Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode
NASA Astrophysics Data System (ADS)
Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.
2018-01-01
The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.
Coupling between structure and liquids in a parallel stage space shuttle design
NASA Technical Reports Server (NTRS)
Kana, D. D.; Ko, W. L.; Francis, P. H.; Nagy, A.
1972-01-01
A study was conducted to determine the influence of liquid propellants on the dynamic loads for space shuttle vehicles. A parallel-stage configuration model was designed and tested to determine the influence of liquid propellants on coupled natural modes. A forty degree-of-freedom analytical model was also developed for predicting these modes. Currently available analytical models were used to represent the liquid contributions, even though coupled longitudinal and lateral motions are present in such a complex structure. Agreement between the results was found in the lower few modes.
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui
2018-02-01
Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.
Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y.; Xiong, Y. Y.; Chen, S. Y., E-mail: sychen531@163.com
2016-04-15
The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognizedmore » as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.« less
Parallel computation of transverse wakes in linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Xiaowei; Ko, Kwok
1996-11-01
SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DSmore » on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.« less
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
The binding modes of carbazole derivatives with telomere G-quadruplex
NASA Astrophysics Data System (ADS)
Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin
2010-10-01
It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.
NASA Astrophysics Data System (ADS)
Mal, Priyanath; Bera, G.; Turpu, G. R.; Srivastava, Sunil K.; Das, Pradip
2018-05-01
We present a study of structural and vibrational properties of topological insulator GeBi4Te7. Modified Bridgeman technique is employed to synthesize the single crystal with relatively large crystalline faces. Sharp (0 0 l) reflection confirms the high crystallinity of the single crystal. We have performed temperature dependent Raman measurement for both parallel and perpendicular to crystallographic c axis geometry. In parallel configuration we have observed seven Raman modes whereas in perpendicular geometry only four of these are identified. Appearance and disappearance of Raman modes having different intensities for parallel and perpendicular to c measurement attribute to the mode polarization. Progressive blue shift is observed with lowering temperature, reflects the increase in internal stress.
NASA Technical Reports Server (NTRS)
Lee, Jeh Won
1990-01-01
The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.
ITG modes in the presence of inhomogeneous field-aligned flow
NASA Astrophysics Data System (ADS)
Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.
2010-02-01
In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang
2018-02-01
We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.
Parallel processor for real-time structural control
NASA Astrophysics Data System (ADS)
Tise, Bert L.
1993-07-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-to-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection to host computer, parallelizing code generator, and look- up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating- point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An OpenWindows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.
NASA Astrophysics Data System (ADS)
Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander
2017-04-01
Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the possibility to perform cross-validation at the level of some grouping structure. As an example, in remote sensing of agricultural land uses, pixels from the same field contain nearly identical information and will thus be jointly placed in either the test set or the training set. Other spatial sampling resampling strategies are already available and can be extended by the user.
NASA Astrophysics Data System (ADS)
Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui
2017-12-01
This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.
Parallel processor for real-time structural control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tise, B.L.
1992-01-01
A parallel processor that is optimized for real-time linear control has been developed. This modular system consists of A/D modules, D/A modules, and floating-point processor modules. The scalable processor uses up to 1,000 Motorola DSP96002 floating-point processors for a peak computational rate of 60 GFLOPS. Sampling rates up to 625 kHz are supported by this analog-in to analog-out controller. The high processing rate and parallel architecture make this processor suitable for computing state-space equations and other multiply/accumulate-intensive digital filters. Processor features include 14-bit conversion devices, low input-output latency, 240 Mbyte/s synchronous backplane bus, low-skew clock distribution circuit, VME connection tomore » host computer, parallelizing code generator, and look-up-tables for actuator linearization. This processor was designed primarily for experiments in structural control. The A/D modules sample sensors mounted on the structure and the floating-point processor modules compute the outputs using the programmed control equations. The outputs are sent through the D/A module to the power amps used to drive the structure's actuators. The host computer is a Sun workstation. An Open Windows-based control panel is provided to facilitate data transfer to and from the processor, as well as to control the operating mode of the processor. A diagnostic mode is provided to allow stimulation of the structure and acquisition of the structural response via sensor inputs.« less
NASA Astrophysics Data System (ADS)
Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md
2018-04-01
Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.
NASA Astrophysics Data System (ADS)
Zimovets, Artem; Matviychuk, Alexander; Ushakov, Vladimir
2016-12-01
The paper presents two different approaches to reduce the time of computer calculation of reachability sets. First of these two approaches use different data structures for storing the reachability sets in the computer memory for calculation in single-threaded mode. Second approach is based on using parallel algorithms with reference to the data structures from the first approach. Within the framework of this paper parallel algorithm of approximate reachability set calculation on computer with SMP-architecture is proposed. The results of numerical modelling are presented in the form of tables which demonstrate high efficiency of parallel computing technology and also show how computing time depends on the used data structure.
System Identification of an on Orbit Spacecraft’s Antenna Dynamics
2009-06-01
10 II. Background Information ...boxes denote the 20 modes of the flexible antenna structure, all of which are in parallel. The information for the modes (gain, natural frequency...thoughts and processes of the writer. Chapter 2 reviews what information is available for the various elements of signal analysis and system
Microelectromechanical dual-mass resonator structure
Dyck, Christopher W.; Allen, James J.; Huber, Robert J.
2002-01-01
A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.
Nonlinear ELM simulations based on a nonideal peeling–ballooning model using the BOUT++ code
Xu, X. Q.; Dudson, B. D.; Snyder, P. B.; ...
2011-09-23
A minimum set of equations based on the peeling–ballooning (P–B) model with nonideal physics effects (diamagnetic drift, E × B drift, resistivity and anomalous electron viscosity) is found to simulate pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge code BOUT. Linear simulations of P–B modes find good agreement in growth rate and mode structure with ELITE calculations. The influence of the E × B drift, diamagnetic drift, resistivity, anomalous electron viscosity, ion viscosity and parallel thermal diffusivity on P–B modes is being studied; we find that (1) the diamagnetic drift and Emore » × B drift stabilize the P–B mode in a manner consistent with theoretical expectations; (2) resistivity destabilizes the P–B mode, leading to resistive P–B mode; (3) anomalous electron and parallel ion viscosities destabilize the P–B mode, leading to a viscous P–B mode; (4) perpendicular ion viscosity and parallel thermal diffusivity stabilize the P–B mode. With addition of the anomalous electron viscosity under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region and the ELM size is about 5–10% of the pedestal stored energy. Furthermore, this is consistent with many observations of large ELMs. The estimated island size is consistent with the size of fast pedestal pressure collapse. In the stable α-zones of ideal P–B modes, nonlinear simulations of viscous ballooning modes or current-diffusive ballooning mode (CDBM) for ITER H-mode scenarios are presented.« less
NASA Astrophysics Data System (ADS)
Banerjee, Chandrima; Gruszecki, Pawel; Klos, Jaroslaw W.; Hellwig, Olav; Krawczyk, Maciej; Barman, Anjan
2017-07-01
By combining Brillouin light scattering and micromagnetic simulations, we studied the spin-wave (SW) dynamics of a Co/Pd thin film multilayer, which features a stripe domain structure at remanence. The periodic up and down domains are separated by corkscrew type domain walls. The existence of these domains causes a scattering of the otherwise bulk and surface SW modes, which form mode families, similar to a one-dimensional magnonic crystal. The dispersion relation and mode profiles of SWs are measured for the transferred wave vector parallel and perpendicular to the domain axis.
The influence of the self-consistent mode structure on the Coriolis pinch effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, A. G.; Camenen, Y.; Casson, F. J.
This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux inmore » the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity.« less
Particle beam and crabbing and deflecting structure
Delayen, Jean [Yorktown, VA
2011-02-08
A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.
NASA Astrophysics Data System (ADS)
Labombard, Brian
2013-10-01
A ``Mirror Langmuir Probe'' (MLP) diagnostic has been used to interrogate edge plasma profiles and turbulence in Alcator C-Mod with unprecedented detail, yielding fundamental insights on the Quasi-Coherent Mode (QCM) - a mode that regulates plasma density and impurities in EDA H-modes without ELMs. The MLP employs a fast-switching, self-adapting bias scheme, recording density, electron temperature and plasma potential simultaneously at high bandwidth (~1 MHz) on each of four separate electrodes on a scanning probe. Temporal dynamics are followed in detail; wavenumber-frequency spectra and phase relationships are readily deduced. Poloidal field fluctuations are recorded separately with a two-coil, scanning probe. Results from ohmic L-mode and H-mode plasmas are reported, including key observations of the QCM: The QCM lives in a region of positive radial electric field, with a mode width (~3 mm) that spans open and closed field line regions. Remarkably large amplitude (~30%), sinusoidal bursts in density, electron temperature and plasma potential fluctuations are observed that are in phase; potential lags density by at most 10 degrees. Propagation velocity of the mode corresponds to the sum of local E × B and electron diamagnetic drift velocities - quantities that are deduced directly from time-averaged profiles. Poloidal magnetic field fluctuations project to parallel current densities of ~5 amps/cm2 in the mode layer, with significant parallel electromagnetic induction. Electron force balance is examined, unambiguously identifying the mode type. It is found that fluctuations in parallel electron pressure gradient are roughly balanced by the sum of electrostatic and electromotive forces. Thus the primary mode structure of the QCM is that of a drift-Alfven wave. Work supported by US DoE award DE-FC02-99ER54512.
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.
2018-05-01
In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.
Robust manipulation of light using topologically protected plasmonic modes.
Liu, Chenxu; Gurudev Dutt, M V; Pekker, David
2018-02-05
We propose using a topological plasmonic crystal structure composed of an array of nearly parallel nanowires with unequal spacing for manipulating light. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. Using a full three-dimensional finite difference time domain solution of the Maxwell equations, we verify the existence of topological defect modes, with sub-wavelength localization, bound to domain walls of the plasmonic crystal. We show that by manipulating domain walls we can construct spatial mode filters that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are tolerant to fabrication errors with an inverse length-scale smaller than the topological band gap.
Radiative instabilities in sheared magnetic field
NASA Technical Reports Server (NTRS)
Drake, J. F.; Sparks, L.; Van Hoven, G.
1988-01-01
The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.
Efficient multitasking of Choleski matrix factorization on CRAY supercomputers
NASA Technical Reports Server (NTRS)
Overman, Andrea L.; Poole, Eugene L.
1991-01-01
A Choleski method is described and used to solve linear systems of equations that arise in large scale structural analysis. The method uses a novel variable-band storage scheme and is structured to exploit fast local memory caches while minimizing data access delays between main memory and vector registers. Several parallel implementations of this method are described for the CRAY-2 and CRAY Y-MP computers demonstrating the use of microtasking and autotasking directives. A portable parallel language, FORCE, is used for comparison with the microtasked and autotasked implementations. Results are presented comparing the matrix factorization times for three representative structural analysis problems from runs made in both dedicated and multi-user modes on both computers. CPU and wall clock timings are given for the parallel implementations and are compared to single processor timings of the same algorithm.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten
1994-01-01
We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.
NASA Technical Reports Server (NTRS)
Kouznetsov, Igor; Lotko, William
1995-01-01
The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the fast mode cutoff that exists at larger radial distances.
Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner
NASA Technical Reports Server (NTRS)
Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2017-01-01
The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.
Parallel computing techniques for rotorcraft aerodynamics
NASA Astrophysics Data System (ADS)
Ekici, Kivanc
The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).
NASA Astrophysics Data System (ADS)
Yan, Pen-Ji; Yao, Xiao-Qiang; Xie, Hua; Xiao, Guo-Bin; Liu, Jia-Cheng; Xu, Xin-Jian
2018-05-01
Two isomorphous metal-organic frameworks, {[M(TIPA) (btec)½]H2O}n, [M = Co (1) or Zn (2)] were synthesized hydrothermally based on a semi-rigid N-center triangular ligand TIPA, where TIPA = tris(4-(1H-imidazol-1-yl)-phenyl)amine, H4btec = 1,2,4,5-benzenetetracarboxylic acid. Single crystal structural analyses show that complexes 1 and 2 are isostructural and both feature a twofold interpenetrated pcu topology. In 1 and 2, the btec4- ligand adopting μ2-η2:η1 and μ1-η1:η0 coordination modes connect adjacent dinuclear Co/Zn units to form a 1D straight polymeric chain. Then these chains arranged in parallel/parallel fashion were further extended to a 3D network by exo-tridentate ligand TIPA with μ2-κ2N:N‧ coordination mode. The magnetic property of 1 and the luminescent property of 2 were investigated. Furthermore, the structure and spectroscopic property of 2 were further investigated by DFT and TD-DFT calculations.
Dual-point reflective refractometer based on parallel no-core fiber/FBG structure
NASA Astrophysics Data System (ADS)
Guo, Cuijuan; Niu, Panpan; Wang, Juan; Zhao, Junfa; Zhang, Cheng
2018-01-01
A novel dual-point reflective fiber-optic refractometer based on multimode interference (MMI) effect and fiber Bragg grating (FBG) reflection is proposed and experimentally demonstrated, which adopts parallel structure. Each point of the refractometer consists of a single mode-no core-single mode fiber (SNS) structure cascaded with a FBG. Assisted by the reflection of FBG, refractive index (RI) measurement can be achieved by monitoring the peak power variation of the reflected FBG spectrum. By selecting different length of the no core fiber and center wavelength of the FBG, independent dual-point refractometer is easily realized. Experiment results show that the refractometer has a nonlinear relationship between the surrounding refractive index (SRI) and the peak power of the reflected FBG spectrum in the RI range of 1.3330-1.4086. Linear relationship can be approximately obtained by dividing the measuring range into 1.3330-1.3611 and 1.3764-1.4086. In the RI range of 1.3764-1.4086, the two sensing points have higher RI sensitivities of 319.34 dB/RIU and 211.84 dB/RIU, respectively.
Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting
NASA Astrophysics Data System (ADS)
Pei, Yalu; Liu, Yilun; Zuo, Lei
2018-06-01
This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Ma, Zhiwei; Grinter, Sam Z; Zou, Xiaoqin
2017-03-01
Protein-protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water-mediated interactions are crucial to the formation of a protein-protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water-mediated interactions is introduced into our protein-protein docking method, MDockPP. Briefly, a FFT-based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential-based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein-protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein-ligand docking is employed for a parallel search for water molecules near the protein-protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28-29 and 31-35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high-accuracy, two medium-accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water-mediated interactions, we achieved models ranked as "excellent" in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424-434. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Spichty, Martin; Taly, Antoine; Hagn, Franz; Kessler, Horst; Barluenga, Sofia; Winssinger, Nicolas; Karplus, Martin
2009-01-01
We determine the binding mode of a macrocyclic radicicol-like oxime to yeast HSP90 by combining computer simulations and experimental measurements. We sample the macrocyclic scaffold of the unbound ligand by parallel tempering simulations and dock the most populated conformations to yeast HSP90. Docking poses are then evaluated by the use of binding free energy estimations with the linear interaction energy method. Comparison of QM/MM-calculated NMR chemical shifts with experimental shift data for a selective subset of back-bone 15N provides an additional evaluation criteria. As a last test we check the binding modes against available structure-activity-relationships. We find that the most likely binding mode of the oxime to yeast HSP90 is very similar to the known structure of the radicicol-HSP90 complex. PMID:19482409
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
Alternative parallel ring protocols
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.
1990-01-01
Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2012-01-01
A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.
NASA Astrophysics Data System (ADS)
Grzeszczuk, A.; Kowalski, S.
2015-04-01
Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by Nvidia for increase speed of graphics by usage of parallel mode for processes calculation. The success of this solution has opened technology General-Purpose Graphic Processor Units (GPGPUs) for applications not coupled with graphics. The GPGPUs system can be applying as effective tool for reducing huge number of data for pulse shape analysis measures, by on-line recalculation or by very quick system of compression. The simplified structure of CUDA system and model of programming based on example Nvidia GForce GTX580 card are presented by our poster contribution in stand-alone version and as ROOT application.
Model-Based Systems Engineering in the Execution of Search and Rescue Operations
2015-09-01
OSC can fulfill the duties of an ACO but it may make sense to split the duties if there are no communication links between the OSC and participating...parallel mode. This mode is the most powerful option because it 35 creates sequence diagrams that generate parallel “ swim lanes” for each asset...greater flexibility is desired, sequence mode generates diagrams based purely on sequential action and activity diagrams without the parallel “ swim lanes
NASA Astrophysics Data System (ADS)
Fujioka, J.; Horiuchi, S.; Kida, N.; Shimano, R.; Tokura, Y.
2009-09-01
We have investigated the polarization π -molecular skeleton coupled dynamics for the proton-displacive organic ferroelectrics, cocrystal of phenazine with the 2,5-dihalo-3,6-dihydroxy-p-benzoquinones by measurements of the terahertz/infrared spectroscopy. In the course of the ferroelectric-to-paraelectric transition, the ferroelectric soft phonon mode originating from the intermolecular dynamical displacement is observed in the imaginary part of dielectric spectra γ2 , when the electric field of the light (E) is parallel to the spontaneous polarization (P) . The soft phonon mode is isolated from the intramolecular vibrational mode and hence the intramolecular skeleton dynamics is almost decoupled from the polarization fluctuation. In the spectra for E parallel to the hydrogen-bonded supramolecular chain, by contrast, the vibrational mode mainly originating from the oxygen atom motion within the π -molecular plane is anomalously blurred and amalgamated into the polarization relaxation mode concomitantly with the dynamical proton disorder. This indicates that the dynamical disorder of the intramolecular skeleton structure, specifically that of oxygen atom, is strongly enhanced by the proton fluctuation and is significantly coupled to the polarization fluctuation along the hydrogen-bonded supramolecular chain. The results are discussed in terms of the proton-mediated anisotropic polarization π -molecular skeleton interaction, which characterizes these emerging proton-displacive ferroelectrics.
NASA Astrophysics Data System (ADS)
Dalal, Shubho; Lohar, Debasish; Sarkar, Sumana; Sadhukhan, Indrajit; Debnath, Gokul Chandra
2012-03-01
Premonsoon thunderstorms, locally known as Nor'westers, were studied over the eastern part of India using routine observations and data acquired from STORM (Severe Thunderstorm Observation and Regional Modelling) program during the premonsoon season, i.e., March through May, of 2006-08. Doppler radar image analysis reveals that premonsoon convective activities on many occasions may be described as squall-type linear Mesoscale Convective Systems (MCSs) which are composed of three common organizational modes viz. Trailing Stratiform (TS), Leading Stratiform (LS) and Parallel Stratiform (PS). The most dominant and common mode of organization, in terms of frequency of occurrences, duration, mean speed and inter-conversion among the different modes, is the TS, contributing about 65% of the cases while LS and PS contribute only about 15% and 20% respectively. Examination of pre-storm environments indicates that line-perpendicular and line-parallel storm-relative winds possibly determine the modes of organization. Case studies, one from each class, were also carried out and the observed structures were found to be similar to that observed in warmer mid-latitudes with certain exceptions. Unlike mid-latitude MCSs, convective cells during the premonsoon season initiate over the region with the support of weak synoptic setting and in course of time, organize themselves to become an MCS under favorable mesoscale convective environment. However they are short-lived irrespective of the modes of organization.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide-stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm that the structure can provide broadband suppression of more than 56dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide- stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm the structure can provide broadband suppression, more than 56 dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Ryu, Stephen I.; Shenoy, Krishna V.; Cunningham, John P.; Churchland, Mark M.
2016-01-01
Cortical firing rates frequently display elaborate and heterogeneous temporal structure. One often wishes to compute quantitative summaries of such structure—a basic example is the frequency spectrum—and compare with model-based predictions. The advent of large-scale population recordings affords the opportunity to do so in new ways, with the hope of distinguishing between potential explanations for why responses vary with time. We introduce a method that assesses a basic but previously unexplored form of population-level structure: when data contain responses across multiple neurons, conditions, and times, they are naturally expressed as a third-order tensor. We examined tensor structure for multiple datasets from primary visual cortex (V1) and primary motor cortex (M1). All V1 datasets were ‘simplest’ (there were relatively few degrees of freedom) along the neuron mode, while all M1 datasets were simplest along the condition mode. These differences could not be inferred from surface-level response features. Formal considerations suggest why tensor structure might differ across modes. For idealized linear models, structure is simplest across the neuron mode when responses reflect external variables, and simplest across the condition mode when responses reflect population dynamics. This same pattern was present for existing models that seek to explain motor cortex responses. Critically, only dynamical models displayed tensor structure that agreed with the empirical M1 data. These results illustrate that tensor structure is a basic feature of the data. For M1 the tensor structure was compatible with only a subset of existing models. PMID:27814353
Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.
Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo
2012-12-13
Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.
Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism
NASA Astrophysics Data System (ADS)
Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin
2015-01-01
The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.
Peng, Wei; Crouse, Julia
2013-06-01
Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.
RFQ device for accelerating particles
Shepard, Kenneth W.; Delayen, Jean R.
1995-01-01
A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.
EIT in resonator chains: similarities and differences with atomic media
NASA Technical Reports Server (NTRS)
Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.
2004-01-01
We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.
NASA Technical Reports Server (NTRS)
Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.
1985-01-01
The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.
Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
2005-10-01
The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less
de Vreede, Gert-Jan; Briggs, Robert O; Reiter-Palmon, Roni
2010-04-01
The aim of this study was to compare the results of two different modes of using multiple groups (instead of one large group) to identify problems and develop solutions. Many of the complex problems facing organizations today require the use of very large groups or collaborations of groups from multiple organizations. There are many logistical problems associated with the use of such large groups, including the ability to bring everyone together at the same time and location. A field study involved two different organizations and compared productivity and satisfaction of group. The approaches included (a) multiple small groups, each completing the entire process from start to end and combining the results at the end (parallel mode); and (b) multiple subgroups, each building on the work provided by previous subgroups (serial mode). Groups using the serial mode produced more elaborations compared with parallel groups, whereas parallel groups produced more unique ideas compared with serial groups. No significant differences were found related to satisfaction with process and outcomes between the two modes. Preferred mode depends on the type of task facing the group. Parallel groups are more suited for tasks for which a variety of new ideas are needed, whereas serial groups are best suited when elaboration and in-depth thinking on the solution are required. Results of this research can guide the development of facilitated sessions of large groups or "teams of teams."
NASA Astrophysics Data System (ADS)
Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.
2010-10-01
Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.
Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko
2013-11-04
We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.
Haptic adaptation to slant: No transfer between exploration modes
van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.
2016-01-01
Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392
Fast parallel 3D profilometer with DMD technology
NASA Astrophysics Data System (ADS)
Hou, Wenmei; Zhang, Yunbo
2011-12-01
Confocal microscope has been a powerful tool for three-dimensional profile analysis. Single mode confocal microscope is limited by scanning speed. This paper presents a 3D profilometer prototype of parallel confocal microscope based on DMD (Digital Micromirror Device). In this system the DMD takes the place of Nipkow Disk which is a classical parallel scanning scheme to realize parallel lateral scanning technique. Operated with certain pattern, the DMD generates a virtual pinholes array which separates the light into multi-beams. The key parameters that affect the measurement (pinhole size and the lateral scanning distance) can be configured conveniently by different patterns sent to DMD chip. To avoid disturbance between two virtual pinholes working at the same time, a scanning strategy is adopted. Depth response curve both axial and abaxial were extract. Measurement experiments have been carried out on silicon structured sample, and axial resolution of 55nm is achieved.
State-plane analysis of parallel resonant converter
NASA Technical Reports Server (NTRS)
Oruganti, R.; Lee, F. C.
1985-01-01
A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.
NASA Astrophysics Data System (ADS)
Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice
2015-01-01
Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.
Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design
NASA Astrophysics Data System (ADS)
Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen
2016-11-01
852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.
Lamb wave detection of limpet mines on ship hulls.
Bingham, Jill; Hinders, Mark; Friedman, Adam
2009-12-01
This paper describes the use of ultrasonic guided waves for identifying the mass loading due to underwater limpet mines on ship hulls. The Dynamic Wavelet Fingerprint Technique (DFWT) is used to render the guided wave mode information in two-dimensional binary images because the waveform features of interest are too subtle to identify in time domain. The use of wavelets allows both time and scale features from the original signals to be retained, and image processing can be used to automatically extract features that correspond to the arrival times of the guided wave modes. For further understanding of how the guided wave modes propagate through the real structures, a parallel processing, 3D elastic wave simulation is developed using the finite integration technique (EFIT). This full field, technique models situations that are too complex for analytical solutions, such as built up 3D structures. The simulations have produced informative visualizations of the guided wave modes in the structures as well as mimicking directly the output from sensors placed in the simulation space for direct comparison to experiments. Results from both drydock and in-water experiments with dummy mines are also shown.
NASA Technical Reports Server (NTRS)
Winske, D.; Thomas, V. A.; Omidi, N.; Quest, K. B.
1990-01-01
This paper continues the study of Thomas et al. (1990) in which hybrid simulations of quasi-parallel shocks were performed in one and two spatial dimensions. To identify the wave generation processes, the electromagnetic structure of the shock is examined by performing a number of one-dimensional hybrid simulations of quasi-parallel shocks for various upstream conditions. In addition, numerical experiments were carried out in which the backstreaming ions were removed from calculations to show their fundamental importance in reformation process. The calculations show that the waves are excited before ions can propagate far enough upstream to generate resonant modes. At some later times, the waves are regenerated at the leading edge of the interface, with properties like those of their initial interactions.
Finite-element analysis and modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.
1982-10-01
A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, was developed to compute the mode shapes and frequencies of rotating structures. Special applications of this capability was made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine is established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.
Finite element analysis and modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Lobitz, D. W.; Nord, A. R.; Watson, R. A.
A finite element procedure, which includes geometric stiffening, and centrifugal and Coriolis terms resulting from the use of a rotating coordinate system, has been developed to compute the mode shapes and frequencies of rotating structures. Special application of this capability has been made to Darrieus, vertical axis wind turbines. In a parallel development effort, a technique for the modal testing of a rotating vertical axis wind turbine has been established to measure modal parameters directly. Results from the predictive and experimental techniques for the modal frequencies and mode shapes are compared over a wide range of rotational speeds.
The role of spin-orbit coupling in topologically protected interface states in Dirac materials
NASA Astrophysics Data System (ADS)
Abergel, D. S. L.; Edge, Jonathan M.; Balatsky, Alexander V.
2014-06-01
We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as Mo{{S}_{2}}.
Processing Cones: A Computational Structure for Image Analysis.
1981-12-01
image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward
Soliton interactions and complexes for coupled nonlinear Schrödinger equations.
Jiang, Yan; Tian, Bo; Liu, Wen-Jun; Sun, Kun; Li, Min; Wang, Pan
2012-03-01
Under investigation in this paper are the coupled nonlinear Schrödinger (CNLS) equations, which can be used to govern the optical-soliton propagation and interaction in such optical media as the multimode fibers, fiber arrays, and birefringent fibers. By taking the 3-CNLS equations as an example for the N-CNLS ones (N≥3), we derive the analytic mixed-type two- and three-soliton solutions in more general forms than those obtained in the previous studies with the Hirota method and symbolic computation. With the choice of parameters for those soliton solutions, soliton interactions and complexes are investigated through the asymptotic and graphic analysis. Soliton interactions and complexes with the bound dark solitons in a mode or two modes are observed, including that (i) the two bright solitons display the breatherlike structures while the two dark ones stay parallel, (ii) the two bright and dark solitons all stay parallel, and (iii) the states of the bound solitons change from the breatherlike structures to the parallel one even with the distance between those solitons smaller than that before the interaction with the regular one soliton. Asymptotic analysis is also used to investigate the elastic and inelastic interactions between the bound solitons and the regular one soliton. Furthermore, some discussions are extended to the N-CNLS equations (N>3). Our results might be helpful in such applications as the soliton switch, optical computing, and soliton amplification in the nonlinear optics.
RFQ device for accelerating particles
Shepard, K.W.; Delayen, J.R.
1995-06-06
A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.
Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun
2017-09-01
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Active control of lateral leakage in thin-ridge SOI waveguide structures
NASA Astrophysics Data System (ADS)
Dalvand, Naser; Nguyen, Thach G.; Tummidi, Ravi S.; Koch, Thomas L.; Mitchell, Arnan
2011-12-01
We report on the design and simulation of a novel Silicon-On-Insulator waveguide structures which when excited with TM guided light, emit TE polarized radiation with controlled radiation characteristics[1]. The structures utilize parallel leaky waveguides of specific separations. The structures are simulated using a full-vector mode-matching approach which allows visualisation of the evolution of the propagating and radiating fields over the length of the waveguide structure. It is shown that radiation can be resonantly enhanced or suppressed in different directions depending on the choice of the phase of the excitation of the waveguide components. Steps toward practical demonstration are identified.
The specificity of learned parallelism in dual-memory retrieval.
Strobach, Tilo; Schubert, Torsten; Pashler, Harold; Rickard, Timothy
2014-05-01
Retrieval of two responses from one visually presented cue occurs sequentially at the outset of dual-retrieval practice. Exclusively for subjects who adopt a mode of grouping (i.e., synchronizing) their response execution, however, reaction times after dual-retrieval practice indicate a shift to learned retrieval parallelism (e.g., Nino & Rickard, in Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 373-388, 2003). In the present study, we investigated how this learned parallelism is achieved and why it appears to occur only for subjects who group their responses. Two main accounts were considered: a task-level versus a cue-level account. The task-level account assumes that learned retrieval parallelism occurs at the level of the task as a whole and is not limited to practiced cues. Grouping response execution may thus promote a general shift to parallel retrieval following practice. The cue-level account states that learned retrieval parallelism is specific to practiced cues. This type of parallelism may result from cue-specific response chunking that occurs uniquely as a consequence of grouped response execution. The results of two experiments favored the second account and were best interpreted in terms of a structural bottleneck model.
ERIC Educational Resources Information Center
Miller, Jeff; Ulrich, Rolf; Rolke, Bettina
2009-01-01
Within the context of the psychological refractory period (PRP) paradigm, we developed a general theoretical framework for deciding when it is more efficient to process two tasks in serial and when it is more efficient to process them in parallel. This analysis suggests that a serial mode is more efficient than a parallel mode under a wide variety…
Cuozzo, John W; Centrella, Paolo A; Gikunju, Diana; Habeshian, Sevan; Hupp, Christopher D; Keefe, Anthony D; Sigel, Eric A; Soutter, Holly H; Thomson, Heather A; Zhang, Ying; Clark, Matthew A
2017-05-04
We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanomechanical modeling of interfaces of polyvinyl alcohol (PVA)/clay nanocomposite
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker; Lawrimore, William B.; Chandler, Mei Q.; Horstemeyer, Mark F.
2017-05-01
We study interfacial debonding of several representative structures of polyvinyl alcohol (PVA)/pyrophillite-clay systems - both gallery-interface (polymer/clay interface in the interlayer region containing polymer between clay layers stacked parallel to each other) and matrix-interphase (polymer/clay interphase-region when individual clay layers are well separated and dispersed in the polymer matrix) - using molecular dynamics simulations, while explicitly accounting for shearing/sliding (i.e. Mode-II) deformation mode. Ten nanocomposite geometries (five 2-D periodic structures for tension and five 1-D periodic structures for shearing) were constructed to quantify the structure-property relations by varying the number density of polymer chains, length of polymer chains and model dimensions related to the interface deformation. The results were subsequently mapped into a cohesive traction-separation law, including evaluation of peak traction and work of separation that are used to characterise the interface load transfer for larger length scale micromechanical models. Results suggest that under a crack nucleation opening mode (i.e. Mode-I), the matrix-interphase exhibits noticeably greater strength and a greater work of separation compared to the gallery-interface; however, they were similar under the shearing/sliding mode of deformation. When compared to shearing/sliding, the tensile peak opening mode stresses were considerably greater but the displacement at the peak stress, the displacement at the final failure and the work of separation were considerably lower. Results also suggest that PVA/clay nanocomposites with higher degree of exfoliation compared with nanocomposites with higher clay-intercalation can potentially display higher strength under tension-dominated loading for a given clay volume fraction.
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mendis, Rajind; Mittleman, Daniel M
2009-08-17
We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America
Nonlinear characterization of a bolted, industrial structure using a modal framework
NASA Astrophysics Data System (ADS)
Roettgen, Daniel R.; Allen, Matthew S.
2017-02-01
This article presents measurements from a sub assembly of an off-the-shelf automotive exhaust system containing a bolted-flange connection and uses a recently proposed modal framework to develop a nonlinear dynamic model for the structure. The nonlinear identification and characterization methods used are reviewed to highlight the strengths of the current approach and the areas where further development is needed. This marks the first use of these new testing and nonlinear identification tools, and the associated modal framework, on production hardware with a realistic joint and realistic torque levels. To screen the measurements for nonlinearities, we make use of a time frequency analysis routine designed for transient responses called the zeroed early-time fast Fourier transform (ZEFFT). This tool typically reveals the small frequency shifts and distortions that tend to occur near each mode that is affected by the nonlinearity. The damping in this structure is found to be significantly nonlinear and a Hilbert transform is used to characterize the damping versus amplitude behavior. A model is presented that captures these effects for each mode individually (e.g. assuming negligible nonlinear coupling between modes), treating each mode as a single degree-of-freedom oscillator with a spring and viscous damping element in parallel with a four parameter Iwan model. The parameters of this model are identified for each of the structure's modes that exhibited nonlinearity and the resulting nonlinear model is shown to capture the stiffness and damping accurately over a large range of response amplitudes.
Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH.
Okuda, Masahiko; Higo, Junichi; Komatsu, Tadashi; Konuma, Tsuyoshi; Sugase, Kenji; Nishimura, Yoshifumi
2016-09-06
General transcription factor II E (TFIIE) contains an acid-rich region (residues 378-393) in its α-subunit, comprising 13 acidic and two hydrophobic (Phe387 and Val390) residues. Upon binding to the p62 subunit of TFIIH, the acidic region adopts an extended string-like structure on the basic groove of the pleckstrin homology domain (PHD) of p62, and inserts Phe387 and Val390 into two shallow pockets in the groove. Here, we have examined the dynamics of this interaction by NMR and molecular dynamics (MD) simulations. Although alanine substitution of Phe387 and/or Val390 greatly reduced binding to PHD, the binding mode of the mutants was similar to that of the wild-type, as judged by the chemical-shift changes of the PHD. NMR relaxation dispersion profiles of the interaction exhibited large amplitudes for residues in the C-terminal half-string in the acidic region (Phe387, Glu388, Val390, Ala391, and Asp392), indicating a two-site binding mode: one corresponding to the final complex structure, and one to an off-pathway minor complex. To probe the off-pathway complex structure, an atomically detailed free-energy landscape of the binding mode was computed by all-atom multicanonical MD. The most thermodynamically stable cluster corresponded to the final complex structure. One of the next stable clusters was the off-pathway structure cluster, showing the reversed orientation of the C-terminal half-string on the PHD groove, as compared with the final structure. MD calculations elucidated that the C-terminal half-acidic-string forms encounter complexes mainly around the positive groove region with nearly two different orientations of the string, parallel and antiparallel to the final structure. Interestingly, the most encountered complexes exhibit a parallel-like orientation, suggesting that the string has a tendency to bind around the groove in the proper orientation with the aid of Phe387 and/or Val390 to proceed smoothly to the final complex structure. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun
2017-07-19
RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted
1990-01-01
Techniques are discussed for the implementation and improvement of vectorization and concurrency in nonlinear explicit structural finite element codes. In explicit integration methods, the computation of the element internal force vector consumes the bulk of the computer time. The program can be efficiently vectorized by subdividing the elements into blocks and executing all computations in vector mode. The structuring of elements into blocks also provides a convenient way to implement concurrency by creating tasks which can be assigned to available processors for evaluation. The techniques were implemented in a 3-D nonlinear program with one-point quadrature shell elements. Concurrency and vectorization were first implemented in a single time step version of the program. Techniques were developed to minimize processor idle time and to select the optimal vector length. A comparison of run times between the program executed in scalar, serial mode and the fully vectorized code executed concurrently using eight processors shows speed-ups of over 25. Conjugate gradient methods for solving nonlinear algebraic equations are also readily adapted to a parallel environment. A new technique for improving convergence properties of conjugate gradients in nonlinear problems is developed in conjunction with other techniques such as diagonal scaling. A significant reduction in the number of iterations required for convergence is shown for a statically loaded rigid bar suspended by three equally spaced springs.
New Parallel Algorithms for Structural Analysis and Design of Aerospace Structures
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.
1998-01-01
Subspace and Lanczos iterations have been developed, well documented, and widely accepted as efficient methods for obtaining p-lowest eigen-pair solutions of large-scale, practical engineering problems. The focus of this paper is to incorporate recent developments in vectorized sparse technologies in conjunction with Subspace and Lanczos iterative algorithms for computational enhancements. Numerical performance, in terms of accuracy and efficiency of the proposed sparse strategies for Subspace and Lanczos algorithm, is demonstrated by solving for the lowest frequencies and mode shapes of structural problems on the IBM-R6000/590 and SunSparc 20 workstations.
2011-01-01
The widely used method to monitor the aggregation process of amyloid peptide is thioflavin T (ThT) assay, while the detailed molecular mechanism is still not clear. In this work, we report here the direct identification of the binding modes of ThT molecules with the prion peptide GNNQQNY by using scanning tunneling microscopy (STM). The assembly structures of GNNQQNY were first observed by STM on a graphite surface, and the introduction of ThT molecules to the surface facilitated the STM observations of the adsorption conformations of ThT with peptide strands. ThT molecules are apt to adsorb on the peptide assembly with β-sheet structure and oriented parallel with the peptide strands adopting four different binding modes. This effort could benefit the understanding of the mechanisms of the interactions between labeling species or inhibitory ligands and amyloid peptides, which is keenly needed for developing diagnostic and therapeutic approaches. PMID:22778872
Magnetosheath Filamentary Structures
NASA Astrophysics Data System (ADS)
Rojas-Castillo, D. I.; Blanco-Cano, X.; Omidi, N.; Kajdic, P.
2014-12-01
The terrestrial magnetosheath is full of highly perturbed plasma. The inhomogeneity of this region leads to temperature anisotropies that can originate waves; e.g, mirror mode and ion cyclotron waves. Other structures like the magnetosheath filamentary structures (MFS) can also be present. These are structures reported from results of global hybrid simulations by Omidi et al. (2014) that are formed in the quasi-parallel region of the bow shock and they are convected into the magnetosheath. The MFS are characterized by field aligned enhancements of density and temperature that are anti-correlated. In this work we analyze magnetic field and plasma data from the THEMIS mission to explore the possible existence of MFS.
Generation of filamentary structures by beam-plasma interaction
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Lin, Y.
2006-05-01
The previous simulations by Wang and Lin [Phys. Plasmas. 10, 3528, (2003)] showed that filaments, frequently observed in space plasmas, can form via the interaction between an ion beam and a background plasma. In this study, the physical mechanism for the generation of the filaments is investigated by a two-dimensional hybrid simulation, in which a field-aligned ion beam with relative beam density nb=0.1 and beam velocity Vb=10VA is initiated in a uniform plasma. Right-hand nonresonant ion beam modes, consistent with the linear theory, are found to be dominant in the linear stage of the beam-plasma interaction. In the later nonlinear stage, the nonresonant modes decay and the resonant modes grow through a nonlinear wave coupling. The interaction among the resonant modes leads to the formation of filamentary structures, which are the field-aligned structures (k⊥B) of magnetic field B, density, and temperature in the final stage. The filaments are nonlinearly generated in a prey-predator fashion by the parallel and oblique resonant ion beam modes, which meanwhile evolve into two types of shear Alfvén modes, with one mainly propagating along the background field B0 and the other obliquely propagating. The filamentary structures are found to be phase standing in the plasma frame, but their amplitude oscillates with time. In the dominant filament mode, fluctuations in the background ion density, background ion temperature, and beam density are in phase with the fluctuations in B, whereas the significantly enhanced beam temperature is antiphase with B. It is found that the filaments are produced by the interaction of at least two ion beam modes with comparable amplitudes, not by only one single mode, thus their generation mechanism is different from other mechanisms such as the stimulated excitation by the decay of an Alfvén wave.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
O'Sullivan, G.A.; O'Sullivan, J.A.
1999-07-27
In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.
O'Sullivan, George A.; O'Sullivan, Joseph A.
1999-01-01
In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.
Cache write generate for parallel image processing on shared memory architectures.
Wittenbrink, C M; Somani, A K; Chen, C H
1996-01-01
We investigate cache write generate, our cache mode invention. We demonstrate that for parallel image processing applications, the new mode improves main memory bandwidth, CPU efficiency, cache hits, and cache latency. We use register level simulations validated by the UW-Proteus system. Many memory, cache, and processor configurations are evaluated.
NASA Astrophysics Data System (ADS)
Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying
2017-09-01
A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.
NASA Astrophysics Data System (ADS)
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
von Braunmühl, T; Hartmann, D; Tietze, J K; Cekovic, D; Kunte, C; Ruzicka, T; Berking, C; Sattler, E C
2016-11-01
Optical coherence tomography (OCT) has become a valuable non-invasive tool in the in vivo diagnosis of non-melanoma skin cancer, especially of basal cell carcinoma (BCC). Due to an updated software-supported algorithm, a new en-face mode - similar to the horizontal en-face mode in high-definition OCT and reflectance confocal microscopy - surface-parallel imaging is possible which, in combination with the established slice mode of frequency domain (FD-)OCT, may offer additional information in the diagnosis of BCC. To define characteristic morphologic features of BCC using the new en-face mode in addition to the conventional cross-sectional imaging mode for three-dimensional imaging of BCC in FD-OCT. A total of 33 BCC were examined preoperatively by imaging in en-face mode as well as cross-sectional mode in FD-OCT. Characteristic features were evaluated and correlated with histopathology findings. Features established in the cross-sectional imaging mode as well as additional features were present in the en-face mode of FD-OCT: lobulated structures (100%), dark peritumoral rim (75%), bright peritumoral stroma (96%), branching vessels (90%), compressed fibrous bundles between lobulated nests ('star shaped') (78%), and intranodular small bright dots (51%). These features were also evaluated according to the histopathological subtype. In the en-face mode, the lobulated structures with compressed fibrous bundles of the BCC were more distinct than in the slice mode. FD-OCT with a new depiction for horizontal and vertical imaging modes offers additional information in the diagnosis of BCC, especially in nodular BCC, and enhances the possibility of the evaluation of morphologic tumour features. © 2016 European Academy of Dermatology and Venereology.
NASA Technical Reports Server (NTRS)
Ng, Lian Lai
1990-01-01
When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.
Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian
2016-01-01
We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844
NASA Astrophysics Data System (ADS)
Wang, Cuiling; Zhang, Shouheng; Qiao, Shizhu; Du, Honglei; Liu, Xiaomin; Sun, Ruicong; Chu, Xian-Ming; Miao, Guo-Xing; Dai, Youyong; Kang, Shishou; Yan, Shishen; Li, Shandong
2018-05-01
Dual-mode ferromagnetic resonance is observed in FeCoB/Ru/FeCoB trilayer synthetic antiferromagnets with uniaxial in-plane magnetic anisotropy. The optical mode is present in the (0-108 Oe) magnetic field range, where the top and bottom layer magnetizations are aligned in opposite directions. The strong acoustic mode appears, when the magnetic field exceeds the 300 Oe value, which corresponds to the flop transition in the trilayer. Magnetic field and angular dependences of resonant frequencies are studied for both optical (low-field) and acoustic (high field) modes. The low-field mode is found to be anisotropic but insensitive to the magnetic field value. In contrast, the high field mode is quasi-isotropic, but its resonant frequency is tunable by the value of the magnetic field. The coexistence of two modes of ferromagnetic resonance as well as switching between them with the increase in the magnetic field originates from the difference in the sign of interlayer coupling energy at the parallel and antiparallel configurations of the synthetic antiferromagnet. The dual-mode resonance in the studied trilayer structures provides greater flexibility in the design and functionalization of micro-inductors in monolithic microwave integrated circuits.
NASA Astrophysics Data System (ADS)
Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian
2016-12-01
The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.
A novel L-shaped linear ultrasonic motor operating in a single resonance mode
NASA Astrophysics Data System (ADS)
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
A novel L-shaped linear ultrasonic motor operating in a single resonance mode.
Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu
2018-01-01
In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.
Ammonium 4-methoxybenzenesulfonate
Suarez, Sebastián; Doctorovich, Fabio; Baggio, Ricardo
2012-01-01
The molecular structure of the title compound, NH4 +·C7H7O4S−, is featureless [the methoxy C atom deviating 0.173 (6) Å from the phenyl mean plane] with interatomic distances and angles in the expected ranges. The main feature of interest is the packing mode. Hydrophilic (SO3 and NH4) and hydrophobic (PhOCH3) parts in the structure segregate, the former interacting through a dense hydrogen-bonding scheme, leading to a well connected two-dimensional structure parallel to (100) and the latter hydrophobic groups acting as spacers for an interplanar separation of c/2 = 10.205 (2) Å. In spite of being aligned along [110], the benzene rings stack in a far from parallel fashion [viz. consecutive ring centers determine a broken line with a 164.72 (12)° zigzag angle], thus preventing any possible π–π interaction. PMID:22798885
System and method for continuous solids slurry depressurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William
A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less
Design of one-kilometer-long antenna sticks and support structure for a geosynchronous satellite
NASA Astrophysics Data System (ADS)
Freeman, Janet Elizabeth
This study develops a preliminary structural design for three one-kilometer-long antenna sticks and an antenna support structure for a geosynchronous earth-imaging satellite. On each of the antenna sticks is mounted a linear array of over 16,000 antenna elements. The antenna sticks are parallel to each other, and are spaced 1 km apart so that they form the corners of an imaginary triangular tube. This tube is spinning about its long axis. Antenna performance requires that the position of each antenna element be known to an accuracy of 0.5 cm, and that the spacecraft's spin axis be parallel to the earth's spin axis within one degree. Assuming that the position of each joint on each antenna stick is known, the antenna sticks are designed as beams under a uniformly distributed acceleration (due to spacecraft spin) to meet the displacement accuracy requirements for the antenna elements. Both a thin-walled round tube and a three-longeron double-laced truss are considered for the antenna stick structure. A spacecraft spinrate is chosen by considering the effects of environmental torques on the precession of a simplified spacecraft. A preliminary truss-like support structure configuration is chosen, and analyzed in quasi-static equilibrium with control thrusters firing to estimate the axial loads in the structural members. The compressive loads found by this analysis are used to design the support structure members to be buckling-critical three-longeron double-laced truss columns. Some tension-only members consisting of Kevlar cord are included in the design to eliminate the need for bulkier members. The lateral vibration modes of the individual structural members are found by conventional analysis -- the fundamental frequencies are as low as 0.0066 Hz. Finite element dynamic analyses of the structure in free vibration confirm that simplified models of the structure and members can be used to determine the structural modes and natural frequencies for design purposes.
Experimental Study on the Flexural Performance of Parallel Strand Bamboo Beams
Zhou, Aiping; Bian, Yuling
2014-01-01
Searching for materials to provide proper housing with less emission and low energy becomes an urgent demand with the ever-growing population. Bamboo has gained a reputation as an ecofriendly, highly renewable source of material. Parallel Strand Bamboo (PSB) is a new biocomposite made of bamboo strips which has superiority performances than wood products. It has attracted considerable interests as a sustainable alternative for more traditional building materials. But the mechanical performance study of PSB as construction materials is still inadequate. Also, the structural behavior of PSB is not quite understood as conventional construction materials, which results in the difficulties to predict the performances of PSB structural members. To achieve this purpose, 4-point bending experiments for PSB beams were carried out. The flexural performances, mode of failure in bending, and the damage mechanism of PSB beams were investigated in this paper. PMID:24701141
Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M
2012-09-10
We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
Study of near SOL decay lengths in ASDEX Upgrade under attached and detached divertor conditions
NASA Astrophysics Data System (ADS)
Sun, H. J.; Wolfrum, E.; Kurzan, B.; Eich, T.; Lackner, K.; Scarabosio, A.; Paradela Pérez, I.; Kardaun, O.; Faitsch, M.; Potzel, S.; Stroth, U.; the ASDEX Upgrade Team
2017-10-01
A database with attached, partially detached and completely detached divertors has been constructed in ASDEX Upgrade discharges in both H-mode and L-mode plasmas with Thomson Scattering data suitable for the analysis of the upstream SOL electron profiles. By comparing upstream temperature decay width, {λ }{Te,u}, with the scaling of the SOL power decay width, {λ }{q\\parallel e}, based on the downstream IR measurements, it is found that a simple relation based on classical electron conduction can relate {λ }{Te,u} and {λ }{q\\parallel e} well. The combined dataset can be described by both a single scaling and a separate scaling for H-modes and L-modes. For the single scaling, a strong inverse dependence of, {λ }{Te,u} on the separatrix temperature, {T}e,u, is found, suggesting the classical parallel Spitzer-Harm conductivity as dominant mechanism controlling the SOL width in both L-mode and H-mode over a large set of plasma parameters. This dependence on {T}e,u explains why, for the same global plasma parameters, {λ }{q\\parallel e} in L-mode is approximately twice that in H-mode and under detached conditions, the SOL upstream electron profile broadens when the density reaches a critical value. Comparing the derived scaling from experimental data with power balance, gives the cross-field thermal diffusivity as {χ }\\perp \\propto {T}e{1/2}/{n}e, consistent with earlier studies on Compass-D, JET and Alcator C-Mod. However, the possibility of the separate scalings for different regimes cannot be excluded, which gives results similar to those previously reported for the H-mode, but here the wider SOL width for L-mode plasmas is explained simply by the larger premultiplying coefficient. The relative merits of the two scalings in representing the data and their theoretical implications are discussed.
Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; ...
2015-01-20
Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less
NASA Astrophysics Data System (ADS)
Wen, Li-Na; Xie, Meng-Xia
2017-01-01
KRAS promoter can form G-quadruplex structure and regulate gene transcription. The drugs which can bind with G-quadruplex of KRAS promoter may be potential remedy for treatment of cancers associated with KRAS mutation. The interaction mechanism between the G-quadruplex of KRAS promoter and three isoquinoline alkaloids (jatrorrhizine, berberine and sanguinarine) has been investigated by UV-visible, fluorescence and circular dichroism spectroscopic methods. The results showed that the three alkaloids can form complexes with G-quadruplex KRAS promoter with the molecular ratio of 1:1, and the binding constants were (0.90 ± 0.16) × 106 L mol- 1, (0.93 ± 0.21) × 106 L mol- 1 and (1.16 ± 0.45) × 106 L mol- 1 for jatrorrhizine, berberine and sanguinarine. The absorption spectra, KI quenching and fluorescence anisotropy and polarization studies suggested jatrorrhizine and berberine interacted with G-quadruplex by not only end-stacking binding mode but also grooves or loops binding mode, while sanguinarine by end-stacking binding mode. Sanguinarine was more beneficial to maintain the stability and parallel conformation of KRAS promoter G-quadruplex. MTT assay was performed to evaluate antiproliferation effects of the three isoquinoline alkaloids on SW620 cells, and the antiproliferation effects of the three alkaloids were sanguinarine > berberine > jatrorrhizine. All the three alkaloids can bind with KRAS promoter G-quadruplex, and sanguinarine had the better binding property and antiproliferation effects on SW620 cells. The results obtained are meaningful to explore potential reagents targeting the parallel G-quadruplex structure of KRAS promoter for gene theraphy of colorectal carcinomas.
Compact low crosstalk 1x2 wavelength selective switch architectures
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Chaitavon, Khunat
2005-02-01
Thin film filter (TF)-based 1x2 wavelength selective switch (WSS) architectures are introduced. Our key idea is to locate a movable mirror orientated at a desired angle close to the TF to switch the desired wavelength optical beams to the wanted switch ports. Our first proposed WSS is in the transmissive mode where the surfaces of the TF and the movable mirror are parallel to each other and it provides a moderate optical isolation. Another WSS structure is in reflective configuration in which the movable mirror is tilted with respect to the surface of the TF and when combined with the optical circulator leads to a very low optical coherent crosstalk. Our experiment using a commercially available TF and a movable mirror shows that our transmissive-mode WSS provides a -18.87 dB optical coherent crosstalk while a much improved < -53 dB optical coherent crosstalk can be obtained between the two switching ports in our reflective-mode WSS structure. Our reflective 1x2 WSS also gives a higher optical loss due to the use of an optical circulator. Low polarization dependent loss of < 0.1 dB is determined for both WSS structures.
Group implicit concurrent algorithms in nonlinear structural dynamics
NASA Technical Reports Server (NTRS)
Ortiz, M.; Sotelino, E. D.
1989-01-01
During the 70's and 80's, considerable effort was devoted to developing efficient and reliable time stepping procedures for transient structural analysis. Mathematically, the equations governing this type of problems are generally stiff, i.e., they exhibit a wide spectrum in the linear range. The algorithms best suited to this type of applications are those which accurately integrate the low frequency content of the response without necessitating the resolution of the high frequency modes. This means that the algorithms must be unconditionally stable, which in turn rules out explicit integration. The most exciting possibility in the algorithms development area in recent years has been the advent of parallel computers with multiprocessing capabilities. So, this work is mainly concerned with the development of parallel algorithms in the area of structural dynamics. A primary objective is to devise unconditionally stable and accurate time stepping procedures which lend themselves to an efficient implementation in concurrent machines. Some features of the new computer architecture are summarized. A brief survey of current efforts in the area is presented. A new class of concurrent procedures, or Group Implicit algorithms is introduced and analyzed. The numerical simulation shows that GI algorithms hold considerable promise for application in coarse grain as well as medium grain parallel computers.
NASA Astrophysics Data System (ADS)
Haghshenasfard, Zahra; Cottam, M. G.
2018-01-01
Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.
Accuracy improvement of interferometric Rayleigh scattering diagnostic
NASA Astrophysics Data System (ADS)
Yan, Bo; Chen, Li; Yin, Kewei; Chen, Shuang; Yang, Furong; Tu, Xiaobo
2017-10-01
Cavity structure is used to increase the Interferometric Rayleigh scattering signal intensity. By using ZEMAX method, we simulate a special cavity mode comprising two spherical reflectors with different size, including the focal length and the diameter. The simulations suggest that the parallel beam can reflect repeatedly in the resonant cavity and concentrate on the focus. Besides, the reflection times and the ray width can reach about 50 and 2.1 cm after some feasible solutions.
Coupled ridge waveguide distributed feedback quantum cascade laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying-Hui; Zhang, Jin-Chuan, E-mail: zhangjinchuan@semi.ac.cn; Yan, Fang-Liang
2015-04-06
A coupled ridge waveguide quantum cascade laser (QCL) array consisting of fifteen elements with parallel integration was presented. In-phase fundamental mode operation in each element is secured by both the index-guided nature of the ridge and delicate loss management by properly designed geometries of the ridges and interspaces. Single-lobe lateral far-field with a nearly diffraction limited beam pattern was obtained. By incorporating a one-dimensional buried distributed feedback grating, the in-phase-operating coupled ridge waveguide QCL design provides an efficient solution to obtaining high output power and stable single longitudinal mode emission. The simplicity of this structure and fabrication process makes thismore » approach attractive to many practical applications.« less
Low-crosstalk orbital angular momentum fiber coupler design.
Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Li, Muqiao; Li, Jiong; Xu, Shanhui; Yang, Zhongmin
2017-05-15
A fiber coupler for low-crosstalk orbital angular momentum mode beam splitter is proposed with the structure of two separate and parallel microfibers. By properly setting the center-to-center distance between microfibers, the crosstalk is less than -20 dB, which means that the purity of the needed OAM mode in output port is higher than 99%. For a fixed overlapping length, high coupling efficiency (>97%) is achieved in 1545-1560 nm. The operating wavelength is tuned to the whole C-band by using the thermosensitive liquid. So the designed coupler can achieve the tunable coupling ratio over the whole C-band, which is a prospective component for the further OAM fiber system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, D.; Ohno, N.; Tanaka, H.
2014-03-15
Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less
NASA Astrophysics Data System (ADS)
Chacon, L.; Finn, J. M.; Knoll, D. A.
2000-10-01
Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios
2014-01-01
In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.
NASA Astrophysics Data System (ADS)
Ajiatmo, Dwi; Robandi, Imam
2017-03-01
This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.
Ordinary mode instability associated with thermal ring distribution
NASA Astrophysics Data System (ADS)
Hadi, F.; Yoon, P. H.; Qamar, A.
2015-02-01
The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.
Ultrasonic guided wave interpretation for structural health inspections
NASA Astrophysics Data System (ADS)
Bingham, Jill Paisley
Structural Health Management (SHM) combines the use of onboard sensors with artificial intelligence algorithms to automatically identify and monitor structural health issues. A fully integrated approach to SHM systems demands an understanding of the sensor output relative to the structure, along with sophisticated prognostic systems that automatically draw conclusions about structural integrity issues. Ultrasonic guided wave methods allow us to examine the interaction of multimode signals within key structural components. Since they propagate relatively long distances within plate- and shell-like structures, guided waves allow inspection of greater areas with fewer sensors, making this technique attractive for a variety of applications. This dissertation describes the experimental development of automatic guided wave interpretation for three real world applications. Using the guided wave theories for idealized plates we have systematically developed techniques for identifying the mass loading of underwater limpet mines on US Navy ship hulls, characterizing type and bonding of protective coatings on large diameter pipelines, and detecting the thinning effects of corrosion on aluminum aircraft structural stringers. In each of these circumstances the signals received are too complex for interpretation without knowledge of the guided wave physics. We employ a signal processing technique called the Dynamic Wavelet Fingerprint Technique (DFWT) in order to render the guided wave mode information in two-dimensional binary images. The use of wavelets allows us to keep track of both time and scale features from the original signals. With simple image processing we have developed automatic extraction algorithms for features that correspond to the arrival times of the guided wave modes of interest for each of the applications. Due to the dispersive nature of the guided wave modes, the mode arrival times give details of the structure in the propagation path. For further understanding of how the guided wave modes propagate through the real structures, we have developed parallel processing, 3D elastic wave simulations using the finite integration technique (EFIT). This full field, numeric simulation technique easily examines models too complex for analytical solutions. We have developed the algorithm to handle built up 3D structures as well as layers with different material properties and surface detail. The simulations produce informative visualizations of the guided wave modes in the structures as well as the output from sensors placed in the simulation space to mimic the placement from experiment. Using the previously developed mode extraction algorithms we were then able to compare our 3D EFIT data to their experimental counterparts with consistency.
catena-Poly[[[4,6-bis-(2-pyrid-yl)-1,3,5-triazin-2-olato]copper(II)]-μ-chlorido].
Cao, Man-Li
2011-06-01
The title compound, [Cu(C(13)H(8)N(5)O)Cl](n), has a chain structure parallel to [100] with Cu(2+) cations in a trigonal-bipyramidal coordination environment. The ligand adopts a tridentate tripyridyl coordination mode and a chloride ion acts as a bridge. The chains are linked via weak C-H⋯O and C-H⋯Cl hydrogen bonds into a three-dimensional supra-molecular network.
NASA Astrophysics Data System (ADS)
Couillard, M.; Yurtsever, A.; Muller, D. A.
2010-05-01
Waveguide electromagnetic modes excited by swift electrons traversing Si slabs at normal and oblique incidence are analyzed using monochromated electron energy-loss spectroscopy and interpreted using a local dielectric theory that includes relativistic effects. At normal incidence, sharp spectral features in the visible/near-infrared optical domain are directly assigned to p -polarized modes. When the specimen is tilted, s -polarized modes, which are completely absent at normal incidence, become visible in the loss spectra. In the tilted configuration, the dispersion of p -polarized modes is also modified. For tilt angles higher than ˜50° , Cherenkov radiation, the phenomenon responsible for the excitation of waveguide modes, is expected to partially escape the silicon slab and the influence of this effect on experimental measurements is discussed. Finally, we find evidence for an interference effect at parallel Si/SiO2 interfaces, as well as a delocalized excitation of guided Cherenkov modes.
NASA Technical Reports Server (NTRS)
Simpkin, W. E.
1982-01-01
An approximately 0.25 scale model of the transition section of a tandem fan variable cycle engine nacelle was tested in the NASA Lewis Research Center 10-by-10 foot wind tunnel. Two 12-inch, tip-turbine driven fans were used to simulate a tandem fan engine. Three testing modes simulated a V/STOL tandem fan airplane. Parallel mode has two separate propulsion streams for maximum low speed performance. A front inlet, fan, and downward vectorable nozzle forms one stream. An auxilliary top inlet provides air to the aft fan - supplying the core engine and aft vectorable nozzle. Front nozzle and top inlet closure, and removal of a blocker door separating the two streams configures the tandem fan for series mode operations as a typical aircraft propulsion system. Transition mode operation is formed by intermediate settings of the front nozzle, blocker door, and top inlet. Emphasis was on the total pressure recovery and flow distortion at the aft fan face. A range of fan flow rates were tested at tunnel airspeeds from 0 to 240 knots, and angles-of-attack from -10 to 40 deg for all three modes. In addition to the model variables for the three modes, model variants of the top inlet were tested in the parallel mode only. These lip variables were: aft lip boundary layer bleed holes, and Three position turning vane. Also a bellmouth extension of the top inlet side lips was tested in parallel mode.
Comparison of a piezoceramic transducer and an EMAT for the omnidirectional transduction of SH0
NASA Astrophysics Data System (ADS)
Gauthier, Baptiste; Thon, Aurelien; Belanger, Pierre
2018-04-01
The fundamental shear horizontal ultrasonic guided wave mode has unique properties for non-destructive testing as well as structural health monitoring applications. It is the only non-dispersive guided wave mode and it is not attenuated by fluid loading. Moreover, shear horizontal waves do not convert to other guided wave modes when interacting with a boundary or defect parallel to the direction of polarization. In many applications, omnidirectional transduction is preferred so as to maximize the inspection coverage. The omnidirectional transduction of the fundamental shear horizontal ultrasonic guided wave mode is, however, challenging because a torsional surface stress is required. This paper compares the performances of two concepts recently proposed in the literature: 1- a piezoceramic transducer and 2- an electromagnetic-acoustic transducer. The piezoceramic transducer uses 6 trapezoidal shear piezoelectric elements arranged on a discretized circle. The electromagnetic acoustic transducer concept consists of a pair of ring-type permanent magnets and a coil wrapped in the radial direction. In this paper, both transducers were designed to have a 150 kHz centre frequency. Experimental results were performed on a thin aluminum plate using both transducers. A 3D laser Doppler vibrometer was used to verify the omnidirectional nature, the mode selectivity and the frequency response of the transducers. The EMAT has undeniable advantages in terms of omnidirectionality and mode selectivity. However it has a larger footprint than the piezoceramic concept and is only suitable for the inspection of metallic structures.
Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation
NASA Astrophysics Data System (ADS)
Sharma, Prerana; Patidar, Archana
2017-12-01
The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to strongly magnetized dense degenerate plasma.
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling
2013-01-01
In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.
Huang, Jianhua
2012-07-01
There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.
Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M
2012-12-03
We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.
Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.
Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A
2013-01-01
In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.
Discovery of novel human acrosin inhibitors by virtual screening
NASA Astrophysics Data System (ADS)
Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo
2011-10-01
Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.
The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad
The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showedmore » a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.« less
NASA Astrophysics Data System (ADS)
Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang
2016-08-01
For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.
Semiconductor Based Transverse Bragg Resonance (TBR) Optical Amplifiers and Lasers
2007-02-14
modes with small modal angles experience zero or very low radiation loss. We call these modes small modal angle (SMA) modes. SMA modes include both...lossless effective index-guided modes and low loss leaky modes. They are almost parallel to the graing and do not radiate significantly. As the modal...angle increases, all the modes experience higher radiation loss. However, around the transverse resonance angle of 13.80, low loss modes exist. These
Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves.
The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas
NASA Astrophysics Data System (ADS)
He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.
2016-05-01
The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q = 1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.
Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohandas, Gopakumar; Pessah, Martin E., E-mail: gopakumar@nbi.ku.dk, E-mail: mpessah@nbi.ku.dk
The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of themore » Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.« less
NASA Astrophysics Data System (ADS)
Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas
2017-04-01
We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.
Direct Machining of Low-Loss THz Waveguide Components With an RF Choke.
Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J
2014-12-01
We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 μm.
TORUS: Radiation transport and hydrodynamics code
NASA Astrophysics Data System (ADS)
Harries, Tim
2014-04-01
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
catena-Poly[[[4,6-bis(2-pyridyl)-1,3,5-triazin-2-olato]copper(II)]-μ-chlorido
Cao, Man-Li
2011-01-01
The title compound, [Cu(C13H8N5O)Cl]n, has a chain structure parallel to [100] with Cu2+ cations in a trigonal–bipyramidal coordination environment. The ligand adopts a tridentate tripyridyl coordination mode and a chloride ion acts as a bridge. The chains are linked via weak C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supramolecular network. PMID:21754632
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
Toward quantum plasmonic networks
Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...
2016-08-30
Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less
NASA Astrophysics Data System (ADS)
Okazaki, Yuji; Uno, Takanori; Asai, Hideki
In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.
The interaction of turbulence with parallel and perpendicular shocks
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-11-01
Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.
NASA Astrophysics Data System (ADS)
Pavlov, Ihor; Tokel, Onur; Yavuz, Ozgun; Makey, Ghaith; Ilday, Omer; Omer Ilday Team
Laser Induced Periodic Surface Structuring (LIPSS) is one of the most prominent directions in laser-material interaction due to both practical and theoretical importance, especially after the discovery of Nonlinear Laser Lithography (NLL), which opens new area for industrial application of LIPSS as an effective tool for controllable, highly ordered large area nanostructuring. LIPSS appear on the surface under laser beam in the form of periodical lines. The LIPSS, that appear perpendicular to laser polarization are called ``normal'', in contrast to ``anomalous'' LIPSS appearing parallel to the polarization. Although, NLL technique was already demonstrated for ``normal'' and ``anomalous'' LIPSS separately, up to now, there is no clear understanding of switching mechanism between these two modes. In presented paper we have shown that the mechanism relies on interplay between two feedbacks: long range, low intensity dipole-like scattering of light along the surface, and short range, high intensity plasmon-polariton wave. For the first time, we are able to create both types of LIPSS on the same surface by controlling these two feedbacks, obtaining highly-ordered large-area structured patterns in both modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomquist, Heidi K.; Fixel, Deborah A.; Fett, David Brian
The Xyce Parallel Electronic Simulator simulates electronic circuit behavior in DC, AC, HB, MPDE and transient mode using standard analog (DAE) and/or device (PDE) device models including several age and radiation aware devices. It supports a variety of computing platforms (both serial and parallel) computers. Lastly, it uses a variety of modern solution algorithms dynamic parallel load-balancing and iterative solvers.
Constant-frequency, clamped-mode resonant converters
NASA Technical Reports Server (NTRS)
Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.
1987-01-01
Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.
Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young
2017-08-30
Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less
Experimental entangled photon pair generation using crystals with parallel optical axes.
Villar, Aitor; Lohrmann, Alexander; Ling, Alexander
2018-05-14
We present an optical design where polarization-entangled photon pairs are generated within two β-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65 000 pairs/s/mW with a quantum state fidelity of 99.53 ± 0.22% when pumped with an elliptical spatial profile.
Experimental entangled photon pair generation using crystals with parallel optical axes
NASA Astrophysics Data System (ADS)
Villar, Aitor; Lohrmann, Alexander; Ling, Alexander
2018-05-01
We present an optical design where polarization-entangled photon pairs are generated within two $\\beta$-Barium Borate crystals whose optical axes are parallel. This design increases the spatial mode overlap of the emitted photon pairs enhancing single mode collection without the need for additional spatial walk-off compensators. The observed photon pair rate is at least 65000 pairs/s/mW with a quantum state fidelity of 99.53$\\pm$0.22% when pumped with an elliptical spatial profile.
Seismic response of transamerica building. II. System identification
Safak, E.; Celebi, M.
1991-01-01
A detailed analysis of the recorded seismic response of the Transamerica Building during the October 17, 1989 Loma Prieta earthquake is presented. The system identification algorithm used for the analysis is based on the discrete-time linear filtering approach with least-squares approximation, and assumes a multi-input, single-output model for the building. Fifteen modes in the north-south direction, and 18 modes in the east-west direction are identified from the records. The analysis shows that the building's response to the earthquake was dominated by a coupled mode of vibration at 0.28 Hz in the southwest-northeast direction, which is almost parallel to one of the diagonals in the building's square cross section. The reason for this behavior is the symmetry of the building's structural characteristics, as well as the strong polarization of the S-waves of the earthquake. Several higher modes of the building were excited during the strong-motion part of the earthquake. The results also show a significant amount of rocking in the building at a frequency of 2.15 Hz.
Randomized Dynamic Mode Decomposition
NASA Astrophysics Data System (ADS)
Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.
A versatile diffractive maskless lithography for single-shot and serial microfabrication.
Jenness, Nathan J; Hill, Ryan T; Hucknall, Angus; Chilkoti, Ashutosh; Clark, Robert L
2010-05-24
We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of approximately 700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H., E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701
2015-09-15
A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. Inmore » the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.« less
Fast parallel algorithm for slicing STL based on pipeline
NASA Astrophysics Data System (ADS)
Ma, Xulong; Lin, Feng; Yao, Bo
2016-05-01
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.
NASA Astrophysics Data System (ADS)
Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.
2016-09-01
Direct Laser Writing (DLW) by two-photon photopolymerization (TPP) enables the fabrication of micron-scale polymeric structures in soft matter systems. The technique has implications in a broad range of optics and photonics; in particular fast-switching liquid crystal (LC) modes for the development of next generation display technologies. In this paper, we report two different methodologies using our TPP-based fabrication technique. Two explicit examples are provided of voltage-dependent LC director profiles that are inherently unstable, but which appear to be promising candidates for fast-switching photonics applications. In the first instance, 1 μm-thick periodic walls of polymer network are written into a planar aligned (parallel rubbed) nematic pi-cell device containing a nematic LC-monomer mixture. The structures are fabricated when the device is electrically driven into a fast-switching nematic LC state and aberrations induced by the device substrates are corrected for by virtue of the adaptive optics elements included within the DLW setup. Optical polarizing microscopy images taken post-fabrication reveal that polymer walls oriented perpendicular to the rubbing direction promote the stability of the so-called optically compensated bend mode upon removal of the externally applied field. In the second case, polymer walls are written in a nematic LC-optically adhesive glue mixture. A polymer- LCs-polymer-slices or `POLICRYPS' template is formed by immersing the device in acetone post-fabrication to remove any remaining non-crosslinked material. Injecting the resultant series of polymer microchannels ( 1 μm-thick) with a short-pitch, chiral nematic LC mixture leads to the spontaneous alignment of a fast-switching chiral nematic mode, where the helical axis lies parallel to the glass substrates. Optimal contrast between the bright and dark states of the uniform lying helix alignment is achieved when the structures are spaced at the order of the device thickness, which was also found to be the case for the achiral system. The high resolution DLW technique limits structures to the focal spot size of the beam, 1 μm in diameter, such that the transmittance is expected to be significantly enhanced relative to other stabilization techniques. Moreover, both devices remain stable under electrical and thermal cycling.
Parallel/Vector Integration Methods for Dynamical Astronomy
NASA Astrophysics Data System (ADS)
Fukushima, T.
Progress of parallel/vector computers has driven us to develop suitable numerical integrators utilizing their computational power to the full extent while being independent on the size of system to be integrated. Unfortunately, the parallel version of Runge-Kutta type integrators are known to be not so efficient. Recently we developed a parallel version of the extrapolation method (Ito and Fukushima 1997), which allows variable timesteps and still gives an acceleration factor of 3-4 for general problems. While the vector-mode usage of Picard-Chebyshev method (Fukushima 1997a, 1997b) will lead the acceleration factor of order of 1000 for smooth problems such as planetary/satellites orbit integration. The success of multiple-correction PECE mode of time-symmetric implicit Hermitian integrator (Kokubo 1998) seems to enlighten Milankar's so-called "pipelined predictor corrector method", which is expected to lead an acceleration factor of 3-4. We will review these directions and discuss future prospects.
Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.
Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito
2011-06-07
Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.
Polarization-Modulated Second Harmonic Generation Microscopy in Collagen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, P C
Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects ofmore » biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin samples of several different tissues in transmission mode as well as at different depths (up to 200 {micro}m) in thick samples in reflection mode; birefringence had no effect on the measurement. These studies showed that SHG microscopy was capable of detecting pathophysiological changes in collagen structure, suggesting that this technique has potential clinical applications.« less
Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen
2017-01-26
Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron acceleration by surface plasma waves in double metal surface structure
NASA Astrophysics Data System (ADS)
Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.
2007-12-01
Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.
Electrostatic repulsive out-of-plane actuator using conductive substrate.
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-10-07
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.
Electrostatic repulsive out-of-plane actuator using conductive substrate
Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin
2016-01-01
A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0–4.5 μm for a dc driving voltage of 0–100 V, when compared with that in two-layer mode. PMID:27713542
NASA Astrophysics Data System (ADS)
Perry, Angela; Neipert, Christine; Kasprzyk, Christina Ridley; Green, Tony; Space, Brian; Moore, Preston B.
2005-10-01
An improved time correlation function (TCF) description of sum frequency generation (SFG) spectroscopy was developed and applied to theoretically describing the spectroscopy of the ambient water/vapor interface. A more general TCF expression than was published previously is presented—it is valid over the entire vibrational spectrum for both the real and imaginary parts of the signal. Computationally, earlier time correlation function approaches were limited to short correlation times that made signal processing challenging. Here, this limitation is overcome, and well-averaged spectra are presented for the three independent polarization conditions that are possible for electronically nonresonant SFG. The theoretical spectra compare quite favorably in shape and relative magnitude to extant experimental results in the O H stretching region of water for all polarization geometries. The methodological improvements also allow the calculation of intermolecular SFG spectra. While the intermolecular spectrum of bulk water shows relatively little structure, the interfacial spectra (for polarizations that are sensitive to dipole derivatives normal to the interface—SSP and PPP) show a well-defined intermolecular mode at 875cm-1 that is comparable in intensity to the rest of the intermolecular structure, and has an intensity that is approximately one-sixth of the magnitude of the intense free OH stretching peak. Using instantaneous normal mode methods, the resonance is shown to be due to a wagging mode localized on a single water molecule, almost parallel to the interface, with two hydrogens displaced normal to the interface, and the oxygen anchored in the interface. We have also uncovered the origin of another intermolecular mode at 95cm-1 for the SSP and PPP spectra, and at 220cm-1 for the SPS spectra. These resonances are due to hindered translations perpendicular to the interface for the SSP and PPP spectra, and translations parallel to the interface for the SPS spectra. Further, by examining the real and imaginary parts of the SFG signal, several resonances are shown to be due to a single spectroscopic species while the "donor" OH region is shown to consist of three distinct species—consistent with an earlier experimental analysis.
NASA Astrophysics Data System (ADS)
Chen, Yali
The plastic deformation behavior of PST TiAl crystals was investigated using AFM techniques to reveal the effects of lamellar structure on the deform mechanisms of two-phase TiAl materials. PST crystals with a nominal composition of Ti52Al48 (atomic percent) were grown by the floating zone method and at various orientations deformed in compression at room temperature. Atomic Force Microscopy (AFM) was employed to investigate the deformation structure on the free surfaces. The deformation of the PST crystals is highly anisotropic and the deformation mechanism changes dramatically with sample orientation. When the angle between the loading axis and the lamellar interfaces is below 20°, the gamma lamellae deform by dislocation slip and twinning on planes oblique to the lamellar interfaces, but the Burgers vectors or the resultant shear vectors are parallel to the lamellar interfaces inside each lamella. When the angle is between 20° and 80° the gamma phase deforms by shear on planes parallel to the lamellar interfaces. Some domains deform by a combination of ordinary dislocation slip and twinning. In the domains where twinning cannot be activated, slip occurs by ordinary dislocations or superdislocations. When the loading axis is nearly perpendicular to the lamellar interfaces ordinary dislocation slip and twinning on slip planes inclined with the lamellar interfaces are dominant and the shear is trans-lamellar. The three deformation modes are termed as A, B and N type deformation modes respectively. In the A type mode the alpha2 lamellae concomitantly deform by prismatic slip. In the other two modes, the alpha2 phase does not deform and acts as strong obstacles to the transfer of deformation. Abundant misfit dislocations are emitted from the lamellar interfaces which is beneficial for the plastic deformation. On the other hand, the lamellar interfaces strongly impede trans-lamellar deformation and channel the deformation inside each lamella. The inhomogeneous coherency stresses at the lamellar interfaces also lead to heterogeneous deformation of PST crystals. The deformation behavior of the lamellar grains produces remarkable strain incompatibility in lamellar polycrystals and deteriorates the deformability.
NASA Astrophysics Data System (ADS)
Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng
2018-01-01
To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.
Three-dimensional magnetohydrodynamic equilibrium of quiescent H-modes in tokamak systems
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Graves, J. P.; Duval, B. P.; Sauter, O.; Faustin, J. M.; Kleiner, A.; Lanthaler, S.; Patten, H.; Raghunathan, M.; Tran, T.-M.; Chapman, I. T.; Ham, C. J.
2016-06-01
Three dimensional free boundary magnetohydrodynamic equilibria that recover saturated ideal kink/peeling structures are obtained numerically. Simulations that model the JET tokamak at fixed < β > =1.7% with a large edge bootstrap current that flattens the q-profile near the plasma boundary demonstrate that a radial parallel current density ribbon with a dominant m /n = 5/1 Fourier component at {{I}\\text{t}}=2.2 MA develops into a broadband spectrum when the toroidal current I t is increased to 2.5 MA.
Dynamically tuned vibratory micromechanical gyroscope accelerometer
NASA Astrophysics Data System (ADS)
Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.
1997-11-01
A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.
Analysis of multigrid methods on massively parallel computers: Architectural implications
NASA Technical Reports Server (NTRS)
Matheson, Lesley R.; Tarjan, Robert E.
1993-01-01
We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.
Mode suppression means for gyrotron cavities
Chodorow, Marvin; Symons, Robert S.
1983-08-09
In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Non-axisymmetric Flows and Transport in the Edge of MST
NASA Astrophysics Data System (ADS)
Miller, Matthew Charles
Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G. S.; Wan, B. N.; Wang, Y. F.
A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less
Xu, G. S.; Wan, B. N.; Wang, Y. F.; ...
2017-07-18
A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less
Li, Le-Bao; Sun, Ling-Ling; Zhang, Sheng-Zhou; Yang, Qing-Quan
2015-09-01
A new control approach for speed tracking and synchronization of multiple motors is developed, by incorporating an adaptive sliding mode control (ASMC) technique into a ring coupling synchronization control structure. This control approach can stabilize speed tracking of each motor and synchronize its motion with other motors' motion so that speed tracking errors and synchronization errors converge to zero. Moreover, an adaptive law is exploited to estimate the unknown bound of uncertainty, which is obtained in the sense of Lyapunov stability theorem to minimize the control effort and attenuate chattering. Performance comparisons with parallel control, relative coupling control and conventional PI control are investigated on a four-motor synchronization control system. Extensive simulation results show the effectiveness of the proposed control scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
TECA: A Parallel Toolkit for Extreme Climate Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, Mr; Ruebel, Oliver; Byna, Surendra
2012-03-12
We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.
NASA Astrophysics Data System (ADS)
Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.
2017-06-01
We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.
Domino syntheses of bioactive tetronic and tetramic acids.
Schobert, Rainer
2007-01-01
Natural products containing tetronic acid or tetramic acid moieties continue to attract the interest of chemists, biologists, and physicians due to their challenging structures and to the wide range of biological activities they display. This review portrays the structural varieties of tetronic and tetramic acids and the spectrum of possible therapeutically relevant effects in man for exemplary derivatives. Their biosynthetic origin from alpha-amino and alpha-hydroxy acids is briefly discussed as is the relationship between their structures and their modes of interaction with biochemical effectors such as metal cations or enzymes. A short overview of laboratory syntheses of the heterocyclic core structures of tetramic and tetronic acids is provided with an emphasis on those emulating the biosynthesis. A synthesis from the alpha-amino or alpha-hydroxy esters and the cumulated phosphorus ylide Ph(3)PCCO based upon a domino addition-intra-Wittig alkenation sequence is presented with applications to the preparation of the antibiotics reutericyclin and tenuazonic acid, the cytotoxic melophlin B, and the enzyme inhibitor RK-682. Procedural advantages of immobilizing either starting component by attaching it to a resin and its exploitation in the parallel synthesis of libraries of potential drug candidates are described. The basic domino reaction can even be extended by further C-C bond forming steps when starting from suitable alpha-hydroxy or alpha-amino allyl esters. Depending on the chosen reaction conditions, bioactive intermediates of formally three to seven step long cascades can be obtained. Among them, herbicidal 3-alkyltetronic acids and lactone endoperoxides with antiplasmodial activity exceeding that of the natural antimalarial lead artemisinin. Hence, this domino reaction gives access to diversely functionalized derivatives of tetronic and tetramic acids. As it can also be ported to solid phase, it is ideally suited for parallel and combinatorial processing. Future developments might include running such domino sequences in continuous mode in arrays of "labs on microchips".
Domino syntheses of bioactive tetronic and tetramic acids
NASA Astrophysics Data System (ADS)
Schobert, Rainer
2007-01-01
Natural products containing tetronic acid or tetramic acid moieties continue to attract the interest of chemists, biologists, and physicians due to their challenging structures and to the wide range of biological activities they display. This review portrays the structural varieties of tetronic and tetramic acids and the spectrum of possible therapeutically relevant effects in man for exemplary derivatives. Their biosynthetic origin from α-amino and α-hydroxy acids is briefly discussed as is the relationship between their structures and their modes of interaction with biochemical effectors such as metal cations or enzymes. A short overview of laboratory syntheses of the heterocyclic core structures of tetramic and tetronic acids is provided with an emphasis on those emulating the biosynthesis. A synthesis from the α-amino or α-hydroxy esters and the cumulated phosphorus ylide Ph3PCCO based upon a domino addition-intra-Wittig alkenation sequence is presented with applications to the preparation of the antibiotics reutericyclin and tenuazonic acid, the cytotoxic melophlin B, and the enzyme inhibitor RK-682. Procedural advantages of immobilizing either starting component by attaching it to a resin and its exploitation in the parallel synthesis of libraries of potential drug candidates are described. The basic domino reaction can even be extended by further C-C bond forming steps when starting from suitable α-hydroxy or α-amino allyl esters. Depending on the chosen reaction conditions, bioactive intermediates of formally three to seven step long cascades can be obtained. Among them, herbicidal 3-alkyltetronic acids and lactone endoperoxides with antiplasmodial activity exceeding that of the natural antimalarial lead artemisinin. Hence, this domino reaction gives access to diversely functionalized derivatives of tetronic and tetramic acids. As it can also be ported to solid phase, it is ideally suited for parallel and combinatorial processing. Future developments might include running such domino sequences in continuous mode in arrays of “labs on microchips”.
Renormalization of the diffusion tensor for high-frequency, electromagnetic modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Sudan, R.N.
The resonance broadening theory is used to derive the diffusion tensor for resonant particles in a spectrum of electromagnetic modes propagating parallel to the magnetic field. The magnetic trapping limit for saturation of wave amplitudes is discussed.
3-D phononic crystals with ultra-wide band gaps
Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit
2017-01-01
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812
3-D phononic crystals with ultra-wide band gaps.
Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit
2017-02-24
In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan
2017-11-01
Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer's disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer's disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer's disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks-the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer's disease patients with and without cerebrovascular disease. Alzheimer's disease patients without cerebrovascular disease, but not Alzheimer's disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer's disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer's disease patients with and without cerebrovascular disease. Across Alzheimer's disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer's disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer's disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer's disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer's disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer's disease network degeneration phenotype. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer’s disease
Chong, Joanna Su Xian; Liu, Siwei; Loke, Yng Miin; Hilal, Saima; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian
2017-01-01
Abstract Network-sensitive neuroimaging methods have been used to characterize large-scale brain network degeneration in Alzheimer’s disease and its prodrome. However, few studies have investigated the combined effect of Alzheimer’s disease and cerebrovascular disease on brain network degeneration. Our study sought to examine the intrinsic functional connectivity and structural covariance network changes in 235 prodromal and clinical Alzheimer’s disease patients with and without cerebrovascular disease. We focused particularly on two higher-order cognitive networks—the default mode network and the executive control network. We found divergent functional connectivity and structural covariance patterns in Alzheimer’s disease patients with and without cerebrovascular disease. Alzheimer’s disease patients without cerebrovascular disease, but not Alzheimer’s disease patients with cerebrovascular disease, showed reductions in posterior default mode network functional connectivity. By comparison, while both groups exhibited parietal reductions in executive control network functional connectivity, only Alzheimer’s disease patients with cerebrovascular disease showed increases in frontal executive control network connectivity. Importantly, these distinct executive control network changes were recapitulated in prodromal Alzheimer’s disease patients with and without cerebrovascular disease. Across Alzheimer’s disease patients with and without cerebrovascular disease, higher default mode network functional connectivity z-scores correlated with greater hippocampal volumes while higher executive control network functional connectivity z-scores correlated with greater white matter changes. In parallel, only Alzheimer’s disease patients without cerebrovascular disease showed increased default mode network structural covariance, while only Alzheimer’s disease patients with cerebrovascular disease showed increased executive control network structural covariance compared to controls. Our findings demonstrate the differential neural network structural and functional changes in Alzheimer’s disease with and without cerebrovascular disease, suggesting that the underlying pathology of Alzheimer’s disease patients with cerebrovascular disease might differ from those without cerebrovascular disease and reflect a combination of more severe cerebrovascular disease and less severe Alzheimer’s disease network degeneration phenotype. PMID:29053778
Zhong, Jidan; Rifkin-Graboi, Anne; Ta, Anh Tuan; Yap, Kar Lai; Chuang, Kai-Hsiang; Meaney, Michael J; Qiu, Anqi
2014-07-01
Children begin performing similarly to adults on tasks requiring executive functions in late childhood, a transition that is probably due to neuroanatomical fine-tuning processes, including myelination and synaptic pruning. In parallel to such structural changes in neuroanatomical organization, development of functional organization may also be associated with cognitive behaviors in children. We examined 6- to 10-year-old children's cortical thickness, functional organization, and cognitive performance. We used structural magnetic resonance imaging (MRI) to identify areas with cortical thinning, resting-state fMRI to identify functional organization in parallel to cortical development, and working memory/response inhibition tasks to assess executive functioning. We found that neuroanatomical changes in the form of cortical thinning spread over bilateral frontal, parietal, and occipital regions. These regions were engaged in 3 functional networks: sensorimotor and auditory, executive control, and default mode network. Furthermore, we found that working memory and response inhibition only associated with regional functional connectivity, but not topological organization (i.e., local and global efficiency of information transfer) of these functional networks. Interestingly, functional connections associated with "bottom-up" as opposed to "top-down" processing were more clearly related to children's performance on working memory and response inhibition, implying an important role for brain systems involved in late childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...
2015-07-13
High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less
NASA Astrophysics Data System (ADS)
Adamek, J.; Seidl, J.; Horacek, J.; Komm, M.; Eich, T.; Panek, R.; Cavalier, J.; Devitre, A.; Peterka, M.; Vondracek, P.; Stöckel, J.; Sestak, D.; Grover, O.; Bilkova, P.; Böhm, P.; Varju, J.; Havranek, A.; Weinzettl, V.; Lovell, J.; Dimitrova, M.; Mitosinkova, K.; Dejarnac, R.; Hron, M.; The COMPASS Team; The EUROfusion MST1 Team
2017-11-01
A new system of probes was recently installed in the divertor of tokamak COMPASS in order to investigate the ELM energy density with high spatial and temporal resolution. The new system consists of two arrays of rooftop-shaped Langmuir probes (LPs) used to measure the floating potential or the ion saturation current density and one array of Ball-pen probes (BPPs) used to measure the plasma potential with a spatial resolution of ~3.5 mm. The combination of floating BPPs and LPs yields the electron temperature with microsecond temporal resolution. We report on the design of the new divertor probe arrays and first results of electron temperature profile measurements in ELMy H-mode and L-mode. We also present comparative measurements of the parallel heat flux using the new probe arrays and fast infrared termography (IR) data during L-mode with excellent agreement between both techniques using a heat power transmission coefficient γ = 7. The ELM energy density {{\\varepsilon }\\parallel } was measured during a set of NBI assisted ELMy H-mode discharges. The peak values of {{\\varepsilon }\\parallel } were compared with those predicted by model and with experimental data from JET, AUG and MAST with a good agreement.
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun
2018-01-01
Maintaining the stability of pickup ions in the outer heliosheath is a critical element for the secondary energetic neutral atom (ENA) mechanism, a theory put forth to explain the nearly annular band of ENA emission observed by the Interstellar Boundary EXplorer. A recent study showed that a pickup ion ring can remain stable to the Alfvén/ion cyclotron (AC) instability at propagation parallel to the background magnetic field when the parallel thermal spread of the ring is comparable to that of a background population. This study investigates the potential role that the mirror or ion Bernstein (IB) instabilities can play in the stability of pickup ions when conditions are such that the AC instability is suppressed. Linear Vlasov theory predicts relatively fast mirror and IB instability growth even though AC instability growth is suppressed. For a few such cases, two-dimensional hybrid and macroscopic quasi-linear simulations are carried out to examine how the unstable mirror and IB modes evolve and affect the pickup ion ring beyond the linear theory picture. For the parameters used, the mirror mode dominates initially and leads to a rapid parallel heating of the pickup ions in excess of the parallel temperature of the background protons. The heated pickup ions subsequently trigger onset of the AC mode, which grows sufficiently large to be the dominant pitch angle scattering agent after the mirror mode has decayed away. The present results indicate that the pickup ion stability needed may not be guaranteed once the mirror and IB instabilities are taken into account.
Modulation of magnetic interaction in Bismuth ferrite through strain and spin cycloid engineering
NASA Astrophysics Data System (ADS)
Yadav, Rama Shanker; Reshi, Hilal Ahmad; Pillai, Shreeja; Rana, D. S.; Shelke, Vilas
2016-12-01
Bismuth ferrite, a widely studied room temperature multiferroic, provides new horizons of multifunctional behavior in phase transited bulk and thin film forms. Bismuth ferrite thin films were deposited on lattice mismatched LaAlO3 substrate using pulsed laser deposition technique. X-ray diffraction confirmed nearly tetragonal (T-type) phase of thin film involving role of substrate induced strain. The film thickness of 56 nm was determined by X-ray reflectivity measurement. The perfect coherence and epitaxial nature of T- type film was observed through reciprocal space mapping. The room temperature Raman measurement of T-type bismuth ferrite thin film also verified phase transition with appearance of only few modes. In parallel, concomitant La and Al substituted Bi1-xLaxFe0.95Al0.05O3 (x = 0.1, 0.2, 0.3) bulk samples were synthesized using solid state reaction method. A structural phase transition into orthorhombic (Pnma) phase at x = 0.3 was observed. The structural distortion at x = 0.1, 0.2 and phase transition at x = 0.3 substituted samples were also confirmed by changes in Raman active modes. The remnant magnetization moment of 0.199 emu/gm and 0.28 emu/gm were observed for x = 0.2 and 0.3 bulk sample respectively. The T-type bismuth ferrite thin film also showed high remnant magnetization of around 20emu/cc. The parallelism in magnetic behavior between T-type thin film and concomitant La and Al substituted bulk samples is indication of modulation, frustration and break in continuity of spiral spin cycloid.
Diagnosis of Cell Death by Means of Infrared Spectroscopy
Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana
2009-01-01
Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743
NASA Astrophysics Data System (ADS)
Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Ma, Tzuhsuan; Shvets, Gennady
Electronic chiral edge states in Quantum Hall Effect systems has attracted a lot of attention in recent years because of its unique directionality and robustness against scattering from disorder. Its electromagnetic counterpart can be found in photonic crystals, which is a material with periodic dielectric constant. Here we present the experimental results demonstrating the unidirectional edge mode inside a bi-anisotropic meta-waveguide (BMW) structure. It is a parallel plate waveguide with metal rods placed in a hexagonal lattice. Half of the rods are attached to the top plate while the other half are attached to the bottom plate creating a domain wall. The edge mode is excited by two loop antennas placed perpendicular to each other within one wavelength, generating a rotating magnetic dipole that couples to the left or right-going mode. The transmission measurement are taken along the BMW boundary and shows high transmission only around the edge, thus confirming the presence of an edge mode. We also demonstrated that very high directivity can be achieved when the input amplitude and phase of the two loop antennas are tuned properly This work is funded by the ONR under Grants No. N00014130474 and N000141512134, and the Center for Nanophysics and Advanced Materials (CNAM).
Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations
NASA Astrophysics Data System (ADS)
Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.
2009-06-01
We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.
Silicone polymer waveguide bridge for Si to glass optical fibers
NASA Astrophysics Data System (ADS)
Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.
2015-03-01
Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.
Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.
Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei
2012-10-20
Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.
First-Principles Calculations of Lattice Dynamics in La_2CuO_4
NASA Astrophysics Data System (ADS)
Wang, C.-Z.; Yu, Rici; Krakauer, Henry
1998-03-01
To investigate wavevector-dependent lattice vibrational properties of the high-temperature cuprate superconductor La_2-xSr_xCuO_4, we have performed first principles calculations for tetragonal I4/mmm La_2CuO_4, using the linear response LAPW method(R. Yu and H. Krakauer, Phys. Rev. B 49), 4467 (1994). Phonon frequencies and polarization vectors are obtained throughout the Brillouin zone. Generally good agreement is obtained with experiment, but we underestimate the frequencies of the low lying modes, which involve either motions of the apical oxygen atoms parallel to the CuO2 planes or motions of the plane O atoms along the c-axis. The discrepancy may be due to anharmonic coupling of these modes(R. Cohen, W. Pickett, and H. Krakauer, Phys. Rev. Lett. 62), 831 (1989)^,(D. J. Singh, Solid State Commun. 98), 575 (1996). The X point tilt phonon mode is found to be the most unstable mode, consistent with previous frozen phonon calculations^3 and the observed phase transition to the orthorhombic structure at low temperature. The results will be discussed in comparison with previous calculations^3,4 and experiment.
NASA Astrophysics Data System (ADS)
Farengo, R.; Guzdar, P. N.; Lee, Y. C.
1989-08-01
The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.
NASA Astrophysics Data System (ADS)
Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi
2017-07-01
We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.
E × B flow shear drive of the linear low-n modes of EHO in the QH-mode regime
NASA Astrophysics Data System (ADS)
Xu, G. S.; Wan, B. N.; Wang, Y. F.; Wu, X. Q.; Chen, Xi; Peng, Y.-K. Martin; Guo, H. Y.; Burrell, K. H.; Garofalo, A. M.; Osborne, T. H.; Groebner, R. J.; Wang, H. Q.; Chen, R.; Yan, N.; Wang, L.; Ding, S. Y.; Shao, L. M.; Hu, G. H.; Li, Y. L.; Lan, H.; Yang, Q. Q.; Chen, L.; Ye, Y.; Xu, J. C.; Li, J.
2017-08-01
A new model for the edge harmonic oscillations (EHOs) in the quiescent H-mode regime has been developed, which successfully reproduces the recent observations in the DIII-D tokamak. In particular, at high E × B flow shear only a few low-n kink modes remain unstable at the plasma edge, consistent with the EHO behavior, while at low E × B flow shear, the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior. The model is based on a new mechanism for destabilizing low-n kink/peeling modes by the E × B flow shear, which underlies the EHOs, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the 2D pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drive as the parallel wavenumber increases significantly away from the rational surface at the plasma edge where the magnetic shear is also strong. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.
Helicon modes in uniform plasmas. I. Low m modes
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R. L.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They arise in bounded gaseous and solid state plasmas, but the present work shows that very similar modes also exist in unbounded uniform plasmas. The antenna properties determine the mode structure. A simple antenna is a magnetic loop with dipole moment aligned either along or across the ambient background magnetic field B0. For such configurations, the wave magnetic field has been measured in space and time in a large and uniform laboratory plasma. The observed wave topology for a dipole along B0 is similar to that of an m = 0 helicon mode. It consists of a sequence of alternating whistler vortices. For a dipole across B0, an m = 1 mode is excited which can be considered as a transverse vortex which rotates around B0. In m = 0 modes, the field lines are confined to each half-wavelength vortex while for m = 1 modes they pass through the entire wave train. A subset of m = 1 field lines forms two nested helices which rotate in space and time like corkscrews. Depending on the type of the antenna, both m = + 1 and m = -1 modes can be excited. Helicons in unbounded plasmas also propagate transverse to B0. The transverse and parallel wave numbers are about equal and form oblique phase fronts as in whistler Gendrin modes. By superimposing small amplitude fields of several loop antennas, various antenna combinations have been created. These include rotating field antennas, helical antennas, and directional antennas. The radiation efficiency is quantified by the radiation resistance. Since helicons exist in unbounded laboratory plasmas, they can also arise in space plasmas.
Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui
2004-05-01
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-02-09
The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less
AA9int: SNP Interaction Pattern Search Using Non-Hierarchical Additive Model Set.
Lin, Hui-Yi; Huang, Po-Yu; Chen, Dung-Tsa; Tung, Heng-Yuan; Sellers, Thomas A; Pow-Sang, Julio; Eeles, Rosalind; Easton, Doug; Kote-Jarai, Zsofia; Amin Al Olama, Ali; Benlloch, Sara; Muir, Kenneth; Giles, Graham G; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A; Schleutker, Johanna; Nordestgaard, Børge G; Travis, Ruth C; Hamdy, Freddie; Neal, David E; Pashayan, Nora; Khaw, Kay-Tee; Stanford, Janet L; Blot, William J; Thibodeau, Stephen N; Maier, Christiane; Kibel, Adam S; Cybulski, Cezary; Cannon-Albright, Lisa; Brenner, Hermann; Kaneva, Radka; Batra, Jyotsna; Teixeira, Manuel R; Pandha, Hardev; Lu, Yong-Jie; Park, Jong Y
2018-06-07
The use of single nucleotide polymorphism (SNP) interactions to predict complex diseases is getting more attention during the past decade, but related statistical methods are still immature. We previously proposed the SNP Interaction Pattern Identifier (SIPI) approach to evaluate 45 SNP interaction patterns/patterns. SIPI is statistically powerful but suffers from a large computation burden. For large-scale studies, it is necessary to use a powerful and computation-efficient method. The objective of this study is to develop an evidence-based mini-version of SIPI as the screening tool or solitary use and to evaluate the impact of inheritance mode and model structure on detecting SNP-SNP interactions. We tested two candidate approaches: the 'Five-Full' and 'AA9int' method. The Five-Full approach is composed of the five full interaction models considering three inheritance modes (additive, dominant and recessive). The AA9int approach is composed of nine interaction models by considering non-hierarchical model structure and the additive mode. Our simulation results show that AA9int has similar statistical power compared to SIPI and is superior to the Five-Full approach, and the impact of the non-hierarchical model structure is greater than that of the inheritance mode in detecting SNP-SNP interactions. In summary, it is recommended that AA9int is a powerful tool to be used either alone or as the screening stage of a two-stage approach (AA9int+SIPI) for detecting SNP-SNP interactions in large-scale studies. The 'AA9int' and 'parAA9int' functions (standard and parallel computing version) are added in the SIPI R package, which is freely available at https://linhuiyi.github.io/LinHY_Software/. hlin1@lsuhsc.edu. Supplementary data are available at Bioinformatics online.
Infrared and Raman Study of the Recluse Spider Silk
NASA Astrophysics Data System (ADS)
Wang, S. L.; Wang, Qijue; Xing, Zhen; Schniepp, H. C.; Qazilbash, M. M.
Spider silk exhibits remarkable mechanical properties, such as high tensile strength and toughness. We want to gain insight into the composition and structure of spider silk to discover the origin of these properties. We are especially interested in the organization of the crystalline beta sheets that are expected to contribute to the high strength of the silk from the recluse spider, Loxosceles laeta. The recluse spider produces a silk that has a unique geometry amongst arachnids. We measure the silk's optical properties, particularly the infrared-active and Raman-active vibrations. Broadband infrared transmission spectra were collected in the spectral range between 600 cm-1 and 4000 cm-1, with light polarized parallel and perpendicular to the long axis of the silk. Raman micro-spectroscopy was performed in the spectral range 500 cm-1 and 4000 cm- 1 with a 514 nm laser. The infrared and Raman vibrational modes are fit with Lorentzian and pseudo-Voigt functions. The vibrational modes are assigned to specific structures and electronic bonds in the silk. This work was supported by NASA/ Virginia Space Grant Consortium.
In situ vibrational spectroscopy of adsorbed nitrogen in porous carbon materials.
Ray, Paramita; Xu, Enshi; Crespi, Vincent H; Badding, John V; Lueking, Angela D
2018-05-25
This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption. In all porous carbon samples upon N2 physisorption in the mesopore filling regime, the N2 Raman mode downshifts by ∼2 cm-1, a downshift comparable to liquid N2. The relative intensity of this mode increases as pressure is increased to saturation, and trends in the relative intensity parallel the volumetric gas adsorption isotherm. This mode with ∼2 cm-1 downshift is thus attributed to perturbations arising due to N2-N2 interactions in a condensed film. The mode is also observed for the activated carbon at 298 K, and the relative intensity once again parallels the gas adsorption isotherm. For select samples, a mode with a stronger downshift (>4 cm-1) is observed, and the stronger downshift is attributed to stronger N2-carbon surface interactions. Simulations for a N2 surface film support peak assignments. These results suggest that N2 vibrational spectroscopy could provide an indication of the presence or absence of porosity for very small quantities of samples.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.; Milovich, J.
1994-07-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyrokinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel three-dimensional (3-D) nonlinear ballooning mode representation. The representation is a Fourier transform of a field line following basis (ky',kx',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky' = 0, kx' ≠ 0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes. Detailing the parametric dependence of toroidal ITG turbulence is a key result.
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
Thermally stable surface-emitting tilted wave laser
NASA Astrophysics Data System (ADS)
Shchukin, V. A.; Ledentsov, N. N.; Kalosha, V. P.; Ledentsov, N.; Agustin, M.; Kropp, J. R.; Maximov, M. V.; Zubov, F. I.; Shernyakov, Yu. M.; Payusov, A. S.; Gordeev, N. Yu; Kulagina, M. M.; Zhukov, A. E.
2018-02-01
Novel lasing modes in a vertical-cavity surface-emitting laser (VCSEL)-type structure based on an antiwaveguding cavity are studied. Such a VCSEL cavity has an effective refractive index in the cavity region lower than the average index of the distributed Bragg reflectors (DBRs). Such device in a stripe geometry does not support in-plane waveguiding mode, and all modes with a high Q-factor are exclusively VCSEL-like modes with similar near field profile in the vertical direction. A GaAlAs-based VCSEL structure studied contains a resonant cavity with multiple GaInAs quantum wells as an active region. The VCSEL structure is processed as an edge-emitting laser with cleaved facets and top contact representing a non-alloyed metal grid. Rectangular-shaped 400x400 µm pieces are cleaved with perpendicular facets. The contact grid region has a total width of 70 μm. 7 μm-wide metal stripes serve as non-alloyed metal contact and form periodic rectangular openings having a size of 10x40 μm. Surface emission through the windows on top of the chip is measured at temperatures from 90 to 380 K. Three different types of modes are observed. The longest wavelength mode (mode A) is a VCSEL-like mode at 854 nm emitting normal to the surface with a full width at half maximum (FWHM) of the far field 10°. Accordingly the lasing wavelength demonstrates a thermal shift of the wavelength of 0.06 nm/K. Mode B is at shorter wavelengths of 840 nm at room temperature, emitting light at two symmetric lobes at tilt angles 40° with respect to the normal to the surface in the directions parallel to the stripe. The emission wavelength of this mode shifts at a rate 0.22 nm/K according to the GaAs bandgap shift. The angle of mode B with respect to the normal reduces as the wavelength approaches the vertical cavity etalon wavelength and this mode finally merges with the VCSEL mode. Mode B hops between different lateral modes of the VCSEL forming a dense spectrum due to significant longitudinal cavity length, and the thermal shift of its wavelength is governed by the shift of the gain spectrum. The most interesting observation is Mode C, which shifts at a rate 0.06 nm/K and has a spectral width of 1 nm. Mode C matches the wavelength of the critical angle for total internal reflection for light impinging from semiconductor chip on semiconductor/air interface and propagates essentially as an in-plane mode. According to modeling data we conclude that the lasing mode represents a coupled state between the TM-polarized surface-trapped optical mode and the VCSEL cavity mode. The resulting mode has an extended near field zone and low propagation losses. The intensity of the mode drastically enhances once is appears at resonance with Mode B. A clear threshold is revealed in the L-I curves of all modes and there is a strong competition of the lasing mechanisms once the gain maximum is scanned over the related wavelength range by temperature change.
Resonant scattering from a two-dimensional honeycomb PT dipole structure
NASA Astrophysics Data System (ADS)
Markoš, P.; Kuzmiak, V.
2018-05-01
We studied numerically the electromagnetic response of the finite periodic structure consisting of the PT dipoles represented by two infinitely long, parallel cylinders with the opposite sign of the imaginary part of a refractive index, which are centered at the positions of a two-dimensional honeycomb lattice. We observed that the total scattered energy reveals a series of sharp resonances at which the energy increases by two orders of magnitude and an incident wave is scattered only in a few directions given by spatial symmetry of the periodic structure. We explain this behavior by analysis of the complex frequency spectra associated with an infinite honeycomb array of the PT dipoles and identify the lowest resonance with the broken PT -symmetry mode formed by a doubly degenerate pair with complex conjugate eigenfrequencies corresponding to the K point of the reciprocal lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, N., E-mail: karthin10@gmail.com; Sivakumar, K.; Pachamuthu, M. P.
We focus on the application of powder diffraction data to get abinitio crystal structure determination of thiophene derived 1,4 DHP prepared by cyclocondensation method using solid catalyst. Crystal structure of the compound has been solved by direct-space approach on Monte Carlo search in parallel tempering mode using FOX program. Initial atomic coordinates were derived using Gaussian 09W quantum chemistry software in semi-empirical approach and Rietveld refinement was carried out using GSAS program. The crystal structure of the compound is stabilized by one N-H…O and three C-H…O hydrogen bonds. PIXEL lattice energy calculation was carried out to understand the physical naturemore » of intermolecular interactions in the crystal packing, on which the total lattice energy is contributed into Columbic, polarization, dispersion, and repulsion energies.« less
Transport and Dynamics in Toroidal Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, Dalton D
2006-05-16
This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less
Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.
Wade, M R; Murakami, M; Politzer, P A
2004-06-11
Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.
2010-05-01
Lower-hybrid (LH) oscillitons reveal one aspect of geocomplexities. They have been observed by rockets and satellites in various regions in geospace. They are extraordinary solitary waves the envelop of which has a relatively longer period, while the amplitude is modulated violently by embedded oscillations of much shorter periods. We employ a two-fluid (electron-ion) slab model in a Cartesian geometry to expose the excitation of LH oscillitons. Relying on a set of self-similar equations, we first produce, as a reference, the well-known three shapes (sinusoidal, sawtooth, and spiky or bipolar) of parallel-propagating ion-acoustic (IA) solitary structures in the absence of electron inertia, along with their Fast Fourier Transform (FFT) power spectra. The study is then expanded to illustrate distorted structures of the IA modes by taking into account all the three components of variables. In this case, the ion-cyclotron (IC) mode comes into play. Furthermore, the electron inertia is incorporated in the equations. It is found that the inertia modulates the coupled IA/IC envelops to produce LH oscillitons. The newly excited structures are characterized by a normal low-frequency IC solitary envelop embedded by high-frequency, small-amplitude LH oscillations which are superimposed upon by higher-frequency but smaller-amplitude IA ingredients. The oscillitons are shown to be sensitive to several input parameters (e.g., the Mach number, the electron-ion mass/temperature ratios, and the electron thermal speed). Interestingly, whenever a LH oscilliton is triggered, there occurs a density cavity the depth of which can reach up to 20% of the background density, along with density humps on both sides of the cavity. Unexpectedly, a mode at much lower frequencies is also found beyond the IC band. Future studies are finally highlighted. The appendices give a general dispersion relation and specific ones of linear modes relevant to all the nonlinear modes encountered in the text.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.
2012-09-01
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
Theory of tunneling spectroscopy for chiral topological superconductors
NASA Astrophysics Data System (ADS)
Ii, Akihiro; Yamakage, Ai; Yada, Keiji; Sato, Masatoshi; Tanaka, Yukio
2012-11-01
We study the charge conductance of an interface between a normal metal and a superconducting quantum anomalous Hall system, based on the recursive Green's function. The angle-resolved conductance γ(ky,eV) with momentum ky parallel to the interface and bias voltage V shows a rich structure depending on the Chern number N of the system. We find that when the bias voltage is tuned to the energy dispersion of the edge mode, eV=Eedge(ky), the angle-resolved conductance γ(ky,Eedge(ky)) shows a pronounced even-odd effect; the conductance vanishes for N=0 or 2, while it takes the universal value 2e2/h for N=1. In particular, in the N=2 phase, we find that the conductance γ(ky,Eedge(ky)) becomes 0 due to the interference of two degenerate Majorana edge modes, although the corresponding surface spectral weight remains nonzero.
The collisional drift mode in a partially ionized plasma. [in the F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.
NASA Astrophysics Data System (ADS)
Yue, Chao; An, Xin; Bortnik, Jacob; Ma, Qianli; Li, Wen; Thorne, Richard M.; Reeves, Geoffrey D.; Gkioulidou, Matina; Mitchell, Donald G.; Kletzing, Craig A.
2016-08-01
Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β∥e≳0.025 and (ii) relatively small-amplitude, oblique waves with β∥e≲0.025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.
Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX
Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Solomon, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Candy, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yuh, H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-04-01
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.
Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study.
Liu, Yang; Liu, Yaxin; Chan-Park, Mary B; Mu, Yuguang
2017-12-08
Teixobactin (TXB) is a newly discovered antibiotic targeting the bacterial cell wall precursor Lipid II (L II ). In the present work, four binding modes of TXB on L II were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered ensemble (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of L II are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in L II recognition. TXB-L II complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one L II , respectively. Our findings disclose that the ring motif of TXB is critical to L II binding and novel antibiotics can be designed based on its mimetics.
Experimental study on microsphere assisted nanoscope in non-contact mode
NASA Astrophysics Data System (ADS)
Ling, Jinzhong; Li, Dancui; Liu, Xin; Wang, Xiaorui
2018-07-01
Microsphere assisted nanoscope was proposed in existing literatures to capture super-resolution images of the nano-structures beneath the microsphere attached on sample surface. In this paper, a microsphere assisted nanoscope working in non-contact mode is designed and demonstrated, in which the microsphere is controlled with a gap separated to sample surface. With a gap, the microsphere is moved in parallel to sample surface non-invasively, so as to observe all the areas of interest. Furthermore, the influence of gap size on image resolution is studied experimentally. Only when the microsphere is close enough to the sample surface, super-resolution image could be obtained. Generally, the resolution decreases when the gap increases as the contribution of evanescent wave disappears. To keep an appropriate gap size, a quantitative method is implemented to estimate the gap variation by observing Newton's rings around the microsphere, serving as a real-time feedback for tuning the gap size. With a constant gap, large-area image with high resolution can be obtained during microsphere scanning. Our study of non-contact mode makes the microsphere assisted nanoscope more practicable and easier to implement.
NASA Astrophysics Data System (ADS)
Kelber, Scott; Hanay, Mehmet; Naik, Akshay; Chi, Derrick; Hentz, Sebastien; Bullard, Caryn; Collinet, Eric; Duraffourg, Laurent; Roukes, Michael
2012-02-01
Nanoelectromechanical systems (NEMS) enable mass sensing with unprecedented sensitivity and mass dynamic range. Previous works have relied on statistical analysis of multiple landing events to assemble mass spectra. Here we demonstrate the utility of using multiple modes of the NEMS device in determining the mass of individual molecules landing on the NEMS. Analyte particles in vapor form are produced using matrix assisted laser desorption ionization. Resonant frequencies of the first two modes of a single NEMS device, placed in close proximity to the analyte source, are tracked using parallel phase locked loops. Each analyte molecule landing on the NEMS generates a distinct frequency shift in the two modes. These time correlated frequency jumps are used to evaluate the mass of each analyte particle landing on the NEMS and thus generate mass spectra. We present the latest experimental results using this scheme and also demonstrate the utility for mass spectrometry of large biomolecules. This NEMS-Mass Spec. system offers a new tool for structural biology and pathology for the analysis of large proteins, protein complexes, and viruses.
Longitudinal and Transverse Instability of Ion Acoustic Waves
NASA Astrophysics Data System (ADS)
Chapman, T.; Berger, R. L.; Cohen, B. I.; Banks, J. W.; Brunner, S.
2017-08-01
Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.
NASA Astrophysics Data System (ADS)
Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.
2018-01-01
Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
NASA Astrophysics Data System (ADS)
Yao, Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.
2013-09-01
Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B 0) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B 0(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P th and the magnetic pressure P B, distributing against the temporal scale and the angle θxB between B 0(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of θxB. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B 0(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T ∥ derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.
NASA Astrophysics Data System (ADS)
Roudjane, Mourad; Codd, Terrance Joseph; Chen, Ming-Wei; Tran, Henry; Melnik, Dmitry G.; Miller, Terry A.; Stanton, John F.
2015-06-01
The vibronic structure of the tilde{A}-tilde{X} electronic spectrum of NO_3 has been observed using both room-temperature and jet-cooled samples. A recent analysis of this structure is consistent with the Jahn-Teller effect (JTE) in the e^' ν_3 vibrational mode (N-O stretch) being quite strong while the JTE in the e^' ν_4 mode (O-N-O) bend) is rather weak. Electronic structure calculations qualitatively predict these results but the calculated magnitude of the JTE is quantitatively inconsistent with the spectral analysis. Rotationally resolved spectra have been obtained for over a dozen vibronic bands of the tilde{A}-tilde{X} electronic transition in NO_3. An analysis of these spectra should provide considerably more experimental information about the JTE in the tilde{A} state of NO_3 as the rotational structure should be quite sensitive to the geometric distortion of the molecule due to the JTE. This talk will focus upon the parallel bands, which terminate on tilde{A} state levels of a''_1 vibronic symmetry, which were the subject of a preliminary analysis reported at this meeting in 2014. We have now recorded the rotational structure of over a half-dozen parallel bands and have completed analysis on the 3^1_0 and 3^1_0 4^1_0 transitions with several other bands being reasonably well understood. Two general conclusions emerge from this work. (i) All the spectral bands show evidence of perturbations which can reasonably be assumed to result from interactions of the observed tilde{A} state levels with high vibrational levels of the tilde{X} state. The perturbations range from severe in some bands to quite modest in others. (ii) Analyses of observed spectra, insofar as the perturbations permit, have all been performed with an oblate symmetric top model including only additional spin-rotation effects. This result is, of course, consistent with an effective, undistorted geometry for NO_3 of D3h symmetry on the rotational timescale.
Relating Seismicity to Dike Emplacement, and the Conundrum of Dyke-Parallel Faulting
NASA Astrophysics Data System (ADS)
Dering, G.; Micklethwaite, S.; Cruden, A. R.; Barnes, S. J.; Fiorentini, M. L.
2016-12-01
Seismic monitoring shows that faulting and fracturing precede and accompany magma emplacement on timescales of hours and days. One outstanding problem is that the precision of earthquake hypocentre locations is typically limited to tens or hundreds of meters and cannot resolve whether the hypocentres relate to strain of wall rock fragments within the dikes, in a process zone around the intrusion or peripherally in the country rock. We examine a swarm of 19 dolerite dikes, near Albany, Western Australia using an unmanned aerial vehicle and Structure-from-Motion photogrammetry to obtain accurate, high resolution 3D reconstructions of outcrop and to digitally extract structural data. We find rare overprinting relationships indicate dike emplacement and faulting was coeval and that the number of faults/fractures increase into the dike swarm (2.2 ± 0.7 more fractures, per unit length in host rocks intruded by dikes relative to the background value). The faults are cataclasite-bearing and parallel to the dikes but intriguingly dike emplacement appears to have been accommodated by mode 1 extension. We further provide the first evidence that dike-parallel shear failure occurs in a damage zone associated with the dike swarm. These results support seismological observations of dike-parallel shear failure associated with some intrusion events, which contradict Mohr-Coulomb theory and numerical modelling of dike propagation in brittle-elastic rock, where shear failure is predicted to occur on faults oriented approximately 30° to the dyke plane. We suggest the dike swarm occupies a network of joints and fractures formed prior to swarm emplacement but then reactivated ahead of propagating dikes and remaining active during the early stages of emplacement.
NASA Astrophysics Data System (ADS)
Gang, Liang; Yu, Yundan; Ge, Hongliang; Wei, Guoying; Jiang, Li; Sun, Lixia
Magnetic field parallel to electric field was induced during plating process to prepare CoNiMn alloy films on copper substrate. Electrochemistry mechanism and properties of CoNiMn alloy films were investigated in this paper. Micro magnetohydrodynamic convection phenomenon caused by vertical component of current density and parallel magnetic field due to deformation of current distribution contributed directly to the improvement of cathode current and deposition rate. Cathode current of the CoNiMn plating system increased about 30% with 1T magnetic field induced. It was found that CoNiMn films electrodeposited with magnetic fields basically belonged to a kind of progressive nucleation mode. Higher magnetic intensity intended to obtain CoNiMn films with good crystal structures and highly preferred orientations. With the increase of magnetic intensities, surface morphology of CoNiMn alloy films changed from typically nodular to needle-like structures. Compared with coatings electrodeposited without magnetic field, CoNiMn alloy films prepared with magnetic fields possessed better magnetic properties. Coercivity, remanence and saturation magnetization of samples increased sharply when 1T magnetic field was induced during plating process.
CSM parallel structural methods research
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1989-01-01
Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.
USDA-ARS?s Scientific Manuscript database
A ‘dilute-and-shoot’ method for vitamin D and triacylglycerols is demonstrated that employed four mass spectrometers, operating in different ionization modes, for a ‘quadruple parallel mass spectrometry’ analysis, plus three other detectors, for seven detectors overall. Sets of five samples of diet...
Liu, Y; Wickens, C D
1994-11-01
The evaluation of mental workload is becoming increasingly important in system design and analysis. The present study examined the structure and assessment of mental workload in performing decision and monitoring tasks by focusing on two mental workload measurements: subjective assessment and time estimation. The task required the assignment of a series of incoming customers to the shortest of three parallel service lines displayed on a computer monitor. The subject was either in charge of the customer assignment (manual mode) or was monitoring an automated system performing the same task (automatic mode). In both cases, the subjects were required to detect the non-optimal assignments that they or the computer had made. Time pressure was manipulated by the experimenter to create fast and slow conditions. The results revealed a multi-dimensional structure of mental workload and a multi-step process of subjective workload assessment. The results also indicated that subjective workload was more influenced by the subject's participatory mode than by the factor of task speed. The time estimation intervals produced while performing the decision and monitoring tasks had significantly greater length and larger variability than those produced while either performing no other tasks or performing a well practised customer assignment task. This result seemed to indicate that time estimation was sensitive to the presence of perceptual/cognitive demands, but not to response related activities to which behavioural automaticity has developed.
Binding properties of SUMO-interacting motifs (SIMs) in yeast.
Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich
2015-03-01
Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.
NASA Astrophysics Data System (ADS)
Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.
2008-02-01
Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.
Effect of q-profile structure on intrinsic torque reversals
NASA Astrophysics Data System (ADS)
Lu, Zhixin
2014-10-01
Intrinsic toroidal rotation plays an important role in mitigating macroinstability and regulating turbulent transport in ITER, where neutral beams are not sufficient to provide the requisite torque. Recent experiments on C-Mod with LHCD observed rotation reversal related to a change in the q profile. In this work, we focus on understanding the physics of intrinsic rotation reversals in LHCD plasmas, using nonlinear, global gyro-kinetic simulations and analysis of mode structure and spectrum symmetry breaking. The sensitive dependence of turbulent residual stress on magnetic shear is identified and characterized. The basic residual stress is non-vanishing when the k-parallel spectrum symmetry is broken, e.g., by E × B shear induced radial shift, non-uniformity in turbulence intensity, etc.. It is found that at low magnetic shear, the poloidal harmonics can shift strongly in the radial direction, as a feature of non-local effects, due to radial propagation and amplitude variation of the mode. This new symmetry breaking mechanism leads to a change in the sign of spectrum averaged parallel wave vector and thus the direction of intrinsic torque. Theoretical study shows that the competition between magnetic drift and ion kinetic effects determines the non-local effects and the structure of the asymmetry. Specifically, it is found that the direction of the intrinsic torque changes from counter- to co-current in the core, when magnetic shear decreases through a critical value. A critical shear ŝR = 0 . 2 ~ 0 . 5 for reversal of CTEM-induced intrinsic torque found by simulation is consistent with that from the LHCD C-Mod reversal experiments. In addition, simulations indicate ŝR = 1 ~ 2 for the reversal of ITG-induced torque, a prediction which can be tested by experiments. This work is supported by CER and CMTFO, UCSD and U.S. DOE-PPPL Contract DE-AC02-09CH11466.
Maven Observations of Electron-Induced Whistler Mode Waves in the Martian Magnetosphere
NASA Technical Reports Server (NTRS)
Harada, Y.; Andersson, L.; Fowler, C. M.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C.; Espley, J.; DiBraccio, G. A.; McFadden, J. P.; Brian, D. A.;
2016-01-01
We report on narrowband electromagnetic waves at frequencies between the local electron cyclotron and lower hybrid frequencies observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in the Martian induced magnetosphere. The peaked electric field wave spectra below the electron cyclotron frequency were first observed by Phobos-2 in the Martian magnetosphere, but the lack of magnetic field wave data prevented definitive identification of the wave mode and their generation mechanisms remain unclear. Analysis of electric and magnetic field wave spectra obtained by MAVEN demonstrates that the observed narrowband waves have properties consistent with the whistler mode. Linear growth rates computed from the measured electron velocity distributions suggest that these whistler mode waves can be generated by cyclotron resonance with anisotropic electrons. Large electron anisotropy in the Martian magnetosphere is caused by absorption of parallel electrons by the collisional atmosphere. The narrowband whistler mode waves and anisotropic electrons are observed on both open and closed field lines and have similar spatial distributions in MSO and planetary coordinates. Some of the waves on closed field lines exhibit complex frequency-time structures such as discrete elements of rising tones and two bands above and below half the electron cyclotron frequency. These MAVEN observations indicate that whistler mode waves driven by anisotropic electrons, which are commonly observed in intrinsic magnetospheres and at unmagnetized airless bodies, are also present at Mars. The wave-induced electron precipitation into the Martian atmosphere should be evaluated in future studies.
Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M
2010-11-01
To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to French government works.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.
1994-05-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyro-kinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel 3D nonlinear ballooning mode representation. The representation is a Fourier transform of the Cowley et al. [Phys. Fluids B 3, 2767 (1991)] field line following twisted eddy basis (kx',ky',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky'=0, kx'≠0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes.
Fast encryption of RGB color digital images using a tweakable cellular automaton based schema
NASA Astrophysics Data System (ADS)
Faraoun, Kamel Mohamed
2014-12-01
We propose a new tweakable construction of block-enciphers using second-order reversible cellular automata, and we apply it to encipher RGB-colored images. The proposed construction permits a parallel encryption of the image content by extending the standard definition of a block cipher to take into account a supplementary parameter used as a tweak (nonce) to control the behavior of the cipher from one region of the image to the other, and hence avoid the necessity to use slow sequential encryption's operating modes. The proposed construction defines a flexible pseudorandom permutation that can be used with efficacy to solve the electronic code book problem without the need to a specific sequential mode. Obtained results from various experiments show that the proposed schema achieves high security and execution performances, and enables an interesting mode of selective area decryption due to the parallel character of the approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojciechowski, Kenneth E; Olsson, III, Roy H; Ziaei-Moayyed, Maryam
2013-07-30
A microelectromechanical (MEM) filter is disclosed which has a plurality of lattice networks formed on a substrate and electrically connected together in parallel. Each lattice network has a series resonant frequency and a shunt resonant frequency provided by one or more contour-mode resonators in the lattice network. Different types of contour-mode resonators including single input, single output resonators, differential resonators, balun resonators, and ring resonators can be used in MEM filter. The MEM filter can have a center frequency in the range of 10 MHz-10 GHz, with a filter bandwidth of up to about 1% when all of the latticemore » networks have the same series resonant frequency and the same shunt resonant frequency. The filter bandwidth can be increased up to about 5% by using unique series and shunt resonant frequencies for the lattice networks.« less
On the stability of nongyrotropic ion populations - A first (analytic and simulation) assessment
NASA Technical Reports Server (NTRS)
Brinca, A. L.; Borda De Agua, L.; Winske, D.
1993-01-01
The wave and dispersion equations for perturbations propagating parallel to an ambient magnetic field in magnetoplasmas with nongyrotropic ion populations show, in general, the occurrence of coupling between the parallel (left- and right-hand circularly polarized electromagnetic and longitudinal electrostatic) eigenmodes of the associated gyrotropic medium. These interactions provide a means to driving linearly one mode with free-energy sources of other modes in homogeneous media. Different types of nongyrotropy bring about distinct classes of coupling. The stability of a hydrogen magnetoplasma with anisotropic, nongyrotropic protons that only couple the electromagnetic modes to each other is investigated analytically (via solution of the derived dispersion equation) and numerically (via simulation with a hybrid code). Nongyrotropy enhances growth and enlarges the unstable spectral range relative to the corresponding gyrotropic situation. The relevance of the properties of nongyrotropic populations to space plasma environments is also discussed.
Expression of Emotion in Eastern and Western Music Mirrors Vocalization
Bowling, Daniel Liu; Sundararajan, Janani; Han, Shui'er; Purves, Dale
2012-01-01
In Western music, the major mode is typically used to convey excited, happy, bright or martial emotions, whereas the minor mode typically conveys subdued, sad or dark emotions. Recent studies indicate that the differences between these modes parallel differences between the prosodic and spectral characteristics of voiced speech sounds uttered in corresponding emotional states. Here we ask whether tonality and emotion are similarly linked in an Eastern musical tradition. The results show that the tonal relationships used to express positive/excited and negative/subdued emotions in classical South Indian music are much the same as those used in Western music. Moreover, tonal variations in the prosody of English and Tamil speech uttered in different emotional states are parallel to the tonal trends in music. These results are consistent with the hypothesis that the association between musical tonality and emotion is based on universal vocal characteristics of different affective states. PMID:22431970
Kinetic theory for electrostatic waves due to transverse velocity shears
NASA Technical Reports Server (NTRS)
Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1988-01-01
A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.
Expression of emotion in Eastern and Western music mirrors vocalization.
Bowling, Daniel Liu; Sundararajan, Janani; Han, Shui'er; Purves, Dale
2012-01-01
In Western music, the major mode is typically used to convey excited, happy, bright or martial emotions, whereas the minor mode typically conveys subdued, sad or dark emotions. Recent studies indicate that the differences between these modes parallel differences between the prosodic and spectral characteristics of voiced speech sounds uttered in corresponding emotional states. Here we ask whether tonality and emotion are similarly linked in an Eastern musical tradition. The results show that the tonal relationships used to express positive/excited and negative/subdued emotions in classical South Indian music are much the same as those used in Western music. Moreover, tonal variations in the prosody of English and Tamil speech uttered in different emotional states are parallel to the tonal trends in music. These results are consistent with the hypothesis that the association between musical tonality and emotion is based on universal vocal characteristics of different affective states.
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
A privacy-preserving parallel and homomorphic encryption scheme
NASA Astrophysics Data System (ADS)
Min, Zhaoe; Yang, Geng; Shi, Jingqi
2017-04-01
In order to protect data privacy whilst allowing efficient access to data in multi-nodes cloud environments, a parallel homomorphic encryption (PHE) scheme is proposed based on the additive homomorphism of the Paillier encryption algorithm. In this paper we propose a PHE algorithm, in which plaintext is divided into several blocks and blocks are encrypted with a parallel mode. Experiment results demonstrate that the encryption algorithm can reach a speed-up ratio at about 7.1 in the MapReduce environment with 16 cores and 4 nodes.
Predator-prey modeling of the coupling of co-propagating CAE to kink modes
NASA Astrophysics Data System (ADS)
Fredrickson, Eric
2012-10-01
Co-propagating Compressional Alfven eigenmodes (CAE) with shorter wavelength and higher frequency than the counter-propagating CAE and Global Alfven eigenmodes (GAE) often accompany a low frequency n=1 kink. The lower frequency CAE and GAE are excited through a Doppler-shifted cyclotron resonance; the high frequency CAE (hfCAE) through a simple parallel resonance. We present measurements of the mode structure and spectrum of the hfCAE, and compare those measurements to predictions of a simple model for CAE. The modes are bursting with a typical burst frequency on the order of a few kHz. The n=1 kink frequency is usually higher than this, but when the kink frequency does drop towards the hfCAE burst frequency, the hfCAE burst frequency can become locked with the kink frequency. A simple predator-prey model to simulate the hfCAE bursting demonstrates that a modulation of the growth or damping rate by a few percent, at a frequency near the natural burst frequency, can lock the burst frequency to the modulation frequency. The modulation of the damping rate is postulated to be through a coupling of the kink with a symmetry-breaking error field. The deeper question is how the kink interaction with a locked mode can affect the damping/growth rates of the CAE.
Extraordinary optical transmission inside a waveguide: spatial mode dependence.
Reichel, Kimberly S; Lu, Peter Y; Backus, Sterling; Mendis, Rajind; Mittleman, Daniel M
2016-12-12
We study the influence of the input spatial mode on the extraordinary optical transmission (EOT) effect. By placing a metal screen with a 1D array of subwavelength holes inside a terahertz (THz) parallel-plate waveguide (PPWG), we can directly compare the transmission spectra with different input waveguide modes. We observe that the transmitted spectrum depends strongly on the input mode. A conventional description of EOT based on the excitation of surface plasmons is not predictive in all cases. Instead, we utilize a formalism based on impedance matching, which accurately predicts the spectral resonances for both TEM and non-TEM input modes.
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
NASA Astrophysics Data System (ADS)
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies. PMID:28112214
Parallel/Vector Integration Methods for Dynamical Astronomy
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
1999-01-01
This paper reviews three recent works on the numerical methods to integrate ordinary differential equations (ODE), which are specially designed for parallel, vector, and/or multi-processor-unit(PU) computers. The first is the Picard-Chebyshev method (Fukushima, 1997a). It obtains a global solution of ODE in the form of Chebyshev polynomial of large (> 1000) degree by applying the Picard iteration repeatedly. The iteration converges for smooth problems and/or perturbed dynamics. The method runs around 100-1000 times faster in the vector mode than in the scalar mode of a certain computer with vector processors (Fukushima, 1997b). The second is a parallelization of a symplectic integrator (Saha et al., 1997). It regards the implicit midpoint rules covering thousands of timesteps as large-scale nonlinear equations and solves them by the fixed-point iteration. The method is applicable to Hamiltonian systems and is expected to lead an acceleration factor of around 50 in parallel computers with more than 1000 PUs. The last is a parallelization of the extrapolation method (Ito and Fukushima, 1997). It performs trial integrations in parallel. Also the trial integrations are further accelerated by balancing computational load among PUs by the technique of folding. The method is all-purpose and achieves an acceleration factor of around 3.5 by using several PUs. Finally, we give a perspective on the parallelization of some implicit integrators which require multiple corrections in solving implicit formulas like the implicit Hermitian integrators (Makino and Aarseth, 1992), (Hut et al., 1995) or the implicit symmetric multistep methods (Fukushima, 1998), (Fukushima, 1999).
Johnson, Timothy C.; Versteeg, Roelof J.; Ward, Andy; Day-Lewis, Frederick D.; Revil, André
2010-01-01
Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics for characterizing the electrical properties of the subsurface and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Presently, multichannel and multielectrode data collections systems can collect large data sets in relatively short periods of time. Practitioners, however, often are unable to fully utilize these large data sets and the information they contain because of standard desktop-computer processing limitations. These limitations can be addressed by utilizing the storage and processing capabilities of parallel computing environments. We have developed a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polar-ization (IP) data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We have tested the corresponding parallel code in three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, Washington, U.S.A., (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy, and (3) resistivity and IP monitoring of biostimulation at a Superfund site in Brandywine, Maryland, U.S.A. Inverse analysis of each of these data sets would be limited or impossible in a standard serial computing environment, which underscores the need for parallel high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.
Prosodic Structure as a Parallel to Musical Structure
Heffner, Christopher C.; Slevc, L. Robert
2015-01-01
What structural properties do language and music share? Although early speculation identified a wide variety of possibilities, the literature has largely focused on the parallels between musical structure and syntactic structure. Here, we argue that parallels between musical structure and prosodic structure deserve more attention. We review the evidence for a link between musical and prosodic structure and find it to be strong. In fact, certain elements of prosodic structure may provide a parsimonious comparison with musical structure without sacrificing empirical findings related to the parallels between language and music. We then develop several predictions related to such a hypothesis. PMID:26733930
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guttenfelder, W.; Kaye, S. M.; Ren, Y.
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less
Guttenfelder, W.; Kaye, S. M.; Ren, Y.; ...
2016-05-11
This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostaticballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes inmore » a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. Lastly, as the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.« less
Magnetic Shear Damped Polar Convective Fluid Instabilities
NASA Astrophysics Data System (ADS)
Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.
2018-01-01
The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.
NASA Technical Reports Server (NTRS)
Armstrong, Wilbur C.
1992-01-01
The piping in a liquid rocket can assume complex configurations due to multiple tanks, multiple engines, and structures that must be piped around. The capability to handle some of these complex configurations have been incorporated into the SSFREQ code. The capability to modify the input on line has been implemented. The configurations allowed include multiple tanks, multiple engines, the splitting of a pipe into equal segments going to different (or the same) engines. This program will handle the following type elements: straight pipes, bends, inline accumulators, tuned stub accumulators, Helmholtz resonators, parallel resonators, pumps, split pipes, multiple tanks, and multiple engines.
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
Neoclassical theory inside transport barriers in tokamaks
NASA Astrophysics Data System (ADS)
Shaing, K. C.; Hsu, C. T.
2012-02-01
Inside the transport barriers in tokamaks, ion energy losses sometimes are smaller than the value predicted by the standard neoclassical theory. This improvement can be understood in terms of the orbit squeezing theory in addition to the sonic poloidal E ×B Mach number Up,m that pushes the tips of the trapped particles to the higher energy. In general, Up,m also includes the poloidal component of the parallel mass flow speed. These physics mechanisms are the corner stones for the transition theory of the low confinement mode (L-mode) to the high confinement mode (H-mode) in tokamaks. Here, detailed transport fluxes in the banana regime are presented using the parallel viscous forces calculated earlier. It is found, as expected, that effects of orbit squeezing and the sonic Up,m reduce the ion heat conductivity. The former reduces it by a factor of |S|3/2 and the later by a factor of R(Up ,m2)exp(-Up ,m2) with R(Up ,m2), a rational function. Here, S is the orbit squeezing factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; An, Xin; Bortnik, Jacob
Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β ∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β ∥e ≳0:025 andmore » (ii) relatively small-amplitude, oblique waves with β ∥e ≲0:025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.« less
Haghshenasfard, Zahra; Cottam, M G
2017-05-17
A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.
Yue, Chao; An, Xin; Bortnik, Jacob; ...
2016-08-04
Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β ∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with β ∥e ≳0:025 andmore » (ii) relatively small-amplitude, oblique waves with β ∥e ≲0:025. The upper band chorus waves also have enhanced amplitudes close to the instability threshold, with large-amplitude waves being quasi-parallel whereas small-amplitude waves being oblique. These results provide important insight for studying the excitation of whistler mode chorus waves.« less
Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.
1994-01-01
Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for intermediate plasma parameters. The plasma observations are described by A(sub p) = 0.85 beta(sub parallel P) (exp - 0.48) with a log regression coefficient of -0.74. This inverse A(sub p) - beta(sub parallel p) correlation corresponds closely to the isocontours of maximum ion anisotropy instability growth, gamma (sub m)/omega(sub p) = 0.01, for the mirror and cyclotron modes. The agreement of observed properties and predictions of local theory suggests that the spectral signatures reflect the local plasma environment and that the anisotropy instabilities regulate A(sub p). We suggest that the spectral characteristics may provide a useful basis for ordering observations in the magnetosheath and that the A(sub p) - beta(sub parallel p) inverse correlation may be used as a beta-dependent upper limit on the proton anisotropy to represent kinetic effects.
Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.
Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M
2010-04-26
We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).
Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Tonghui, E-mail: thshi@ipp.ac.cn; Wan, B. N.; Sun, Y.
2016-08-15
Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived.
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
Maisuradze, Gia G; Senet, Patrick; Czaplewski, Cezary; Liwo, Adam; Scheraga, Harold A
2010-04-08
Coarse-grained molecular dynamics simulations offer a dramatic extension of the time-scale of simulations compared to all-atom approaches. In this article, we describe the use of the physics-based united-residue (UNRES) force field, developed in our laboratory, in protein-structure simulations. We demonstrate that this force field offers about a 4000-times extension of the simulation time scale; this feature arises both from averaging out the fast-moving degrees of freedom and reduction of the cost of energy and force calculations compared to all-atom approaches with explicit solvent. With massively parallel computers, microsecond folding simulation times of proteins containing about 1000 residues can be obtained in days. A straightforward application of canonical UNRES/MD simulations, demonstrated with the example of the N-terminal part of the B-domain of staphylococcal protein A (PDB code: 1BDD, a three-alpha-helix bundle), discerns the folding mechanism and determines kinetic parameters by parallel simulations of several hundred or more trajectories. Use of generalized-ensemble techniques, of which the multiplexed replica exchange method proved to be the most effective, enables us to compute thermodynamics of folding and carry out fully physics-based prediction of protein structure, in which the predicted structure is determined as a mean over the most populated ensemble below the folding-transition temperature. By using principal component analysis of the UNRES folding trajectories of the formin-binding protein WW domain (PDB code: 1E0L; a three-stranded antiparallel beta-sheet) and 1BDD, we identified representative structures along the folding pathways and demonstrated that only a few (low-indexed) principal components can capture the main structural features of a protein-folding trajectory; the potentials of mean force calculated along these essential modes exhibit multiple minima, as opposed to those along the remaining modes that are unimodal. In addition, a comparison between the structures that are representative of the minima in the free-energy profile along the essential collective coordinates of protein folding (computed by principal component analysis) and the free-energy profile projected along the virtual-bond dihedral angles gamma of the backbone revealed the key residues involved in the transitions between the different basins of the folding free-energy profile, in agreement with existing experimental data for 1E0L .
Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors
Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus
2014-01-01
Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281
Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors.
Camarena-Martinez, David; Valtierra-Rodriguez, Martin; Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus
2014-01-01
Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.
3D Guided Wave Motion Analysis on Laminated Composites
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollick, S. A.; Ghose, D.
Off-normal low energy ion beam sputtering of solid surfaces often leads to morphological instabilities resulting in the spontaneous formation of ripple structures in nanometer length scales. In the case of Si surfaces at ambient temperature, ripple formation is found to take place normally at lower incident angles with the wave vector parallel to the ion beam direction. The absence of ripple pattern on Si surface at larger angles is due to the dominance of ion beam polishing effect. We have shown that a gentle chemical roughening of the starting surface morphology can initiate ripple pattern under grazing incidence ion beammore » sputtering (theta>64 deg. with respect to the surface normal), where the ripple wave vector is perpendicular to the ion beam direction. The characteristics of the perpendicular mode ripples are studied as a function of pristine surface roughness (2-30 nm) and projectile fluence (5x10{sup 16}-1.5x10{sup 18} O atoms cm{sup -2}). The quality of the morphological structure is assessed from the analysis of ion induced topological defects.« less
Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.
2009-01-01
Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in the planning stages.
NASA Astrophysics Data System (ADS)
Matsuoka, Seikichi; Idomura, Yasuhiro; Satake, Shinsuke
2017-10-01
The neoclassical toroidal viscosity (NTV) caused by a non-axisymmetric magnetic field perturbation is numerically studied using two global kinetic simulations with different numerical approaches. Both simulations reproduce similar collisionality ( νb*) dependencies over wide νb * ranges. It is demonstrated that resonant structures in the velocity space predicted by the conventional superbanana-plateau theory exist in the small banana width limit, while the resonances diminish when the banana width becomes large. It is also found that fine scale structures are generated in the velocity space as νb* decreases in the large banana width simulations, leading to the νb* -dependency of the NTV. From the analyses of the particle orbit, it is found that the finite k∥ mode structure along the bounce motion appears owing to the finite orbit width, and it suffers from bounce phase mixing, suggesting the generation of the fine scale structures by the similar mechanism as the parallel phase mixing of passing particles.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
Parallel closure theory for toroidally confined plasmas
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.
2017-10-01
We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.
Interpretations of the impact of cross-field drifts on divertor flows in DIII-D with UEDGE
Jaervinen, Aaro E.; Allen, Steve L.; Groth, Mathias; ...
2017-01-27
Simulations using the multi-fluid code UEDGE indicates that, in low confinement (Lmode) plasmas in DIII-D, recycling driven flows dominate poloidal particle flows in the divertor, whereas E×B drift flows dominate the radial particle flows. In contrast, in high confinement (H-mode) conditions E×B drift flows dominate both poloidal and radial particle flows in the divertor. UEDGE indicates that the toroidal C 2+ flow velocities in the divertor plasma are entrained within 30% to the background deuterium flow in both Land H-mode plasmas in the plasma region where the CIII 465 nm emission is measured. Therefore, UEDGE indicates that the Carbon Dopplermore » Coherence Imaging System (CIS), measuring the toroidal velocity of the C 2+ ions, can provide insight to the deuterium flows in the divertor. Parallel-to-B velocity dominates the toroidal divertor flow; direct drift impact being less than 1%. Toroidal divertor flow is predicted to reverse when the magnetic field is reversed. This is explained by the parallel-B flow towards the nearest divertor plate corresponding to opposite toroidal directions in opposite toroidal field configurations. Due to strong poloidal E×B flows in H-mode, net poloidal particle transport can be in opposite direction than the poloidal component of the parallel-B plasma flow.« less
Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo
2015-01-01
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
The role of parallelism in the real-time processing of anaphora.
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P
2012-06-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution.
The role of parallelism in the real-time processing of anaphora
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P.
2012-01-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution. PMID:23741080
Nonlinear damping of oblique whistler mode waves through Landau resonance
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Omura, Y.
2017-12-01
Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle < 20°. Analyzing the wave electric field E and the resonant current J, which is composed of electrons undergoing the Landau resonance, we find that the J·E is mainly positive, which denotes the damping of the wave. Furthermore, we confirm that this positive J•E is dominated by transverse component Jperp·Eperp rather than by longitudinal component Jpara·Eperp. The simulation results reveal that the Landau resonance contributes to the nonlinear damping at 0.5 Ωe for whistler mode waves. Reference [1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, doi:10.1002/2016JA023255.
Seismic analysis of parallel structures coupled by lead extrusion dampers
NASA Astrophysics Data System (ADS)
Patel, C. C.
2017-06-01
In this paper, the response behaviors of two parallel structures coupled by Lead Extrusion Dampers (LED) under various earthquake ground motion excitations are investigated. The equation of motion for the two parallel, multi-degree-of-freedom (MDOF) structures connected by LEDs is formulated. To explore the viability of LED to control the responses, namely displacement, acceleration and shear force of parallel coupled structures, the numerical study is done in two parts: (1) two parallel MDOF structures connected with LEDs having same damper damping in all the dampers and (2) two parallel MDOF structures connected with LEDs having different damper damping. A parametric study is conducted to investigate the optimum damping of the dampers. Moreover, to limit the cost of the dampers, the study is conducted with only 50% of total dampers at optimal locations, instead of placing the dampers at all the floor level. Results show that LEDs connecting the parallel structures of different fundamental frequencies, the earthquake-induced responses of either structure can be effectively reduced. Further, it is not necessary to connect the two structures at all floors; however, lesser damper at appropriate locations can significantly reduce the earthquake response of the coupled system, thus reducing the cost of the dampers significantly.
Two-mode thermal-noise squeezing in an electromechanical resonator.
Mahboob, I; Okamoto, H; Onomitsu, K; Yamaguchi, H
2014-10-17
An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased. The existence of correlations between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical system at the single phonon level.
High speed parallel spectral-domain OCT using spectrally encoded line-field illumination
NASA Astrophysics Data System (ADS)
Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo
2018-01-01
We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Song, Weixing
2018-01-01
We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.
Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua
2015-11-01
In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamically tunable graphene/dielectric photonic crystal transmission lines
NASA Astrophysics Data System (ADS)
Williamson, Ian; Mousavi, S. Hossein; Wang, Zheng
2015-03-01
It is well known that graphene supports plasmonic modes with high field confinement and lower losses when compared to conventional metals. Additionally, graphene features a highly tunable conductivity through which the plasmon dispersion can be modulated. Over the years these qualities have inspired a wide range of applications for graphene in the THz and infrared regimes. In this presentation we theoretically demonstrate a graphene parallel plate waveguide (PPWG) that sandwiches a 2D photonic crystal slab. The marriage of these two geometries offers a large two dimensional band gap that can be dynamically tuned over a very broad bandwidth. Our device operates in the low-THz band where the graphene PPWG supports a quasi-TEM mode with a relatively flat attenuation. Unlike conventional photonic crystal slabs, the quasi-TEM nature of the graphene PPWG mode allows the slab thickness to be less than 1/10 of the photonic crystal lattice constant. These features offer up a wealth of opportunities, including tunable metamaterials with a possible platform for large band gaps in 3D structures through tiling and stacking. Additionally, the geometry provides a platform for tunable defect cavities without needing three dimensional periodicity.
NASA Astrophysics Data System (ADS)
Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio
2010-11-01
The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the eigenvalue problem for the physically relevant vanishing Neumann boundary conditions in linear-shear channel flow. We show that the life of the corresponding modes at large Pe for this case is shorter than the ones arising from shear free zones in the fluid's interior. A WKBJ study of the latter modes provides a longer intermediate time evolution. This part of the analysis is technical, as the corresponding spectrum is dominated by asymptotically coalescing turning points in the limit of large Pe numbers. When large scale initial data components are present, the transient regime of the WKBJ (anomalous) modes evolves into one governed by Taylor dispersion. This is studied by a regular perturbation expansion of the spectrum in the small wavenumber regimes.
Using a constraint on the parallel velocity when determining electric fields with EISCAT
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).
Posener, J A
1989-01-01
This paper extends a recent line of research by correlating Piaget's theory of cognitive development with several psychoanalytic perspectives on development during the second and third years of life. The concrete, imagistic, unintegrated nature of mental representations associated by Mahler and Kernberg with this period, along with the mental operation of splitting, are related to preconceptual representation, a cognitive mode described by Piaget. Psychoanalytic perspectives on the body ego and object world associated with the anal period are also seen to involve concrete, unintegrated representations which show correspondence with preconceptual cognition. Parallels are explored between cognitive stages and the psychoanalytic understanding of ego and superego development. While psychoanalysis is not a cognitive psychology, aspects of its theory are concerned with cognitive structure and are enriched by a consideration of cognitive development.
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
NASA Astrophysics Data System (ADS)
Fourtaka, Katerina; Christoforides, Elias; Mentzafos, Dimitris; Bethanis, Kostas
2018-06-01
The crystal structures of the inclusion complexes of the β-citronellol (cl) inβ-Cyclodextrin (β-CD), heptakis(2,6-di-O-methyl)-β-Cyclodextrin (DM-β-CD) and heptakis(2,3,6-tri-O-methyl)-β-Cyclodextrin (TM-β-CD) have being investigated by X-ray crystallography. The cl/β-CD inclusion complex crystallizes in the P1space group forming dimers which are arranged along the c-axis according to the Intermediate Channel packing mode. Inside the dimeric host cavity two enantiomeric guest molecules are accommodated. The inclusion complexes of cl/DM-β-CD and cl/TM-β-CD crystallize in the P212121 space group having both 1:1 guest:host stoichiometry, the guest found always with the (-)-cl enantiomeric configuration. The guest is fully encapsulated inside the DM-β-CD host cavity whereas is partially encapsulated in the TM-β-CD which is severely puckered as in all TM-β-CD complexes and its primary side is efficiently blocked by the methoxy groups. The complex units in the case of cl/DM-β-CD pack along the crystallographic a-axis in a head-to-tail manner forming columns of herringbone mode whereas in the case of cl/TM-β-CD are arranged also head-to-tail, parallel to the b-axis, in a screw-channel mode. MD simulations based on the determined crystal structures showed that in a simulated aqueous environment the guest maintains the inclusion mode observed crystallographically in every case. MM/GBSA-calculations used for comparison of the inclusion complexes binding affinity with each other, indicated that the inclusion of β-citronellol in TM-β-CD is less favorable than in β-CD and DM-β-CD.
NASA Technical Reports Server (NTRS)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
NASA Astrophysics Data System (ADS)
Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter
2014-10-01
Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.
H-mode achievement and edge features in RFX-mod tokamak operation
NASA Astrophysics Data System (ADS)
Spolaore, M.; Cavazzana, R.; Marrelli, L.; Carraro, L.; Franz, P.; Spagnolo, S.; Zaniol, B.; Zuin, M.; Cordaro, L.; Dal Bello, S.; De Masi, G.; Ferro, A.; Finotti, C.; Grando, L.; Grenfell, G.; Innocente, P.; Kudlacek, O.; Marchiori, G.; Martines, E.; Momo, B.; Paccagnella, R.; Piovesan, P.; Piron, C.; Puiatti, M. E.; Recchia, M.; Scarin, P.; Taliercio, C.; Vianello, N.; Zanotto, L.
2017-11-01
The RFX-mod experiment is a fusion device designed to operate as a reversed field pinch (RFP), with a major radius R = 2 m and a minor radius a = 0.459 m. Its high versatility recently allowed operating it also as an ohmic tokamak, allowing comparative studies between the two configurations in the same device. The device is equipped with a state of the art MHD mode feedback control system providing a magnetic boundary effective control, by applying resonant or non-resonant magnetic perturbations (MP), both in RFP and in tokamak configurations. In the fusion community the application of MPs is widely studied as a promising tool to limit the impact of plasma filaments and ELMs (edge localized modes) on plasma facing components. An important new research line is the exploitation of the RFX-mod active control system for ELM mitigation studies. As a first step in this direction, this paper presents the most recent achievements in term of RFX-mod tokamak explored scenarios, which allowed the first investigation of the ohmic and edge biasing induced H-mode. The production of D-shaped tokamak discharges and the design and deployment of an insertable polarized electrode were accomplished. Reproducible H-mode phases were obtained with insertable electrode negative biasing in single null discharges, representing an unexplored scenario with this technique. Important modifications of the edge plasma density and flow properties are observed. During the achieved H-mode ELM-like electromagnetic composite filamentary structures are observed. They are characterized by clear vorticity and parallel current density patterns.
Helicon waves in uniform plasmas. II. High m numbers
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B0. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel ["Helicon modes in uniform plasmas. I. Low m modes," Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name "helicon" to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B0. The field lines near the axis of helicons are perpendicular to B0 and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B0. The radiation efficiency of multipole antennas has been found to decrease with m.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx
NASA Astrophysics Data System (ADS)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.
2017-09-01
The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.
Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs / InAs 1 - x Sb x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.
The InAs/InAs 1-xSb x superlattice system distinctly differs from two well-studied superlattice systems GaAs / AlAs and InAs/GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs/InAs 1-xSb x system when compared to the other two systems. Here, we report a polarized Raman study of the vibrational properties of the InAs/InAs 1-xSb x superlattices (SLs) as well as selected InAs 1-xSb x alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) frommore » both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like “forbidden” LO mode is observed in two parallel-polarization configurations. The InAs 1-xSb x alloys lattice matched to the substrate (x Sb ~ 0.09) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (x Sb ~ 0.35) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs/InAs 1-xSb x and InAs/GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural modulation or symmetry reduction.« less
A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons
NASA Astrophysics Data System (ADS)
Bao, J.; Lin, Z.; Lu, Z. X.
2018-02-01
A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Sharma, Swati, E-mail: swati.sharma704@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the Lmore » and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.« less
Flow-structure interaction effects on a jet emanating from a flexible nozzle
Murugappan, S.; Gutmark, E. J.; Lakhamraju, R. R.; Khosla, S.
2008-01-01
In recent years, a wide variety of applications have been found for the use of pulsed jets in the area of flow control. The goal of the current study was to identify the flow field and mixing characteristics associated with an incompressible elongated jet emitted from a flexible nozzle. The shape of the nozzle was that of a high aspect ratio jet deforming from a fully opened to a completely closed configuration. The jet was characterized by a pulsatile flow that was self-excited by the motion of the flexible tube. The frequency of excitation was found to be between 150 and 175 Hz and the Strouhal number (nondimensional frequency) varied from 0.17 to 0.45. The jet flow was dominated by vortices that were shed from the nozzle with an axis parallel to the major axis. The vortices in the near field were quasi-two-dimensional so that measurements performed at the center plane represented the dynamics of the entire vortex. The nozzle excited two different modes depending on the tension applied to the flexible nozzle and the volumetric flow through it. The first was a flapping mode, which was associated with alternate shedding of vortices. This caused strong steering of the jet to one side or the other. The second mode was a symmetric mode that was associated with the formation of counter-rotating vortex pairs. Turbulence and jet spread in the measured planes were much larger in the first mode than the second one. PMID:19547723
Polarization-modulated FTIR spectroscopy of lipid/gramicidin monolayers at the air/water interface.
Ulrich, W P; Vogel, H
1999-01-01
Monolayers of gramicidin A, pure and in mixtures with dimyristoylphosphatidylcholine (DMPC), were studied in situ at the air/H2O and air/D2O interfaces by polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Simulations of the entire set of amide I absorption modes were also performed, using complete parameter sets for different conformations based on published normal mode calculations. The structure of gramicidin A in the DMPC monolayer could clearly be assigned to a beta6.3 helix. Quantitative analysis of the amide I bands revealed that film pressures of up to 25-30 mN/m the helix tilt angle from the vertical in the pure gramicidin A layer exceeded 60 degrees. A marked dependence of the peptide orientation on the applied surface pressure was observed for the mixed lipid-peptide monolayers. At low pressure the helix lay flat on the surface, whereas at high pressures the helix was oriented almost parallel to the surface normal. PMID:10049344
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veale, M.; Purohit, P.; Lawson, W.
In this paper we consider the design of a four-cavity, high-gain K-band gyroklystron experiment for high gradient structure testing. The frequency doubling gyroklystron utilizes a beam voltage of 500 kV and a beam current of 200 A from a magnetron injection gun (MIG) originally designed for a lower-frequency device. The microwave circuit features input and gain cavities in the circular TE{sub 011} mode and penultimate and output cavities that operate at the second harmonic in the TE{sub 021} mode. We investigate the MIG performance and study the behavior of the circuit for different values of perpendicular to parallel velocity ratiomore » (α= V{sub ⊥}/ V{sub z}). This microwave tube is expected to be able to produce at least 20 MW of power in 1μs pulses at a repetition rate of at least 120 Hz. A maximum efficiency of 26% and a large signal gain of 58 dB under zero-drive stable conditions were simulated for a velocity ratio equal to 1.35.« less
Lattice dynamics and thermal transport in multiferroic CuCrO2
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; Said, Ayman; Ehlers, Georg; Abernathy, Douglas L.; Huq, Ashfia; Kirkham, Melanie; Zhou, Haidong; Delaire, Olivier
2017-02-01
Inelastic neutron and x-ray scattering measurements of phonons and spin waves were performed in the delafossite compound CuCrO2 over a wide range of temperature, and complemented with first-principles lattice dynamics simulations. The phonon dispersions and density of states are well reproduced by our density functional calculations, and reveal a strong anisotropy of Cu vibrations, which exhibit low-frequency modes of large amplitude parallel to the basal plane of the layered delafossite structure. The low frequency in-plane modes also show a systematic temperature dependence of neutron and x-ray scattering intensities. In addition, we find that spin fluctuations persist above 300 K, far above the Néel temperature for long-range antiferromagnetic order, TN≃24 K . Our modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that spin fluctuations above TN constitute an important source of phonon scattering, considerably suppressing the thermal conductivity compared to that of the isostructural but nonmagnetic compound CuAlO2.
NASA Astrophysics Data System (ADS)
Sorokin, V. A.; Volkov, Yu V.; Sherstneva, A. I.; Botygin, I. A.
2016-11-01
This paper overviews a method of generating climate regions based on an analytic signal theory. When applied to atmospheric surface layer temperature data sets, the method allows forming climatic structures with the corresponding changes in the temperature to make conclusions on the uniformity of climate in an area and to trace the climate changes in time by analyzing the type group shifts. The algorithm is based on the fact that the frequency spectrum of the thermal oscillation process is narrow-banded and has only one mode for most weather stations. This allows using the analytic signal theory, causality conditions and introducing an oscillation phase. The annual component of the phase, being a linear function, was removed by the least squares method. The remaining phase fluctuations allow consistent studying of their coordinated behavior and timing, using the Pearson correlation coefficient for dependence evaluation. This study includes program experiments to evaluate the calculation efficiency in the phase grouping task. The paper also overviews some single-threaded and multi-threaded computing models. It is shown that the phase grouping algorithm for meteorological data can be parallelized and that a multi-threaded implementation leads to a 25-30% increase in the performance.
Global stability analysis of axisymmetric boundary layer over a circular cylinder
NASA Astrophysics Data System (ADS)
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel.
Lee, H W; Schmidt, M A; Uebel, P; Tyagi, H; Joly, N Y; Scharrer, M; Russell, P St J
2011-04-25
We present a simple refractive index sensor based on a step-index fiber with a hollow micro-channel running parallel to its core. This channel becomes waveguiding when filled with a liquid of index greater than silica, causing sharp dips to appear in the transmission spectrum at wavelengths where the glass-core mode phase-matches to a mode of the liquid-core. The sensitivity of the dip-wavelengths to changes in liquid refractive index is quantified and the results used to study the dynamic flow characteristics of fluids in narrow channels. Potential applications of this fiber microstructure include measuring the optical properties of liquids, refractive index sensing, biophotonics and studies of fluid dynamics on the nanoscale.
Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model
NASA Astrophysics Data System (ADS)
Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu
2014-09-01
The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.
NASA Astrophysics Data System (ADS)
Shen, Yanfeng
2017-04-01
This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.
Optical and structural properties of individual Co-doped ZnO microwires
NASA Astrophysics Data System (ADS)
Kolomys, O. F.; Strelchuk, V. V.; Rarata, S. V.; Hayn, R.; Savoyant, A.; Giovannelli, F.; Delorme, F.; Tkach, V.
2018-06-01
The Co-doped ZnO microwires (MWs) were grown using the optical furnace method. We used Scanning electron microscopy (SEM), polarized micro-Raman spectroscopy, photoluminescence (PL) and optical absorption spectroscopy to systematic investigation of the optical and structural properties of Co-doped ZnO MWs. The SEM analysis reveals that Co-doped ZnO MWs has hexagonal facets and cavity inside. The EDS results confirmed the presence and non-uniform distribution of Co impurities in the samples. Co doping of ZnO MWs leads to the decreased intensity, drastically broadening and high-energy shift of the NBE PL band. The red emission band at 1.85 eV originates from 2E(2G) → 4A2 (4F) intra-3d-transition of Co2+ in the ZnO lattice has been observed. The intense structured absorption bands within the near infrared ranges 3800-4800 and 5500-9000 cm-1 are caused by electronic spin-allowed transitions 4T2(F) ← 4A2(F) and 4T1(F) ← 4A2(F) of the tetrahedrally coordinated Co2+ (3 d7) ions substituting Zn2+ ions in Co-doped ZnO MWs. Micro-Raman studies of Co doped ZnO MWs show doping/disorder induced additional modes as compared to the undoped sample. The resonant enhancement of the additional local Co-related A1-symmetry Raman mode is observed in the parallel polarization geometry y(z , z) ybar . For the Co doped ZnO MWs, the enhancement of the additional Co-related local vibration mode with an increase in the excitation photon energy is also observed in the Raman spectra.
Parallel integrated frame synchronizer chip
NASA Technical Reports Server (NTRS)
Solomon, Jeffrey Michael (Inventor); Ghuman, Parminder Singh (Inventor); Bennett, Toby Dennis (Inventor)
2000-01-01
A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanalilu, M.; Physics Department, Azarbaijan Shahid Madani University, Tabriz; Sadegzadeh, S.
2014-05-15
The existence of Weibel instability for a streaming electron, counterstreaming electron-electron (e-e), and electron-positron (e-p) plasmas with intrinsic temperature anisotropy is investigated. The temperature anisotropy is included in the directions perpendicular and parallel to the streaming direction. It is shown that the beam mean speed changes the instability mode, for a streaming electron beam, from the classic Weibel to the Weibel-like mode. The analytical and numerical solutions approved that Weibel-like modes are excited for both counterstreaming e-e and e-p plasmas. The growth rates of the instabilities in e-e and e-p plasmas are compared. The growth rate is larger for e-pmore » plasmas if the thermal anisotropy is small and the opposite is true for large thermal anisotropies. The analytical and numerical solutions are in good agreement only in the small parallel temperature and wave number limits, when the instability growth rate increases linearly with normalized wave number kc∕ω{sub p}.« less
A superconducting direct-current limiter with a power of up to 8 MVA
NASA Astrophysics Data System (ADS)
Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.
2016-12-01
A resistive switching superconducting fault current limiter (SFCL) for DC networks with a nominal voltage of 3.5 kV and a nominal current of 2 kA was developed, produced, and tested. The SFCL has two main units—an assembly of superconducting modules and a high-speed vacuum circuit breaker. The assembly of superconducting modules consists of nine (3 × 3) parallel-series connected modules. Each module contains four parallel-connected 2G high-temperature superconducting (HTS) tapes. The results of SFCL tests in the short-circuit emulation mode with a maximum current rise rate of 1300 A/ms are presented. The SFCL is capable of limiting the current at a level of 7 kA and break it 8 ms after the current-limiting mode begins. The average temperature of HTS tapes during the current-limiting mode increases to 210 K. After the current is interrupted, the superconductivity recovery time does not exceed 1 s.
Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L
2015-07-07
PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
Capabilities of Fully Parallelized MHD Stability Code MARS
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2016-10-01
Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Simple two-electrode biosignal amplifier.
Dobrev, D; Neycheva, T; Mudrov, N
2005-11-01
A simple, cost effective circuit for a two-electrode non-differential biopotential amplifier is proposed. It uses a 'virtual ground' transimpedance amplifier and a parallel RC network for input common mode current equalisation, while the signal input impedance preserves its high value. With this innovative interface circuit, a simple non-inverting amplifier fully emulates high CMRR differential. The amplifier equivalent CMRR (typical range from 70-100 dB) is equal to the open loop gain of the operational amplifier used in the transimpedance interface stage. The circuit has very simple structure and utilises a small number of popular components. The amplifier is intended for use in various two-electrode applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Novel Waveguide Structures in the Terahertz Frequency Range
NASA Astrophysics Data System (ADS)
Mbonye, Marx
Over the last decade, considerable research interest has peaked in realizing an efficient Terahertz (THz) waveguide for potential applications in imaging, sensing, and communications applications. Two of the promising candidates are the two-wire waveguide and the parallel-plate waveguide (PPWG). I present theoretical and experimental evidence that show that the two-wire waveguide supports low loss terahertz pulse propagation, and illustrate that the mode pattern at the end of the waveguide resembles that of a dipole. In comparison to the weakly guided Sommerfeld wave of a single wire waveguide, this two-wire structure exhibits much lower bending losses. I also observe that a commercial 300-Ohm two-wire TVantenna cable can be used for guiding frequency components of up to 0.2 THz, although these cables are generally designed to operate only up to about 800 MHz. The parallel-plate waveguide is another promising candidate that would make an efficient THz waveguide, since it has relatively low Ohmic losses. The transverse electromagnetic mode (TEM) of this waveguide has been generally preferred since it has no cutoff frequency, and therefore no group velocity dispersion. Utilizing this TEM mode, I study the reflection of THz radiation at the end of a PPWG, due to the impedance mismatch between the propagating transverse-electromagnetic mode and the free-space background. I find that for a PPWG with uniformly spaced plates, the reflection coefficient at the output face increases as the plate separation decreases, consistent with predictions by early low frequency ray optical theory. I observe this same trend in tapered PPWGs, when the input separation is fixed, and the output separation is varied. In another study, I investigate how to minimize diffraction losses in PPWGs by using plates with slightly concave surfaces. Using a simple "bouncing plane wave" analysis, I demonstrate how to determine an ideal radius of curvature for a waveguide operating at a given THz frequency. I perform a detailed experimental and simulation study that illustrates, for a waveguide with a plate separation of 1 cm, one can inhibit the diffraction around a frequency of 0.1 THz, when the surface has a curvature of 6.7 cm. Using much longer PPWGs (about 170cm), I reliably measure the overall losses in a PPWG with a radius of curvature of R=6.7 cm, and find it to be less than 1db/m around the design frequency (of 0.1 THz). This is very close to the lowest achieved loss to date with any terahertz waveguide.
Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth
2006-04-21
The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.
Partitioning problems in parallel, pipelined and distributed computing
NASA Technical Reports Server (NTRS)
Bokhari, S.
1985-01-01
The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.
Spin wave filtering and guiding in Permalloy/iron nanowires
NASA Astrophysics Data System (ADS)
Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.
2018-03-01
We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.
Learning Quantitative Sequence-Function Relationships from Massively Parallel Experiments
NASA Astrophysics Data System (ADS)
Atwal, Gurinder S.; Kinney, Justin B.
2016-03-01
A fundamental aspect of biological information processing is the ubiquity of sequence-function relationships—functions that map the sequence of DNA, RNA, or protein to a biochemically relevant activity. Most sequence-function relationships in biology are quantitative, but only recently have experimental techniques for effectively measuring these relationships been developed. The advent of such "massively parallel" experiments presents an exciting opportunity for the concepts and methods of statistical physics to inform the study of biological systems. After reviewing these recent experimental advances, we focus on the problem of how to infer parametric models of sequence-function relationships from the data produced by these experiments. Specifically, we retrace and extend recent theoretical work showing that inference based on mutual information, not the standard likelihood-based approach, is often necessary for accurately learning the parameters of these models. Closely connected with this result is the emergence of "diffeomorphic modes"—directions in parameter space that are far less constrained by data than likelihood-based inference would suggest. Analogous to Goldstone modes in physics, diffeomorphic modes arise from an arbitrarily broken symmetry of the inference problem. An analytically tractable model of a massively parallel experiment is then described, providing an explicit demonstration of these fundamental aspects of statistical inference. This paper concludes with an outlook on the theoretical and computational challenges currently facing studies of quantitative sequence-function relationships.
Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2017-12-01
A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, \\prime $ . They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère's law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer \\prime $ .
NASA Astrophysics Data System (ADS)
Fefferman, C. L.; Lee-Thorp, J. P.; Weinstein, M. I.
2016-03-01
Edge states are time-harmonic solutions to energy-conserving wave equations, which are propagating parallel to a line-defect or ‘edge’ and are localized transverse to it. This paper summarizes and extends the authors’ work on the bifurcation of topologically protected edge states in continuous two-dimensional (2D) honeycomb structures. We consider a family of Schrödinger Hamiltonians consisting of a bulk honeycomb potential and a perturbing edge potential. The edge potential interpolates between two different periodic structures via a domain wall. We begin by reviewing our recent bifurcation theory of edge states for continuous 2D honeycomb structures (http://arxiv.org/abs/1506.06111). The topologically protected edge state bifurcation is seeded by the zero-energy eigenstate of a one-dimensional Dirac operator. We contrast these protected bifurcations with (more common) non-protected bifurcations from spectral band edges, which are induced by bound states of an effective Schrödinger operator. Numerical simulations for honeycomb structures of varying contrasts and ‘rational edges’ (zigzag, armchair and others), support the following scenario: (a) for low contrast, under a sign condition on a distinguished Fourier coefficient of the bulk honeycomb potential, there exist topologically protected edge states localized transverse to zigzag edges. Otherwise, and for general edges, we expect long lived edge quasi-modes which slowly leak energy into the bulk. (b) For an arbitrary rational edge, there is a threshold in the medium-contrast (depending on the choice of edge) above which there exist topologically protected edge states. In the special case of the armchair edge, there are two families of protected edge states; for each parallel quasimomentum (the quantum number associated with translation invariance) there are edge states which propagate in opposite directions along the armchair edge.
Efficient computation of hashes
NASA Astrophysics Data System (ADS)
Lopes, Raul H. C.; Franqueira, Virginia N. L.; Hobson, Peter R.
2014-06-01
The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced.
NASA Astrophysics Data System (ADS)
Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon
2018-04-01
In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.
Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; ...
2018-06-04
Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studenikin, S. A.; Gaudreau, L.; Kataoka, K.
Here, we demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si 0.8Ge 0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regionsmore » in the charge stability diagram where three charge-addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart, the single dot charge-senses the double dot with relative change of ~2% in the sensor current.« less
A Water‐Soluble Tetraazaperopyrene Dye as Strong G‐Quadruplex DNA Binder
Hahn, Lena
2016-01-01
Abstract The interactions of the water‐soluble tetraazaperopyrene dye 1 with ct‐DNA, duplex‐[(dAdT)12 ⋅(dAdT)12], duplex‐[(dGdC)12 ⋅(dGdC)12] as well as with two G‐quadruplex‐forming sequences, namely the human telomeric 22AG and the promotor sequence c‐myc, were investigated by means of UV/visible and fluorescence spectroscopy, isothermal titration calorimetry (ITC) and molecular docking studies. Dye 1 exhibits a high affinity for G‐quadruplex structures over duplex DNA structures. Furthermore, the ligand shows promising G‐quadruplex discrimination, with an affinity towards c‐myc of 2×107 m −1 (i.e., K d=50 nm), which is higher than for 22AG (4×106 m −1). The ITC data reveal that compound 1 interacts with c‐myc in a stoichiometric ratio of 1:1 but also indicate the presence of two identical lower affinity secondary binding sites per quadruplex. In 22AG, there are two high affinity binding sites per quadruplex, that is, one on each side, with a further four weaker binding sites. For both quadruplex structures, the high affinity interactions between compound 1 and the quadruplex‐forming nucleic acid structures are weakly endothermic. Molecular docking studies suggest an end‐stacking binding mode for compound 1 interacting with quadruplex structures, and a higher affinity for the parallel conformation of c‐myc than for the mixed‐hybrid conformation of 22AG. In addition, docking studies also suggest that the reduced affinity for duplex DNA structures is due to the non‐viability of an intercalative binding mode. PMID:26997208
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Matsumoto, H.; Omura, Y.
1993-12-01
Both linear and nonlinear interactions between oblique whistler, electrostatic, quasi-upper hybrid mode waves and an electron beam are studied by linear analyses and electromagnetic particle simulations. In addition to a background cold plasma, we assumed a hot electron beam drifting along a static magnetic field. Growth rates of the oblique whistler, oblique electrostatic, and quasi-upper hybrid instabilities were first calculated. We found that there are four kinds of unstable mode waves for parallel and oblique propagations. They are the electromagnetic whistler mode wave (WW1), the electrostatic whistler mode wave (WW2), the electrostatic mode wave (ESW), and the quasi-upper hybrid mode wave (UHW). A possible mechanism is proposed to explain the satellite observations of whistler mode chorus and accompanied electrostatic waves, whose amplitudes are sometimes modulated at the chorus frequency.
Dual throat thruster cold flow analysis
NASA Technical Reports Server (NTRS)
Lundgreen, R. B.; Nickerson, G. R.; Obrien, C. J.
1978-01-01
The concept was evaluated with cold flow (nitrogen gas) testing and through analysis for application as a tripropellant engine for single-stage-to-orbit type missions. Three modes of operation were tested and analyzed: (1) Mode 1 Series Burn, (2) Mode 1 Parallel Burn, and (3) Mode 2. Primary emphasis was placed on the Mode 2 plume attachment aerodynamics and performance. The conclusions from the test data analysis are as follows: (1) the concept is aerodynamically feasible, (2) the performance loss is as low as 0.5 percent, (3) the loss is minimized by an optimum nozzle spacing corresponding to an AF-ATS ratio of about 1.5 or an Le/Rtp ratio of 3.0 for the dual throat hardware tested, requiring only 4% bleed flow, (4) the Mode 1 and Mode 2 geometry requirements are compatible and pose no significant design problems.
Crystal structure of dipotassium N-carbodithioato-l-prolinate trihydrate
2017-01-01
The molecular and crystal structure of the l-proline-derived dithiocarbamate–carboxylate compound poly[tri-μ-aqua-(μ-2-carboxylatopyrrolidine-1-carbodithioato)dipotassium], [K2(C6H7NO2S2)(H2O)3]n or K2(SSC–NC4H7–COO)·3H2O, has been determined. The dithiocarbamate moiety displays a unique coordination mode, comprising a ‘side-on’ π-coordinated K+ cation besides a commonly σ-chelated K+ cation. By bridging coordination of the CSS group, COO group and water molecules, the K+ cations are linked into a two-dimensional coordination polymer extending parallel to the ab plane. These layers are again interconnected by O—H⋯S hydrogen bonds. PMID:28932478
Plasmon Geometric Phase and Plasmon Hall Shift
NASA Astrophysics Data System (ADS)
Shi, Li-kun; Song, Justin C. W.
2018-04-01
The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.
Combined experimental and computational study of high-pressure behavior of triphenylene
Zhao, Xiao-Miao; Zhong, Guo-Hua; Zhang, Jiang; Huang, Qiao-Wei; Goncharov, Alexander F.; Lin, Hai-Qing; Chen, Xiao-Jia
2016-01-01
We have performed measurements of Raman scattering, synchrotron x-ray diffraction, and visible transmission spectroscopy combined with density functional theory calculations to study the pressure effect on solid triphenylene. The spectroscopic results demonstrate substantial change of the molecular configuration at 1.4 GPa from the abrupt change of splitting, disappearance, and appearance of some modes. The structure of triphenylene is found be to stable at high pressures without any evidence of structural transition from the x-ray diffraction patterns. The obtained lattice parameters show a good agreement between experiments and calculations. The obtained band gap systematically decreases with increasing pressure. With the application of pressure, the molecular planes become more and more parallel relative to each other. The theoretical calculations indicate that this organic compound becomes metallic at 180 GPa, fueling the hope for the possible realization of superconductivity at high pressure. PMID:27161429
NASA Astrophysics Data System (ADS)
Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan
2017-08-01
Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
Effect of Ion-Parallel Viscosity on the Propagation of Alfven Surface Waves
2003-07-20
mode arises from 0.6 whose phase speed decreases with the in- 0 0.2 0.4 0.6 0.8 I crease in the value of the parameter V0. It is also Figure 2...after the value of 0.9. [3] R. Balescu , Transport Proccsses in Plasmas, Thus the modes of surface waves become damped North Holland, Amsterdam, 1 (1988
Parametric instability induced by X-mode wave heating at EISCAT
NASA Astrophysics Data System (ADS)
Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-10-01
In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.
Supersonic Free-Jet Combustion in a Ramjet Burner
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Dippold, Vance F., III
2010-01-01
A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.
Color vision predicts processing modes of goal activation during action cascading.
Jongkees, Bryant J; Steenbergen, Laura; Colzato, Lorenza S
2017-09-01
One of the most important functions of cognitive control is action cascading: the ability to cope with multiple response options when confronted with various task goals. A recent study implicates a key role for dopamine (DA) in this process, suggesting higher D1 efficiency shifts the action cascading strategy toward a more serial processing mode, whereas higher D2 efficiency promotes a shift in the opposite direction by inducing a more parallel processing mode (Stock, Arning, Epplen, & Beste, 2014). Given that DA is found in high concentration in the retina and modulation of retinal DA release displays characteristics of D2-receptors (Peters, Schweibold, Przuntek, & Müller, 2000), color vision discrimination might serve as an index of D2 efficiency. We used color discrimination, assessed with the Lanthony Desaturated Panel D-15 test, to predict individual differences (N = 85) in a stop-change paradigm that provides a well-established measure of action cascading. In this task it is possible to calculate an individual slope value for each participant that estimates the degree of overlap in task goal activation. When the stopping process of a previous task goal has not finished at the time the change process toward a new task goal is initiated (parallel processing), the slope value becomes steeper. In case of less overlap (more serial processing), the slope value becomes flatter. As expected, participants showing better color vision were more prone to activate goals in a parallel manner as indicated by a steeper slope. Our findings suggest that color vision might represent a predictor of D2 efficiency and the predisposed processing mode of goal activation during action cascading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Real-time multi-mode neutron multiplicity counter
Rowland, Mark S; Alvarez, Raymond A
2013-02-26
Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Drift and geodesic effects on the ion sound eigenmode in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elfimov, A. G., E-mail: elfimov@if.usp.br; Smolyakov, A. I., E-mail: andrei.smolyakov@usask.ca; Melnikov, A. V.
A kinetic treatment of geodesic acoustic modes (GAMs), taking into account ion parallel dynamics, drift and the second poloidal harmonic effects is presented. It is shown that first and second harmonics of the ion sound modes, which have respectively positive and negative radial dispersion, can be coupled due to the geodesic and drift effects. This coupling results in the drift geodesic ion sound eigenmode with a frequency below the standard GAM continuum frequency. Such eigenmode may be able to explain the split modes observed in some experiments.
Cancer heterogeneity: converting a limitation into a source of biologic information.
Rübben, Albert; Araujo, Arturo
2017-09-08
Analysis of spatial and temporal genetic heterogeneity in human cancers has revealed that somatic cancer evolution in most cancers is not a simple linear process composed of a few sequential steps of mutation acquisitions and clonal expansions. Parallel evolution has been observed in many early human cancers resulting in genetic heterogeneity as well as multilineage progression. Moreover, aneuploidy as well as structural chromosomal aberrations seems to be acquired in a non-linear, punctuated mode where most aberrations occur at early stages of somatic cancer evolution. At later stages, the cancer genomes seem to get stabilized and acquire only few additional rearrangements. While parallel evolution suggests positive selection of driver mutations at early stages of somatic cancer evolution, stabilization of structural aberrations at later stages suggests that negative selection takes effect when cancer cells progressively lose their tolerance towards additional mutation acquisition. Mixing of genetically heterogeneous subclones in cancer samples reduces sensitivity of mutation detection. Moreover, driver mutations present only in a fraction of cancer cells are more likely to be mistaken for passenger mutations. Therefore, genetic heterogeneity may be considered a limitation negatively affecting detection sensitivity of driver mutations. On the other hand, identification of subclones and subclone lineages in human cancers may lead to a more profound understanding of the selective forces which shape somatic cancer evolution in human cancers. Identification of parallel evolution by analyzing spatial heterogeneity may hint to driver mutations which might represent additional therapeutic targets besides driver mutations present in a monoclonal state. Likewise, stabilization of cancer genomes which can be identified by analyzing temporal genetic heterogeneity might hint to genes and pathways which have become essential for survival of cancer cell lineages at later stages of cancer evolution. These genes and pathways might also constitute patient specific therapeutic targets.
Design and realization of 144 x 7 TDI ROIC with hybrid integrated test structure
NASA Astrophysics Data System (ADS)
Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Baran, Muhammet Burak; Gurbuz, Yasar
2012-06-01
Design and realization of a 144x7 silicon readout integrated circuit (ROIC) based on switched capacitor TDI for MCT LWIR scanning type focal plane arrays (FPAs) and its corresponding hybrid integrated test circuits are presented. TDI operation with 7 detectors improves the SNR of the system by a factor of √7, while oversampling rate of 3 improves the spatial resolution of the system. ROIC supports bidirectional scan, 5 adjustable gain settings, bypass operation, automatic gain adjustment in case of mulfunctioning pixels and pixel select/deselect properties. Integration time of the system can be determined by the help of an external clock. Programming of ROIC can be done in parallel or serial mode according to the needs of the system. All properties except pixel select/deselect property can be performed in parallel mode, while pixel select/deselect property can be performed only in serial mode. ROIC can handle up to 3.75V dynamic range with a load of 25pF and output settling time of 80ns. Input referred noise of the ROIC is less than 750 rms electrons, while the power consumption is less than 100mW. To test ROIC in absence of detector array, a process and temperature compensated current reference array, which supplies uniform input current in range of 1-50nA to ROIC, is designed and measured both in room and cryogenic (77ºK) temperatures. Standard deviations of current reference arrays are measured 3.26% for 1nA and 0.99% for 50nA. ROIC and current reference array are fabricated seperately, and then flip-chip bonded for the test of the system. Flip-chip bonded system including ROIC and current reference test array is successfully measured both in room and cryogenic temperatures, and measurement results are presented. The manufacturing technology is 0.35μm, double poly-Si, four metal, 5V CMOS process.
Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli
NASA Astrophysics Data System (ADS)
Tsourlos, Panagiotis; Papadopoulos, Nikos; Yi, Myeong-Jong; Kim, Jung-Ho; Tsokas, Gregory
2014-02-01
Artificial erected hills like tumuli, mounds, barrows and kurgans comprise monuments of the past human activity and offer opportunities to reconstruct habitation models regarding the life and customs during their building period. These structures also host features of archeological significance like architectural relics, graves or chamber tombs. Tumulus exploration is a challenging geophysical problem due to the complex distribution of the subsurface physical properties, the size and burial depth of potential relics and the uneven topographical terrain. Geoelectrical methods by means of three-dimensional (3-D) inversion are increasingly popular for tumulus investigation. Typically data are obtained by establishing a regular rectangular grid and assembling the data collected by parallel two-dimensional (2-D) tomographies. In this work the application of radial 3-D mode is studied, which is considered as the assembly of data collected by radially positioned Electrical Resistivity Tomography (ERT) lines. The relative advantages and disadvantages of this measuring mode over the regular grid measurements were investigated and optimum ways to perform 3-D ERT surveys for tumuli investigations were proposed. Comparative test was performed by means of synthetic examples as well as by tests with field data. Overall all tested models verified the superiority of the radial mode in delineating bodies positioned at the central part of the tumulus while regular measuring mode proved superior in recovering bodies positioned away from the center of the tumulus. The combined use of radial and regular modes seems to produce superior results in the expense of time required for data acquisition and processing.
Sun, Fujun; Fu, Zhongyuan; Wang, Chunhong; Ding, Zhaoxiang; Wang, Chao; Tian, Huiping
2017-05-20
We propose and investigate an ultra-compact air-mode photonic crystal nanobeam cavity (PCNC) with an ultra-high quality factor-to-mode volume ratio (Q/V) by quadratically tapering the lattice space of the rectangular holes from the center to both ends while other parameters remain unchanged. By using the three-dimensional finite-difference time-domain method, an optimized geometry yields a Q of 7.2×10 6 and a V∼1.095(λ/n Si ) 3 in simulations, resulting in an ultra-high Q/V ratio of about 6.5×10 6 (λ/n Si ) -3 . When the number of holes on either side is 8, the cavity possesses a high sensitivity of 252 nm/RIU (refractive index unit), a high calculated Q-factor of 1.27×10 5 , and an ultra-small effective V of ∼0.758(λ/n Si ) 3 at the fundamental resonant wavelength of 1521.74 nm. Particularly, the footprint is only about 8×0.7 μm 2 . However, inevitably our proposed PCNC has several higher-order resonant modes in the transmission spectrum, which makes the PCNC difficult to be used for multiplexed sensing. Thus, a well-designed bandstop filter with weak sidelobes and broad bandwidth based on a photonic crystal nanobeam waveguide is created to connect with the PCNC to filter out the high-order modes. Therefore, the integrated structure presented in this work is promising for building ultra-compact lab-on-chip sensor arrays with high density and parallel-multiplexing capability.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
NASA Astrophysics Data System (ADS)
Haque, Q.; Zakir, U.; Qamar, A.
2015-12-01
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Fuller, Jonathan C.; Jackson, Richard M.; Edwards, Thomas A.; Wilson, Andrew J.; Shirts, Michael R.
2012-01-01
The design of novel α-helix mimetic inhibitors of protein-protein interactions is of interest to pharmaceuticals and chemical genetics researchers as these inhibitors provide a chemical scaffold presenting side chains in the same geometry as an α-helix. This conformational arrangement allows the design of high affinity inhibitors mimicking known peptide sequences binding specific protein substrates. We show that GAFF and AutoDock potentials do not properly capture the conformational preferences of α-helix mimetics based on arylamide oligomers and identify alternate parameters matching solution NMR data and suitable for molecular dynamics simulation of arylamide compounds. Results from both docking and molecular dynamics simulations are consistent with the arylamides binding in the p53 peptide binding pocket. Simulations of arylamides in the p53 binding pocket of hDM2 are consistent with binding, exhibiting similar structural dynamics in the pocket as simulations of known hDM2 binders Nutlin-2 and a benzodiazepinedione compound. Arylamide conformations converge towards the same region of the binding pocket on the 20 ns time scale, and most, though not all dihedrals in the binding pocket are well sampled on this timescale. We show that there are two putative classes of binding modes for arylamide compounds supported equally by the modeling evidence. In the first, the arylamide compound lies parallel to the observed p53 helix. In the second class, not previously identified or proposed, the arylamide compound lies anti-parallel to the p53 helix. PMID:22916232
NASA Astrophysics Data System (ADS)
Braun, J.; Kostov, K. L.; Witte, G.; Wöll, Ch.
1997-05-01
Ordered phases of CO on a Ru(0001) surface have been characterized with regard to structural and dynamical properties using high resolution helium atom scattering. In the energy regime below 10 meV a vibrational mode corresponding to a frustrated translation parallel to the surface (FTx) could be identified, the energy amounts to 5.9 meV for isolated CO molecules and to 5.75 meV for the (∛×∛)R30°CO structure. The formation of the more compressed (2∛×2∛)R30°CO and (5∛×5∛)R30°CO structures is accompanied by significant changes of the low energy external vibrations, in pronounced contrast to the gradual frequency increase of the CO internal ν1-vibration. Coadsorption of hydrogen or oxygen was found to result in substantially larger FTx energies. Implications of these findings on the character of the molecule-surface interaction will be discussed, as well as the connection between the FTx-dispersion and the strength and type of the adsorbate-adsorbate interaction.
Li, Hua; Wei, Chang-Yan; Liu, Chun-Xia; Shen, Xian-Hao; Chen, Zhen-Cheng
2014-07-01
A new needle-to-cylinder electrode structure was designed to realize the stable glow discharge in ambient air. The stainless steel needle tip with diameter 56.4 microm and the copper cylinder with diameter 4mm were chosen as the cathode and the anode respectively, which were kept parallel by accurate mechanical structure. In the condition that the distance between the needle and the cylinder is 2 mm, the ballasting resistor is 10 M(omega), the discharge resistor is 10 M(omega), the testing resistor is 1 k(omega), and the discharge voltage is -2 740 V, without air flow in ambient air and at room temperature, the stable glow discharge between the needle and the cylinder was realized. Three different discharge modes can be observed: corona discharge, glow discharge and spark, which were verified by the discharge waveform stored in the oscilloscope, and the discharge pictures were recorded by digital camera. The needle-to-cylinder electrode structure is easy to fabricate by the MEMS technology, which can be used as the ion source of the portable analyzing instruments.
The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O
NASA Astrophysics Data System (ADS)
Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt
2013-04-01
Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
The MOLICEL(R) rechargeable lithium system: Multicell battery aspects
NASA Technical Reports Server (NTRS)
Fouchard, D.; Taylor, J. B.
1987-01-01
MOLICEL rechargeable lithium cells were cycled in batteries using series, parallel, and series/parallel connections. The individual cell voltages and branch currents were measured to understand the cell interactions. The observations were interpreted in terms of the inherent characteristics of the Li/MoS2 system and in terms of a singular cell failure mode. The results confirm that correctly configured multicell batteries using MOLICELs have performance characteristics comparable to those of single cells.
Molecular dynamics studies of the 3D structure and planar ligand binding of a quadruplex dimer.
Li, Ming-Hui; Luo, Quan; Xue, Xiang-Gui; Li, Ze-Sheng
2011-03-01
G-rich sequences can fold into a four-stranded structure called a G-quadruplex, and sequences with short loops are able to aggregate to form stable quadruplex multimers. Few studies have characterized the properties of this variety of quadruplex multimers. Using molecular modeling and molecular dynamics simulations, the present study investigated a dimeric G-quadruplex structure formed from a simple sequence of d(GGGTGGGTGGGTGGGT) (G1), and its interactions with a planar ligand of a perylene derivative (Tel03). A series of analytical methods, including free energy calculations and principal components analysis (PCA), was used. The results show that a dimer structure with stacked parallel monomer structures is maintained well during the entire simulation. Tel03 can bind to the dimer efficiently through end stacking, and the binding mode of the ligand stacked with the 3'-terminal thymine base is most favorable. PCA showed that the dominant motions in the free dimer occur on the loop regions, and the presence of the ligand reduces the flexibility of the loops. Our investigation will assist in understanding the geometric structure of stacked G-quadruplex multimers and may be helpful as a platform for rational drug design.
NASA Astrophysics Data System (ADS)
Wynn, A.; Lipschultz, B.; Cziegler, I.; Harrison, J.; Jaervinen, A.; Matthews, G. F.; Schmitz, J.; Tal, B.; Brix, M.; Guillemaut, C.; Frigione, D.; Huber, A.; Joffrin, E.; Kruzei, U.; Militello, F.; Nielsen, A.; Walkden, N. R.; Wiesen, S.; Contributors, JET
2018-05-01
The low temperature boundary layer plasma (scrape-off layer or SOL) between the hot core and the surrounding vessel determines the level of power loading, erosion and implantation of material surfaces, and thus the viability of tokamak-based fusion as an energy source. This study explores mechanisms affecting the formation of flattened density profiles, so-called ‘density shoulders’, in the low-field side (LFS) SOL, which modify ion and neutral fluxes to surfaces—and subsequent erosion. We find that increases in SOL parallel resistivity, Λdiv (=[L || ν eiΩi]/c sΩe), postulated to lead to shoulder growth through changes in SOL turbulence characteristics, correlates with increases in SOL shoulder amplitude, A s, only under a subset of conditions (D2-fuelled L-mode density scans with outer strike point on the horizontal target). Λdiv fails to correlate with A s for cases of N2 seeding or during sweeping of the strike point across the horizontal target. The limited correlation of Λdiv and A s is also found for H-mode discharges. Thus, while it may be necessary for Λdiv to be above a threshold of ~1 for shoulder formation and/or growth, another mechanism is required. More significantly, we find that in contrast to parallel resistivity, outer divertor recycling, as quantified by the total outer divertor Balmer D α emission, I-D α , does scale with A s where Λdiv does and even where Λdiv does not. Divertor recycling could lead to SOL density shoulder formation through: (a) reducing the parallel to the field flow (loss) of ions out of the SOL to the divertor; and (b) changes in radial electric fields which lead to E × B poloidal flows as well as potentially affecting SOL turbulence birth characteristics. Thus, changes in divertor recycling may be the sole process involved in bringing about SOL density shoulders or it may be that it acts in tandem with parallel resistivity.
The existence of topological edge states in honeycomb plasmonic lattices
NASA Astrophysics Data System (ADS)
Wang, Li; Zhang, Ruo-Yang; Xiao, Meng; Han, Dezhuan; Chan, C. T.; Wen, Weijia
2016-10-01
In this paper, we investigate the band properties of 2D honeycomb plasmonic lattices consisting of metallic nanoparticles. By means of the coupled dipole method and quasi-static approximation, we theoretically analyze the band structures stemming from near-field interaction of localized surface plasmon polaritons for both the infinite lattice and ribbons. Naturally, the interaction of point dipoles decouples into independent out-of-plane and in-plane polarizations. For the out-of-plane modes, both the bulk spectrum and the range of the momentum k ∥ where edge states exist in ribbons are similar to the electronic bands in graphene. Nevertheless, the in-plane polarized modes show significant differences, which do not only possess additional non-flat edge states in ribbons, but also have different distributions of the flat edge states in reciprocal space. For in-plane polarized modes, we derived the bulk-edge correspondence, namely, the relation between the number of flat edge states at a fixed {k}\\parallel , Zak phases of the bulk bands and the winding number associated with the bulk Hamiltonian, and verified it through four typical ribbon boundaries, i.e. zigzag, bearded zigzag, armchair, and bearded armchair. Our approach gives a new topological understanding of edge states in such plasmonic systems, and may also apply to other 2D ‘vector wave’ systems.
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.
2010-07-01
Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.
Engineering on-chip nanoporous gold material libraries via precision photothermal treatment
NASA Astrophysics Data System (ADS)
Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; Seker, Erkin; Biener, Monika M.; Matthews, Manyalibo J.
2015-12-01
Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships.Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships. Electronic supplementary information (ESI) available: Details of sample preparation, fabrication of material libraries, as well as further analysis and supporting scanning electron micrographs can be found in ESI. See DOI: 10.1039/c5nr04580k
Helicon waves in uniform plasmas. II. High m numbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2015-09-15
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B{sub 0}. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel [“Helicon modes in uniform plasmas.more » I. Low m modes,” Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name “helicon” to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B{sub 0}. The field lines near the axis of helicons are perpendicular to B{sub 0} and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B{sub 0}. The radiation efficiency of multipole antennas has been found to decrease with m.« less
Future directions for transportation safety research
DOT National Transportation Integrated Search
2005-08-01
Many opportunities now exist that can contribute significantly to preventing accidents, mitigating consequences, and improving responses to incidents in all modes. Two parallel and interrelated areas that offer particularly promising results are tech...
Synthesis and Evaluation of A High Precision 3D-Printed Ti6Al4V Compliant Parallel Manipulator
NASA Astrophysics Data System (ADS)
Pham, Minh Tuan; Teo, Tat Joo; Huat Yeo, Song; Wang, Pan; Nai, Mui Ling Sharon
2017-12-01
A novel 3D printed compliant parallel manipulator (CPM) with θX - θX - Z motions is presented in this paper. This CPM is synthesized using the beam-based method, a new structural optimization approach, to achieve optimized stiffness properties with targeted dynamic behavior. The CPM performs high non-actuating stiffness based on the predicted stiffness ratios of about 3600 for translations and 570 for rotations, while the dynamic response is fast with the targeted first resonant mode of 100Hz. A prototype of the synthesized CPM is fabricated using the electron beam melting (EBM) technology with Ti6Al4V material. Driven by three voice-coil (VC) motors, the CPM demonstrated a positioning resolution of 50nm along the Z axis and an angular resolution of ~0.3 “about the X and Y axes, the positioning accuracy is also good with the measured values of ±25.2nm and ±0.17” for the translation and rotations respectively. Experimental investigation also shows that this large workspace CPM has a first resonant mode of 98Hz and the stiffness behavior matches the prediction with the highest deviation of 11.2%. Most importantly, the full workspace of 10° × 10° × 7mm of the proposed CPM can be achieved, that demonstrates 3D printed compliant mechanisms can perform large elastic deformation. The obtained results show that CPMs printed by EBM technology have predictable mechanical characteristics and are applicable in precise positioning systems.
NASA Astrophysics Data System (ADS)
Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin
2018-03-01
The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.
Design of a dataway processor for a parallel image signal processing system
NASA Astrophysics Data System (ADS)
Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu
1995-04-01
Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.
NASA Technical Reports Server (NTRS)
Halpert, G.; Webb, D. A.
1983-01-01
Three batteries were operated in parallel from a common bus during charge and discharge. SMM utilized NASA Standard 20AH cells and batteries, and LANDSAT-D NASA 50AH cells and batteries of a similar design. Each battery consisted of 22 series connected cells providing the nominal 28V bus. The three batteries were charged in parallel using the voltage limit/current taper mode wherein the voltage limit was temperature compensated. Discharge occurred on the demand of the spacecraft instruments and electronics. Both flights were planned for three to five year missions. The series/parallel configuration of cells and batteries for the 3-5 yr mission required a well controlled product with built-in reliability and uniformity. Examples of how component, cell and battery selection methods affect the uniformity of the series/parallel operation of the batteries both in testing and in flight are given.
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
Efficient multitasking: parallel versus serial processing of multiple tasks
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling. PMID:26441742
Efficient multitasking: parallel versus serial processing of multiple tasks.
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.
User's guide to the Reliability Estimation System Testbed (REST)
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.
Panoramic attitude sensor for Radio Astronomy Explorer B
NASA Technical Reports Server (NTRS)
Thomsen, R.
1973-01-01
An instrument system to acquire attitude determination data for the RAE-B spacecraft was designed and built. The system consists of an electronics module and two optical scanner heads. Each scanner head has an optical scanner with a field of view of 0.7 degrees diameter which scans the sky and measures the position of the moon, earth and sun relative to the spacecraft. This scanning is accomplished in either of two modes. When the spacecraft is spinning, the scanner operates in spherical mode, with the spacecraft spin providing the slow sweep of lattitude to scan the entire sky. After the spacecraft is placed in lunar orbit and despun, the scanner will operate in planar mode, advancing at a rate of 5.12 seconds per revolution in a fixed plane parallel to the spacecraft Z axis. This scan will cross and measure the moon horizons with every revolution. Each scanner head also has a sun slit which is aligned parallel to the spin axis of the spacecraft and which provides a sun pulse each revolution of the spacecraft. The electronics module provides the command and control, data processing and housekeeping functions.
Infrared Transition Moment Directions in Smectic Liquid Crystals
NASA Astrophysics Data System (ADS)
Park, C. S.; Jang, W. G.; Coleman, D.; Glaser, M. A.; Clark, N. A.
1997-03-01
We have investigated the variation of absorbance with polarization for C=O, O-H, and phenyl stretch modes in aligned smectic liquid crystals, for IR radiation propagating parallel to the smectic layers. For the C=O stretch, maximum absorbance is generally observed for radiation polarized perpendicular to the layer normal in the smectic A phase, consistent with the assumption that the IR transition moment direction is coincident with the C=O bond (oriented at an angle of ~ 60^circ with respect to the molecular long axis). In certain cases, however, maximum absorbance is observed for incident polarization parallel to the layer normal, and in general observed dichroic ratios depend sensitively on the nature of the functional groups surrounding the carbonyl moiety. Similar chemical sensitivity is observed for the phenyl and O-H stretch modes. We have succeeding in interpreting these measurements by calculating IR transition moment directions for the most important vibrational modes of several model compounds using quantum chemical methods, including HF/6-311G SCF and B3LYP/6-311G and B3LYP/6-31G DFT calculations.
Caine, Jonathan S.; Nelson, E.P.; Beach, S.T.; Layer, P.W.
2006-01-01
The Idaho Springs and Central City mining districts form the central portion of a structurally controlled hydrothermal precious- and base-metal vein system in the Front Range of the northeast-trending Colorado Mineral Belt. Three new 40Ar/39Ar plateau ages on hydrothermal sericite indicate the veins formed during the Laramide orogeny between 65.4??1.5 - 61.9??1.3 Ma. We compile structural geologic data from surface geological maps, subsurface mine maps, and theses for analysis using modern graphical methods and integration into models of formation of economic mineral deposits. Structural data sets, produced in the 1950s and 1960s by the U.S. Geological Survey, are compiled for fabric elements, including metamorphic foliations, fold axial trends, major brittle fault zones, quartz and precious- and base-metal veins and fault veins, Tertiary dikes, and joints. These fabric elements are plotted on equal-area projections and analyzed for mean fabric orientations. Strike-slip fault-vein sets are mostly parallel or sub-parallel, and not conjugate as interpreted by previous work; late-stage, normal-slip fault veins possibly show a pattern indicative of triaxial strain. Fault-slip kinematic analysis was used to model the trend of the Laramide maximum horizontal stress axis, or compression direction, and to determine compatibility of opening and shear motions within a single stress field. The combined-model maximum compression direction for all strike slip fault veins is ???068??, which is consistent with published Laramide compression directions of ???064?? (mean of 23 regional models) and ???072?? for the Front Range uplift. The orientations of fabric elements were analyzed for mechanical and kinematic compatibility with opening, and thus permeability enhancement, in the modeled regional east-northeast, Laramide compression direction. The fabric orientation analysis and paleostress modeling show that structural permeability during mineralization was enhanced along pre-existing metamorphic foliations and fold axial planes. Large orientation dispersion in most fabric elements likely caused myriad potential pathways for permeability. The dominant orientations of opening and shear mode structures are consistent with a sub-parallel network of structures that formed in the Laramide east-northeast compression direction. The results presented demonstrate the importance of using mechanical and kinematic theory integrated with contemporary ideas of permeability structure to better understand the coupled nature of fluid flow, mineral deposition, stress, and strain. Further, the results demonstrate that there is significant internal strain within this basement-cored uplift that was localized by optimally oriented pre-existing structures in a regional stress field.
Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P; Feltus, F Alex; Paterson, Andrew H
2011-01-01
Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.
Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Paterson, Andrew H.
2011-01-01
Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution. PMID:22164235
Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure
Poag, C.W.
2005-01-01
This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism.
Studying Townsend and glow modes in an atmospheric-pressure DBD using mass spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Donaghy, David; He, Feng; Bradley, James W.
2018-01-01
Ambient molecular beam mass spectrometry has been employed to examine the effects of the mode of operation and the excitation waveform on the ionic content of a helium-based atmospheric-pressure parallel plate dielectric barrier discharge. By applying 10 kHz microsecond voltage pulses with a nanosecond rise times and 10 kHz sinusoidal voltage waveforms, distinctly different glow and Townsend modes were produced, respectively. Results showed a significant difference in the dominant ion species between the two modes. In the Townsend mode, molecular oxygen ions, atomic oxygen anions and nitric oxide anions are the most abundant species, however, in the glow mode water clusters ions and hydrated nitric oxygen anions dominate. Several hypotheses are put forward to explain these differences, including low electron densities and energies in the Townsend mode, more efficient ionization of water molecules through penning ionization and charge exchange with other species in glow mode, and large temperature gradients due to the pulsed nature of the glow mode, leading to more favorable conditions for cluster formation.
A parallel orbital-updating based plane-wave basis method for electronic structure calculations
NASA Astrophysics Data System (ADS)
Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui
2017-11-01
Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.
NASA Astrophysics Data System (ADS)
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient within an m/m = 1/5 island is observed just after a global reconnection event. This suggests local heating and relatively good confinement within the island. Local power balance calculations suggest reduced thermal transport within this island. During improved confinement plasmas with reduced stochasticity, brought about by a reduction in tearing instability temperature fluctuations correlated with magnetic modes are small with characteristic fluctuation amplitudes of T˜e/Te ˜ 2%.
Current-controlled light scattering and asymmetric plasmon propagation in graphene
NASA Astrophysics Data System (ADS)
Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe
2018-02-01
We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.
A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
Shi, E. L.; Hakim, A. H.; Hammett, G. W.
2015-02-03
An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the scrape-off layer to a divertor plate. We focus on a test problem that has been studied previously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET. Previous work has used direct particle-in-cellequations with full dynamics, or Vlasov or fluid equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and logical sheathboundary conditions, spatial and temporal resolution requirements are no longer set by the electron Debye length and plasma frequency, respectively. Finally, this test problem also helps illustratemore » some of the physics contained in the Hamiltonian form of the gyrokineticequations and some of the numerical challenges in developing an edge gyrokinetic code.« less
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
NASA Technical Reports Server (NTRS)
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Larkman, David J.; Nunes, Rita G.
2007-04-01
Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.
NASA Astrophysics Data System (ADS)
Critelli, Salvatore; De Rosa, Rosanna; Platt, John Paul
1990-10-01
Detrital modes of Early Miocene to Early Pliocene sandstones from the Makran accretionary wedge in southwest Pakistan show a mainly quartzolithic composition with an evolution from the transitional recycled to quartzose recycled. The lithic types, however, indicate two distinct petrofacies. Accreted abyssal plain turbidites have Qp 11Lvm 27Lsm 62 and Lm 39Lv 27Ls 34, showing a predominant supply from sedimentary and metasedimentary source terranes whereas slope and shelf facies sediments deposited on the accretionary wedge have Qp 7Lvm 47Lsm 47 and Lm 22Lv 48Ls 30 due to an increase of volcanic detritus. The detrital modes of the abyssal plain sediments suggest a recycled orogenic source, probably the Himalayan collision zone. The facies and longitudinal dispersal pattern suggest deposition in an Oligo-Miocene analogue of the present Indus fan. The sediment must have been transported across strike, parallel to the transform structure linking the Makran wedge to the Himalayas (Chaman-Ornach Nal fault system), and fed into the fan at the western end of the subduction zone. The detrital modes also show an increase in volcanic detritus with time (Lv/L = 0.27 for the Early Miocene abyssal plain sediments to 0.47 for the slope sequences). This may have been derived from Late Mesozoic volcanic terrains in northern Baluchistan or the Ladakh Himalayas, or more probably from the Early to middle Miocene andesitic volcanic centre in the northern Makran.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture
NASA Astrophysics Data System (ADS)
Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain
2015-12-01
A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.
OLED with improved light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Sun, Yiru
2016-11-29
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less
Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Aerospace Systems
2010-10-01
algorithm and to then tune the candidates individually using known metaheuristics . As will be...parallel. The result of this arrangement is that the processing is a form that is analogous to standard parallel genetic algorithms , and as such...search algorithm then uses the hybrid of fitness data to rank the results. The ETRAS controller is developed using pre-selection, showing that a
Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.
Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J
2013-12-06
Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.
Subcritical crack growth in soda-lime glass in combined mode I and mode II loading
NASA Technical Reports Server (NTRS)
Singh, Dileep; Shetty, Dinesh K.
1990-01-01
Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.
NASA Astrophysics Data System (ADS)
Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.
2016-12-01
Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, L.; Zank, G. P.; Hunana, P.
Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine–Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backwardmore » propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.« less
Glassy vortex behavior in superconducting SrPd2Ge2 single crystals
NASA Astrophysics Data System (ADS)
Sung, N. H.; Jo, Y. J.; Cho, B. K.
2012-07-01
In this study we report the vortex-glass behavior of superconducting ternary germanide SrPd2Ge2 single crystals with a ThCr2Si2-type structure. We observed flux trapping and its nonexponential decay with time after the magnetic field was turned off at T = 2 K. In addition, we found that the diamagnetism in the zero field cooling (ZFC) mode below Tc was irreversible, depending on the temperature and field history, whereas the diamagnetism in the field-cooled warming (FCW) mode was reversible if the applied magnetic field was parallel to the c-axis. An irreversibility line Tr(H) was determined by the ZFC and FCW measurements at various magnetic fields, and the temperature dependence of Tr(H) was found to agree with the de Almeida-Thouless relation, H = H0[1-Tr(H)/Tc(0)]γ, where γ = 3/2. Including these vortex-glass behaviors, we discuss the critical current density, Jc(T), determined from isothermal magnetization measurements at various temperatures, and the pinning potential, determined from the slope of an Arrhenius plot, lnR(T,B) versus 1/T.
Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Koval, A.; Szabo, Adam; Breneman, A.; Cattell, C. A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Kasper, J. C.; Maruca, B. A.;
2012-01-01
We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events.
ERIC Educational Resources Information Center
Mungal, Angus Shiva
2016-01-01
In New York City, a partnership between Teach For America (TFA), the New York City Department of Education (NYCDOE), the Relay Graduate School of Education (Relay), and three charter school networks produced a "parallel education structure" within the public school system. Driving the partnership and the parallel education structure are…
NASA Astrophysics Data System (ADS)
Yamaguchi, Akinobu; Nakao, Akiko; Ohkochi, Takuo; Yasui, Akira; Kinoshita, Toyohiko; Utsumi, Yuichi; Saiki, Tsunemasa; Yamada, Keisuke
2018-05-01
The electrical ferromagnetic resonance of micro-scale Ni wires with magnetic anisotropy induced by the heterojunction between the Ni layer and ferroelectric single crystalline LiNbO3 substrate was demonstrated by using rectifying effect. The two resonance modes were observed in the Ni wire aligned parallel to the applied magnetic field in plane. The lower resonance frequency mode is considered to correspond to the normal resonance mode with domain resonance, while the higher resonance mode is attributed to the mode which is contributed by the heterojunction between the Ni layer and LiNbO3 substrate. Our results manifest that the rectifying electrical detections are very useful for understating and evaluating the magnetic properties induced by the heterojunction.
Sun, Xiaole; Djordjevic, Ivan B; Neifeld, Mark A
2016-11-28
We investigate a multiple spatial modes based quantum key distribution (QKD) scheme that employs multiple independent parallel beams through a marine free-space optical channel over open ocean. This approach provides the potential to increase secret key rate (SKR) linearly with the number of channels. To improve the SKR performance, we describe a back-propagation mode (BPM) method to mitigate the atmospheric turbulence effects. Our simulation results indicate that the secret key rate can be improved significantly by employing the proposed BPM-based multi-channel QKD scheme.
NASA Technical Reports Server (NTRS)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo
2012-11-25
The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.
Performance Evaluation in Network-Based Parallel Computing
NASA Technical Reports Server (NTRS)
Dezhgosha, Kamyar
1996-01-01
Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.
Parallel Narrative Structure in Paul Harding's "Tinkers"
ERIC Educational Resources Information Center
Çirakli, Mustafa Zeki
2014-01-01
The present paper explores the implications of parallel narrative structure in Paul Harding's "Tinkers" (2009). Besides primarily recounting the two sets of parallel narratives, "Tinkers" also comprises of seemingly unrelated fragments such as excerpts from clock repair manuals and diaries. The main stories, however, told…
NASA Astrophysics Data System (ADS)
Derry, L. A.; Sacks, G. L.; Brenna, J. T.
2006-12-01
The mobility, bioavailability, and toxicity of many metals are strongly influenced by their molecular form, or speciation. Many metals (M) in the environment are complexed with organic ligands (L); in some cases such complexed forms comprise virtually all of the dissolved metal. When available, stability constants can be used to model speciation, but only when the identities of species can be known or assumed. In other cases, coupling a separation tool such as HPLC to a metal detection system like ICP-MS can provide information on speciation. But because ICP-MS destroys molecular information the complexing L must be identified by retention time matching of standards. The assumptions inherent in these approaches preclude investigation of unknown compounds. Electrochemical methods can determine conditional stability constants for unknown L but do not provide information on their molecular structure or composition. Molecular MS allows characterization of molecular mass and structure and is a powerful tool for identifying unknown organic compounds. However, sensitivity for M and precision for isotope ratios are often low. We combined HPLC separation with simultaneous parallel detection of metals (M) and ligands (L) by ICP-MS and API-QTOF-MS-MS. The basis of our approach is that the shape of a chromatographic peak is essentially set by interactions with the LC column. The signal of a metal M determined by the ICP-MS in chromatographic mode is fit using an exponentially modified Gaussian function. Peak parameters including retention time, peak width and skew are determined for the M peak. The parallel QTOF signal in full scan mode may show hundreds of peaks in the same time window. The acquired peak library is searched for L peaks that match the parameters determined for the M peak on the ICP-MS. We have found that our system can correctly identify M-L pairs and L in complex samples and generates few false positives. Unknown L can be further interrogated by using the MS-MS product ion scan mode of the QTOF, in which candidate peaks are fragmented in a collision cell after MS1 and the fragments analyzed by MS2. The combination of precise mass determinations, recognition of isotopomers, and product ion scans can often identify unknown M-L in complex natural mixtures without prior knowledge of the sample composition. Data from seleno-compounds illustrate the PEMMS concept. An artificially noisy sample was generated by spiking 30 ppb Se-methionine (SeMet) and 5 ppb Se-methylselenocysteine (SeMSC) with unselenized yeast extract and run by PEMMS. The PEMMS software was able to detect four molecular MS peaks associated with SeMet and two for SeMSC, while filtering out more than 40 co-eluting spectral peaks associated with chemical noise in each sample. Additional data from Cu-thiols produced by marine plankton and soil chelates of Al demonstrate the utility of the PEMMS approach in the study of natural environmental systems.
NASA Workshop on Computational Structural Mechanics 1987, part 1
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Topics in Computational Structural Mechanics (CSM) are reviewed. CSM parallel structural methods, a transputer finite element solver, architectures for multiprocessor computers, and parallel eigenvalue extraction are among the topics discussed.
A CFD Heterogeneous Parallel Solver Based on Collaborating CPU and GPU
NASA Astrophysics Data System (ADS)
Lai, Jianqi; Tian, Zhengyu; Li, Hua; Pan, Sha
2018-03-01
Since Graphic Processing Unit (GPU) has a strong ability of floating-point computation and memory bandwidth for data parallelism, it has been widely used in the areas of common computing such as molecular dynamics (MD), computational fluid dynamics (CFD) and so on. The emergence of compute unified device architecture (CUDA), which reduces the complexity of compiling program, brings the great opportunities to CFD. There are three different modes for parallel solution of NS equations: parallel solver based on CPU, parallel solver based on GPU and heterogeneous parallel solver based on collaborating CPU and GPU. As we can see, GPUs are relatively rich in compute capacity but poor in memory capacity and the CPUs do the opposite. We need to make full use of the GPUs and CPUs, so a CFD heterogeneous parallel solver based on collaborating CPU and GPU has been established. Three cases are presented to analyse the solver’s computational accuracy and heterogeneous parallel efficiency. The numerical results agree well with experiment results, which demonstrate that the heterogeneous parallel solver has high computational precision. The speedup on a single GPU is more than 40 for laminar flow, it decreases for turbulent flow, but it still can reach more than 20. What’s more, the speedup increases as the grid size becomes larger.
Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi
2015-01-01
Different bony structures can affect the function of the velopharyngeal muscles. Asian populations differ morphologically, including the morphologies of their bony structures. The purpose of this study was to compare the velopharyngeal structures during speech in two Asian populations: Japanese and Thai. Ten healthy Japanese and Thai females (five each) were evaluated with a 3-Tesla (3 T) magnetic resonance imaging (MRI) scanner while they produced vowel-consonant-vowel syllable (/asa/). A gradient-echo sequence, fast low-angle shot with segmented cine and parallel imaging technique was used to obtain sagittal images of the velopharyngeal structures. MRI was carried out in real time during speech production, allowing investigations of the time-to-time changes in the velopharyngeal structures. Thai subjects had a significantly longer hard palate and produced shorter consonant than Japanese subjects. The velum of the Thai participants showed significant thickening during consonant production and their retroglossal space was significantly wider at rest, whereas the dimensional change during task performance was similar in the two populations. The 3 T MRI movie method can be used to investigate velopharyngeal function and diagnose velopharyngeal insufficiency. The racial differences may include differences in skeletal patterns and soft-tissue morphology that result in functional differences for the affected structures.
Turbulence-driven anisotropic electron tail generation during magnetic reconnection
NASA Astrophysics Data System (ADS)
DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.
2018-05-01
Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.
NASA Astrophysics Data System (ADS)
Huang, Bo; Zhai, Yutao; Liu, Shaojun; Mao, Xiaodong
2018-03-01
Selective laser melting (SLM) is a promising way for the fabrication of complex reduced activation ferritic/martensitic steel components. The microstructure of the SLM built China low activation martensitic (CLAM) steel plates was observed and analyzed. The hardness, Charpy impact and tensile testing of the specimens in different orientations were performed at room temperature. The results showed that the difference in the mechanical properties was related to the anisotropy in microstructure. The planer unmelted porosity in the interface of the adjacent layers induced opening/tensile mode when the tensile samples parallel to the build direction were tested whereas the samples vertical to the build direction fractured in the shear mode with the grains being sheared in a slant angle. Moreover, the impact absorbed energy (IAE) of all impact specimens was significantly lower than that of the wrought CLAM steel, and the IAE of the samples vertical to the build direction was higher than that of the samples parallel to the build direction. The impact fracture surfaces revealed that the load parallel to the build layers caused laminated tearing among the layers, and the load vertical to the layers induced intergranular fracture across the layers.
Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.
2017-10-01
The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
Li, Duxin; Schmitz, Oliver J
2013-08-01
Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.
Imaging the Localized Plasmon Resonance Modes in Graphene Nanoribbons
Hu, F.; Luan, Y.; Fei, Z.; ...
2017-08-14
Here, we report a nanoinfrared (IR) imaging study of the localized plasmon resonance modes of graphene nanoribbons (GNRs) using a scattering-type scanning near-field optical microscope (s-SNOM). By comparing the imaging data of GNRs that are aligned parallel and perpendicular to the in-plane component of the excitation laser field, we observed symmetric and asymmetric plasmonic interference fringes, respectively. Theoretical analysis indicates that the asymmetric fringes are formed due to the interplay between the localized surface plasmon resonance (SPR) mode excited by the GNRs and the propagative surface plasmon polariton (SPP) mode launched by the s-SNOM tip. And with rigorous simulations, wemore » reproduce the observed fringe patterns and address quantitatively the role of the s-SNOM tip on both the SPR and SPP modes. Moreover, we have seen real-space signatures of both the dipole and higher-order SPR modes by varying the ribbon width.« less
2006-08-23
polarization the electric field vector is parallel to the substrate, for TM polarization the magnetic field vector is parallel to the substrate. Figure...section can be obtained for the case of the two electromagnetic field polarization vectors λ and µ describing the two photons being absorbed (of the same or... polarization effects on two-photon absorption as investigated by the technique of thermal lensing detected absorption of a mode- locked laser beam. This
Connectionist Models: Proceedings of the Summer School Held in San Diego, California on 1990
1990-01-01
modes: control network continues activation spreading based There is the sequential version and the parallel version on the actual inputs instead of...ent). 2. Execute all motoric actions based on activations of r a ent.The parallel version of the algorithm is local in time, units in A. Update the...a- movements that help o recognize an entering person.) tions like ’move focus left’, ’rotate focus’ are based on the activations of the C’s output
Rauniyar, Navin
2015-01-01
The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
Besnier, Francois; Glover, Kevin A.
2013-01-01
This software package provides an R-based framework to make use of multi-core computers when running analyses in the population genetics program STRUCTURE. It is especially addressed to those users of STRUCTURE dealing with numerous and repeated data analyses, and who could take advantage of an efficient script to automatically distribute STRUCTURE jobs among multiple processors. It also consists of additional functions to divide analyses among combinations of populations within a single data set without the need to manually produce multiple projects, as it is currently the case in STRUCTURE. The package consists of two main functions: MPI_structure() and parallel_structure() as well as an example data file. We compared the performance in computing time for this example data on two computer architectures and showed that the use of the present functions can result in several-fold improvements in terms of computation time. ParallelStructure is freely available at https://r-forge.r-project.org/projects/parallstructure/. PMID:23923012
Alvioli, M.; Baum, R.L.
2016-01-01
We describe a parallel implementation of TRIGRS, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model for the timing and distribution of rainfall-induced shallow landslides. We have parallelized the four time-demanding execution modes of TRIGRS, namely both the saturated and unsaturated model with finite and infinite soil depth options, within the Message Passing Interface framework. In addition to new features of the code, we outline details of the parallel implementation and show the performance gain with respect to the serial code. Results are obtained both on commercial hardware and on a high-performance multi-node machine, showing the different limits of applicability of the new code. We also discuss the implications for the application of the model on large-scale areas and as a tool for real-time landslide hazard monitoring.
Parallel processing optimization strategy based on MapReduce model in cloud storage environment
NASA Astrophysics Data System (ADS)
Cui, Jianming; Liu, Jiayi; Li, Qiuyan
2017-05-01
Currently, a large number of documents in the cloud storage process employed the way of packaging after receiving all the packets. From the local transmitter this stored procedure to the server, packing and unpacking will consume a lot of time, and the transmission efficiency is low as well. A new parallel processing algorithm is proposed to optimize the transmission mode. According to the operation machine graphs model work, using MPI technology parallel execution Mapper and Reducer mechanism. It is good to use MPI technology to implement Mapper and Reducer parallel mechanism. After the simulation experiment of Hadoop cloud computing platform, this algorithm can not only accelerate the file transfer rate, but also shorten the waiting time of the Reducer mechanism. It will break through traditional sequential transmission constraints and reduce the storage coupling to improve the transmission efficiency.
Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control
NASA Astrophysics Data System (ADS)
Zhou, Jiawang; Zhou, Zude; Ai, Qingsong
As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.
Power-Aware Compiler Controllable Chip Multiprocessor
NASA Astrophysics Data System (ADS)
Shikano, Hiroaki; Shirako, Jun; Wada, Yasutaka; Kimura, Keiji; Kasahara, Hironori
A power-aware compiler controllable chip multiprocessor (CMP) is presented and its performance and power consumption are evaluated with the optimally scheduled advanced multiprocessor (OSCAR) parallelizing compiler. The CMP is equipped with power control registers that change clock frequency and power supply voltage to functional units including processor cores, memories, and an interconnection network. The OSCAR compiler carries out coarse-grain task parallelization of programs and reduces power consumption using architectural power control support and the compiler's power saving scheme. The performance evaluation shows that MPEG-2 encoding on the proposed CMP with four CPUs results in 82.6% power reduction in real-time execution mode with a deadline constraint on its sequential execution time. Furthermore, MP3 encoding on a heterogeneous CMP with four CPUs and four accelerators results in 53.9% power reduction at 21.1-fold speed-up in performance against its sequential execution in the fastest execution mode.
Bio-inspired multi-mode optic flow sensors for micro air vehicles
NASA Astrophysics Data System (ADS)
Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik
2013-06-01
Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.
Casford, Michael T L; Davies, Paul B
2012-07-24
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.
NASA Astrophysics Data System (ADS)
Belibassakis, K. A.; Athanassoulis, G. A.
2005-05-01
The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h( {x,y}) {=} h( x ), attaining constant, but possibly different, values in the semi-infinite regions x {<} a and x {>} b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x {=} a to x {=} b and {-} infty {<} y{<}infty . Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a {≤} x {≤} b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x{=}a and x{=}b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions.
Knoeferle, Pia; Crocker, Matthew W
2009-12-01
Reading times for the second conjunct of and-coordinated clauses are faster when the second conjunct parallels the first conjunct in its syntactic or semantic (animacy) structure than when its structure differs (Frazier, Munn, & Clifton, 2000; Frazier, Taft, Roeper, & Clifton, 1984). What remains unclear, however, is the time course of parallelism effects, their scope, and the kinds of linguistic information to which they are sensitive. Findings from the first two eye-tracking experiments revealed incremental constituent order parallelism across the board-both during structural disambiguation (Experiment 1) and in sentences with unambiguously case-marked constituent order (Experiment 2), as well as for both marked and unmarked constituent orders (Experiments 1 and 2). Findings from Experiment 3 revealed effects of both constituent order and subtle semantic (noun phrase similarity) parallelism. Together our findings provide evidence for an across-the-board account of parallelism for processing and-coordinated clauses, in which both constituent order and semantic aspects of representations contribute towards incremental parallelism effects. We discuss our findings in the context of existing findings on parallelism and priming, as well as mechanisms of sentence processing.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Electric dipole radiation at VLF in a uniform warm magneto-plasma.
NASA Technical Reports Server (NTRS)
Wang, T. N. C.; Bell, T. F.
1972-01-01
Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.
He, Xianzhi; Zhang, Lei; Liu, Pengchong; Liu, Li; Deng, Hui; Huang, Jinhai
2015-03-01
Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus have increasingly given rise to human health and food safety. Genetically engineered small molecular antibody is a useful tool in immuno-detection and treatment for clinical illness caused by SEs. In this study, we constructed the V(L)-V(H) tail-parallel genetically engineered antibody against SEs by using the repertoire of rearranged germ-line immunoglobulin variable region genes. Total RNA were extracted from six hybridoma cell lines that stably express anti-SEs antibodies. The variable region genes of light chain (V(L)) and heavy chain (V(H)) were cloned by reverse transcription PCR, and their classical murine antibody structure and functional V(D)J gene rearrangement were analyzed. To construct the eukaryotic V(H)-V(L) tail-parallel co-expression vectors based on the "5'-V(H)-ivs-IRES-V(L)-3'" mode, the ivs-IRES fragment and V(L) genes were spliced by two-step overlap extension PCR, and then, the recombined gene fragment and V(H) genes were inserted into the pcDNA3.1(+) expression vector sequentially. And then the constructed eukaryotic expression clones termed as p2C2HILO and p5C12HILO were transfected into baby hamster kidney 21 cell line, respectively. Two clonal cell lines stably expressing V(L)-V(H) tail-parallel antibodies against SEs were obtained, and the antibodies that expressed intracytoplasma were evaluated by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry. SEs can stimulate the expression of some chemokines and chemokine receptors in porcine IPEC-J2 cells; mRNA transcription level of four chemokines and chemokine receptors can be blocked by the recombinant SE antibody prepared in this study. Our results showed that it is possible to get functional V(L)-V(H) tail-parallel genetically engineered antibodies in same vector using eukaryotic expression system.
Displacement and deformation measurement for large structures by camera network
NASA Astrophysics Data System (ADS)
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
Radio frequency quadrupole resonator for linear accelerator
Moretti, Alfred
1985-01-01
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Radio-frequency quadrupole resonator for linear accelerator
Moretti, A.
1982-10-19
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
Field-Effects in Large Axial Ratio Liquid Crystals
NASA Astrophysics Data System (ADS)
Lonberg, Franklin J.
This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Arnaud, M.
The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less
Stacking of purines in water: the role of dipolar interactions in caffeine.
Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A
2016-05-11
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
Peter, Daniel; Weber, Ramona; Köne, Carolin; Chung, Min-Yi; Ebertsch, Linda; Truffault, Vincent; Weichenrieder, Oliver; Igreja, Cátia; Izaurralde, Elisa
2015-01-01
The eIF4E-binding proteins (4E-BPs) are a diverse class of translation regulators that share a canonical eIF4E-binding motif (4E-BM) with eIF4G. Consequently, they compete with eIF4G for binding to eIF4E, thereby inhibiting translation initiation. Mextli (Mxt) is an unusual 4E-BP that promotes translation by also interacting with eIF3. Here we present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected evolutionary plasticity in the eIF4E-binding mode, with a classical bipartite interface for Ce Mxt and a novel tripartite interface for Dm Mxt. Both interfaces comprise a canonical helix and a noncanonical helix that engage the dorsal and lateral surfaces of eIF4E, respectively. Remarkably, Dm Mxt contains a C-terminal auxiliary helix that lies anti-parallel to the canonical helix on the eIF4E dorsal surface. In contrast to the eIF4G and Ce Mxt complexes, the Dm eIF4E–Mxt complexes are resistant to competition by bipartite 4E-BPs, suggesting that Dm Mxt can bind eIF4E when eIF4G binding is inhibited. Our results uncovered unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation. PMID:26294658
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
Error field penetration and locking to the backward propagating wave
Finn, John M.; Cole, Andrew J.; Brennan, Dylan P.
2015-12-30
In this letter we investigate error field penetration, or locking, behavior in plasmas having stable tearing modes with finite real frequencies w r in the plasma frame. In particular, we address the fact that locking can drive a significant equilibrium flow. We show that this occurs at a velocity slightly above v = w r/k, corresponding to the interaction with a backward propagating tearing mode in the plasma frame. Results are discussed for a few typical tearing mode regimes, including a new derivation showing that the existence of real frequencies occurs for viscoresistive tearing modes, in an analysis including themore » effects of pressure gradient, curvature and parallel dynamics. The general result of locking to a finite velocity flow is applicable to a wide range of tearing mode regimes, indeed any regime where real frequencies occur.« less
Airborne Precision Spacing for Dependent Parallel Operations Interface Study
NASA Technical Reports Server (NTRS)
Volk, Paul M.; Takallu, M. A.; Hoffler, Keith D.; Weiser, Jarold; Turner, Dexter
2012-01-01
This paper describes a usability study of proposed cockpit interfaces to support Airborne Precision Spacing (APS) operations for aircraft performing dependent parallel approaches (DPA). NASA has proposed an airborne system called Pair Dependent Speed (PDS) which uses their Airborne Spacing for Terminal Arrival Routes (ASTAR) algorithm to manage spacing intervals. Interface elements were designed to facilitate the input of APS-DPA spacing parameters to ASTAR, and to convey PDS system information to the crew deemed necessary and/or helpful to conduct the operation, including: target speed, guidance mode, target aircraft depiction, and spacing trend indication. In the study, subject pilots observed recorded simulations using the proposed interface elements in which the ownship managed assigned spacing intervals from two other arriving aircraft. Simulations were recorded using the Aircraft Simulation for Traffic Operations Research (ASTOR) platform, a medium-fidelity simulator based on a modern Boeing commercial glass cockpit. Various combinations of the interface elements were presented to subject pilots, and feedback was collected via structured questionnaires. The results of subject pilot evaluations show that the proposed design elements were acceptable, and that preferable combinations exist within this set of elements. The results also point to potential improvements to be considered for implementation in future experiments.
A generalized plasma dispersion function for electron damping in tokamak plasmas
Berry, L. A.; Jaeger, E. F.; Phillips, C. K.; ...
2016-10-14
Radio frequency wave propagation in finite temperature, magnetized plasmas exhibits a wide range of physics phenomena. The plasma response is nonlocal in space and time, and numerous modes are possible with the potential for mode conversions and transformations. Additionally, diffraction effects are important due to finite wavelength and finite-size wave launchers. Multidimensional simulations are required to describe these phenomena, but even with this complexity, the fundamental plasma response is assumed to be the uniform plasma response with the assumption that the local plasma current for a Fourier mode can be described by the Stix conductivity. But, for plasmas with non-uniformmore » magnetic fields, the wave vector itself is nonlocal. When resolved into components perpendicular (k ) and parallel (k ||) to the magnetic field, locality of the parallel component can easily be violated when the wavelength is large. The impact of this inconsistency is that estimates of the wave damping can be incorrect (typically low) due to unresolved resonances. For the case of ion cyclotron damping, this issue has already been addressed by including the effect of parallel magnetic field gradients. In this case, a modified plasma response (Z function) allows resonance broadening even when k || = 0, and this improves the convergence and accuracy of wave simulations. In our paper, we extend this formalism to include electron damping and find improved convergence and accuracy for parameters where electron damping is dominant, such as high harmonic fast wave heating in the NSTX-U tokamak, and helicon wave launch for off-axis current drive in the DIII-D tokamak.« less
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.
Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A
2010-04-01
To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.
2018-02-01
The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.
NASA Astrophysics Data System (ADS)
Feng, Wen; Yang, Sen; Yan, Yinbiao
2018-06-01
In this study, the effects of deformation mode (rolling and tension) and strain level on grain boundary character distribution were systematically investigated in 304 austenitic stainless steel. The experimental results showed that the <110> component parallel to the normal direction orientation and the P(BND) {110}<111> texture were predominant in the rolled specimens and the tensioned ones, respectively. For each mode of deformation, the fraction of low-Σ coincidence site lattice (CSL) boundaries, especially Σ3 n ( n = 1, 2, 3) boundaries decreased with the increasing strain level after annealing. At a lower strain level, the type of texture played a leading role in grain boundary reconstruction during annealing, and the <110> component parallel to the normal direction orientation facilitated the formation of low-Σ CSL boundaries during annealing compared with the P(BND) texture. However, for a higher strain level, the stored energy became dominant in grain boundary reconstruction during annealing, and a large stored energy was detrimental to the formation of low-Σ CSL boundaries, which resulted in a higher fraction of low-Σ CSL boundaries in the tensioned specimen than that in the rolled one after annealing.
Low, R; Pothérat, A
2015-05-01
We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.C.; Hashida, T.; Takahashi, H.
1998-03-01
The fracture mode and crack propagation behavior of brittle fracture at 77 and 4 K in an 18Cr-18Mn-0.7N austenitic stainless were investigated using optical and scanning electron microscopy. The fracture path was examined by observing the side surface in a partially ruptured specimen. The relationship of the fracture facets to the microstructures were established by observing the fracture surface and the adjacent side surface simultaneously. Three kinds of fracture facets were identified at either temperature. The first is a smooth curved intergranular fracture facet with characteristic parallel lines on it. The second is a fairly planar facet formed by partingmore » along an annealing twin boundary, a real {l_brace}111{r_brace} plane. There are three sets of parallel lines on the facet and the lines in different sets intersect at 60 deg. The third is a lamellar transgranular fracture facet with sets of parallel steps on it. Fracture propagated by the formation of microcracks on a grain boundary, annealing twin boundary, and coalescence of these cracks. The observation suggests that the ease of crack initiation and propagation along the grain boundary and the annealing twin boundary may be the main reason for the low-temperature brittleness of this steel. A mechanism for grain boundary cracking, including annealing twin boundary parting, has been discussed based on the stress concentration induced by impinging planar deformation structures on the grain boundaries.« less
Error estimation and adaptive mesh refinement for parallel analysis of shell structures
NASA Technical Reports Server (NTRS)
Keating, Scott C.; Felippa, Carlos A.; Park, K. C.
1994-01-01
The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.
Gloss, L M; Simler, B R; Matthews, C R
2001-10-05
The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.
Ion Loss as an Intrinsic Momentum Source in Tokamaks
NASA Astrophysics Data System (ADS)
Boedo, J. A.
2014-10-01
A series of coupled experiments in DIII-D and simulations provide strong support for the kinetic loss of thermal ions from the edge as the mechanism for toroidal momentum generation in tokamaks. Measurements of the near-separatrix parallel velocity of D+ with Mach probes show a 1-2 cm wide D+ parallel velocity peak at the separatrix reaching 40-60 km/s, up to half the thermal velocity, always in the direction of the plasma current. The magnitude and width of the velocity layer are in excellent agreement with a first-principle, collissionless, kinetic computation of selective particle loss due to the loss cone including for the first time the measured radial electric field, Er in steady state. C6+ rotation in the core, measured with charge exchange recombination (CER) spectroscopy is correlated with the edge D+ velocity. XGC0 computations, which include collisions and kinetic ions and electrons, show results that agree with the measurements, and indicate that two mechanisms are relevant: 1) ion orbit loss and 2) a growing influence of the Pfirsch-Schluter mechanism in H-mode gradients. The inclusion of the measured Er in the loss-cone model drastically affects the width and magnitude of the velocity profile and improves agreement with the Mach probe measurements. A fine structure in Er is found, still of unknown origin, featuring large (10-20 kV/m) positive peaks in the SOL and at, or slightly inside, the separatrix of low power L- or H-mode conditions. This high resolution probe measurement of Er agrees with CER measurements where the techniques overlap. The flow is attenuated in higher collisionality conditions, consistent with a depleted loss-cone mechanism. Supported by the US DOE under DE-FG02-07ER54917, DE-FC02-08ER54977, & DE-FC02-04ER54698.
Lasers for industrial production processing: tailored tools with increasing flexibility
NASA Astrophysics Data System (ADS)
Rath, Wolfram
2012-03-01
High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Drift Wave Simulation in Toroidal Geometry.
NASA Astrophysics Data System (ADS)
Lebrun, Maurice Joseph, III
1988-12-01
The drift wave, a general category of plasma behavior arising from a plasma inhomogeneity, is studied using the particle simulation method. In slab geometry, the drift wave (or universal mode) is stabilized by any finite amount of magnetic shear. In toroidal geometry, however, the coupling of the poloidal harmonics gives rise to a new branch of drift wave eigenmodes called the toroidicity -induced mode, which is predicted to be unstable in some regimes. The drift wave in a toroidal system is intrinsically three-dimensional, and is sensitive to the handling of the parallel electron dynamics, the (nearly) perpendicular wave dynamics, and the radial variation of magnetic field vector (shear). A simulation study must therefore be kinetic in nature, motivating the extension of particle simulation techniques to complex geometries. From this effort a three dimensional particle code in a toroidal coordinate system has been developed and applied to the toroidal drift wave problem. The code uses an (r,theta,phi) -type coordinate system, and a nonuniform radial grid that increases resolution near the mode-rational surfaces. Full ion dynamics and electron guiding center dynamics are employed. Further, the algorithm incorporates a straightforward limiting process to cylindrical geometry and slab geometry, enabling comparison to the theoretical results in these regimes. Simulations of the density-driven modes in toroidal geometry retain a single toroidal mode number (n = 9). In this regime, the poloidal harmonics are expected to be strongly coupled, giving rise to the marginally unstable toroidicity-induced drift mode. Analysis of the simulation data reveals a strong, low-frequency response that peaks near each mode rational surface. Further, the characteristic oscillation frequencies persist from one mode rational surface to the next, which identifies them as multiple harmonics of the toroidicity-induced mode. The lowest harmonic occurs at a frequency of omega/ omega^{*} ~ 0.26, which is reasonably close to the prediction of linear theory. Interferogram analysis of these modes indicates a "ballooning" structure toward the outside of the torus. The amplitude of the potential is observed to grow exponentially for the m = 8 through m = 10 poloidal mode numbers, with a growth rate of approximately gamma/omega ^{*} ~ 0.075. Saturation occurs at time t ~ 1000 Omega_sp{i}{-1}, and may be caused by quasilinear flattening of the density profile.
A fabrication guide for planar silicon quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.
2018-04-01
We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.
Optical data communication: fundamentals and future directions
NASA Astrophysics Data System (ADS)
DeCusatis, Casimer M.
1998-12-01
An overview of optical data communications is provided, beginning with a brief history and discussion of the unique requirements that distinguish this subfield from related areas such as telecommunications. Each of the major datacom standards is then discussed, including the physical layer specification, distances and data rates, fiber and connector types, data frame structures, and network considerations. These standards can be categorized by their prevailing applications, either storage [Enterprise System Connection, Fiber Channel Connection, and Fiber Channel], coupling (Fiber Channel), or networking [Fiber Distributed Data Interface, Gigabit Ethernet, and asynchronous transfer mode/synchronous optical network]. We also present some emerging technologies and their applications, including parallel optical interconnects, plastic optical fiber, wavelength multiplexing, and free- space optical links. We conclude with some cost/performance trade-offs and predictions of future bandwidth trends.
Dual-mode plasmonic nanorod type antenna based on the concept of a trapped dipole.
Panaretos, Anastasios H; Werner, Douglas H
2015-04-06
In this paper we theoretically investigate the feasibility of creating a dual-mode plasmonic nanorod antenna. The proposed design methodology relies on adapting to optical wavelengths the principles of operation of trapped dipole antennas, which have been widely used in the low MHz frequency range. This type of antenna typically employs parallel LC circuits, also referred to as "traps", which are connected along the two arms of the dipole. By judiciously choosing the resonant frequency of these traps, as well as their position along the arms of the dipole, it is feasible to excite the λ/2 resonance of both the original dipole as well as the shorter section defined by the length of wire between the two traps. This effectively enables the dipole antenna to have a dual-mode of operation. Our analysis reveals that the implementation of this concept at the nanoscale requires that two cylindrical pockets (i.e. loading volumes) be introduced along the length of the nanoantenna, inside which plasmonic core-shell particles are embedded. By properly selecting the geometry and constitution of the core-shell particle as well as the constitution of the host material of the two loading volumes and their position along the nanorod, the equivalent effect of a resonant parallel LC circuit can be realized. This effectively enables a dual-mode operation of the nanorod antenna. The proposed methodology introduces a compact approach for the realization of dual-mode optical sensors while at the same time it clearly illustrates the inherent tuning capabilities that core-shell particles can offer in a practical framework.
Coumar, Mohane Selvaraj; Chu, Chang-Ying; Lin, Cheng-Wei; Shiao, Hui-Yi; Ho, Yun-Lung; Reddy, Randheer; Lin, Wen-Hsing; Chen, Chun-Hwa; Peng, Yi-Hui; Leou, Jiun-Shyang; Lien, Tzu-Wen; Huang, Chin-Ting; Fang, Ming-Yu; Wu, Szu-Huei; Wu, Jian-Sung; Chittimalla, Santhosh Kumar; Song, Jen-Shin; Hsu, John T-A; Wu, Su-Ying; Liao, Chun-Chen; Chao, Yu-Sheng; Hsieh, Hsing-Pang
2010-07-08
A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Lattice and electronic contributions to the refractive index of CuWO₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz-Fuertes, J., E-mail: ruiz-fuertes@kristall.uni-frankfurt.de; Malta-Consolider Team, Departamento de Física Aplicada-ICMUV, Universitat de València, Dr. Moliner 50, 46100 Burjassot; Pellicer-Porres, J.
2014-09-14
We report an investigation of the refractive index dispersion and anisotropy in CuWO₄ by means of interference measurements in two extinction directions from mid infrared to the visible region of the energy spectrum. The analysis of the refractive index dispersion yields ϵ(∞)=4.5(1) for light polarization parallel to the c-axis and ϵ(∞)=5.3(1) with respect to the other extinction axis. In addition, we report reflectance measurements carried out from the far infrared to the near ultraviolet to study the lattice and electronic contributions to the refractive index of CuWO₄. We have determined the wavenumbers of nine infrared active lattice modes and comparedmore » them with previous ab initio calculations. The value of the Penn gap, 7eV, as well as the origin of a structure observed at 4.4 eV in the reflectance spectrum, is discussed in the context of the CuWO₄ electronic structure.« less
Fabric controls on the brittle failure of folded gneiss and schist
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Zanchetta, Stefano; Crosta, Giovanni B.
2014-12-01
We experimentally studied the brittle failure behaviour of folded gneiss and schist. Rock fabric and petrography were characterised by meso-structural analyses, optical microscopy, X-ray diffraction, and SEM imaging. Uniaxial compression, triaxial compression and indirect tension laboratory tests were performed to characterise their strength and stress-strain behaviour. Fracture patterns generated in compression were resolved in 3D through X-ray computed tomography at different resolutions (30 to 625 μm). Uniaxial compression tests revealed relatively low and scattered values of unconfined compressive strength (UCS) and Young's modulus, with no obvious relationships with the orientation of foliation. Samples systematically failed in four brittle modes, involving different combinations of shear fractures along foliation or parallel to fold axial planes, or the development of cm-scale shear zones. Fracture quantification and microstructural analysis show that different failure modes occur depending on the mutual geometrical arrangement and degree of involvement of two distinct physical anisotropies, i.e. the foliation and the fold axial planes. The Axial Plane Anisotropy (APA) is related to micro-scale grain size reduction and shape preferred orientation within quartz-rich domains, and to mechanical rotation or initial crenulation cleavage within phyllosilicate-rich domains at fold hinge zones. In quartz-rich rocks (gneiss), fracture propagation through quartz aggregates forming the APA corresponds to higher fracture energy and strength than found for fracture through phyllosilicate-rich domains. This results in a strong dependence of strength on the failure mode. Conversely, in phyllosilicate-rich rocks (schist), all the failure modes are dominated by the strength of phyllosilicates, resulting in a sharp reduction of strength anisotropy.
Programming Probabilistic Structural Analysis for Parallel Processing Computer
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Chamis, Christos C.; Murthy, Pappu L. N.
1991-01-01
The ultimate goal of this research program is to make Probabilistic Structural Analysis (PSA) computationally efficient and hence practical for the design environment by achieving large scale parallelism. The paper identifies the multiple levels of parallelism in PSA, identifies methodologies for exploiting this parallelism, describes the development of a parallel stochastic finite element code, and presents results of two example applications. It is demonstrated that speeds within five percent of those theoretically possible can be achieved. A special-purpose numerical technique, the stochastic preconditioned conjugate gradient method, is also presented and demonstrated to be extremely efficient for certain classes of PSA problems.
Prospects for Advanced Tokamak Operation of ITER
NASA Astrophysics Data System (ADS)
Neilson, George H.
1996-11-01
Previous studies have identified steady-state (or "advanced") modes for ITER, based on reverse-shear profiles and significant bootstrap current. A typical example has 12 MA of plasma current, 1,500 MW of fusion power, and 100 MW of heating and current-drive power. The implementation of these and other steady-state operating scenarios in the ITER device is examined in order to identify key design modifications that can enhance the prospects for successfully achieving advanced tokamak operating modes in ITER compatible with a single null divertor design. In particular, we examine plasma configurations that can be achieved by the ITER poloidal field system with either a monolithic central solenoid (as in the ITER Interim Design), or an alternate "hybrid" central solenoid design which provides for greater flexibility in the plasma shape. The increased control capability and expanded operating space provided by the hybrid central solenoid allows operation at high triangularity (beneficial for improving divertor performance through control of edge-localized modes and for increasing beta limits), and will make it much easier for ITER operators to establish an optimum startup trajectory leading to a high-performance, steady-state scenario. Vertical position control is examined because plasmas made accessible by the hybrid central solenoid can be more elongated and/or less well coupled to the conducting structure. Control of vertical-displacements using the external PF coils remains feasible over much of the expanded operating space. Further work is required to define the full spectrum of axisymmetric plasma disturbances requiring active control In addition to active axisymmetric control, advanced tokamak modes in ITER may require active control of kink modes on the resistive time scale of the conducting structure. This might be accomplished in ITER through the use of active control coils external to the vacuum vessel which are actuated by magnetic sensors near the first wall. The enhanced shaping and positioning flexibility provides a range of options for reducing the ripple-induced losses of fast alpha particles--a major limitation on ITER steady-state modes. An alternate approach that we are pursuing in parallel is the inclusion of ferromagnetic inserts to reduce the toroidal field ripple within the plasma chamber. The inclusion of modest design changes such as the hybrid central solenoid, active control coils for kink modes, and ferromagnetic inserts for TF ripple reduction show can greatly increase the flexibility to accommodate advance tokamak operation in ITER. Increased flexibility is important because the optimum operating scenario for ITER cannot be predicted with certainty. While low-inductance, reverse shear modes appear attractive for steady-state operation, high-inductance, high-beta modes are also viable candidates, and it is important that ITER have the flexibility to explore both these, and other, operating regimes.
Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn
2015-02-15
A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less
A parallel computational model for GATE simulations.
Rannou, F R; Vega-Acevedo, N; El Bitar, Z
2013-12-01
GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A broadband polarization-insensitive cloak based on mode conversion
Gu, Chendong; Xu, Yadong; Li, Sucheng; Lu, Weixin; Li, Jensen; Chen, Huanyang; Hou, Bo
2015-01-01
In this work, we demonstrate an one-dimensional cloak consisting of parallel-plated waveguide with two slabs of gradient index metamaterials attached to its metallic walls. In it objects are hidden without limitation of polarizations, and good performance is observed for a broadband of frequencies. The experiments at microwave frequencies are carried out, supporting the theoretical results very well. The essential principle behind the proposed cloaking device is based on mode conversion, which provides a new strategy to manipulate wave propagation. PMID:26175114
NASA Astrophysics Data System (ADS)
Woo, K. M.; Betti, R.; Shvarts, D.; Bose, A.; Patel, D.; Yan, R.; Chang, P.-Y.; Mannion, O. M.; Epstein, R.; Delettrez, J. A.; Charissis, M.; Anderson, K. S.; Radha, P. B.; Shvydky, A.; Igumenshchev, I. V.; Gopalaswamy, V.; Christopherson, A. R.; Sanz, J.; Aluie, H.
2018-05-01
The study of Rayleigh-Taylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. We show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. These results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. The effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ=1 -12. The jet observed in low mode ℓ=1 is shown to cause the largest ion temperature variation in the mode spectrum. The vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.
Parallel-vector solution of large-scale structural analysis problems on supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.
1989-01-01
A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.
Acceleration of FDTD mode solver by high-performance computing techniques.
Han, Lin; Xi, Yanping; Huang, Wei-Ping
2010-06-21
A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.
Unified approach for calculating the number of confined modes in multilayered waveguiding structures
NASA Astrophysics Data System (ADS)
Ruschin, S.; Griffel, G.; Hardy, A.; Croitoru, N.
1986-01-01
A general formalism is developed in order to find the number of modes and mode cutoff conditions in multilayer waveguiding structures. An explicit expression is presented for the number of confined modes that allows the modes to be counted without having to analyze the specific eigenvalue equation of the structure. The method is illustrated by its application to several structures: the buried layer, the directional coupler, and the three-guide symmetrical arrangement. By a suitable extension of the formalism, the number of well-confined modes is found for a four-layer structure.
Application of attachment modes in the control of large space structures
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1989-01-01
Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.
An intercalation-locked parallel-stranded DNA tetraplex
Tripathi, S.; Zhang, D.; Paukstelis, P. J.
2015-01-27
DNA has proved to be an excellent material for nanoscale construction because complementary DNA duplexes are programmable and structurally predictable. However, in the absence of Watson–Crick pairings, DNA can be structurally more diverse. Here, we describe the crystal structures of d(ACTCGGATGAT) and the brominated derivative, d(AC BrUCGGA BrUGAT). These oligonucleotides form parallel-stranded duplexes with a crystallographically equivalent strand, resulting in the first examples of DNA crystal structures that contains four different symmetric homo base pairs. Two of the parallel-stranded duplexes are coaxially stacked in opposite directions and locked together to form a tetraplex through intercalation of the 5'-most A–A basemore » pairs between adjacent G–G pairs in the partner duplex. The intercalation region is a new type of DNA tertiary structural motif with similarities to the i-motif. 1H– 1H nuclear magnetic resonance and native gel electrophoresis confirmed the formation of a parallel-stranded duplex in solution. Finally, we modified specific nucleotide positions and added d(GAY) motifs to oligonucleotides and were readily able to obtain similar crystals. This suggests that this parallel-stranded DNA structure may be useful in the rational design of DNA crystals and nanostructures.« less
1986-12-01
17 III. Analysis of Parallel Design ................................................ 18 Parallel Abstract Data ...Types ........................................... 18 Abstract Data Type .................................................. 19 Parallel ADT...22 Data -Structure Design ........................................... 23 Object-Oriented Design
Cooperative storage of shared files in a parallel computing system with dynamic block size
Bent, John M.; Faibish, Sorin; Grider, Gary
2015-11-10
Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).
Production of yarns composed of oriented nanofibers for ophthalmological implants
NASA Astrophysics Data System (ADS)
Shynkarenko, A.; Klapstova, A.; Krotov, A.; Moucka, M.; Lukas, D.
2017-10-01
Parallelized nanofibrous structures are commonly used in medical sector, especially for the ophthalmological implants. In this research self-fabricated device is tested for improved collection and twisting of the parallel nanofibers. Previously manual techniques are used to collect the nanofibers and then twist is given, where as in our device different parameters can be optimized to obtained parallel nanofibers and further twisting can be given. The device is used to bring automation to the technique of achieving parallel fibrous structures for medical applications.
High-speed prediction of crystal structures for organic molecules
NASA Astrophysics Data System (ADS)
Obata, Shigeaki; Goto, Hitoshi
2015-02-01
We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.
A ‘reader’ unit of the chemical computer
Smelov, Pavel S.
2018-01-01
We suggest the main principals and functional units of the parallel chemical computer, namely, (i) a generator (which is a network of coupled oscillators) of oscillatory dynamic modes, (ii) a unit which is able to recognize these modes (a ‘reader’) and (iii) a decision-making unit, which analyses the current mode, compares it with the external signal and sends a command to the mode generator to switch it to the other dynamical regime. Three main methods of the functioning of the reader unit are suggested and tested computationally: (a) the polychronization method, which explores the differences between the phases of the generator oscillators; (b) the amplitude method which detects clusters of the generator and (c) the resonance method which is based on the resonances between the frequencies of the generator modes and the internal frequencies of the damped oscillations of the reader cells. Pro and contra of these methods have been analysed. PMID:29410852
Tri-state oriented parallel processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenenbaum, J.; Wallach, Y.
1982-08-01
An alternating sequential/parallel system, the MOPPS was introduced a few years ago and is modified despite the fact that it solved satisfactorily a number of real-time problems. The new system, the TOPPS is described and compared to MOPPS and two applications are chosen to prove it to be superior. The advantage of having a third basic, the ring mode, is illustrated when solving sets of linear equations with band matrices. The advantage of having independent I/O for the slaves is illustrated for biomedical signal analysis. 11 references.
Bray, Signe
2017-05-01
Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu
2014-09-01
Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
Zanuy, David; Poater, Jordi; Solà, Miquel; Hamley, Ian W; Alemán, Carlos
2016-01-14
We describe the 3D supramolecular structure of Fmoc-RGDS fibrils, where Fmoc and RGDS refer to the hydrophobic N-(fluorenyl-9-methoxycarbonyl) group and the hydrophilic Arg-Gly-Asp-Ser peptide sequence, respectively. For this purpose, we performed atomistic all-atom molecular dynamics simulations of a wide variety of packing modes derived from both parallel and antiparallel β-sheet configurations. The proposed model, which closely resembles the cross-β core structure of amyloids, is stabilized by π-π stacking interactions between hydrophobic Fmoc groups. More specifically, in this organization, the Fmoc-groups of β-strands belonging to the same β-sheet form columns of π-stacked aromatic rings arranged in a parallel fashion. Eight of such columns pack laterally forming a compact and dense hydrophobic core, in which two central columns are surrounded by three adjacent columns on each side. In addition to such Fmoc···Fmoc interactions, the hierarchical assembly of the constituent β-strands involves a rich variety of intra- and inter-strand interactions. Accordingly, hydrogen bonding, salt bridges and π-π stacking interactions coexist in the highly ordered packing network proposed for the Fmoc-RGDS amphiphile. Quantum mechanical calculations, which have been performed to quantify the above referred interactions, confirm the decisive role played by the π-π stacking interactions between the rings of the Fmoc groups, even though both inter-strand and intra-strand hydrogen bonds and salt bridges also play a non-negligible role. Overall, these results provide a solid reference to complement the available experimental data, which are not precise enough to determine the fibril structure, and reconcile previous independent observations.
NASA Astrophysics Data System (ADS)
Brächer, T.; Pirro, P.; Hillebrands, B.
2017-06-01
Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.
NASA Astrophysics Data System (ADS)
Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.
2017-12-01
High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we will report the initial results based on the datasets obtained since January 2017 focusing on the analyses of plasmasphere evolution by semi-automatic identification of UHR frequency, and AKR from the both hemisphere based on polarization measurement.
A comparative study of serial and parallel aeroelastic computations of wings
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1994-01-01
A procedure for computing the aeroelasticity of wings on parallel multiple-instruction, multiple-data (MIMD) computers is presented. In this procedure, fluids are modeled using Euler equations, and structures are modeled using modal or finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. In the present parallel procedure, each computational domain is scalable. A parallel integration scheme is used to compute aeroelastic responses by solving fluid and structural equations concurrently. The computational efficiency issues of parallel integration of both fluid and structural equations are investigated in detail. This approach, which reduces the total computational time by a factor of almost 2, is demonstrated for a typical aeroelastic wing by using various numbers of processors on the Intel iPSC/860.
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Size and Shape of the Distant Magnetotail
NASA Technical Reports Server (NTRS)
Sibeck, D.G.; Lin, R.-Q.
2014-01-01
We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.
An SMS (single mode - multi mode - single mode) fiber structure for vibration sensing
NASA Astrophysics Data System (ADS)
Waluyo, T. B.; Bayuwati, D.
2017-04-01
We describe an SMS (single mode - multi mode - single mode) fiber structure to be used in a vibration sensing system. The fiber structure was fabricated by splicing a section (about 300 mm in length) of a step index multi mode fiber between two single mode fibers obtained from a communication grade fiber patchcord. Interference between higher order modes occurs while light from a narrow band light source travels along the multi mode fiber. When the multi mode fiber vibrates, the refractive index profile is changed because of the photo-elastics effect and the amplitude of the interference pattern is changed accordingly. To simulate a vibrating structure we used a loudspeaker to vibrate a wooden table. By using a digital oscilloscope, we recorded and analysed the vibrating signals obtained from the SMS fiber structure as well as from a GS-32CT geophone for referencing. We observed that this SMS fiber structure was potential to be used in a vibration sensing system with a measurement range from 30 to 180 Hz with inherent optical fiber sensor advantages such as light weight, immune to electromagnetic interference, and no electricity in the sensing part.
Geography and Geographical Information Science: Interdisciplinary Integrators
ERIC Educational Resources Information Center
Ellul, Claire
2015-01-01
To understand how Geography and Geographical Information Science (GIS) can contribute to Interdisciplinary Research (IDR), it is relevant to articulate the differences between the different types of such research. "Multidisciplinary" researchers work in a "parallel play" mode, completing work in their disciplinary work streams…
Dual parallel mass spectrometry for lipid and vitamin D analysis
USDA-ARS?s Scientific Manuscript database
There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary ...
A new clocking method for a charge coupled device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umezu, Rika; Kitamoto, Shunji, E-mail: kitamoto@rikkyo.ac.jp; Murakami, Hiroshi
2014-07-15
We propose and demonstrate a new clocking method for a charge-coupled device (CCD). When a CCD is used for a photon counting detector of X-rays, its weak point is a limitation of its counting rate, because high counting rate makes non-negligible pile-up of photons. In astronomical usage, this pile-up is especially severe for an observation of a bright point-like object. One typical idea to reduce the pile-up is a parallel sum (P-sum) mode. This mode completely loses one-dimensional information. Our new clocking method, panning mode, provides complementary properties between the normal mode and the P-sum mode. We performed a simplemore » simulation in order to investigate a pile-up probability and compared the simulated result and actual obtained event rates. Using this simulation and the experimental results, we compared the pile-up tolerance of various clocking modes including our new method and also compared their other characteristics.« less
Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Chen; Lee, Ki Jung; Lee, Keekeun
2016-07-14
In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequencymore » shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.« less
Linear instability regimes in L-mode edges using reduced MHD models in BOUT + +
NASA Astrophysics Data System (ADS)
Bass, Eric; Holland, Chris; Cohen, Bruce; Umansky, Maxim
2016-10-01
We compare linear instabilities in the edge of two DIII-D L-mode discharges using reduced two-fluid MHD models implemented in BOUT + +. Discharge 119919, a case used in a previous BOUT + + validation study, has a cold edge and is dominated by resistive ballooning modes (RBMs). Hotter discharge 128913, an L-mode shortfall benchmark case, is drift-wave (DW) dominant. The model captures essential drift wave physics through the electron pressure parallel gradient drive term in the A| | evolution. At relevant toroidal mode numbers (50-200), the leading DWs in 128913 are flutelike with high kr and require about an order of magnitude greater radial resolution than the leading RBMs in 119919. We quantify when such high kr modes must be resolved in practice. To aid eigenfunction confirmation, and to identify potential subdominant DWs, a companion eigenvalue solver for the BOUT + + models is under development. Prepared by UCSD under Contract Number DE-FG02-06ER54871.
Method for fabricating high aspect ratio structures in perovskite material
Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria
2003-10-28
A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.
Applications of Parallel Computation in Micro-Mechanics and Finite Element Method
NASA Technical Reports Server (NTRS)
Tan, Hui-Qian
1996-01-01
This project discusses the application of parallel computations related with respect to material analyses. Briefly speaking, we analyze some kind of material by elements computations. We call an element a cell here. A cell is divided into a number of subelements called subcells and all subcells in a cell have the identical structure. The detailed structure will be given later in this paper. It is obvious that the problem is "well-structured". SIMD machine would be a better choice. In this paper we try to look into the potentials of SIMD machine in dealing with finite element computation by developing appropriate algorithms on MasPar, a SIMD parallel machine. In section 2, the architecture of MasPar will be discussed. A brief review of the parallel programming language MPL also is given in that section. In section 3, some general parallel algorithms which might be useful to the project will be proposed. And, combining with the algorithms, some features of MPL will be discussed in more detail. In section 4, the computational structure of cell/subcell model will be given. The idea of designing the parallel algorithm for the model will be demonstrated. Finally in section 5, a summary will be given.