cracks in thin metal plates, which could be adapted to rapid scan or large area testing, is considered. Experimental data displaying a direct correlation between fatigue crack geometry and resonance frequency for the second vibrational plate mode are presented. FEM is used to calculate the mechanical behavior of the plates, and provides a comparison basis for the experimentally determined resonance frequency values. The waveform of the acoustic emission generated at the resonant frequency is examined; it provides the basis for a model of the interaction of fatigue crack faces during plate vibration.

  12. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.

  13. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  14. Morphology of Proeutectoid Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  15. PEM fuel cell bipolar plate material requirements for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.

    1996-04-01

    Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.

  16. Splash flow from a metal plate hit by an electron beam pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M., LLNL

    1997-09-01

    When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less

  17. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  18. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  19. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  20. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  1. 30 CFR 56.12032 - Inspection and cover plates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection and cover plates. 56.12032 Section 56.12032 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity...

  2. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, Jay Kevin

    1998-01-01

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprising corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant.

  3. Creating double negative index materials using the Babinet principle with one metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.

  4. Advanced Micro/Nanostructures for Lithium Metal Anodes

    PubMed Central

    Zhang, Rui; Li, Nian‐Wu; Cheng, Xin‐Bing; Yin, Ya‐Xia

    2017-01-01

    Owning to their very high theoretical capacity, lithium metal anodes are expected to fuel the extensive practical applications in portable electronics and electric vehicles. However, unstable solid electrolyte interphase and lithium dendrite growth during lithium plating/stripping induce poor safety, low Coulombic efficiency, and short span life of lithium metal batteries. Lately, varies of micro/nanostructured lithium metal anodes are proposed to address these issues in lithium metal batteries. With the unique surface, pore, and connecting structures of different nanomaterials, lithium plating/stripping processes have been regulated. Thus the electrochemical properties and lithium morphologies have been significantly improved. These micro/nanostructured lithium metal anodes shed new light on the future applications for lithium metal batteries. PMID:28331792

  5. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  6. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  7. Flexure Based Linear and Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    2016-01-01

    A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.

  8. 49 CFR 230.46 - Badge plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.46 Badge plates. A metal badge plate showing the allowed steam pressure shall be attached to the...

  9. Method for conducting electroless metal-plating processes

    DOEpatents

    Petit, George S.; Wright, Ralph R.

    1978-01-01

    This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.

  10. Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures.

    PubMed

    Ni, Ming; Wong, Duo Wai-Chi; Mei, Jiong; Niu, Wenxin; Zhang, Ming

    2016-09-01

    The locking plate and percutaneous crossing metallic screws and crossing absorbable screws have been used clinically to treat intra-articular calcaneal fractures, but little is known about the biomechanical differences between them. This study compared the biomechanical stability of calcaneal fractures fixed using a locking plate and crossing screws. Three-dimensional finite-element models of intact and fractured calcanei were developed based on the CT images of a cadaveric sample. Surgeries were simulated on models of Sanders type III calcaneal fractures to produce accurate postoperative models fixed by the three implants. A vertical force was applied to the superior surface of the subtalar joint to simulate the stance phase of a walking gait. This model was validated by an in vitro experiment using the same calcaneal sample. The intact calcaneus showed greater stiffness than the fixation models. Of the three fixations, the locking plate produced the greatest stiffness and the highest von Mises stress peak. The micromotion of the fracture fixated with the locking plate was similar to that of the fracture fixated with the metallic screws but smaller than that fixated with the absorbable screws. Fixation with both plate and crossing screws can be used to treat intra-articular calcaneal fractures. In general, fixation with crossing metallic screws is preferable because it provides sufficient stability with less stress shielding.

  11. Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys

    NASA Astrophysics Data System (ADS)

    Ferro, Paolo; Battaglia, Eleonora; Capuzzi, Stefano; Berto, Filippo

    2017-12-01

    Precious metal alloys can be supplied in traditional plate form or innovative drop form with high degree of purity. The aim of the present work is to evaluate the influence of precious metal alloy form on metallurgical and mechanical properties of the final dental products with particular reference to metal-ceramic bond strength and casting defects. A widely used alloy for denture was selected; its nominal composition was close to 55 wt% Pd - 34 wt% Ag - 6 wt% In - 3 wt% Sn. Specimens were produced starting from the alloy in both plate and drop forms. A specific test method was developed to obtain results that could be representative of the real conditions of use. In order to achieve further information about the adhesion behaviour and resistance, the fracture surfaces of the samples were observed using `Scanning Electron Microscopy (SEM)'. Moreover, material defects caused by the moulding process were studied. The form of the alloy before casting does not significantly influence the shear bond strength between the metal and the ceramic material (p-value=0,976); however, according to SEM images, products from drop form alloy show less solidification defects compared to products obtained with plate form alloy. This was attributed to the absence of polluting additives used in the production of drop form alloy. This study shows that the use of precious metal denture alloys supplied in drop form does not affect the metal-ceramic bond strength compared to alloys supplied in the traditional plate form. However, compared to the plate form, the drop form is found free of solidification defects, less expensive to produce and characterized by minor environmental impacts.

  12. 30 CFR 18.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or association that designs, manufactures, assembles, or controls the assembly of an electrical... attachment of an approval plate so indicating. Approval plate means a metal plate, the design of which meets... approved (permissible) equipment. Certification label means a plate, label, or marking, the design of which...

  13. 30 CFR 18.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or association that designs, manufactures, assembles, or controls the assembly of an electrical... attachment of an approval plate so indicating. Approval plate means a metal plate, the design of which meets... approved (permissible) equipment. Certification label means a plate, label, or marking, the design of which...

  14. 30 CFR 18.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or association that designs, manufactures, assembles, or controls the assembly of an electrical... attachment of an approval plate so indicating. Approval plate means a metal plate, the design of which meets... approved (permissible) equipment. Certification label means a plate, label, or marking, the design of which...

  15. 30 CFR 18.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or association that designs, manufactures, assembles, or controls the assembly of an electrical... attachment of an approval plate so indicating. Approval plate means a metal plate, the design of which meets... approved (permissible) equipment. Certification label means a plate, label, or marking, the design of which...

  16. Brazed bipolar plates for PEM fuel cells

    DOEpatents

    Neutzler, J.K.

    1998-07-07

    A liquid-cooled, bipolar plate separating adjacent cells of a PEM fuel cell comprises corrosion-resistant metal sheets brazed together so as to provide a passage between the sheets through which a dielectric coolant flows. The brazement comprises a metal which is substantially insoluble in the coolant. 6 figs.

  17. A REVIEW OF ACID COPPER PLATING BATH LIFE EXTENSION AND COPPER RECOVERY FROM ACID COPPER BATHS

    EPA Science Inventory

    Large quantities of hazardous waste, most in aqueous solution or sludges, are being produced at numerous metal plating and processing facilities in the U.S. Regulatory pressures, future liability, and limited landfill space have driven the cost of metal waste disposal to level...

  18. A novel method for characterizing the impact response of functionally graded plates

    NASA Astrophysics Data System (ADS)

    Larson, Reid A.

    Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.

  19. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  20. Static analysis of the hull plate using the finite element method

    NASA Astrophysics Data System (ADS)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  1. Casimir force in a Lorentz violating theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2006-08-01

    We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less

  2. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    PubMed Central

    2017-01-01

    Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis. PMID:29392181

  3. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  4. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  5. Microwave transmission through metallic hole arrays: Surface electric field measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou Bo; Hang Zhihong; Wen Weijia

    2006-09-25

    The authors investigate the enhanced microwave transmission through a metal plate perforated by a square lattice of subwavelength holes, predicted to occur as a structure factor resonance phenomenon [F. J. Gracia de Abajo and J. J. Saenz, Phys. Rev. Lett. 95, 233901 (2005)]. By probing the surface electric field on the metallic plate at the peak transmission frequency, they establish the similarities and differences between the structure factor resonance and surface plasmon.

  6. PRETREATING URANIUM FOR METAL PLATING

    DOEpatents

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  7. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.

  8. Chemical plating method of preparing radiation source material

    DOEpatents

    Smith, P.K.; Huntoon, R.T.; Mosley, W.C. Jr.

    1973-12-11

    A uniform dispersion of a radioisotope within a noble metal matrix is provided by chemically plating a noble metal coating onto particles including a dissociable compound of the mdioisotope. A suspension of the dissociable compound in a chemically reductive solution is prepared and noble metal cations added to produce the noble metal coatings. The coated particles are filtered, dried and heated to calcine the dissociable compound to a refractory powder. The powder can be encapsulated in measured portions or consolidated and shaped into an elongated form for easy apportionnnent as radiation source material. (Official Gazette)

  9. Planar high density sodium battery

    DOEpatents

    Lemmon, John P.; Meinhardt, Kerry D.

    2016-03-01

    A method of making a molten sodium battery is disclosed. A first metallic interconnect frame having a first interconnect vent hole is provided. A second metallic interconnect frame having a second interconnect vent hole is also provided. An electrolyte plate having a cathode vent hole and an anode vent hole is interposed between the metallic interconnect frames. The metallic interconnect frames and the electrolyte plate are sealed thereby forming gaseous communication between an anode chamber through the anode vent hole and gaseous communication between a cathode chamber through the cathode vent hole.

  10. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  11. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    environmental test chamber attachment to control temperature and disposable parallel plates . The experiment can be stopped when the sample...is auto-stopping when its torque limit is reached and to prevent too high of an extent of cure that could make removal of the disposable plates from...separated by a 0.025-mm-thick Teflon spacer (International Crystal Labs) or pressed with potassium bromide (KBr) powder into pellets. The salt plate

  12. 49 CFR 236.779 - Plate, top.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.779 Plate, top. A metal plate secured to a locking bracket to prevent the cross locking from being forced out of the...

  13. A Dynamic Analysis of Piezoelectric Strained Elements.

    DTIC Science & Technology

    1992-12-01

    Type Quartz Crystal Plates ", IEEE SU- 29 (3), pp. 1 2 1 - 1 2 7 (1982). [107] L.K.Chau,High -frequency Long-wave Vibrations of Piezoelectric Ceramic ... Plate Excited with Voltage", Acta Acustica, 8 (5), pp. 300-310 (1983). [265] M.Ting-rong, "Forced Vibrations of Metal-Piezo- ceramic Thin Composite... ceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer", Acta Acustica, 9 (5), pp. 298-310 (1984); Chinese J. Acoust., 2(3

  14. SUPPORTING AND HEAT INSULATING MEANS

    DOEpatents

    Birmingham, B.W.; Brown, H.; Scott, R.B.; Vander-arend, P.C.

    1959-01-27

    A method is described for simultaneously supporting inner and outer members spaced from each other and heat insulating them from each other comprising an inner and outer member together defining an annular cavity. Each member carries a shoulder projecting towards the other member. A stack of annular metal plates in the cavity is held between the shoulder of the outer member and the shoulder of the inner member. The edges of the metal plate forming the stack are exposed to the cavity and to evacuation conditions which may exist within thc cavity. The stack of metal plates acts to both support one of the members with respect to the other and as a heat insulator.

  15. Active Metal Brazing and Characterization of Brazed Joints in Titanium to Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, T. P.; Morscher, G. N.; Asthana, R.

    2006-01-01

    The Ti-metal/C-C composite joints were formed by reactive brazing with three commercial brazes, namely, Cu-ABA, TiCuNi, and TiCuSiI. The joint microstructures were examined using optical microscopy and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). The results of the microstructure analysis indicate solute redistribution across the joint and possible metallurgical bond formation via interdiffusion, which led to good wetting and spreading. A tube-on-plate tensile test was used to evaluate joint strength of Ti-tube/ C-C composite joints. The load-carrying ability was greatest for the Cu-ABA braze joint structures. This system appeared to have the best braze spreading which resulted in a larger braze/C-C composite bonded area compared to the other two braze materials. Also, joint loadcarrying ability was found to be higher for joint structures where the fiber tows in the outer ply of the C-C composite were aligned perpendicular to the tube axis when compared to the case where fiber tows were aligned parallel to the tube axis.

  16. Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber.

    PubMed Central

    Millsap, K; Reid, G; van der Mei, H C; Busscher, H J

    1994-01-01

    The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082

  17. Vibration energy harvesting using a piezoelectric circular diaphragm array.

    PubMed

    Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi

    2012-09-01

    This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.

  18. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, Robert A.; Schrag, Robert L.

    1987-01-01

    A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results.

  19. Recovery process for electroless plating baths

    DOEpatents

    Anderson, Roger W.; Neff, Wayne A.

    1992-01-01

    A process for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO.sub.3. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths.

  20. Recovery process for electroless plating baths

    DOEpatents

    Anderson, R.W.; Neff, W.A.

    1992-05-12

    A process is described for removing, from spent electroless metal plating bath solutions, accumulated byproducts and counter-ions that have deleterious effects on plating. The solution, or a portion thereof, is passed through a selected cation exchange resin bed in hydrogen form, the resin selected from strong acid cation exchangers and combinations of intermediate acid cation exchangers with strong acid cation exchangers. Sodium and nickel ions are sorbed in the selected cation exchanger, with little removal of other constituents. The remaining solution is subjected to sulfate removal through precipitation of calcium sulfate hemihydrate using, sequentially, CaO and then CaCO[sub 3]. Phosphite removal from the solution is accomplished by the addition of MgO to form magnesium phosphite trihydrate. The washed precipitates of these steps can be safely discarded in nontoxic land fills, or used in various chemical industries. Finally, any remaining solution can be concentrated, adjusted for pH, and be ready for reuse. The plating metal can be removed from the exchanger with sulfuric acid or with the filtrate from the magnesium phosphite precipitation forming a sulfate of the plating metal for reuse. The process is illustrated as applied to processing electroless nickel plating baths. 18 figs.

  1. APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS

    DOEpatents

    Neidigh, R.V.

    1963-07-01

    An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)

  2. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.

    2012-12-01

    The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to characterize variations in plate structure and hydration linked to JdF plate segmentation for over 450 km along the margin. Shipboard brute stacks of the MCS data reveal evidence for reactivation of abyssal hill faulting in the plate interior far from the trench. Ridgeward-dipping lower crustal reflectors are observed, similar to those observed in mature Pacific crust elsewhere, as well as conjugate reflectivity near the deformation front along the Oregon transect. Bright intracrustal reflectivity is also observed along the trench-parallel transect with marked changes in reflectivity along the Oregon and Washington margins. Initial inspection of the OBS record sections indicate good quality data with the expected oceanic crustal and upper mantle P-wave arrivals: Ps and Pg refractions through sedimentary and igneous layers, respectively, PmP wide-angle reflections from the crust-mantle transition zone, and Pn upper mantle refractions. The Pg-PmP-Pn triplication is typically observed at 40-50 km source-receiver offsets. Pn characteristics show evidence for upper mantle azimuthal anisotropic propagation: along the plate transects Pn is typically weaker and difficult to observe beyond ~80 km offsets, while along the trench-parallel transect Pn arrivals have higher amplitude and are easily observed up to source-receiver offsets of 160-180 km. An overview on the Cascadia Ridge to Trench data acquisition program and preliminary results will be presented.

  3. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  4. Repair & Reinforcing Pallet Stringers With Metal Plates

    Treesearch

    John W. Clarke; Thomas E. McLain; Marshall S. White; Philip A. Araman

    1993-01-01

    Notches significantly reduce the bending strength and life expectancy of stringer-class pallets with partial 4-way entry. Common failures include cracking between the notches (BN), bending failures in the region above the notch (AN) and splitting of end feet. In recent years, several suppliers and manufacturers of metal connector plates (MCPs) have developed equipment...

  5. Undercoat prevents blistering of silver plating at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Kuster, C. A.

    1967-01-01

    Gold undercoat prevents blistering in the silver plating of Inconel 718 seals from steam at high temperatures. The undercoat is diffused into the surface of the parent metal by baking prior to silver plating.

  6. A base-metal conductor system for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.

    1980-01-01

    Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.

  7. Fusion of Night Vision and Thermal Images

    DTIC Science & Technology

    2006-12-01

    with the walls of the MCP channels. Thus, a thin metal oxide coating commonly known as an ion barrier film is added to the input side of the MCP to...with film ion barrier to filmless gated tubes. An important improvement for Gen 4 products is a greater target identification range and higher target...Metal Seals with S-25 Cathode Mircro-channel plate Ceramic/Metal Seals with GaAS Cathode Mircro-channel plate with ion barrier film Ceramic

  8. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    PubMed

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  9. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  10. Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.

    PubMed

    Wang, Wenliang; Xiong, Shengming; Zhang, Yundong

    2007-06-01

    Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.

  11. All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Xiong, Shenming; Zhang, Yundong

    2007-12-01

    Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.

  12. Numerical Solution of the Navier-Stokes Equations for Steady Magnetohydrodynamic Flow Between Two Parallel Porous Plates with an Angular Velocity

    NASA Astrophysics Data System (ADS)

    Delhi Babu, R.; Ganesh, S.

    2018-04-01

    The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.

  13. Parallel production and verification of protein products using a novel high-throughput screening method.

    PubMed

    Tegel, Hanna; Yderland, Louise; Boström, Tove; Eriksson, Cecilia; Ukkonen, Kaisa; Vasala, Antti; Neubauer, Peter; Ottosson, Jenny; Hober, Sophia

    2011-08-01

    Protein production and analysis in a parallel fashion is today applied in laboratories worldwide and there is a great need to improve the techniques and systems used for this purpose. In order to save time and money, a fast and reliable screening method for analysis of protein production and also verification of the protein product is desired. Here, a micro-scale protocol for the parallel production and screening of 96 proteins in plate format is described. Protein capture was achieved using immobilized metal affinity chromatography and the product was verified using matrix-assisted laser desorption ionization time-of-flight MS. In order to obtain sufficiently high cell densities and product yield in the small-volume cultivations, the EnBase® cultivation technology was applied, which enables cultivation in as small volumes as 150 μL. Here, the efficiency of the method is demonstrated by producing 96 human, recombinant proteins, both in micro-scale and using a standard full-scale protocol and comparing the results in regard to both protein identity and sample purity. The results obtained are highly comparable to those acquired through employing standard full-scale purification protocols, thus validating this method as a successful initial screening step before protein production at a larger scale. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.

    2018-04-01

    The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.

  15. Impact face influence on low velocity impact performance of interply laminated plates

    NASA Astrophysics Data System (ADS)

    Manikandan, Periyasamy; Chai, Gin Boay

    2015-03-01

    Fibre Metal Laminate (FML), a metal sandwiched hybrid composite material is well-known for its enhanced impact properties and better damage tolerance and it has been successfully implemented in diverse engineering applications in aviation industry. With heterogeneous constituents, the stacking sequence of FML is believe to play a critical role to govern its overall energy absorption capability by means of controlling delamination of metal composite interface and plastic deformation of metal layers. As a precursor, low velocity impact experiments were conducted on interply configured transparent plastic plates in order to extract the significance of stacking sequence and realize the characteristics of each layer through naked eye which is not possible in FML due to opacity of metal layer. The stack configuration constitute hard acrylic (brittle) and soft polycarbonate (ductile) plates analogous to composite (brittle) and metal (ductile) layers on FML laminate and the impact event is performed on either hard or soft facing sides separately. Hard side samples resemble more protective than soft side impact sample, with large peak resistant force and expose smaller damage growth in all experimented cases.

  16. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  17. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  18. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry

    NASA Astrophysics Data System (ADS)

    Katase, Takayoshi; Onozato, Takaki; Hirono, Misako; Mizuno, Taku; Ohta, Hiromichi

    2016-05-01

    Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

  19. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  20. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  1. Lithium/water battery with lithium ion conducting glass-ceramics electrolyte

    NASA Astrophysics Data System (ADS)

    Katoh, Takashi; Inda, Yasushi; Nakajima, Kousuke; Ye, Rongbin; Baba, Mamoru

    Lithium/water batteries have attracted considerable attention as high power supply devices because they use high energy density lithium metal as an anode and water as a cathode. In this study, we investigate the use of lithium/water batteries that use a glass-ceramics plate as an electrolyte. A lithium ion conducting glass-ceramics plate has no through-holes and does not exhibit moisture permeation. Such a plate has stable ionic conductivity in water. Lithium/water batteries that used a glass-ceramics plate as an electrolyte had a long and stable discharge for 50 days at room temperature when the lithium metal was prevented from coming into contact with water. Lithium/seawater batteries using a glass-ceramics plate as an electrolyte also operated well in the 10-70 °C temperature range.

  2. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  3. The influence of electrode type on electrocoagulation process for removal of chromium (VI) metal in plating industrial wastewater

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi

    2018-05-01

    Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.

  4. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  5. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  6. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  7. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  8. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium.

    PubMed

    Jarosz-Wilkolazka, Anna; Gadd, Geoffrey M

    2003-07-01

    In this report, we have identified oxalic acid as an important metabolite elaborated in the response of wood-rotting fungi to toxic metal stress. The formation of oxalate crystals by white rot fungi (Bjerkandera fumosa, Phlebia radiata and Trametes versicolor) and the brown rot fungus Fomitopsis pinicola, grown on media containing high levels of toxic metal ions has been visualized using scanning electron microscopy (SEM) with energy-dispersive X-ray micro-analysis (EDXA) and HPLC. There were no significant differences between the growth of controls (metal-free) and on the 0.5% CaCO(3), Co(3)(PO(4))(2) or Zn(3)(PO(4))(2)-amended plates. ZnO inhibited the growth of all strains. Crystals were not detected in Zn(3)(PO(4))(2)-amended plates. The four examined strains displayed the formation of crystals on ZnO, Co(3)(PO(4))(2) and CaCO(3)-amended plates.

  9. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  10. Reinforcement of Wood Pallets with Metal Connector Plates

    Treesearch

    John W. Clarke; Thomas E. McLain; Marshall S. White; Philip A. Araman

    1993-01-01

    Reinforcement of the damage-prone areas of wood pallet stringers with metal connector plates (MCPs) may increase useful pallet life or permit use of less desirable wood species. This will improve the utilization of our timber resources and landfill space. Whole pallets and individual stringers, reinforced at the inner notches, were tested in static bending. Stringer...

  11. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  12. Enhanced vbasis laser diode package

    DOEpatents

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  13. High-throughput measurements of biochemical responses using the plate::vision multimode 96 minilens array reader.

    PubMed

    Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich

    2006-01-01

    The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.

  14. The dynamics of plate tectonics and mantle flow: from local to global scales.

    PubMed

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  15. HTS Fabry-Perot resonators for the far infrared

    NASA Astrophysics Data System (ADS)

    Keller, Philipp; Prenninger, Martin; Pechen, Evgeny V.; Renk, Karl F.

    1996-06-01

    We report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR we use two parallel MgO plates covered with YBa2Cu3O7-delta thin films on adjacent sides. We have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. We have also shown that thin films of gold are not adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  16. Metal vapor arc ion plating

    DOEpatents

    Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.

    1986-09-09

    A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.

  17. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  18. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  19. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  20. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  1. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  2. Thermal Creep Force: Analysis And Application

    DTIC Science & Technology

    2016-06-01

    University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers

  3. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  4. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  5. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  6. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  7. 21 CFR 872.4760 - Bone plate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone plate. 872.4760 Section 872.4760 Food and... DENTAL DEVICES Surgical Devices § 872.4760 Bone plate. (a) Identification. A bone plate is a metal device intended to stabilize fractured bone structures in the oral cavity. The bone segments are attached to the...

  8. A MEMS Multi-Cantilever Variable Capacitor On Metamaterial

    DTIC Science & Technology

    2009-03-26

    tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering

  9. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    PubMed

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  10. Ionospheric plasma flow about a system of electrically biased flat plates. M.S. Thesis - Cleveland State Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.

    1993-01-01

    The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.

  11. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  12. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  13. Modeling of composite beams and plates for static and dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Atilgan, Ali R.; Lee, Bok Woo

    1990-01-01

    A rigorous theory and corresponding computational algorithms was developed for a variety of problems regarding the analysis of composite beams and plates. The modeling approach is intended to be applicable to both static and dynamic analysis of generally anisotropic, nonhomogeneous beams and plates. Development of a theory for analysis of the local deformation of plates was the major focus. Some work was performed on global deformation of beams. Because of the strong parallel between beams and plates, the two were treated together as thin bodies, especially in cases where it will clarify the meaning of certain terminology and the motivation behind certain mathematical operations.

  14. Bone bonding ability of a chemically and thermally treated low elastic modulus Ti alloy: gum metal.

    PubMed

    Tanaka, Masashi; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Kawai, Toshiyuki; Yamaguchi, Seiji; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Matsuda, Shuichi

    2014-03-01

    The gum metal with composition Ti-36Nb-2Ta-3Zr-0.3O, is free from cytotoxic elements and exhibits a low elastic modulus as well as high mechanical strength. We have previously demonstrated that this gum metal, once subjected to a series of surface treatments--immersion in 1 M NaOH (alkali treatment) and then 100 mM CaCl2, before heating at 700 °C (sample: ACaH-GM), with an optional final hot water immersion (sample: ACaHW-GM)--has apatite-forming ability in simulated body fluid. To confirm the in vivo bioactivity of these treated alloys, failure loads between implants and bone at 4, 8, 16, and 26 weeks after implantation in rabbits' tibiae were measured for untreated gum metal (UT-GM), ACaH-GM and ACaHW-GM, as well as pure titanium plates after alkali and heat treatment (AH-Ti). The ACaH-GM and UT-GM plates showed almost no bonding, whereas ACaHW-GM and AH-Ti plates showed successful bonding by 4 weeks, and their failure loads subsequently increased with time. The histological findings showed a large amount of new bone in contact with the surface of ACaHW-GM and AH-Ti plates, suggesting that the ACaHW treatment could impart bone-bonding bioactivity to a gum metal in vivo. Thus, with this improved bioactive treatment, these advantageous gum metals become useful candidates for orthopedic and dental devices.

  15. Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua

    2018-03-01

    In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.

  16. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  17. Rapid viscosity measurements of powdered thermosetting resins

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.; Dalal, S. K.

    1978-01-01

    A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.

  18. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model.

    PubMed

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping

    2013-02-05

    The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.

  19. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  20. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  1. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  2. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  3. Layered Plating Specimens For Mechanical Tests

    NASA Technical Reports Server (NTRS)

    Thompson, Linda B.; Flowers, Cecil E.

    1991-01-01

    Layered specimens readily made in standard sizes for tensile and other tests of mechanical properties. Standard specimen of metal ordinarily difficult to plate to standard grip thickness or diameter made by augmentation with easier-to-plate material followed by machining to standard size and shape.

  4. Influence of obliquely subducting slab on Pacific-North America shear motion inferred from seismic anisotropy along the Queen Charlotte margin

    NASA Astrophysics Data System (ADS)

    Cao, L.; Kao, H.; Wang, K.; Wang, Z.

    2016-12-01

    Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.

  5. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  6. Seismicity of the Earth 1900-2007, Japan and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley

    2010-01-01

    This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.

  7. Evanescent wave coupling in terahertz waveguide arrays.

    PubMed

    Reichel, K S; Sakoda, N; Mendis, R; Mittleman, D M

    2013-07-15

    We study energy transfer among an array of identical finite-width parallel-plate waveguides in close proximity, via evanescent wave coupling of broadband terahertz waves. We observe stronger coupling with larger plate separations and longer propagation paths. This work establishes a platform to investigate new opportunities for THz components and devices based on evanescent wave coupling.

  8. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Plate for which Charpy V-notch impact testing is required in the parent material and for which V-notch minima are specified shall similarly have welding procedures qualified for toughness by Charpy V-notch testing. For these tests, the test plates shall be oriented with their final rolling direction parallel to...

  9. Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.

    2013-01-01

    An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.

  10. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  11. A Highly Reversible Room-Temperature Sodium Metal Anode.

    PubMed

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; Cui, Yi

    2015-11-25

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

  12. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    PubMed

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  14. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  15. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  16. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure.

    PubMed

    Engelhart, Sally; Segal, Robert J

    2017-04-01

    Allergy as a cause of adverse outcomes in patients with implanted orthopedic hardware is controversial. Allergy to titanium-based implants has not been well researched, as titanium is traditionally thought to be inert. We highlight the case of a patient who developed systemic dermatitis and implant failure after surgical placement of a titanium alloy (Ti6Al4V) plate in the left foot. The hardware was removed and the eruption cleared in the following weeks. The plate and screws were submitted for metal analysis. The elemental composition of both the plate and screws included 3 major elements-titanium, aluminum, and vanadium-as well as trace elements. Metal analysis revealed that the plate and screws had different microstructures, and electrochemical studies demonstrated that galvanic corrosion could have occurred between the plate and screws due to their different microstructures, contributing to the release of vanadium in vivo. The patient was patch tested with several metals including components of the implant and had a positive patch test reaction only to vanadium trichloride. These findings support a diagnosis of vanadium allergy and suggests that clinicians should consider including vanadium when patch testing patients with a suspected allergic reaction to vanadium-containing implants.

  17. A novel method of reducing agent contacting pattern for metal ceramic composite membrane fabrication

    NASA Astrophysics Data System (ADS)

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-11-01

    Deliberating upon process modifications for surfactant induced electroless plating (SIEP), this article highlights the plating bath performance characteristics for two distinct reducing agent contacting modes (bulk and drop wise). Eventually, the effect of reducing agent concentration (50, 100, 200% excess) suitable for electroless plating bath for a nickel concentration of 0.08 mol/L was investigated. Finally, the compatibility of variation in nickel concentration (0.08-0.24 mol/L) with respect to variation in reducing agent concentration (50, 100, 200% excess) was investigated. LPSA, BET, FTIR, XRD, FESEM and nitrogen permeation experiments were used for surface and physical characterization. It was observed that for the bulk addition of reducing agent, the PPD values were 84.5% which increased to 89.3% for dropwise addition case. Thus the optimal combinations of SIEP process parameters were identified as 0.08 mol/L of nickel metal solution concentration with 100% excess drop-wise reducing agent. These conditions provided a plating rate of 5.5 × 10-5 mol/m2 s, PPD of 89.3% and a metal film thickness of 15.7 μm respectively after 12 h of sequential plating.

  18. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process.

    PubMed

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-12-12

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  19. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM) Process

    PubMed Central

    Shin, Kwangho; Heo, Youngmoo; Park, Hyungpil; Chang, Sungho; Rhee, Byungohk

    2013-01-01

    In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM) process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE) simulation. PE (high density polyethylene (HDPE) and low density polyethylene (LDPE)) and polypropylene (PP) resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made. PMID:28788427

  20. Externally Calibrated Parallel Imaging for 3D Multispectral Imaging Near Metallic Implants Using Broadband Ultrashort Echo Time Imaging

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.

    2017-01-01

    Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613

  1. Magnesium Technology and Manufacturing for Ultra Lightweight Armored Ground Vehicles

    DTIC Science & Technology

    2009-02-01

    different metals and equal areal densities. Metal Plate Thickness, in Plate Stiffness, E6 lb/in RHA (Steel Armor) 0.245 0.08 Ti- 6Al - 4V 0.434 0.28...metal at a density of 1.74 g/cm3 that is approximately 1/5, 2/5, and 2/3 the weight of iron, titanium , and aluminum, respectively (Emley, 1966...al iz ed D en si ty Figure 1. Normalized densities comparison of magnesium alloys with 4340 steel and titanium alloy. Both Elektron WE43 and

  2. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  3. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  4. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less

  5. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  6. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  7. CALUTRON RECEIVER

    DOEpatents

    York, H.F.

    1959-07-01

    A receiver construction is presented for calutrons having two or more ion sources and an individual receiver unit for each source. Design requirements dictate that the face plate defining the receiver entrance slots be placed at an angle to the approaching beam, which means that ions striking the face plate are likely to be scattcred into the entrance slots of other receivers. According to the present invention, the face plate has a surface provided with parallel ridges so disposed that one side only of each ridge's exposed directly to the ion beam. The scattered ions are directed away from adjacent receivers by the ridges on the lace plate.

  8. Absorption of metals in mulloway (Argyrosomus japonicus) after ingesting nickel-plated carbon-steel hooks.

    PubMed

    McGrath, Shane P; Reichelt-Brushett, Amanda J; Butcher, Paul A; Cairns, Stuart C

    2014-08-01

    Previous research has alluded to the potential of metals being absorbed by fish after ingesting fishing hooks, which may have adverse effects on fish health and the organisms that consume them. Subsequently, this study aimed to quantify the potential of mulloway (Argyrosomus japonicus) to absorb metals during the decay of ingested nickel-plated carbon-steel hooks. Twenty-five treatment fish were allowed to ingest nickel-plated carbon-steel hooks during angling and then monitored with 25 controls (untreated fish) for up to 42 days for hook ejection and mortality. Blood, liver and muscle samples were collected from treatment, control and 14 wild-caught individuals to determine the concentrations of chromium, cobalt, copper, iron, manganese and nickel. The results showed that increased oxidation influenced hook ejection, and that hook-ingested fish had significantly elevated concentrations of nickel in their liver and blood, but not muscle. This research has shown that there is an avenue for metal absorption from ingested hooks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  10. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  11. Electroconvulsive therapy in patients with skull defects or metallic implants: a review of the literature and case report.

    PubMed

    Amanullah, Shabbir; Delva, Nicholas; McRae, Harold; Campbell, Laura A; Cole, Julie

    2012-01-01

    Head injury is often associated with psychiatric morbidity. While it is well understood that the loss of critical areas of the brain may play a role in cognitive dysfunction and change in personality, head injury can also have profound effects on mood and cognition. The role of medications in the treatment of mood disorders associated with brain injury is well documented, and there is also evidence favoring the use of electroconvulsive therapy (ECT) in this context. However, data are limited on the use of ECT in patients with skull defects or metallic head implants. First, a review of the literature on use of ECT in patients with metallic head implants is provided. Electronic databases and online sites, including PubMed, Cochrane Library of Systematic Reviews, and UpToDate, were used to search for relevant articles and case reports on the use of ECT in patients with and without metallic implants in the head (1964 to 2009). The search terms electroconvulsive, electroconvulsive therapy, ECT, electroshock therapy, EST, head injury, brain injury, metallic plates, metallic implants, skull prosthesis, and depression were used interchangeably. The search produced 7 articles discussing exclusively the use of ECT in patients with a metallic skull plate. Second, the case of the successful and safe use of ECT in an individual with a previous history of brain trauma and metallic plate implantation is described. Most cases of head injury are managed by neurologists and rehabilitation consultants; the more severe cases of depression and other mood disorders tend to be referred for specialist psychiatric care. With greater degrees of deficit following head injury, management becomes more complicated. Our patient showed positive results with ECT, including improvement in depressive features and resolution of suicidal ideas/plans. ECT is an effective and safe alternative in patients with a history of brain trauma and metallic plate implantation who subsequently develop treatment-resistant depression and associated suicidal ideas or plans refractory to management with medications.

  12. Nuclear reactor I

    DOEpatents

    Ference, Edward W.; Houtman, John L.; Waldby, Robert N.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.

  13. An experimental study of an explosively driven flat plate launcher

    NASA Astrophysics Data System (ADS)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  14. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  15. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  16. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  17. 49 CFR 179.220-7 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... Minimum tensile strength (p.s.i.) welded condition 1 Minimum elongation in 2 inches (percent) weld metal...

  18. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting

    USGS Publications Warehouse

    Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.

    2005-01-01

    Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.

  19. Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Smrekar, S. E.

    2016-12-01

    We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.

  20. Transient response of a laminated composite plate

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Ju, T. H.; Bratton, R. L.; Shah, A. H.

    1992-01-01

    Results are presented from an investigation of the effect of layering on transient wave propagation in a laminated cross-ply plate, giving attention to the case of 2D plane strain in the case where a line vertical force is applied on a free surface of the plate; the line may be either parallel or perpendicular to the fibers in a ply. The results are in both the time and frequency domains for the normal stress component in the x direction, at a point on the surface of the plate on which the force is applied. Comparative results are also presented for a homogeneous plate whose properties are the static effective ones, when the number of plies is large.

  1. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  2. High-density convergent plasma sputtering device for a liquid metal target using an unheated glass plate

    NASA Astrophysics Data System (ADS)

    Motomura, T.; Tabaru, T.

    2018-06-01

    A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.

  3. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  4. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  5. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  6. Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...

  7. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  8. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  9. Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film

    NASA Astrophysics Data System (ADS)

    Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François

    2011-10-01

    CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.

  10. Strong texturing of lithium metal in batteries

    DOE PAGES

    Shi, Feifei; Pei, Allen; Vailionis, Arturas; ...

    2017-10-30

    Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less

  11. Strong texturing of lithium metal in batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Feifei; Pei, Allen; Vailionis, Arturas

    Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type ofmore » additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO 3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. In conclusion, this understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.« less

  12. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    NASA Astrophysics Data System (ADS)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  13. Surface texturing of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Sovey, J. S. (Inventor)

    1982-01-01

    A method is disclosed for improving surface texture for adhesive bonding, metal bonding, substrate plating, decal substrate preparation, and biomedical implant applications. The surface to be bonded is dusted in a controlled fashion to produce a disbursed layer of fine mesh particles which serve as masks. The surface texture is produced by impinging gas ions on the masked surface. The textured surface takes the form of pillars or cones. The bonding material, such as a liquid epoxy, flows between the pillars which results in a bond having increased strength. For bonding metals a thin film of metal is vapor or sputter deposited onto the textured surface. Electroplating or electroless plating is then used to increase the metal thickness in the desired amount.

  14. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  15. 78 FR 58518 - Notification of Proposed Production Activity; Benteler Automotive Corporation (Automotive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    .... On its domestic sales, Benteler would be able to choose the duty rate during customs entry procedures...: Metal stampings (crash cans, reinforcement plates, flange plates); bumper beams; toe hooks; cross member shells; side tubes; steel blanks; brackets; gussets; closing plates; castings of aluminum; flat-rolled...

  16. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  17. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  18. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  19. 46 CFR 57.06-3 - Method of performing production testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 57.06-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING WELDING... attached test plates, the weld metal shall be deposited in the test plate welding groove continuously with... inspector may permit the use of separate test plates, provided the same welding process, procedure, and...

  20. Effect of Moisture Cycling on Mechanical Response of Metal-Plate Connector Joints With and Without an Adhesive Interface

    Treesearch

    Leslie H. Groom

    1995-01-01

    Wood trusses are frequently located in light-frame structures where they are subjected to significant shifts in moisture conditions. However, little is known about the effects of moisture cycling of the wood members on the mechanical behavior of metal-plate connector (MPC) joints. Thus, the primary objective of this study was to quantify the effect of wood moisture...

  1. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  2. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  3. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  4. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  5. No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996

    USGS Publications Warehouse

    Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.

    1999-01-01

    Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.

  6. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-05-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  7. Effect of the Crevice Former on the Corrosion Behavior of 316L Stainless Steel in Chloride-Containing Synthetic Tap Water

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Lee, Ji-Hoon; Kim, Jung-Gu; Kim, Woo-Cheol

    2018-03-01

    To restrain the failure of the plate heat exchanger (PHE) in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of the 316L stainless steel plate was investigated using electrochemical methods and surface analyses in chloride-containing synthetic tap water (60 °C). The localized corrosion under metal-metal crevice condition was initiated more easily than that under the metal-gasket crevice condition due to the restricted mass transport at the gasket crevice mouth. However, the anodic current under the metal-metal crevice condition was lower than that under metal-gasket crevice condition at a higher anodic potential, indicating that that the metal dissolution under EPDM crevice would be higher than that under metal crevice under the accelerated corrosion condition. Because narrow crevice gap that was formed under gasket accelerated the anodic dissolution at the crevice mouth, the perforation tendency under metal-gasket crevice condition is much higher than that under metal-metal crevice condition. As a result, the crevice geometry, especially the crevice gap, mainly affected the corrosion behavior of PHE material.

  8. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    PubMed Central

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  9. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    PubMed

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  10. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  11. Using analog instruments in Tracker video-based experiments to understand the phenomena of electricity and magnetism in physics education

    NASA Astrophysics Data System (ADS)

    Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo

    2018-05-01

    Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.

  12. Conformal Electroless Nickel Plating on Silicon Wafers, Convex and Concave Pyramids, and Ultralong Nanowires.

    PubMed

    Gill, Thomas Mark; Zhao, Jiheng; Berenschot, Erwin J W; Tas, Niels; Zheng, Xiaolin

    2018-06-25

    Nickel (Ni) plating has garnered great commercial interest, as it provides excellent hardness, corrosion resistance, and electrical conductivity. Though Ni plating on conducting substrates is commonly employed via electrodeposition, plating on semiconductors and insulators often necessitates electroless approaches. Corresponding plating theory for deposition on planar substrates was developed as early as 1946, but for substrates with micro- and nanoscale features, very little is known of the relationships between plating conditions, Ni deposition quality, and substrate morphology. Herein, we describe the general theory and mechanisms of electroless Ni deposition on semiconducting silicon (Si) substrates, detailing plating bath failures and establishing relationships between critical plating bath parameters and the deposited Ni film quality. Through this theory, we develop two different plating recipes: galvanic displacement (GD) and autocatalytic deposition (ACD). Neither recipe requires pretreatment of the Si substrate, and both methods are capable of depositing uniform Ni films on planar Si substrates and convex Si pyramids. In comparison, ACD has better tunability than GD, and it provides a more conformal Ni coating on complex and high-aspect-ratio Si structures, such as inverse fractal Si pyramids and ultralong Si nanowires. Our methodology and theoretical analyses can be leveraged to develop electroless plating processes for other metals and metal alloys and to generally provide direction for the adaptation of electroless deposition to modern applications.

  13. Application of coordinate transform on ball plate calibration

    NASA Astrophysics Data System (ADS)

    Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei

    2015-02-01

    For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.

  14. Externally calibrated parallel imaging for 3D multispectral imaging near metallic implants using broadband ultrashort echo time imaging.

    PubMed

    Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B

    2017-06-01

    To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  16. Flows, strains, and the formation of joints in oblique collision of metal plates

    NASA Astrophysics Data System (ADS)

    Shtertser, A. A.; Zlobin, B. S.

    2015-09-01

    The processes of high-velocity oblique collision of metal plates which lead to the formation of their joints (seizure) are considered. It is found that the cleaning of the plate surface necessary for seizure results from a jet flow (particle stream), whose source is at least one of the welded materials or an interlayer of ductile material located in the initial region of collision. It is shown that additional cleaning may occur due to the emergence of rotating microregions in intense gradient flows localized in the joint area; seizure on cleaned surfaces is due to reduction of the surface energy of the system.

  17. Migration of copper and some other metals from copper tableware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, H.; Inoue, T.; Yoshihira, K.

    Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.

  18. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  19. Efficacy of reducing agent and surfactant contacting pattern on the performance characteristics of nickel electroless plating baths coupled with and without ultrasound.

    PubMed

    Agarwal, Amrita; Pujari, Murali; Uppaluri, Ramgopal; Verma, Anil

    2014-07-01

    This article addresses furthering the role of sonication for the optimal fabrication of nickel ceramic composite membranes using electroless plating. Deliberating upon process modifications for surfactant induced electroless plating (SIEP) and combined surfactant and sonication induced electroless plating (SSOEP), this article highlights a novel method of contacting of the reducing agent and surfactant to the conventional electroless nickel plating baths. Rigorous experimental investigations indicated that the combination of ultrasound (in degas mode), surfactant and reducing agent pattern had a profound influence in altering the combinatorial plating characteristics. For comparison purpose, purely surfactant induced nickel ELP baths have also been investigated. These novel insights consolidate newer research horizons for the role of ultrasound to achieve dense metal ceramic composite membranes in a shorter span of total plating time. Surface and physical characterizations were carried out using BET, FTIR, XRD, FESEM and nitrogen permeation experiments. It has been analyzed that the SSOEP baths provided maximum ratio of percent pore densification per unit metal film thickness (PPDδ) and hold the key for further fine tuning of the associated degrees of freedom. On the other hand SIEP baths provided lower (PPDδ) ratio but higher PPD. For SSOEP baths with dropwise reducing agent and bulk surfactant, the PPD and metal film thickness values were 73.4% and 8.4 μm which varied to 66.9% and 13.3 μm for dropwise reducing agent and drop surfactant case. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. 40 CFR 413.71 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deposition of conductive material from an autocatalytic plating solution without application of electrical current. (c) The term operation shall mean any step in the electroless plating process in which a metal is...

  1. Assessment of the Biomechanical Performance of 5 Plating Techniques in Fixation of Mandibular Subcondylar Fracture Using Finite Element Analysis.

    PubMed

    Darwich, Mhd Ayham; Albogha, Mhd Hassan; Abdelmajeed, Adnan; Darwich, Khaldoun

    2016-04-01

    The aim of this study was to compare the performances of 5 plating techniques for fixation of unilateral mandibular subcondylar fracture. Five titanium plating techniques for fixation of condylar fracture were analyzed using the finite element method. The modeled techniques were 1) 1 straight plate, 2) 2 parallel straight plates, 3) 2 angulated straight plates, 4) 1 trapezoidal plate, and 5) 1 square plate. Three-dimensional models were generated using patient-specific geometry for the mandible obtained from a computerized tomographic image of a healthy living man. Plates were designed and combined with the mandible and analyzed under a 500-N load. The single straight plate presented the most inferior performance; it presented maximum displacement and strain on cortical bone. The trapezoidal plate induced the least amount of strain on cortical bone and was best at resisting displacement. The trapezoidal plate is recommended for fixation of subcondylar fracture. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  3. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    PubMed

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate

    NASA Technical Reports Server (NTRS)

    Gold, R. E.; Kesterson, R. L.

    1973-01-01

    Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.

  5. Total Internal Reflection Ultrasonic Sensor for Detection of Subsurface Flaws: Research into Underlying Physics

    DTIC Science & Technology

    2014-11-24

    layere, which was a thin plate bonded to a solid block of fused quartz. The plate was also made of fused quartz so the entire “assembly” may be... thin plate and a block of fused quartz. Residues of the lacquer Quartz plate Metal strip Epoxy layer Block of quartz Fig. 2.4.4. Specimen...depth therefore it was made as a combination of two pieces of fused quartz, a block and a thin plate , and a foreign inclusion between them. The plate was

  6. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  7. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  8. Fiber optic to integrated optical chip coupler

    NASA Technical Reports Server (NTRS)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  9. Dynamic Pressure Induced Transformation Toughening and Strengthening in Bulk Metallic Glasses

    DTIC Science & Technology

    2013-11-01

    involved impact of 303 stainless steel flyer-plate on 303 stainless steel sample holder containing two BMGMC samples, at varying velocities. The Hugoniot...Technology. An aluminum sabot was used as the projectile with 303 Stainless Steel (SS) flyer plate to impact the DV1 bulk metallic glass composite. As...crystallization; polyamorphism; shear banding; high- strain -rate deformation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  10. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  11. Electric alignment of plate shaped clay aggregates in oils

    NASA Astrophysics Data System (ADS)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  12. Process for protecting bonded components from plating shorts

    DOEpatents

    Tarte, Lisa A.; Bonde, Wayne L.; Carey, Paul G.; Contolini, Robert J.; McCarthy, Anthony M.

    2000-01-01

    A method which protects the region between a component and the substrate onto which the components is bonded using an electrically insulating fillet of photoresist. The fillet protects the regions from subsequent plating with metal and therefore shorting the plated conductors which run down the sides of the component and onto the substrate.

  13. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  14. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  15. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  16. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Bearing plates used directly against the mine roof shall be at least 6 inches square or the equivalent... or the equivalent may be used. (3) Bearing plates used with wood or metal materials shall be at least 4 inches square or the equivalent. (4) Wooden materials that are used between a bearing plate and...

  17. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel the Aleutian Trench from the Gulf of Alaska to the Rat Islands.

  18. Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates.

    PubMed

    Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi

    2004-05-01

    Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.

  19. A translation micromirror with large quasi-static displacement and high surface quality

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; He, Siyuan

    2017-01-01

    A large displacement with high surface quality translation micromirror is presented. The micromirror consists of a magnetic actuator and a mirror plate. The actuator and the mirror plate are fabricated separately using two processes and then bonded together. The actuator consists of a moving film which is a 20 µm thick nickel film fabricated by MetalMUMPs and a solenoid located underneath the moving film. The moving film is designed to curve up through the residual stress gradient in the nickel film and a curve-up mechanism which includes four trapezoidal plates and anchoring springs. The mirror plate is simply diced from a polished silicon wafer and coated with a metal thin film. The mirror plate is bonded onto the central ring of the moving film. A solenoid attracts the moving film along with the mirror plate downwards to realize translation. A quasi-static displacement of 123 µm is achieved at a driving current of 400 mA. A high mirror surface quality is realized, e.g. 15.6 m of curvature radius and 2 nm surface roughness.

  20. Experimental and theoretical study of the buckling of narrow thin plates on an elastic foundation under compression

    NASA Astrophysics Data System (ADS)

    Kurguzov, V. D.; Demeshkin, A. G.

    2016-05-01

    The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate-substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.

  1. Method of making a quartz resonator

    DOEpatents

    Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.

    1981-01-01

    A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.

  2. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  3. Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Narayanan, P. Ramesh; Sharma, S. C.

    2016-04-01

    AA2219 aluminum alloy plate (T87) and ring (T851) were joined by tungsten inert gas (TIG) welding using multi-pass welding. The mechanical properties and stress corrosion cracking (SCC) resistance of the above base metals (BMs) in different directions (L, LT, and ST) were examined. Similarly, the weld metal joined by plate to plate and plate to ring (PR) joints was evaluated. The results revealed that the mechanical properties of the ring were comparatively lower than the plate. This was found to be due to the extremely coarse grain size of the ring along with severe Cu-rich segregation along the grain boundaries when compared to the plate material. The SCC resistance of the base and weldments were found to be good and not susceptible to SCC. This was shown to be due to high values of SCC index (>0.9) and the typical ductile cracking morphology of the BM and the weld joints after SCC test in the environment (3.5 wt pct NaCl) when compared to test performed in the control environment (air). However, the corrosion resistance of the weld interface between the FZ and ring was inferior to the FZ-plate interface.

  4. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, R.S.

    1986-05-02

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  5. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, Robert S.

    1987-01-01

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  6. Salinity transfer in double diffusive convection bounded by two parallel plates

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; van der Poel, Erwin P.; Ostilla-Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef

    2014-11-01

    The double diffusive convection (DDC) is the convection flow with the fluid density affected by two different components. In this study we numerically investigate DDC between two parallel plates with no-slip boundary conditions. The top plate has higher salinity and temperature than the lower one. Thus the flow is driven by the salinity difference and stabilised by the temperature difference. Our simulations are compared with the experiments by Hage and Tilgner (Phys. Fluids 22, 076603 (2010)) for several sets of parameters. Reasonable agreement is achieved for the salinity flux and its dependence on the salinity Rayleigh number. For all parameters considered, salt fingers emerge and extend through the entire domain height. The thermal Rayleigh number shows minor influence on the salinity flux although it does affect the Reynolds number. We apply the Grossmann-Lohse theory for Rayleigh-Bénard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux with respect to the scaling for both the numerical and experimental results.

  7. Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.

  8. Comparison of joint designs for laser welding of cast metal plates and wrought wires.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2013-01-01

    The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.

  9. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  10. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  11. Development of Geometry Normalized Electromagnetic System (GNES) instrument for metal defect detection

    NASA Astrophysics Data System (ADS)

    Zakaria, Zakaria; Surbakti, Muhammad Syukri; Syahreza, Saumi; Mat Jafri, Mohd. Zubir; Tan, Kok Chooi

    2017-10-01

    It has been already made, calibrated and tested a geometry normalized electromagnetic system (GNES) for metal defect examination. The GNES has an automatic data acquisition system which supporting the efficiency and accuracy of the measurement. The data will be displayed on the computer monitor as a graphic display then saved automatically in the Microsoft Excel format. The transmitter will transmit the frequency pair (FP) signals i.e. 112.5 Hz and 337.5 Hz; 112.5 Hz and 1012.5 Hz; 112.5 Hz and 3037.5 Hz; 337.5 Hz and 1012.5 Hz; 337.5 Hz and 3037.5 Hz. Simultaneous transmissions of two electromagnetic waves without distortions by the transmitter will induce an eddy current in the metal. This current, in turn, will produce secondary electromagnetic fields which are measured by the receiver together with the primary fields. Measurement of percent change of a vertical component of the fields will give the percent response caused by the metal or the defect. The response examinations were performed by the models with various type of defect for the master curves. The materials of samples as a plate were using Aluminum, Brass, and Copper. The more of the defects is the more reduction of the eddy current response. The defect contrasts were tended to decrease when the more depth of the defect position. The magnitude and phase of the eddy currents will affect the loading on the coil thus its impedance. The defect must interrupt the surface eddy current flow to be detected. Defect lying parallel to the current path will not cause any significant interruption and may not be detected. The main factors which affect the eddy current response are metal conductivity, permeability, frequency, and geometry.

  12. 78 FR 9676 - Clad Steel Plate From Japan: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... hot-rolling of the cladding metal to ensure efficient welding to the basic metal; any other method of... welding (e.g., electrocladding), in which the cladding metal (nickel, chromium, etc.) is applied to the...

  13. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.

  14. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    PubMed

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  15. Benzene contamination at a metal plating facility

    NASA Astrophysics Data System (ADS)

    Memon, B. A.; Burston, M. R.

    2005-08-01

    A metal plating facility in central Kentucky was required to complete a RCRA Facility Investigation to address a number of Solid Waste Management Units at the site. Twenty monitoring wells were installed at the facility. Ground water from the wells was sampled for total and dissolved metals, polychlorinated biphenyls, acid extractable compounds, base neutral compounds, and volatile organic compounds. Unexpectedly, relatively large concentrations of benzene, up to 120 μg/l, were detected in samples from some of the wells, including wells that should have been hydraulically upgradient from the facility. As a result of the detection of benzene, the facility completed an investigation to identify the source. A nearby facility had completed a gasoline underground storage tank (UST) closure at about the time of the installation of the 20 wells. Reportedly the UST had small holes when removed. Three potential pathways of migration (a ditch, sanitary sewer, and a sink hole) from the nearby facility to the metal-plating facility and residual soils with very large concentrations of benzene, toluene, ethylbenzene, and xylenes have been identified.

  16. Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles

    NASA Astrophysics Data System (ADS)

    Tu, Y.; You, C.

    2010-12-01

    Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.

  17. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software.

    PubMed

    Lee, Young Han; Park, Kwan Kyu; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck

    2012-06-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. • Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). • Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution • GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. • However image quality is influenced by the prosthesis composition and other parameters. • We should be aware about potential overcorrection when using GSI-MARs.

  18. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.

    PubMed

    Mendis, Rajind; Mittleman, Daniel M

    2009-08-17

    We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America

  19. Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters

    PubMed Central

    Lewis, Gregory S.; Hering, Susanne V.

    2013-01-01

    Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507

  20. Unsteady MHD blood flow through porous medium in a parallel plate channel

    NASA Astrophysics Data System (ADS)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.

Top