Sample records for parallel n-body code

  1. CUBE: Information-optimized parallel cosmological N-body simulation code

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Ran; Pen, Ue-Li; Wang, Xin

    2018-05-01

    CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.

  2. GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Rosotti, G. P.; Booth, R. A.

    2018-01-01

    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.

  3. N-MODY: a code for collisionless N-body simulations in modified Newtonian dynamics.

    NASA Astrophysics Data System (ADS)

    Londrillo, P.; Nipoti, C.

    We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  4. Parallel implementation of an adaptive and parameter-free N-body integrator

    NASA Astrophysics Data System (ADS)

    Pruett, C. David; Ingham, William H.; Herman, Ralph D.

    2011-05-01

    Previously, Pruett et al. (2003) [3] described an N-body integrator of arbitrarily high order M with an asymptotic operation count of O(MN). The algorithm's structure lends itself readily to data parallelization, which we document and demonstrate here in the integration of point-mass systems subject to Newtonian gravitation. High order is shown to benefit parallel efficiency. The resulting N-body integrator is robust, parameter-free, highly accurate, and adaptive in both time-step and order. Moreover, it exhibits linear speedup on distributed parallel processors, provided that each processor is assigned at least a handful of bodies. Program summaryProgram title: PNB.f90 Catalogue identifier: AEIK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3052 No. of bytes in distributed program, including test data, etc.: 68 600 Distribution format: tar.gz Programming language: Fortran 90 and OpenMPI Computer: All shared or distributed memory parallel processors Operating system: Unix/Linux Has the code been vectorized or parallelized?: The code has been parallelized but has not been explicitly vectorized. RAM: Dependent upon N Classification: 4.3, 4.12, 6.5 Nature of problem: High accuracy numerical evaluation of trajectories of N point masses each subject to Newtonian gravitation. Solution method: Parallel and adaptive extrapolation in time via power series of arbitrary degree. Running time: 5.1 s for the demo program supplied with the package.

  5. N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

    NASA Astrophysics Data System (ADS)

    Londrillo, Pasquale; Nipoti, Carlo

    2011-02-01

    N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

  6. PARAVT: Parallel Voronoi tessellation code

    NASA Astrophysics Data System (ADS)

    González, R. E.

    2016-10-01

    In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.

  7. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  8. Performance analysis of parallel gravitational N-body codes on large GPU clusters

    NASA Astrophysics Data System (ADS)

    Huang, Si-Yi; Spurzem, Rainer; Berczik, Peter

    2016-01-01

    We compare the performance of two very different parallel gravitational N-body codes for astrophysical simulations on large Graphics Processing Unit (GPU) clusters, both of which are pioneers in their own fields as well as on certain mutual scales - NBODY6++ and Bonsai. We carry out benchmarks of the two codes by analyzing their performance, accuracy and efficiency through the modeling of structure decomposition and timing measurements. We find that both codes are heavily optimized to leverage the computational potential of GPUs as their performance has approached half of the maximum single precision performance of the underlying GPU cards. With such performance we predict that a speed-up of 200 - 300 can be achieved when up to 1k processors and GPUs are employed simultaneously. We discuss the quantitative information about comparisons of the two codes, finding that in the same cases Bonsai adopts larger time steps as well as larger relative energy errors than NBODY6++, typically ranging from 10 - 50 times larger, depending on the chosen parameters of the codes. Although the two codes are built for different astrophysical applications, in specified conditions they may overlap in performance at certain physical scales, thus allowing the user to choose either one by fine-tuning parameters accordingly.

  9. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  10. N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Yoshikawa, Kohji; Okamoto, Takashi; Nitadori, Keigo

    2012-02-01

    We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme ( Makino and Aarseth, 1992), and achieved the performance of ˜20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions ( Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme ( Nitadori et al., 2006a), and achieved ˜90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ˜ 10 5 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs ( Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.

  11. ZENO: N-body and SPH Simulation Codes

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2011-02-01

    The ZENO software package integrates N-body and SPH simulation codes with a large array of programs to generate initial conditions and analyze numerical simulations. Written in C, the ZENO system is portable between Mac, Linux, and Unix platforms. It is in active use at the Institute for Astronomy (IfA), at NRAO, and possibly elsewhere. Zeno programs can perform a wide range of simulation and analysis tasks. While many of these programs were first created for specific projects, they embody algorithms of general applicability and embrace a modular design strategy, so existing code is easily applied to new tasks. Major elements of the system include: Structured data file utilities facilitate basic operations on binary data, including import/export of ZENO data to other systems.Snapshot generation routines create particle distributions with various properties. Systems with user-specified density profiles can be realized in collisionless or gaseous form; multiple spherical and disk components may be set up in mutual equilibrium.Snapshot manipulation routines permit the user to sift, sort, and combine particle arrays, translate and rotate particle configurations, and assign new values to data fields associated with each particle.Simulation codes include both pure N-body and combined N-body/SPH programs: Pure N-body codes are available in both uniprocessor and parallel versions.SPH codes offer a wide range of options for gas physics, including isothermal, adiabatic, and radiating models. Snapshot analysis programs calculate temporal averages, evaluate particle statistics, measure shapes and density profiles, compute kinematic properties, and identify and track objects in particle distributions.Visualization programs generate interactive displays and produce still images and videos of particle distributions; the user may specify arbitrary color schemes and viewing transformations.

  12. The Forest Method as a New Parallel Tree Method with the Sectional Voronoi Tessellation

    NASA Astrophysics Data System (ADS)

    Yahagi, Hideki; Mori, Masao; Yoshii, Yuzuru

    1999-09-01

    We have developed a new parallel tree method which will be called the forest method hereafter. This new method uses the sectional Voronoi tessellation (SVT) for the domain decomposition. The SVT decomposes a whole space into polyhedra and allows their flat borders to move by assigning different weights. The forest method determines these weights based on the load balancing among processors by means of the overload diffusion (OLD). Moreover, since all the borders are flat, before receiving the data from other processors, each processor can collect enough data to calculate the gravity force with precision. Both the SVT and the OLD are coded in a highly vectorizable manner to accommodate on vector parallel processors. The parallel code based on the forest method with the Message Passing Interface is run on various platforms so that a wide portability is guaranteed. Extensive calculations with 15 processors of Fujitsu VPP300/16R indicate that the code can calculate the gravity force exerted on 105 particles in each second for some ideal dark halo. This code is found to enable an N-body simulation with 107 or more particles for a wide dynamic range and is therefore a very powerful tool for the study of galaxy formation and large-scale structure in the universe.

  13. Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB

    NASA Technical Reports Server (NTRS)

    Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.

    2017-01-01

    Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.

  14. Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

    NASA Astrophysics Data System (ADS)

    Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun

    2017-12-01

    Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

  15. OCTGRAV: Sparse Octree Gravitational N-body Code on Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Gaburov, Evghenii; Bédorf, Jeroen; Portegies Zwart, Simon

    2010-10-01

    Octgrav is a very fast tree-code which runs on massively parallel Graphical Processing Units (GPU) with NVIDIA CUDA architecture. The algorithms are based on parallel-scan and sort methods. The tree-construction and calculation of multipole moments is carried out on the host CPU, while the force calculation which consists of tree walks and evaluation of interaction list is carried out on the GPU. In this way, a sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s is achieved. It takes about a second to compute forces on a million particles with an opening angle of heta approx 0.5. To test the performance and feasibility, we implemented the algorithms in CUDA in the form of a gravitational tree-code which completely runs on the GPU. The tree construction and traverse algorithms are portable to many-core devices which have support for CUDA or OpenCL programming languages. The gravitational tree-code outperforms tuned CPU code during the tree-construction and shows a performance improvement of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per second. The code has a convenient user interface and is freely available for use.

  16. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.

    1998-01-01

    It is well known that the BER performance of a parallel concatenated turbo-code improves roughly as 1/N, where N is the information block length. However, it has been observed by Benedetto and Montorsi that for most parallel concatenated turbo-codes, the FER performance does not improve monotonically with N. In this report, we study the FER of turbo-codes, and the effects of their concatenation with an outer code. Two methods of concatenation are investigated: across several frames and within each frame. Some asymmetric codes are shown to have excellent FER performance with an information block length of 16384. We also show that the proposed outer coding schemes can improve the BER performance as well by eliminating pathological frames generated by the iterative MAP decoding process.

  17. Parallel software for lattice N = 4 supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Schaich, David; DeGrand, Thomas

    2015-05-01

    We present new parallel software, SUSY LATTICE, for lattice studies of four-dimensional N = 4 supersymmetric Yang-Mills theory with gauge group SU(N). The lattice action is constructed to exactly preserve a single supersymmetry charge at non-zero lattice spacing, up to additional potential terms included to stabilize numerical simulations. The software evolved from the MILC code for lattice QCD, and retains a similar large-scale framework despite the different target theory. Many routines are adapted from an existing serial code (Catterall and Joseph, 2012), which SUSY LATTICE supersedes. This paper provides an overview of the new parallel software, summarizing the lattice system, describing the applications that are currently provided and explaining their basic workflow for non-experts in lattice gauge theory. We discuss the parallel performance of the code, and highlight some notable aspects of the documentation for those interested in contributing to its future development.

  18. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  19. Multitasking for flows about multiple body configurations using the chimera grid scheme

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.; Morgan, R. L.

    1987-01-01

    The multitasking of a finite-difference scheme using multiple overset meshes is described. In this chimera, or multiple overset mesh approach, a multiple body configuration is mapped using a major grid about the main component of the configuration, with minor overset meshes used to map each additional component. This type of code is well suited to multitasking. Both steady and unsteady two dimensional computations are run on parallel processors on a CRAY-X/MP 48, usually with one mesh per processor. Flow field results are compared with single processor results to demonstrate the feasibility of running multiple mesh codes on parallel processors and to show the increase in efficiency.

  20. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbormore » points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.« less

  1. Direct Large-Scale N-Body Simulations of Planetesimal Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Quinn, Thomas; Stadel, Joachim; Lake, George

    2000-01-01

    We describe a new direct numerical method for simulating planetesimal dynamics in which N˜10 6 or more bodies can be evolved simultaneously in three spatial dimensions over hundreds of dynamical times. This represents several orders of magnitude improvement in resolution over previous studies. The advance is made possible through modification of a stable and tested cosmological code optimized for massively parallel computers. However, owing to the excellent scalability and portability of the code, modest clusters of workstations can treat problems with N˜10 5 particles in a practical fashion. The code features algorithms for detection and resolution of collisions and takes into account the strong central force field and flattened Keplerian disk geometry of planetesimal systems. We demonstrate the range of problems that can be addressed by presenting simulations that illustrate oligarchic growth of protoplanets, planet formation in the presence of giant planet perturbations, the formation of the jovian moons, and orbital migration via planetesimal scattering. We also describe methods under development for increasing the timescale of the simulations by several orders of magnitude.

  2. Fast Parallel Tree Codes for Gravitational and Fluid Dynamical N-Body Problems

    DTIC Science & Technology

    1993-01-01

    The particles represent the so-called " Dark Matter " eral times the the full message latency for every remote which is believed to dominate the mass...Katz, L. Herquist, and D. H. Weinberg. Galax- R. Acad. Sci. Paris, 306(I):739-742, 1988. ies and gas in a cold dark matter universe. Ap. J., [111 A...57(3):566-569, 1983. dark matter halos. Ap. J., 378:496, 1991. [30] G. Pedrizzetti. Insight into singular vortex flows. [17] C. C. Dyer and P. S. S

  3. An implementation of a tree code on a SIMD, parallel computer

    NASA Technical Reports Server (NTRS)

    Olson, Kevin M.; Dorband, John E.

    1994-01-01

    We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

  4. n-body simulations using message passing parallel computers.

    NASA Astrophysics Data System (ADS)

    Grama, A. Y.; Kumar, V.; Sameh, A.

    The authors present new parallel formulations of the Barnes-Hut method for n-body simulations on message passing computers. These parallel formulations partition the domain efficiently incurring minimal communication overhead. This is in contrast to existing schemes that are based on sorting a large number of keys or on the use of global data structures. The new formulations are augmented by alternate communication strategies which serve to minimize communication overhead. The impact of these communication strategies is experimentally studied. The authors report on experimental results obtained from an astrophysical simulation on an nCUBE2 parallel computer.

  5. Performance tuning of N-body codes on modern microprocessors: I. Direct integration with a hermite scheme on x86_64 architecture

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Makino, Junichiro; Hut, Piet

    2006-12-01

    The main performance bottleneck of gravitational N-body codes is the force calculation between two particles. We have succeeded in speeding up this pair-wise force calculation by factors between 2 and 10, depending on the code and the processor on which the code is run. These speed-ups were obtained by writing highly fine-tuned code for x86_64 microprocessors. Any existing N-body code, running on these chips, can easily incorporate our assembly code programs. In the current paper, we present an outline of our overall approach, which we illustrate with one specific example: the use of a Hermite scheme for a direct N2 type integration on a single 2.0 GHz Athlon 64 processor, for which we obtain an effective performance of 4.05 Gflops, for double-precision accuracy. In subsequent papers, we will discuss other variations, including the combinations of N log N codes, single-precision implementations, and performance on other microprocessors.

  6. Highly fault-tolerant parallel computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, D.A.

    We re-introduce the coded model of fault-tolerant computation in which the input and output of a computational device are treated as words in an error-correcting code. A computational device correctly computes a function in the coded model if its input and output, once decoded, are a valid input and output of the function. In the coded model, it is reasonable to hope to simulate all computational devices by devices whose size is greater by a constant factor but which are exponentially reliable even if each of their components can fail with some constant probability. We consider fine-grained parallel computations inmore » which each processor has a constant probability of producing the wrong output at each time step. We show that any parallel computation that runs for time t on w processors can be performed reliably on a faulty machine in the coded model using w log{sup O(l)} w processors and time t log{sup O(l)} w. The failure probability of the computation will be at most t {center_dot} exp(-w{sup 1/4}). The codes used to communicate with our fault-tolerant machines are generalized Reed-Solomon codes and can thus be encoded and decoded in O(n log{sup O(1)} n) sequential time and are independent of the machine they are used to communicate with. We also show how coded computation can be used to self-correct many linear functions in parallel with arbitrarily small overhead.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighat, A.; Sjoden, G.E.; Wagner, J.C.

    In the past 10 yr, the Penn State Transport Theory Group (PSTTG) has concentrated its efforts on developing accurate and efficient particle transport codes to address increasing needs for efficient and accurate simulation of nuclear systems. The PSTTG's efforts have primarily focused on shielding applications that are generally treated using multigroup, multidimensional, discrete ordinates (S{sub n}) deterministic and/or statistical Monte Carlo methods. The difficulty with the existing public codes is that they require significant (impractical) computation time for simulation of complex three-dimensional (3-D) problems. For the S{sub n} codes, the large memory requirements are handled through the use of scratchmore » files (i.e., read-from and write-to-disk) that significantly increases the necessary execution time. Further, the lack of flexible features and/or utilities for preparing input and processing output makes these codes difficult to use. The Monte Carlo method becomes impractical because variance reduction (VR) methods have to be used, and normally determination of the necessary parameters for the VR methods is very difficult and time consuming for a complex 3-D problem. For the deterministic method, the authors have developed the 3-D parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) code system that, in addition to a parallel 3-D S{sub n} solver, includes pre- and postprocessing utilities. PENTRAN provides for full phase-space decomposition, memory partitioning, and parallel input/output to provide the capability of solving large problems in a relatively short time. Besides having a modular parallel structure, PENTRAN has several unique new formulations and features that are necessary for achieving high parallel performance. For the Monte Carlo method, the major difficulty currently facing most users is the selection of an effective VR method and its associated parameters. For complex problems, generally, this process is very time consuming and may be complicated due to the possibility of biasing the results. In an attempt to eliminate this problem, the authors have developed the A{sup 3}MCNP (automated adjoint accelerated MCNP) code that automatically prepares parameters for source and transport biasing within a weight-window VR approach based on the S{sub n} adjoint function. A{sup 3}MCNP prepares the necessary input files for performing multigroup, 3-D adjoint S{sub n} calculations using TORT.« less

  8. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  9. RAY-RAMSES: a code for ray tracing on the fly in N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreira, Alexandre; Llinares, Claudio; Bose, Sownak

    2016-05-01

    We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less

  10. JSPAM: A restricted three-body code for simulating interacting galaxies

    NASA Astrophysics Data System (ADS)

    Wallin, J. F.; Holincheck, A. J.; Harvey, A.

    2016-07-01

    Restricted three-body codes have a proven ability to recreate much of the disturbed morphology of actual interacting galaxies. As more sophisticated n-body models were developed and computer speed increased, restricted three-body codes fell out of favor. However, their supporting role for performing wide searches of parameter space when fitting orbits to real systems demonstrates a continuing need for their use. Here we present the model and algorithm used in the JSPAM code. A precursor of this code was originally described in 1990, and was called SPAM. We have recently updated the software with an alternate potential and a treatment of dynamical friction to more closely mimic the results from n-body tree codes. The code is released publicly for use under the terms of the Academic Free License ("AFL") v. 3.0 and has been added to the Astrophysics Source Code Library.

  11. A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE

    NASA Astrophysics Data System (ADS)

    Fukushige, Toshiyuki; Taiji, Makoto; Makino, Junichiro; Ebisuzaki, Toshikazu; Sugimoto, Daiichiro

    1996-09-01

    We have developed a parallel, pipelined special-purpose computer for N-body simulations, MD-GRAPE (for "GRAvity PipE"). In gravitational N- body simulations, almost all computing time is spent on the calculation of interactions between particles. GRAPE is specialized hardware to calculate these interactions. It is used with a general-purpose front-end computer that performs all calculations other than the force calculation. MD-GRAPE is the first parallel GRAPE that can calculate an arbitrary central force. A force different from a pure 1/r potential is necessary for N-body simulations with periodic boundary conditions using the Ewald or particle-particle/particle-mesh (P^3^M) method. MD-GRAPE accelerates the calculation of particle-particle force for these algorithms. An MD- GRAPE board has four MD chips and its peak performance is 4.2 GFLOPS. On an MD-GRAPE board, a cosmological N-body simulation takes 6O0(N/10^6^)^3/2^ s per step for the Ewald method, where N is the number of particles, and would take 24O(N/10^6^) s per step for the P^3^M method, in a uniform distribution of particles.

  12. Scaling Optimization of the SIESTA MHD Code

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Perumalla, Kalyan

    2013-10-01

    SIESTA is a parallel three-dimensional plasma equilibrium code capable of resolving magnetic islands at high spatial resolutions for toroidal plasmas. Originally designed to exploit small-scale parallelism, SIESTA has now been scaled to execute efficiently over several thousands of processors P. This scaling improvement was accomplished with minimal intrusion to the execution flow of the original version. First, the efficiency of the iterative solutions was improved by integrating the parallel tridiagonal block solver code BCYCLIC. Krylov-space generation in GMRES was then accelerated using a customized parallel matrix-vector multiplication algorithm. Novel parallel Hessian generation algorithms were integrated and memory access latencies were dramatically reduced through loop nest optimizations and data layout rearrangement. These optimizations sped up equilibria calculations by factors of 30-50. It is possible to compute solutions with granularity N/P near unity on extremely fine radial meshes (N > 1024 points). Grid separation in SIESTA, which manifests itself primarily in the resonant components of the pressure far from rational surfaces, is strongly suppressed by finer meshes. Large problem sizes of up to 300 K simultaneous non-linear coupled equations have been solved on the NERSC supercomputers. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. FLY MPI-2: a parallel tree code for LSS

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Comparato, M.; Antonuccio-Delogu, V.

    2006-04-01

    New version program summaryProgram title: FLY 3.1 Catalogue identifier: ADSC_v2_0 Licensing provisions: yes Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSC_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland No. of lines in distributed program, including test data, etc.: 158 172 No. of bytes in distributed program, including test data, etc.: 4 719 953 Distribution format: tar.gz Programming language: Fortran 90, C Computer: Beowulf cluster, PC, MPP systems Operating system: Linux, Aix RAM: 100M words Catalogue identifier of previous version: ADSC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 155 (2003) 159 Does the new version supersede the previous version?: yes Nature of problem: FLY is a parallel collisionless N-body code for the calculation of the gravitational force Solution method: FLY is based on the hierarchical oct-tree domain decomposition introduced by Barnes and Hut (1986) Reasons for the new version: The new version of FLY is implemented by using the MPI-2 standard: the distributed version 3.1 was developed by using the MPICH2 library on a PC Linux cluster. Today the FLY performance allows us to consider the FLY code among the most powerful parallel codes for tree N-body simulations. Another important new feature regards the availability of an interface with hydrodynamical Paramesh based codes. Simulations must follow a box large enough to accurately represent the power spectrum of fluctuations on very large scales so that we may hope to compare them meaningfully with real data. The number of particles then sets the mass resolution of the simulation, which we would like to make as fine as possible. The idea to build an interface between two codes, that have different and complementary cosmological tasks, allows us to execute complex cosmological simulations with FLY, specialized for DM evolution, and a code specialized for hydrodynamical components that uses a Paramesh block structure. Summary of revisions: The parallel communication schema was totally changed. The new version adopts the MPICH2 library. Now FLY can be executed on all Unix systems having an MPI-2 standard library. The main data structure, is declared in a module procedure of FLY (fly_h.F90 routine). FLY creates the MPI Window object for one-sided communication for all the shared arrays, with a call like the following: CALL MPI_WIN_CREATE(POS, SIZE, REAL8, MPI_INFO_NULL, MPI_COMM_WORLD, WIN_POS, IERR) the following main window objects are created: win_pos, win_vel, win_acc: particles positions velocities and accelerations, win_pos_cell, win_mass_cell, win_quad, win_subp, win_grouping: cells positions, masses, quadrupole momenta, tree structure and grouping cells. Other windows are created for dynamic load balance and global counters. Restrictions: The program uses the leapfrog integrator schema, but could be changed by the user. Unusual features: FLY uses the MPI-2 standard: the MPICH2 library on Linux systems was adopted. To run this version of FLY the working directory must be shared among all the processors that execute FLY. Additional comments: Full documentation for the program is included in the distribution in the form of a README file, a User Guide and a Reference manuscript. Running time: IBM Linux Cluster 1350, 512 nodes with 2 processors for each node and 2 GB RAM for each processor, at Cineca, was adopted to make performance tests. Processor type: Intel Xeon Pentium IV 3.0 GHz and 512 KB cache (128 nodes have Nocona processors). Internal Network: Myricom LAN Card "C" Version and "D" Version. Operating System: Linux SuSE SLES 8. The code was compiled using the mpif90 compiler version 8.1 and with basic optimization options in order to have performances that could be useful compared with other generic clusters Processors

  14. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  15. Code C# for chaos analysis of relativistic many-body systems

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Besliu, C.; Jipa, Al.; Bordeianu, C. C.; Felea, D.; Stan, E.; Esanu, T.

    2010-08-01

    This work presents a new Microsoft Visual C# .NET code library, conceived as a general object oriented solution for chaos analysis of three-dimensional, relativistic many-body systems. In this context, we implemented the Lyapunov exponent and the “fragmentation level” (defined using the graph theory and the Shannon entropy). Inspired by existing studies on billiard nuclear models and clusters of galaxies, we tried to apply the virial theorem for a simplified many-body system composed by nucleons. A possible application of the “virial coefficient” to the stability analysis of chaotic systems is also discussed. Catalogue identifier: AEGH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 30 053 No. of bytes in distributed program, including test data, etc.: 801 258 Distribution format: tar.gz Programming language: Visual C# .NET 2005 Computer: PC Operating system: .Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread RAM: 128 Megabytes Classification: 6.2, 6.5 External routines: .Net Framework 2.0 Library Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems. Object oriented solution, easy to reuse, extend and customize, in any development environment which accepts .Net assemblies or COM components. Implementation of: Lyapunov exponent, “fragmentation level”, “average system radius”, “virial coefficient”, and energy conservation precision test. Additional comments: Easy copy/paste based deployment method. Running time: Quadratic complexity.

  16. pycola: N-body COLA method code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Eisenstein, Daniel J.; Wandelt, Benjamin D.; Zaldarriagag, Matias

    2015-09-01

    pycola is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains, which trades accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing. The COLA method achieves its speed by calculating the large-scale dynamics exactly using LPT while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos.

  17. Solar wind interaction with Venus and Mars in a parallel hybrid code

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku; Sandroos, Arto

    2013-04-01

    We discuss the development and applications of a new parallel hybrid simulation, where ions are treated as particles and electrons as a charge-neutralizing fluid, for the interaction between the solar wind and Venus and Mars. The new simulation code under construction is based on the algorithm of the sequential global planetary hybrid model developed at the Finnish Meteorological Institute (FMI) and on the Corsair parallel simulation platform also developed at the FMI. The FMI's sequential hybrid model has been used for studies of plasma interactions of several unmagnetized and weakly magnetized celestial bodies for more than a decade. Especially, the model has been used to interpret in situ particle and magnetic field observations from plasma environments of Mars, Venus and Titan. Further, Corsair is an open source MPI (Message Passing Interface) particle and mesh simulation platform, mainly aimed for simulations of diffusive shock acceleration in solar corona and interplanetary space, but which is now also being extended for global planetary hybrid simulations. In this presentation we discuss challenges and strategies of parallelizing a legacy simulation code as well as possible applications and prospects of a scalable parallel hybrid model for the solar wind interactions of Venus and Mars.

  18. Dust Dynamics in Protoplanetary Disks: Parallel Computing with PVM

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, Carlos; Barge, Pierre; de La Fuente Marcos, Raúl

    2002-03-01

    We describe a parallel version of our high-order-accuracy particle-mesh code for the simulation of collisionless protoplanetary disks. We use this code to carry out a massively parallel, two-dimensional, time-dependent, numerical simulation, which includes dust particles, to study the potential role of large-scale, gaseous vortices in protoplanetary disks. This noncollisional problem is easy to parallelize on message-passing multicomputer architectures. We performed the simulations on a cache-coherent nonuniform memory access Origin 2000 machine, using both the parallel virtual machine (PVM) and message-passing interface (MPI) message-passing libraries. Our performance analysis suggests that, for our problem, PVM is about 25% faster than MPI. Using PVM and MPI made it possible to reduce CPU time and increase code performance. This allows for simulations with a large number of particles (N ~ 105-106) in reasonable CPU times. The performances of our implementation of the pa! rallel code on an Origin 2000 supercomputer are presented and discussed. They exhibit very good speedup behavior and low load unbalancing. Our results confirm that giant gaseous vortices can play a dominant role in giant planet formation.

  19. Optimizing the inner loop of the gravitational force interaction on modern processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Michael S

    2010-12-08

    We have achieved superior performance on multiple generations of the fastest supercomputers in the world with our hashed oct-tree N-body code (HOT), spanning almost two decades and garnering multiple Gordon Bell Prizes for significant achievement in parallel processing. Execution time for our N-body code is largely influenced by the force calculation in the inner loop. Improvements to the inner loop using SSE3 instructions has enabled the calculation of over 200 million gravitational interactions per second per processor on a 2.6 GHz Opteron, for a computational rate of over 7 Gflops in single precision (700/0 of peak). We obtain optimal performancemore » some processors (including the Cell) by decomposing the reciprocal square root function required for a gravitational interaction into a table lookup, Chebychev polynomial interpolation, and Newton-Raphson iteration, using the algorithm of Karp. By unrolling the loop by a factor of six, and using SPU intrinsics to compute on vectors, we obtain performance of over 16 Gflops on a single Cell SPE. Aggregated over the 8 SPEs on a Cell processor, the overall performance is roughly 130 Gflops. In comparison, the ordinary C version of our inner loop only obtains 1.6 Gflops per SPE with the spuxlc compiler.« less

  20. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  1. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-08-01

    We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.

  2. Automatic Parallelization of Numerical Python Applications using the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.; Lewis, Robert R.

    2011-11-30

    Global Arrays is a software system from Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate distributed dense arrays. The NumPy module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. NumPy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, NumPy is inherently serial. Using a combination of Global Arrays and NumPy, we have reimplemented NumPy as a distributed drop-in replacement calledmore » Global Arrays in NumPy (GAiN). Serial NumPy applications can become parallel, scalable GAiN applications with only minor source code changes. Scalability studies of several different GAiN applications will be presented showing the utility of developing serial NumPy codes which can later run on more capable clusters or supercomputers.« less

  3. Exploiting Symmetry on Parallel Architectures.

    NASA Astrophysics Data System (ADS)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  4. PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.

    2004-11-01

    We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended primitive-variable MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field, non-dissipative, and stable in the absence of physical dissipation.(L. Chacón , phComput. Phys. Comm.) submitted (2004) PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, first and second-order implicit schemes are available, although higher-order temporal implicit schemes can be effortlessly implemented within the Newton-Krylov framework. A successful, scalable, MG physics-based preconditioning strategy, similar in concept to previous 2D MHD efforts,(L. Chacón et al., phJ. Comput. Phys). 178 (1), 15- 36 (2002); phJ. Comput. Phys., 188 (2), 573-592 (2003) has been developed. We are currently in the process of parallelizing the code using the PETSc library, and a Newton-Krylov-Schwarz approach for the parallel treatment of the preconditioner. In this poster, we will report on both the serial and parallel performance of PIXIE3D, focusing primarily on scalability and CPU speedup vs. an explicit approach.

  5. Multiple grid problems on concurrent-processing computers

    NASA Technical Reports Server (NTRS)

    Eberhardt, D. S.; Baganoff, D.

    1986-01-01

    Three computer codes were studied which make use of concurrent processing computer architectures in computational fluid dynamics (CFD). The three parallel codes were tested on a two processor multiple-instruction/multiple-data (MIMD) facility at NASA Ames Research Center, and are suggested for efficient parallel computations. The first code is a well-known program which makes use of the Beam and Warming, implicit, approximate factored algorithm. This study demonstrates the parallelism found in a well-known scheme and it achieved speedups exceeding 1.9 on the two processor MIMD test facility. The second code studied made use of an embedded grid scheme which is used to solve problems having complex geometries. The particular application for this study considered an airfoil/flap geometry in an incompressible flow. The scheme eliminates some of the inherent difficulties found in adapting approximate factorization techniques onto MIMD machines and allows the use of chaotic relaxation and asynchronous iteration techniques. The third code studied is an application of overset grids to a supersonic blunt body problem. The code addresses the difficulties encountered when using embedded grids on a compressible, and therefore nonlinear, problem. The complex numerical boundary system associated with overset grids is discussed and several boundary schemes are suggested. A boundary scheme based on the method of characteristics achieved the best results.

  6. AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models

    NASA Astrophysics Data System (ADS)

    Nori, Matteo; Baldi, Marco

    2018-05-01

    We present a new module of the parallel N-Body code P-GADGET3 for cosmological simulations of light bosonic non-thermal dark matter, often referred as Fuzzy Dark Matter (FDM). The dynamics of the FDM features a highly non-linear Quantum Potential (QP) that suppresses the growth of structures at small scales. Most of the previous attempts of FDM simulations either evolved suppressed initial conditions, completely neglecting the dynamical effects of QP throughout cosmic evolution, or resorted to numerically challenging full-wave solvers. The code provides an interesting alternative, following the FDM evolution without impairing the overall performance. This is done by computing the QP acceleration through the Smoothed Particle Hydrodynamics (SPH) routines, with improved schemes to ensure precise and stable derivatives. As an extension of the P-GADGET3 code, it inherits all the additional physics modules implemented up to date, opening a wide range of possibilities to constrain FDM models and explore its degeneracies with other physical phenomena. Simulations are compared with analytical predictions and results of other codes, validating the QP as a crucial player in structure formation at small scales.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamek, Julian; Daverio, David; Durrer, Ruth

    We present a new N-body code, gevolution , for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body codes Gadget-2 and RAMSES . We then proceed with a simulation ofmore » large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.« less

  8. Development and Evaluation of an Order-N Formulation for Multi-Flexible Body Space Systems

    NASA Technical Reports Server (NTRS)

    Ghosh, Tushar K.; Quiocho, Leslie J.

    2013-01-01

    This paper presents development of a generic recursive Order-N algorithm for systems with rigid and flexible bodies, in tree or closed-loop topology, with N being the number of bodies of the system. Simulation results are presented for several test cases to verify and evaluate the performance of the code compared to an existing efficient dense mass matrix-based code. The comparison brought out situations where Order-N or mass matrix-based algorithms could be useful.

  9. The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt

    2017-07-01

    Motivated by the recent proposal of the splashback radius as a physical boundary of dark-matter halos, we present a parallel computer code for Subhalo and PARticle Trajectory Analysis (SPARTA). The code analyzes the orbits of all simulation particles in all host halos, billions of orbits in the case of typical cosmological N-body simulations. Within this general framework, we develop an algorithm that accurately extracts the location of the first apocenter of particles after infall into a halo, or splashback. We define the splashback radius of a halo as the smoothed average of the apocenter radii of individual particles. This definition allows us to reliably measure the splashback radii of 95% of host halos above a resolution limit of 1000 particles. We show that, on average, the splashback radius and mass are converged to better than 5% accuracy with respect to mass resolution, snapshot spacing, and all free parameters of the method.

  10. NDL-v2.0: A new version of the numerical differentiation library for parallel architectures

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Voglis, C.; Papageorgiou, D. G.; Lagaris, I. E.

    2014-07-01

    We present a new version of the numerical differentiation library (NDL) used for the numerical estimation of first and second order partial derivatives of a function by finite differencing. In this version we have restructured the serial implementation of the code so as to achieve optimal task-based parallelization. The pure shared-memory parallelization of the library has been based on the lightweight OpenMP tasking model allowing for the full extraction of the available parallelism and efficient scheduling of multiple concurrent library calls. On multicore clusters, parallelism is exploited by means of TORC, an MPI-based multi-threaded tasking library. The new MPI implementation of NDL provides optimal performance in terms of function calls and, furthermore, supports asynchronous execution of multiple library calls within legacy MPI programs. In addition, a Python interface has been implemented for all cases, exporting the functionality of our library to sequential Python codes. Catalog identifier: AEDG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 63036 No. of bytes in distributed program, including test data, etc.: 801872 Distribution format: tar.gz Programming language: ANSI Fortran-77, ANSI C, Python. Computer: Distributed systems (clusters), shared memory systems. Operating system: Linux, Unix. Has the code been vectorized or parallelized?: Yes. RAM: The library uses O(N) internal storage, N being the dimension of the problem. It can use up to O(N2) internal storage for Hessian calculations, if a task throttling factor has not been set by the user. Classification: 4.9, 4.14, 6.5. Catalog identifier of previous version: AEDG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1404 Does the new version supersede the previous version?: Yes Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, and sensitivity analysis. For a large number of scientific and engineering applications, the underlying functions correspond to simulation codes for which analytical estimation of derivatives is difficult or almost impossible. A parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with a carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Reasons for new version: The updated version was motivated by our endeavors to extend a parallel Bayesian uncertainty quantification framework [1], by incorporating higher order derivative information as in most state-of-the-art stochastic simulation methods such as Stochastic Newton MCMC [2] and Riemannian Manifold Hamiltonian MC [3]. The function evaluations are simulations with significant time-to-solution, which also varies with the input parameters such as in [1, 4]. The runtime of the N-body-type of problem changes considerably with the introduction of a longer cut-off between the bodies. In the first version of the library, the OpenMP-parallel subroutines spawn a new team of threads and distribute the function evaluations with a PARALLEL DO directive. This limits the functionality of the library as multiple concurrent calls require nested parallelism support from the OpenMP environment. Therefore, either their function evaluations will be serialized or processor oversubscription is likely to occur due to the increased number of OpenMP threads. In addition, the Hessian calculations include two explicit parallel regions that compute first the diagonal and then the off-diagonal elements of the array. Due to the barrier between the two regions, the parallelism of the calculations is not fully exploited. These issues have been addressed in the new version by first restructuring the serial code and then running the function evaluations in parallel using OpenMP tasks. Although the MPI-parallel implementation of the first version is capable of fully exploiting the task parallelism of the PNDL routines, it does not utilize the caching mechanism of the serial code and, therefore, performs some redundant function evaluations in the Hessian and Jacobian calculations. This can lead to: (a) higher execution times if the number of available processors is lower than the total number of tasks, and (b) significant energy consumption due to wasted processor cycles. Overcoming these drawbacks, which become critical as the time of a single function evaluation increases, was the primary goal of this new version. Due to the code restructure, the MPI-parallel implementation (and the OpenMP-parallel in accordance) avoids redundant calls, providing optimal performance in terms of the number of function evaluations. Another limitation of the library was that the library subroutines were collective and synchronous calls. In the new version, each MPI process can issue any number of subroutines for asynchronous execution. We introduce two library calls that provide global and local task synchronizations, similarly to the BARRIER and TASKWAIT directives of OpenMP. The new MPI-implementation is based on TORC, a new tasking library for multicore clusters [5-7]. TORC improves the portability of the software, as it relies exclusively on the POSIX-Threads and MPI programming interfaces. It allows MPI processes to utilize multiple worker threads, offering a hybrid programming and execution environment similar to MPI+OpenMP, in a completely transparent way. Finally, to further improve the usability of our software, a Python interface has been implemented on top of both the OpenMP and MPI versions of the library. This allows sequential Python codes to exploit shared and distributed memory systems. Summary of revisions: The revised code improves the performance of both parallel (OpenMP and MPI) implementations. The functionality and the user-interface of the MPI-parallel version have been extended to support the asynchronous execution of multiple PNDL calls, issued by one or multiple MPI processes. A new underlying tasking library increases portability and allows MPI processes to have multiple worker threads. For both implementations, an interface to the Python programming language has been added. Restrictions: The library uses only double precision arithmetic. The MPI implementation assumes the homogeneity of the execution environment provided by the operating system. Specifically, the processes of a single MPI application must have identical address space and a user function resides at the same virtual address. In addition, address space layout randomization should not be used for the application. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 23 ms for the serial distribution, 25 ms for the OpenMP with 2 threads, 53 ms and 1.01 s for the MPI parallel distribution using 2 threads and 2 processes respectively and yield-time for idle workers equal to 10 ms. References: [1] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys 137 (14). [2] H.P. Flath, L.C. Wilcox, V. Akcelik, J. Hill, B. van Bloemen Waanders, O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput. 33 (1) (2011) 407-432. [3] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73 (2) (2011) 123-214. [4] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B 117 (47) (2013) 14808-14816. [5] P.E. Hadjidoukas, E. Lappas, V.V. Dimakopoulos, A runtime library for platform-independent task parallelism, in: PDP, IEEE, 2012, pp. 229-236. [6] C. Voglis, P.E. Hadjidoukas, D.G. Papageorgiou, I. Lagaris, A parallel hybrid optimization algorithm for fitting interatomic potentials, Appl. Soft Comput. 13 (12) (2013) 4481-4492. [7] P.E. Hadjidoukas, C. Voglis, V.V. Dimakopoulos, I. Lagaris, D.G. Papageorgiou, Supporting adaptive and irregular parallelism for non-linear numerical optimization, Appl. Math. Comput. 231 (2014) 544-559.

  11. VINE-A NUMERICAL CODE FOR SIMULATING ASTROPHYSICAL SYSTEMS USING PARTICLES. I. DESCRIPTION OF THE PHYSICS AND THE NUMERICAL METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. Inmore » its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary 'Press' tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose 'GRAPE' hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without modification on single processors or in parallel using OpenMP compiler directives on large-scale, shared memory parallel machines. We present simulations of several test problems, including a merger simulation of two elliptical galaxies with 800,000 particles. In comparison to the Gadget-2 code of Springel, the gravitational force calculation, which is the most costly part of any simulation including self-gravity, is {approx}4.6-4.9 times faster with VINE when tested on different snapshots of the elliptical galaxy merger simulation when run on an Itanium 2 processor in an SGI Altix. A full simulation of the same setup with eight processors is a factor of 2.91 faster with VINE. The code is available to the public under the terms of the Gnu General Public License.« less

  12. Vine—A Numerical Code for Simulating Astrophysical Systems Using Particles. I. Description of the Physics and the Numerical Methods

    NASA Astrophysics Data System (ADS)

    Wetzstein, M.; Nelson, Andrew F.; Naab, T.; Burkert, A.

    2009-10-01

    We present a numerical code for simulating the evolution of astrophysical systems using particles to represent the underlying fluid flow. The code is written in Fortran 95 and is designed to be versatile, flexible, and extensible, with modular options that can be selected either at the time the code is compiled or at run time through a text input file. We include a number of general purpose modules describing a variety of physical processes commonly required in the astrophysical community and we expect that the effort required to integrate additional or alternate modules into the code will be small. In its simplest form the code can evolve the dynamical trajectories of a set of particles in two or three dimensions using a module which implements either a Leapfrog or Runge-Kutta-Fehlberg integrator, selected by the user at compile time. The user may choose to allow the integrator to evolve the system using individual time steps for each particle or with a single, global time step for all. Particles may interact gravitationally as N-body particles, and all or any subset may also interact hydrodynamically, using the smoothed particle hydrodynamic (SPH) method by selecting the SPH module. A third particle species can be included with a module to model massive point particles which may accrete nearby SPH or N-body particles. Such particles may be used to model, e.g., stars in a molecular cloud. Free boundary conditions are implemented by default, and a module may be selected to include periodic boundary conditions. We use a binary "Press" tree to organize particles for rapid access in gravity and SPH calculations. Modules implementing an interface with special purpose "GRAPE" hardware may also be selected to accelerate the gravity calculations. If available, forces obtained from the GRAPE coprocessors may be transparently substituted for those obtained from the tree, or both tree and GRAPE may be used as a combination GRAPE/tree code. The code may be run without modification on single processors or in parallel using OpenMP compiler directives on large-scale, shared memory parallel machines. We present simulations of several test problems, including a merger simulation of two elliptical galaxies with 800,000 particles. In comparison to the Gadget-2 code of Springel, the gravitational force calculation, which is the most costly part of any simulation including self-gravity, is ~4.6-4.9 times faster with VINE when tested on different snapshots of the elliptical galaxy merger simulation when run on an Itanium 2 processor in an SGI Altix. A full simulation of the same setup with eight processors is a factor of 2.91 faster with VINE. The code is available to the public under the terms of the Gnu General Public License.

  13. Supercomputer simulations of structure formation in the Universe

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2017-06-01

    We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.

  14. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  15. Magnetosphere simulations with a high-performance 3D AMR MHD Code

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul

    1998-11-01

    BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.

  16. Million-body star cluster simulations: comparisons between Monte Carlo and direct N-body

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Morscher, Meagan; Wang, Long; Chatterjee, Sourav; Rasio, Frederic A.; Spurzem, Rainer

    2016-12-01

    We present the first detailed comparison between million-body globular cluster simulations computed with a Hénon-type Monte Carlo code, CMC, and a direct N-body code, NBODY6++GPU. Both simulations start from an identical cluster model with 106 particles, and include all of the relevant physics needed to treat the system in a highly realistic way. With the two codes `frozen' (no fine-tuning of any free parameters or internal algorithms of the codes) we find good agreement in the overall evolution of the two models. Furthermore, we find that in both models, large numbers of stellar-mass black holes (>1000) are retained for 12 Gyr. Thus, the very accurate direct N-body approach confirms recent predictions that black holes can be retained in present-day, old globular clusters. We find only minor disagreements between the two models and attribute these to the small-N dynamics driving the evolution of the cluster core for which the Monte Carlo assumptions are less ideal. Based on the overwhelming general agreement between the two models computed using these vastly different techniques, we conclude that our Monte Carlo approach, which is more approximate, but dramatically faster compared to the direct N-body, is capable of producing an accurate description of the long-term evolution of massive globular clusters even when the clusters contain large populations of stellar-mass black holes.

  17. Full f-p Shell Calculation of {sup 51}Ca and {sup 51}Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novoselsky, A.; Vallieres, M.; Laadan, O.

    The spectra and the electromagnetic transitions of the nuclei {sup 51}Ca and {sup 51}Sc with 11 nucleons in the {ital f-p} shell are described in the nuclear shell-model approach by using two different two-body effective interactions. The full {ital f-p} shell basis functions are used with no truncation. The new parallel shell-model computer code DUPSM (Drexel University parallel shell model), that we recently developed, has been used. The calculations have been done on the MOSIX parallel machine at the Hebrew University of Jerusalem. {copyright} {ital 1997} {ital The American Physical Society}

  18. LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids

    NASA Astrophysics Data System (ADS)

    Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.

    2017-08-01

    We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures.

  19. PoMiN: A Post-Minkowskian N-body Solver

    NASA Astrophysics Data System (ADS)

    Feng, Justin; Baumann, Mark; Hall, Bryton; Doss, Joel; Spencer, Lucas; Matzner, Richard

    2018-06-01

    In this paper, we introduce PoMiN, a lightweight N-body code based on the post-Minkowskian N-body Hamiltonian of Ledvinka et al., which includes general relativistic effects up to first order in Newton’s constant G, and all orders in the speed of light c. PoMiN is written in C and uses a fourth-order Runge–Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless), with a computational complexity that scales as O(N 2). We describe the methods we used to simplify and organize the Hamiltonian, and the tests we performed (convergence, conservation, and analytical comparison tests) to validate the code.

  20. Parallel CARLOS-3D code development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less

  1. GRADSPMHD: A parallel MHD code based on the SPH formalism

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.

    2014-03-01

    We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a Sedov test including 15625 particles on a single CPU. Classification: 12. Nature of problem: Evolution of a plasma in the ideal MHD approximation. Solution method: The equations of magnetohydrodynamics are solved using the SPH method. Running time: The test provided takes approximately 20 min using 4 processors.

  2. Parallel 3D Multi-Stage Simulation of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Topp, David A.

    1998-01-01

    A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force calculation) for a grid which has 227 points axially.

  3. OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media

    NASA Astrophysics Data System (ADS)

    Maeda, Takuto; Takemura, Shunsuke; Furumura, Takashi

    2017-07-01

    We have developed an open-source software package, Open-source Seismic Wave Propagation Code (OpenSWPC), for parallel numerical simulations of seismic wave propagation in 3D and 2D (P-SV and SH) viscoelastic media based on the finite difference method in local-to-regional scales. This code is equipped with a frequency-independent attenuation model based on the generalized Zener body and an efficient perfectly matched layer for absorbing boundary condition. A hybrid-style programming using OpenMP and the Message Passing Interface (MPI) is adopted for efficient parallel computation. OpenSWPC has wide applicability for seismological studies and great portability to allowing excellent performance from PC clusters to supercomputers. Without modifying the code, users can conduct seismic wave propagation simulations using their own velocity structure models and the necessary source representations by specifying them in an input parameter file. The code has various modes for different types of velocity structure model input and different source representations such as single force, moment tensor and plane-wave incidence, which can easily be selected via the input parameters. Widely used binary data formats, the Network Common Data Form (NetCDF) and the Seismic Analysis Code (SAC) are adopted for the input of the heterogeneous structure model and the outputs of the simulation results, so users can easily handle the input/output datasets. All codes are written in Fortran 2003 and are available with detailed documents in a public repository.[Figure not available: see fulltext.

  4. A NEW HYBRID N-BODY-COAGULATION CODE FOR THE FORMATION OF GAS GIANT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    2011-04-20

    We describe an updated version of our hybrid N-body-coagulation code for planet formation. In addition to the features of our 2006-2008 code, our treatment now includes algorithms for the one-dimensional evolution of the viscous disk, the accretion of small particles in planetary atmospheres, gas accretion onto massive cores, and the response of N-bodies to the gravitational potential of the gaseous disk and the swarm of planetesimals. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. As a first application of the complete code, we consider the evolution of Pluto-mass planetesimals in amore » swarm of 0.1-1 cm pebbles. In a typical evolution time of 1-3 Myr, our calculations transform 0.01-0.1 M{sub sun} disks of gas and dust into planetary systems containing super-Earths, Saturns, and Jupiters. Low-mass planets form more often than massive planets; disks with smaller {alpha} form more massive planets than disks with larger {alpha}. For Jupiter-mass planets, masses of solid cores are 10-100 M{sub +}.« less

  5. Collisional disruptions of rotating targets

    NASA Astrophysics Data System (ADS)

    Ševeček, Pavel; Broz, Miroslav

    2017-10-01

    Collisions are key processes in the evolution of the Main Asteroid Belt and impact events - i.e. target fragmentation and gravitational reaccumulation - are commonly studied by numerical simulations, namely by SPH and N-body methods. In our work, we extend the previous studies by assuming rotating targets and we study the dependence of resulting size-distributions on the pre-impact rotation of the target. To obtain stable initial conditions, it is also necessary to include the self-gravity already in the fragmentation phase which was previously neglected.To tackle this problem, we developed an SPH code, accelerated by SSE/AVX instruction sets and parallelized. The code solves the standard set of hydrodynamic equations, using the Tillotson equation of state, von Mises criterion for plastic yielding and scalar Grady-Kipp model for fragmentation. We further modified the velocity gradient by a correction tensor (Schäfer et al. 2007) to ensure a first-order conservation of the total angular momentum. As the intact target is a spherical body, its gravity can be approximated by a potential of a homogeneous sphere, making it easy to set up initial conditions. This is however infeasible for later stages of the disruption; to this point, we included the Barnes-Hut algorithm to compute the gravitational accelerations, using a multipole expansion of distant particles up to hexadecapole order.We tested the code carefully, comparing the results to our previous computations obtained with the SPH5 code (Benz and Asphaug 1994). Finally, we ran a set of simulations and we discuss the difference between the synthetic families created by rotating and static targets.

  6. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  7. Solvers for $$\\mathcal{O} (N)$$ Electronic Structure in the Strong Scaling Limit

    DOE PAGES

    Bock, Nicolas; Challacombe, William M.; Kale, Laxmikant

    2016-01-26

    Here we present a hybrid OpenMP/Charm\\tt++ framework for solving themore » $$\\mathcal{O} (N)$$ self-consistent-field eigenvalue problem with parallelism in the strong scaling regime, $$P\\gg{N}$$, where $P$ is the number of cores, and $N$ is a measure of system size, i.e., the number of matrix rows/columns, basis functions, atoms, molecules, etc. This result is achieved with a nested approach to spectral projection and the sparse approximate matrix multiply [Bock and Challacombe, SIAM J. Sci. Comput., 35 (2013), pp. C72--C98], and involves a recursive, task-parallel algorithm, often employed by generalized $N$-Body solvers, to occlusion and culling of negligible products in the case of matrices with decay. Lastly, employing classic technologies associated with generalized $N$-Body solvers, including overdecomposition, recursive task parallelism, orderings that preserve locality, and persistence-based load balancing, we obtain scaling beyond hundreds of cores per molecule for small water clusters ([H$${}_2$$O]$${}_N$$, $$N \\in \\{ 30, 90, 150 \\}$$, $$P/N \\approx \\{ 819, 273, 164 \\}$$) and find support for an increasingly strong scalability with increasing system size $N$.« less

  8. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    NASA Astrophysics Data System (ADS)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  9. It takes two-coincidence coding within the dual olfactory pathway of the honeybee.

    PubMed

    Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang

    2015-01-01

    To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).

  10. Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn

    2015-02-15

    A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less

  11. Cosmology in one dimension: Vlasov dynamics.

    PubMed

    Manfredi, Giovanni; Rouet, Jean-Louis; Miller, Bruce; Shiozawa, Yui

    2016-04-01

    Numerical simulations of self-gravitating systems are generally based on N-body codes, which solve the equations of motion of a large number of interacting particles. This approach suffers from poor statistical sampling in regions of low density. In contrast, Vlasov codes, by meshing the entire phase space, can reach higher accuracy irrespective of the density. Here, we perform one-dimensional Vlasov simulations of a long-standing cosmological problem, namely, the fractal properties of an expanding Einstein-de Sitter universe in Newtonian gravity. The N-body results are confirmed for high-density regions and extended to regions of low matter density, where the N-body approach usually fails.

  12. Substructured multibody molecular dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  13. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  14. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping.

    PubMed

    Kubica, Aleksander; Beverland, Michael E; Brandão, Fernando; Preskill, John; Svore, Krysta M

    2018-05-04

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p_{3DCC}^{(1)}≃1.9% and p_{3DCC}^{(2)}≃27.6%. We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  15. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A.

    2010-09-01

    The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance. Program summaryProgram title: NWChem Catalogue identifier: AEGI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open Source Educational Community License No. of lines in distributed program, including test data, etc.: 11 709 543 No. of bytes in distributed program, including test data, etc.: 680 696 106 Distribution format: tar.gz Programming language: Fortran 77, C Computer: all Linux based workstations and parallel supercomputers, Windows and Apple machines Operating system: Linux, OS X, Windows Has the code been vectorised or parallelized?: Code is parallelized Classification: 2.1, 2.2, 3, 7.3, 7.7, 16.1, 16.2, 16.3, 16.10, 16.13 Nature of problem: Large-scale atomistic simulations of chemical and biological systems require efficient and reliable methods for ground and excited solutions of many-electron Hamiltonian, analysis of the potential energy surface, and dynamics. Solution method: Ground and excited solutions of many-electron Hamiltonian are obtained utilizing density-functional theory, many-body perturbation approach, and coupled cluster expansion. These solutions or a combination thereof with classical descriptions are then used to analyze potential energy surface and perform dynamical simulations. Additional comments: Full documentation is provided in the distribution file. This includes an INSTALL file giving details of how to build the package. A set of test runs is provided in the examples directory. The distribution file for this program is over 90 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Running time depends on the size of the chemical system, complexity of the method, number of cpu's and the computational task. It ranges from several seconds for serial DFT energy calculations on a few atoms to several hours for parallel coupled cluster energy calculations on tens of atoms or ab-initio molecular dynamics simulation on hundreds of atoms.

  16. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  17. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE PAGES

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas; ...

    2016-01-06

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  18. COLAcode: COmoving Lagrangian Acceleration code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin V.

    2016-02-01

    COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

  19. Solving large scale structure in ten easy steps with COLA

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J.

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As an illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 109Msolar/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 1011Msolar/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.

  20. Parallel scalability and efficiency of vortex particle method for aeroelasticity analysis of bluff bodies

    NASA Astrophysics Data System (ADS)

    Tolba, Khaled Ibrahim; Morgenthal, Guido

    2018-01-01

    This paper presents an analysis of the scalability and efficiency of a simulation framework based on the vortex particle method. The code is applied for the numerical aerodynamic analysis of line-like structures. The numerical code runs on multicore CPU and GPU architectures using OpenCL framework. The focus of this paper is the analysis of the parallel efficiency and scalability of the method being applied to an engineering test case, specifically the aeroelastic response of a long-span bridge girder at the construction stage. The target is to assess the optimal configuration and the required computer architecture, such that it becomes feasible to efficiently utilise the method within the computational resources available for a regular engineering office. The simulations and the scalability analysis are performed on a regular gaming type computer.

  1. OBERON: OBliquity and Energy balance Run on N-body systems

    NASA Astrophysics Data System (ADS)

    Forgan, Duncan H.

    2016-08-01

    OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

  2. molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters

    DOE PAGES

    Bruneval, Fabien; Rangel, Tonatiuh; Hamed, Samia M.; ...

    2016-07-12

    Here, we summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe–Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe–Salpeter equation, are measurable by optical absorption. The implementation choicesmore » outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors.« less

  3. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  4. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  5. Low Density Parity Check Codes: Bandwidth Efficient Channel Coding

    NASA Technical Reports Server (NTRS)

    Fong, Wai; Lin, Shu; Maki, Gary; Yeh, Pen-Shu

    2003-01-01

    Low Density Parity Check (LDPC) Codes provide near-Shannon Capacity performance for NASA Missions. These codes have high coding rates R=0.82 and 0.875 with moderate code lengths, n=4096 and 8176. Their decoders have inherently parallel structures which allows for high-speed implementation. Two codes based on Euclidean Geometry (EG) were selected for flight ASIC implementation. These codes are cyclic and quasi-cyclic in nature and therefore have a simple encoder structure. This results in power and size benefits. These codes also have a large minimum distance as much as d,,, = 65 giving them powerful error correcting capabilities and error floors less than lo- BER. This paper will present development of the LDPC flight encoder and decoder, its applications and status.

  6. Solving large scale structure in ten easy steps with COLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassev, Svetlin; Zaldarriaga, Matias; Eisenstein, Daniel J., E-mail: stassev@cfa.harvard.edu, E-mail: matiasz@ias.edu, E-mail: deisenstein@cfa.harvard.edu

    2013-06-01

    We present the COmoving Lagrangian Acceleration (COLA) method: an N-body method for solving for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). Unlike standard N-body methods, the COLA method can straightforwardly trade accuracy at small-scales in order to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing, as those catalogs are essential for performing detailed error analysis for ongoing and future surveys of LSS. As anmore » illustration, we ran a COLA-based N-body code on a box of size 100 Mpc/h with particles of mass ≈ 5 × 10{sup 9}M{sub s}un/h. Running the code with only 10 timesteps was sufficient to obtain an accurate description of halo statistics down to halo masses of at least 10{sup 11}M{sub s}un/h. This is only at a modest speed penalty when compared to mocks obtained with LPT. A standard detailed N-body run is orders of magnitude slower than our COLA-based code. The speed-up we obtain with COLA is due to the fact that we calculate the large-scale dynamics exactly using LPT, while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos. Achieving a similar level of accuracy in halo statistics without the COLA method requires at least 3 times more timesteps than when COLA is employed.« less

  7. The language parallel Pascal and other aspects of the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Reeves, A. P.; Bruner, J. D.

    1982-01-01

    A high level language for the Massively Parallel Processor (MPP) was designed. This language, called Parallel Pascal, is described in detail. A description of the language design, a description of the intermediate language, Parallel P-Code, and details for the MPP implementation are included. Formal descriptions of Parallel Pascal and Parallel P-Code are given. A compiler was developed which converts programs in Parallel Pascal into the intermediate Parallel P-Code language. The code generator to complete the compiler for the MPP is being developed independently. A Parallel Pascal to Pascal translator was also developed. The architecture design for a VLSI version of the MPP was completed with a description of fault tolerant interconnection networks. The memory arrangement aspects of the MPP are discussed and a survey of other high level languages is given.

  8. Astrophysical N-body Simulations Using Hierarchical Tree Data Structures

    NASA Astrophysics Data System (ADS)

    Warren, M. S.; Salmon, J. K.

    The authors report on recent large astrophysical N-body simulations executed on the Intel Touchstone Delta system. They review the astrophysical motivation and the numerical techniques and discuss steps taken to parallelize these simulations. The methods scale as O(N log N), for large values of N, and also scale linearly with the number of processors. The performance sustained for a duration of 67 h, was between 5.1 and 5.4 Gflop/s on a 512-processor system.

  9. PoMiN: A Post-Minkowskian N-Body Solver

    NASA Astrophysics Data System (ADS)

    Feng, Justin; Baumann, Mark; Hall, Bryton; Doss, Joel; Spencer, Lucas; Matzner, Richard

    2018-05-01

    PoMiN is a lightweight N-body code based on the Post-Minkowskian N-body Hamiltonian of Ledvinka, Schafer, and Bicak, which includes General Relativistic effects up to first order in Newton's constant G, and all orders in the speed of light c. PoMiN is a single file written in C and uses a fourth-order Runge-Kutta integration scheme. PoMiN has also been written to handle an arbitrary number of particles (both massive and massless) with a computational complexity that scales as O(N^2).

  10. Code Parallelization with CAPO: A User Manual

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A software tool has been developed to assist the parallelization of scientific codes. This tool, CAPO, extends an existing parallelization toolkit, CAPTools developed at the University of Greenwich, to generate OpenMP parallel codes for shared memory architectures. This is an interactive toolkit to transform a serial Fortran application code to an equivalent parallel version of the software - in a small fraction of the time normally required for a manual parallelization. We first discuss the way in which loop types are categorized and how efficient OpenMP directives can be defined and inserted into the existing code using the in-depth interprocedural analysis. The use of the toolkit on a number of application codes ranging from benchmark to real-world application codes is presented. This will demonstrate the great potential of using the toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of processors. The second part of the document gives references to the parameters and the graphic user interface implemented in the toolkit. Finally a set of tutorials is included for hands-on experiences with this toolkit.

  11. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  12. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  13. Constructing high-quality bounding volume hierarchies for N-body computation using the acceptance volume heuristic

    NASA Astrophysics Data System (ADS)

    Olsson, O.

    2018-01-01

    We present a novel heuristic derived from a probabilistic cost model for approximate N-body simulations. We show that this new heuristic can be used to guide tree construction towards higher quality trees with improved performance over current N-body codes. This represents an important step beyond the current practice of using spatial partitioning for N-body simulations, and enables adoption of a range of state-of-the-art algorithms developed for computer graphics applications to yield further improvements in N-body simulation performance. We outline directions for further developments and review the most promising such algorithms.

  14. Phonological coding during reading.

    PubMed

    Leinenger, Mallorie

    2014-11-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  15. Phonological coding during reading

    PubMed Central

    Leinenger, Mallorie

    2014-01-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early (pre-lexical) or that phonological codes come online late (post-lexical)) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eyetracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model (Van Order, 1987), dual-route model (e.g., Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), parallel distributed processing model (Seidenberg & McClelland, 1989)) are discussed. PMID:25150679

  16. The MOLDY short-range molecular dynamics package

    NASA Astrophysics Data System (ADS)

    Ackland, G. J.; D'Mellow, K.; Daraszewicz, S. L.; Hepburn, D. J.; Uhrin, M.; Stratford, K.

    2011-12-01

    We describe a parallelised version of the MOLDY molecular dynamics program. This Fortran code is aimed at systems which may be described by short-range potentials and specifically those which may be addressed with the embedded atom method. This includes a wide range of transition metals and alloys. MOLDY provides a range of options in terms of the molecular dynamics ensemble used and the boundary conditions which may be applied. A number of standard potentials are provided, and the modular structure of the code allows new potentials to be added easily. The code is parallelised using OpenMP and can therefore be run on shared memory systems, including modern multicore processors. Particular attention is paid to the updates required in the main force loop, where synchronisation is often required in OpenMP implementations of molecular dynamics. We examine the performance of the parallel code in detail and give some examples of applications to realistic problems, including the dynamic compression of copper and carbon migration in an iron-carbon alloy. Program summaryProgram title: MOLDY Catalogue identifier: AEJU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 2 No. of lines in distributed program, including test data, etc.: 382 881 No. of bytes in distributed program, including test data, etc.: 6 705 242 Distribution format: tar.gz Programming language: Fortran 95/OpenMP Computer: Any Operating system: Any Has the code been vectorised or parallelized?: Yes. OpenMP is required for parallel execution RAM: 100 MB or more Classification: 7.7 Nature of problem: Moldy addresses the problem of many atoms (of order 10 6) interacting via a classical interatomic potential on a timescale of microseconds. It is designed for problems where statistics must be gathered over a number of equivalent runs, such as measuring thermodynamic properities, diffusion, radiation damage, fracture, twinning deformation, nucleation and growth of phase transitions, sputtering etc. In the vast majority of materials, the interactions are non-pairwise, and the code must be able to deal with many-body forces. Solution method: Molecular dynamics involves integrating Newton's equations of motion. MOLDY uses verlet (for good energy conservation) or predictor-corrector (for accurate trajectories) algorithms. It is parallelised using open MP. It also includes a static minimisation routine to find the lowest energy structure. Boundary conditions for surfaces, clusters, grain boundaries, thermostat (Nose), barostat (Parrinello-Rahman), and externally applied strain are provided. The initial configuration can be either a repeated unit cell or have all atoms given explictly. Initial velocities are generated internally, but it is also possible to specify the velocity of a particular atom. A wide range of interatomic force models are implemented, including embedded atom, Morse or Lennard-Jones. Thus the program is especially well suited to calculations of metals. Restrictions: The code is designed for short-ranged potentials, and there is no Ewald sum. Thus for long range interactions where all particles interact with all others, the order- N scaling will fail. Different interatomic potential forms require recompilation of the code. Additional comments: There is a set of associated open-source analysis software for postprocessing and visualisation. This includes local crystal structure recognition and identification of topological defects. Running time: A set of test modules for running time are provided. The code scales as order N. The parallelisation shows near-linear scaling with number of processors in a shared memory environment. A typical run of a few tens of nanometers for a few nanoseconds will run on a timescale of days on a multiprocessor desktop.

  17. Studying Tidal Effects In Planetary Systems With Posidonius. A N-Body Simulator Written In Rust.

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Bolmont, Emeline

    2017-10-01

    Planetary systems with several planets in compact orbital configurations such as TRAPPIST-1 are surely affected by tidal effects. Its study provides us with important insight about its evolution. We developed a second generation of a N-body code based on the tidal model used in Mercury-T, re-implementing and improving its functionalities using Rust as programming language (including a Python interface for easy use) and the WHFAST integrator. The new open source code ensures memory safety, reproducibility of numerical N-body experiments, it improves the spin integration compared to Mercury-T and allows to take into account a new prescription for the dissipation of tidal inertial waves in the convective envelope of stars. Posidonius is also suitable for binary system simulations with evolving stars.

  18. A parallel Discrete Element Method to model collisions between non-convex particles

    NASA Astrophysics Data System (ADS)

    Rakotonirina, Andriarimina Daniel; Delenne, Jean-Yves; Wachs, Anthony

    2017-06-01

    In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost) arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM) combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called "glued-convex method" (in the sense clumping convex bodies together), as an extension of the popular "glued-spheres" method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i) the collapse of a granular column made of convex particles and (i) the microstructure of a heap of non-convex particles in a cylindrical reactor.

  19. CRUNCH_PARALLEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, Dana E.; Steefel, Carl I.

    The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.

  20. Performance Analysis and Optimization on the UCLA Parallel Atmospheric General Circulation Model Code

    NASA Technical Reports Server (NTRS)

    Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos

    1996-01-01

    An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.

  1. Massively parallel data processing for quantitative total flow imaging with optical coherence microscopy and tomography

    NASA Astrophysics Data System (ADS)

    Sylwestrzak, Marcin; Szlag, Daniel; Marchand, Paul J.; Kumar, Ashwin S.; Lasser, Theo

    2017-08-01

    We present an application of massively parallel processing of quantitative flow measurements data acquired using spectral optical coherence microscopy (SOCM). The need for massive signal processing of these particular datasets has been a major hurdle for many applications based on SOCM. In view of this difficulty, we implemented and adapted quantitative total flow estimation algorithms on graphics processing units (GPU) and achieved a 150 fold reduction in processing time when compared to a former CPU implementation. As SOCM constitutes the microscopy counterpart to spectral optical coherence tomography (SOCT), the developed processing procedure can be applied to both imaging modalities. We present the developed DLL library integrated in MATLAB (with an example) and have included the source code for adaptations and future improvements. Catalogue identifier: AFBT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 913552 No. of bytes in distributed program, including test data, etc.: 270876249 Distribution format: tar.gz Programming language: CUDA/C, MATLAB. Computer: Intel x64 CPU, GPU supporting CUDA technology. Operating system: 64-bit Windows 7 Professional. Has the code been vectorized or parallelized?: Yes, CPU code has been vectorized in MATLAB, CUDA code has been parallelized. RAM: Dependent on users parameters, typically between several gigabytes and several tens of gigabytes Classification: 6.5, 18. Nature of problem: Speed up of data processing in optical coherence microscopy Solution method: Utilization of GPU for massively parallel data processing Additional comments: Compiled DLL library with source code and documentation, example of utilization (MATLAB script with raw data) Running time: 1,8 s for one B-scan (150 × faster in comparison to the CPU data processing time)

  2. GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac

    2017-03-01

    The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.

  3. Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.

  4. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  5. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  6. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  7. Utilizing GPUs to Accelerate Turbomachinery CFD Codes

    NASA Technical Reports Server (NTRS)

    MacCalla, Weylin; Kulkarni, Sameer

    2016-01-01

    GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.

  8. Efficient molecular dynamics simulations with many-body potentials on graphics processing units

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari

    2017-09-01

    Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).

  9. A Comparison of Automatic Parallelization Tools/Compilers on the SGI Origin 2000 Using the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry

    1998-01-01

    Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.

  10. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  11. Accelerating NBODY6 with graphics processing units

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Aarseth, Sverre J.

    2012-07-01

    We describe the use of graphics processing units (GPUs) for speeding up the code NBODY6 which is widely used for direct N-body simulations. Over the years, the N2 nature of the direct force calculation has proved a barrier for extending the particle number. Following an early introduction of force polynomials and individual time steps, the calculation cost was first reduced by the introduction of a neighbour scheme. After a decade of GRAPE computers which speeded up the force calculation further, we are now in the era of GPUs where relatively small hardware systems are highly cost effective. A significant gain in efficiency is achieved by employing the GPU to obtain the so-called regular force which typically involves some 99 per cent of the particles, while the remaining local forces are evaluated on the host. However, the latter operation is performed up to 20 times more frequently and may still account for a significant cost. This effort is reduced by parallel SSE/AVX procedures where each interaction term is calculated using mainly single precision. We also discuss further strategies connected with coordinate and velocity prediction required by the integration scheme. This leaves hard binaries and multiple close encounters which are treated by several regularization methods. The present NBODY6-GPU code is well balanced for simulations in the particle range 104-2 × 105 for a dual-GPU system attached to a standard PC.

  12. Parallel Programming Strategies for Irregular Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Achieving scalable performance for dynamic irregular applications is eminently challenging. Traditional message-passing approaches have been making steady progress towards this goal; however, they suffer from complex implementation requirements. The use of a global address space greatly simplifies the programming task, but can degrade the performance for such computations. In this work, we examine two typical irregular adaptive applications, Dynamic Remeshing and N-Body, under competing programming methodologies and across various parallel architectures. The Dynamic Remeshing application simulates flow over an airfoil, and refines localized regions of the underlying unstructured mesh. The N-Body experiment models two neighboring Plummer galaxies that are about to undergo a merger. Both problems demonstrate dramatic changes in processor workloads and interprocessor communication with time; thus, dynamic load balancing is a required component.

  13. Development of a new EMP code at LANL

    NASA Astrophysics Data System (ADS)

    Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.

    2006-05-01

    A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.

  14. Parallelization of ARC3D with Computer-Aided Tools

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.

  15. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele

    2001-01-01

    This viewgraph presentation provides information on support sources available for the automatic parallelization of computer program. CAPTools, a support tool developed at the University of Greenwich, transforms, with user guidance, existing sequential Fortran code into parallel message passing code. Comparison routines are then run for debugging purposes, in essence, ensuring that the code transformation was accurate.

  16. PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles

    1999-01-01

    In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.

  17. Relativistic initial conditions for N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Tram, Thomas; Crittenden, Robert

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code.more » This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.« less

  18. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T.

    PubMed

    Mürtz, Petra; Kaschner, Marius; Träber, Frank; Kukuk, Guido M; Büdenbender, Sarah M; Skowasch, Dirk; Gieseke, Jürgen; Schild, Hans H; Willinek, Winfried A

    2012-11-01

    To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n=5), thorax (n=8), abdomen (n=6) and pelvis (n=21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as "improved", "equal", "worse" or "ambiguous". Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. By the use of TX, signal homogeneity was "improved" in 25/40 and "equal" in 15/40 cases. Fat suppression was "improved" in 17/40 and "equal" in 23/40 cases. These improvements were statistically significant (p<0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p=0.630 over all data, pairwise Student's t-test). Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Parallel fast multipole boundary element method applied to computational homogenization

    NASA Astrophysics Data System (ADS)

    Ptaszny, Jacek

    2018-01-01

    In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.

  20. Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan; hide

    2005-01-01

    Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.

  1. Molecular dynamics study of Al and Ni 3Al sputtering by Al clusters bombardment

    NASA Astrophysics Data System (ADS)

    Zhurkin, Eugeni E.; Kolesnikov, Anton S.

    2002-06-01

    The sputtering of Al and Ni 3Al (1 0 0) surfaces induced by impact of Al ions and Al N clusters ( N=2,4,6,9,13,55) with energies of 100 and 500 eV/atom is studied at atomic scale by means of classical molecular dynamics (MD). The MD code we used implements many-body tight binding potential splined to ZBL at short distances. Special attention has been paid to model dense cascades: we used quite big computation cells with lateral periodic and damped boundary conditions. In addition, long simulation times (10-25 ps) and representative statistics (up to 1000 runs per each case) were considered. The total sputtering yields, energy and time spectrums of sputtered particles, as well as preferential sputtering of compound target were analyzed, both in the linear and non-linear regimes. The significant "cluster enhancement" of sputtering yield was found for cluster sizes N⩾13. In parallel, we estimated collision cascade features depending on cluster size in order to interpret the nature of observed non-linear effects.

  2. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  3. 2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

    DOE PAGES

    Warren, Michael S.

    2014-01-01

    We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy andmore » scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less

  4. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  5. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no

    2013-11-10

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3)more » better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.« less

  6. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  7. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  8. An O(N) and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle

    2016-08-01

    Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.

  9. An O( N) and parallel approach to integral problems by a kernel-independent fast multipole method: Application to polarization and magnetization of interacting particles

    DOE PAGES

    Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...

    2016-08-10

    Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less

  10. Synthesis of Cubane Based Energetic Molecules

    DTIC Science & Technology

    1993-04-13

    Judahi Goldwasser Code 1132P Contract No. N00014-86-C-0699 93 08590 SRI Project Number 2723 93,08590 David S. Ross, Director 7) Chemistry Laborator David...1132p 800 N. Quincy St. Arlinston. VA 22217-5000 11. SUPPLEMENTARY NOTES Final Project Report 12a. DISTRIIUTION/AVAJLABIL[TY STATEMENT 12b. DISTRIBU71ION...course of our studies here and in a parallel ONR sponsored program (SRI project number 6654, ONR contract No. N00014-88-C-0537), we discovered and

  11. Global MHD simulation of magnetosphere using HPF

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  12. Efficient parallel simulation of CO2 geologic sequestration insaline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu

    2007-01-01

    An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The newmore » parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.« less

  13. Parallel community climate model: Description and user`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less

  14. Spike train generation and current-to-frequency conversion in silicon diodes

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  15. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  16. Force user's manual: A portable, parallel FORTRAN

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.; Benten, Muhammad S.; Arenstorf, Norbert S.; Ramanan, Aruna V.

    1990-01-01

    The use of Force, a parallel, portable FORTRAN on shared memory parallel computers is described. Force simplifies writing code for parallel computers and, once the parallel code is written, it is easily ported to computers on which Force is installed. Although Force is nearly the same for all computers, specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32, Encore, Sequent, Alliant computers on which it is installed.

  17. An Advanced N -body Model for Interacting Multiple Stellar Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brož, Miroslav

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal,more » a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).« less

  18. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.; del Valle, L.; Campusano, L. E.; Escala, A.; Muñoz, R. R.; Palma, G. A.

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a `core-cusp problem' can properly be used to question the validity of the CDM model.

  19. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baushev, A.N.; Valle, L. del; Campusano, L.E.

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals ofmore » motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.« less

  20. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  1. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  2. Studies of Planet Formation Using a Hybrid N-Body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    2004-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: (1) icy planets: models for icy planet formation will demonstrate how the physical properties of debris disks - including the Kuiper Belt in our solar system - depend on initial conditions and input physics; and (2) terrestrial planets: calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment.

  3. Multitasking TORT under UNICOS: Parallel performance models and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  4. Implementing the PM Programming Language using MPI and OpenMP - a New Tool for Programming Geophysical Models on Parallel Systems

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2015-04-01

    PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental and geophysical models. The language is intended to enable implementers to concentrate on the science behind the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer in control - all parallelisation is explicit and the parallel structure of any given program may be deduced directly from the code. This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisation and increased communication overhead. In order to maximise portability, the implementation stays within the MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover, it does not assume a thread-safe implementation of MPI. PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capable of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms such as work stealing. While tasks may move between hardware elements within a PM processor, they may not move between processors without specific programmer intervention. Tasks are assigned to processors using a nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available processors. When the program enters a parallel statement then either processors are divided out among the newly generated tasks (number of new tasks < number of processors) or tasks are divided out among the available processors (number of tasks > number of processors). Nested parallel statements may further subdivide the processor set owned by a given task. Tasks or processors are distributed evenly by default, but uneven distributions are possible under programmer control. It is also possible to explicitly enable child tasks to migrate within the processor set owned by their parent task, reducing load unbalancing at the potential cost of increased inter-processor message traffic. PM incorporates some programming structures from the earlier MIST language presented at a previous EGU General Assembly, while adopting a significantly different underlying parallelisation model and type system. PM code is available at www.pm-lang.org under an unrestrictive MIT license. Reference Ruymán Reyes, Antonio J. Dorta, Francisco Almeida, Francisco de Sande, 2009. Automatic Hybrid MPI+OpenMP Code Generation with llc, Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science Volume 5759, 185-195

  5. Zonal methods for the parallel execution of range-limited N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Kevin J.; Dror, Ron O.; Shaw, David E.

    2007-01-20

    Particle simulations in fields ranging from biochemistry to astrophysics require the evaluation of interactions between all pairs of particles separated by less than some fixed interaction radius. The applicability of such simulations is often limited by the time required for calculation, but the use of massive parallelism to accelerate these computations is typically limited by inter-processor communication requirements. Recently, Snir [M. Snir, A note on N-body computations with cutoffs, Theor. Comput. Syst. 37 (2004) 295-318] and Shaw [D.E. Shaw, A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions, J. Comput. Chem. 26 (2005) 1318-1328] independently introducedmore » two distinct methods that offer asymptotic reductions in the amount of data transferred between processors. In the present paper, we show that these schemes represent special cases of a more general class of methods, and introduce several new algorithms in this class that offer practical advantages over all previously described methods for a wide range of problem parameters. We also show that several of these algorithms approach an approximate lower bound on inter-processor data transfer.« less

  6. Efficient Parallel Formulations of Hierarchical Methods and Their Applications

    NASA Astrophysics Data System (ADS)

    Grama, Ananth Y.

    1996-01-01

    Hierarchical methods such as the Fast Multipole Method (FMM) and Barnes-Hut (BH) are used for rapid evaluation of potential (gravitational, electrostatic) fields in particle systems. They are also used for solving integral equations using boundary element methods. The linear systems arising from these methods are dense and are solved iteratively. Hierarchical methods reduce the complexity of the core matrix-vector product from O(n^2) to O(n log n) and the memory requirement from O(n^2) to O(n). We have developed highly scalable parallel formulations of a hybrid FMM/BH method that are capable of handling arbitrarily irregular distributions. We apply these formulations to astrophysical simulations of Plummer and Gaussian galaxies. We have used our parallel formulations to solve the integral form of the Laplace equation. We show that our parallel hierarchical mat-vecs yield high efficiency and overall performance even on relatively small problems. A problem containing approximately 200K nodes takes under a second to compute on 256 processors and yet yields over 85% efficiency. The efficiency and raw performance is expected to increase for bigger problems. For the 200K node problem, our code delivers about 5 GFLOPS of performance on a 256 processor T3D. This is impressive considering the fact that the problem has floating point divides and roots, and very little locality resulting in poor cache performance. A dense matrix-vector product of the same dimensions would require about 0.5 TeraBytes of memory and about 770 TeraFLOPS of computing speed. Clearly, if the loss in accuracy resulting from the use of hierarchical methods is acceptable, our code yields significant savings in time and memory. We also study the convergence of a GMRES solver built around this mat-vec. We accelerate the convergence of the solver using three preconditioning techniques: diagonal scaling, block-diagonal preconditioning, and inner-outer preconditioning. We study the performance and parallel efficiency of these preconditioned solvers. Using this solver, we solve dense linear systems with hundreds of thousands of unknowns. Solving a 105K unknown problem takes about 10 minutes on a 64 processor T3D. Until very recently, boundary element problems of this magnitude could not even be generated, let alone solved.

  7. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  8. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase I is complete for the development of a Computational Fluid Dynamics parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  9. Research in Parallel Algorithms and Software for Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Domel, Neal D.

    1996-01-01

    Phase 1 is complete for the development of a computational fluid dynamics CFD) parallel code with automatic grid generation and adaptation for the Euler analysis of flow over complex geometries. SPLITFLOW, an unstructured Cartesian grid code developed at Lockheed Martin Tactical Aircraft Systems, has been modified for a distributed memory/massively parallel computing environment. The parallel code is operational on an SGI network, Cray J90 and C90 vector machines, SGI Power Challenge, and Cray T3D and IBM SP2 massively parallel machines. Parallel Virtual Machine (PVM) is the message passing protocol for portability to various architectures. A domain decomposition technique was developed which enforces dynamic load balancing to improve solution speed and memory requirements. A host/node algorithm distributes the tasks. The solver parallelizes very well, and scales with the number of processors. Partially parallelized and non-parallelized tasks consume most of the wall clock time in a very fine grain environment. Timing comparisons on a Cray C90 demonstrate that Parallel SPLITFLOW runs 2.4 times faster on 8 processors than its non-parallel counterpart autotasked over 8 processors.

  10. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  11. Parallel Scaling Characteristics of Selected NERSC User ProjectCodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, David; Verdier, Francesca; Anand, Harsh

    This report documents parallel scaling characteristics of NERSC user project codes between Fiscal Year 2003 and the first half of Fiscal Year 2004 (Oct 2002-March 2004). The codes analyzed cover 60% of all the CPU hours delivered during that time frame on seaborg, a 6080 CPU IBM SP and the largest parallel computer at NERSC. The scale in terms of concurrency and problem size of the workload is analyzed. Drawing on batch queue logs, performance data and feedback from researchers we detail the motivations, benefits, and challenges of implementing highly parallel scientific codes on current NERSC High Performance Computing systems.more » An evaluation and outlook of the NERSC workload for Allocation Year 2005 is presented.« less

  12. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  13. N-body simulations in modified Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Nipoti, C.; Londrillo, P.; Ciotti, L.

    We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.

  14. Extending a CAD-Based Cartesian Mesh Generator for the Lattice Boltzmann Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, J Nathan; Inclan, Eric J; Joshi, Abhijit S

    2012-01-01

    This paper describes the development of a custom preprocessor for the PaRAllel Thermal Hydraulics simulations using Advanced Mesoscopic methods (PRATHAM) code based on an open-source mesh generator, CartGen [1]. PRATHAM is a three-dimensional (3D) lattice Boltzmann method (LBM) based parallel flow simulation software currently under development at the Oak Ridge National Laboratory. The LBM algorithm in PRATHAM requires a uniform, coordinate system-aligned, non-body-fitted structured mesh for its computational domain. CartGen [1], which is a GNU-licensed open source code, already comes with some of the above needed functionalities. However, it needs to be further extended to fully support the LBM specificmore » preprocessing requirements. Therefore, CartGen is being modified to (i) be compiler independent while converting a neutral-format STL (Stereolithography) CAD geometry to a uniform structured Cartesian mesh, (ii) provide a mechanism for PRATHAM to import the mesh and identify the fluid/solid domains, and (iii) provide a mechanism to visually identify and tag the domain boundaries on which to apply different boundary conditions.« less

  15. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.

    2017-10-01

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.

  16. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    DOE PAGES

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...

    2017-04-20

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less

  17. Analysis of a parallelized nonlinear elliptic boundary value problem solver with application to reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.; Smooke, Mitchell D.

    1987-01-01

    A parallelized finite difference code based on the Newton method for systems of nonlinear elliptic boundary value problems in two dimensions is analyzed in terms of computational complexity and parallel efficiency. An approximate cost function depending on 15 dimensionless parameters is derived for algorithms based on stripwise and boxwise decompositions of the domain and a one-to-one assignment of the strip or box subdomains to processors. The sensitivity of the cost functions to the parameters is explored in regions of parameter space corresponding to model small-order systems with inexpensive function evaluations and also a coupled system of nineteen equations with very expensive function evaluations. The algorithm was implemented on the Intel Hypercube, and some experimental results for the model problems with stripwise decompositions are presented and compared with the theory. In the context of computational combustion problems, multiprocessors of either message-passing or shared-memory type may be employed with stripwise decompositions to realize speedup of O(n), where n is mesh resolution in one direction, for reasonable n.

  18. Rubus: A compiler for seamless and extensible parallelism.

    PubMed

    Adnan, Muhammad; Aslam, Faisal; Nawaz, Zubair; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer's expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program.

  19. Rubus: A compiler for seamless and extensible parallelism

    PubMed Central

    Adnan, Muhammad; Aslam, Faisal; Sarwar, Syed Mansoor

    2017-01-01

    Nowadays, a typical processor may have multiple processing cores on a single chip. Furthermore, a special purpose processing unit called Graphic Processing Unit (GPU), originally designed for 2D/3D games, is now available for general purpose use in computers and mobile devices. However, the traditional programming languages which were designed to work with machines having single core CPUs, cannot utilize the parallelism available on multi-core processors efficiently. Therefore, to exploit the extraordinary processing power of multi-core processors, researchers are working on new tools and techniques to facilitate parallel programming. To this end, languages like CUDA and OpenCL have been introduced, which can be used to write code with parallelism. The main shortcoming of these languages is that programmer needs to specify all the complex details manually in order to parallelize the code across multiple cores. Therefore, the code written in these languages is difficult to understand, debug and maintain. Furthermore, to parallelize legacy code can require rewriting a significant portion of code in CUDA or OpenCL, which can consume significant time and resources. Thus, the amount of parallelism achieved is proportional to the skills of the programmer and the time spent in code optimizations. This paper proposes a new open source compiler, Rubus, to achieve seamless parallelism. The Rubus compiler relieves the programmer from manually specifying the low-level details. It analyses and transforms a sequential program into a parallel program automatically, without any user intervention. This achieves massive speedup and better utilization of the underlying hardware without a programmer’s expertise in parallel programming. For five different benchmarks, on average a speedup of 34.54 times has been achieved by Rubus as compared to Java on a basic GPU having only 96 cores. Whereas, for a matrix multiplication benchmark the average execution speedup of 84 times has been achieved by Rubus on the same GPU. Moreover, Rubus achieves this performance without drastically increasing the memory footprint of a program. PMID:29211758

  20. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  1. Disability Evaluation System Analysis and Research Annual Report 2015

    DTIC Science & Technology

    2016-03-11

    that of the military population as a whole; exceeding weight and body fat standards (i.e. overweight or obesity ) was the most common condition listed...prevalent conditions in the general military applicant population [8].  The most common conditions noted at the MEPS, were: overweight, obesity , and...ICD-9 Diagnosis Code n % of Cond 1 % of App 2 ICD-9 Diagnosis Code n % of Cond 1 % of App 2 Overweight, obesity and other

  2. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  3. Parallel filtering in global gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Villard, L.; Vernay, T.; Angelino, P.; Tran, T. M.; Brunner, S.; Bottino, A.; Idomura, Y.

    2012-02-01

    In this work, a Fourier solver [B.F. McMillan, S. Jolliet, A. Bottino, P. Angelino, T.M. Tran, L. Villard, Comp. Phys. Commun. 181 (2010) 715] is implemented in the global Eulerian gyrokinetic code GT5D [Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Nucl. Fusion 49 (2009) 065029] and in the global Particle-In-Cell code ORB5 [S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T.M. Tran, B.F. McMillan, O. Sauter, K. Appert, Y. Idomura, L. Villard, Comp. Phys. Commun. 177 (2007) 409] in order to reduce the memory of the matrix associated with the field equation. This scheme is verified with linear and nonlinear simulations of turbulence. It is demonstrated that the straight-field-line angle is the coordinate that optimizes the Fourier solver, that both linear and nonlinear turbulent states are unaffected by the parallel filtering, and that the k∥ spectrum is independent of plasma size at fixed normalized poloidal wave number.

  4. Constant time worker thread allocation via configuration caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; O'Brien, John K. P.

    Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.

  5. New Parallel computing framework for radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, M.A.; /Michigan State U., NSCL; Mokhov, N.V.

    A new parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was integrated with the MARS15 code, and an effort is under way to deploy it in PHITS. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility canmore » be used in single process calculations as well as in the parallel regime. Several checkpoint files can be merged into one thus combining results of several calculations. The framework also corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  6. Particle Number Dependence of the N-body Simulations of Moon Formation

    NASA Astrophysics Data System (ADS)

    Sasaki, Takanori; Hosono, Natsuki

    2018-04-01

    The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.

  7. Cartesian Off-Body Grid Adaption for Viscous Time- Accurate Flow Simulation

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2011-01-01

    An improved solution adaption capability has been implemented in the OVERFLOW overset grid CFD code. Building on the Cartesian off-body approach inherent in OVERFLOW and the original adaptive refinement method developed by Meakin, the new scheme provides for automated creation of multiple levels of finer Cartesian grids. Refinement can be based on the undivided second-difference of the flow solution variables, or on a specific flow quantity such as vorticity. Coupled with load-balancing and an inmemory solution interpolation procedure, the adaption process provides very good performance for time-accurate simulations on parallel compute platforms. A method of using refined, thin body-fitted grids combined with adaption in the off-body grids is presented, which maximizes the part of the domain subject to adaption. Two- and three-dimensional examples are used to illustrate the effectiveness and performance of the adaption scheme.

  8. Fast and accurate mock catalogue generation for low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Blake, Chris; Beutler, Florian; Kazin, Eyal; Marin, Felipe

    2016-06-01

    We present an accurate and fast framework for generating mock catalogues including low-mass haloes, based on an implementation of the COmoving Lagrangian Acceleration (COLA) technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale structure, but conventional N-body simulations are too computationally expensive for the production of thousands of realizations. We show that COLA simulations can produce accurate mock catalogues with a moderate computation resource for low- to intermediate-mass galaxies in 1012 M⊙ haloes, both in real and redshift space. COLA simulations have accurate peculiar velocities, without systematic errors in the velocity power spectra for k ≤ 0.15 h Mpc-1, and with only 3-per cent error for k ≤ 0.2 h Mpc-1. We use COLA with 10 time steps and a Halo Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly available at github.com/junkoda/cola_halo.

  9. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  10. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  11. Parallel evolution of chordate cis-regulatory code for development.

    PubMed

    Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg

    2013-11-01

    Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.

  12. A Parallel Algorithm for Contact in a Finite Element Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Timothy G.

    A parallel algorithm is developed for contact/impact of multiple three dimensional bodies undergoing large deformation. As time progresses the relative positions of contact between the multiple bodies changes as collision and sliding occurs. The parallel algorithm is capable of tracking these changes and enforcing an impenetrability constraint and momentum transfer across the surfaces in contact. Portions of the various surfaces of the bodies are assigned to the processors of a distributed-memory parallel machine in an arbitrary fashion, known as the primary decomposition. A secondary, dynamic decomposition is utilized to bring opposing sections of the contacting surfaces together on the samemore » processors, so that opposing forces may be balanced and the resultant deformation of the bodies calculated. The secondary decomposition is accomplished and updated using only local communication with a limited subset of neighbor processors. Each processor represents both a domain of the primary decomposition and a domain of the secondary, or contact, decomposition. Thus each processor has four sets of neighbor processors: (a) those processors which represent regions adjacent to it in the primary decomposition, (b) those processors which represent regions adjacent to it in the contact decomposition, (c) those processors which send it the data from which it constructs its contact domain, and (d) those processors to which it sends its primary domain data, from which they construct their contact domains. The latter three of these neighbor sets change dynamically as the simulation progresses. By constraining all communication to these sets of neighbors, all global communication, with its attendant nonscalable performance, is avoided. A set of tests are provided to measure the degree of scalability achieved by this algorithm on up to 1024 processors. Issues related to the operating system of the test platform which lead to some degradation of the results are analyzed. This algorithm has been implemented as the contact capability of the ALE3D multiphysics code, and is currently in production use.« less

  13. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  14. An Efficient Solution Method for Multibody Systems with Loops Using Multiple Processors

    NASA Technical Reports Server (NTRS)

    Ghosh, Tushar K.; Nguyen, Luong A.; Quiocho, Leslie J.

    2015-01-01

    This paper describes a multibody dynamics algorithm formulated for parallel implementation on multiprocessor computing platforms using the divide-and-conquer approach. The system of interest is a general topology of rigid and elastic articulated bodies with or without loops. The algorithm divides the multibody system into a number of smaller sets of bodies in chain or tree structures, called "branches" at convenient joints called "connection points", and uses an Order-N (O (N)) approach to formulate the dynamics of each branch in terms of the unknown spatial connection forces. The equations of motion for the branches, leaving the connection forces as unknowns, are implemented in separate processors in parallel for computational efficiency, and the equations for all the unknown connection forces are synthesized and solved in one or several processors. The performances of two implementations of this divide-and-conquer algorithm in multiple processors are compared with an existing method implemented on a single processor.

  15. Coding for parallel execution of hardware-in-the-loop millimeter-wave scene generation models on multicore SIMD processor architectures

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2013-05-01

    Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.

  16. Capabilities of Fully Parallelized MHD Stability Code MARS

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2016-10-01

    Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.

  17. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  18. Computer-Aided Parallelizer and Optimizer

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang

    2011-01-01

    The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.

  19. Matrix-Free Polynomial-Based Nonlinear Least Squares Optimized Preconditioning and its Application to Discontinuous Galerkin Discretizations of the Euler Equations

    DTIC Science & Technology

    2015-06-01

    cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator

  20. An integrated runtime and compile-time approach for parallelizing structured and block structured applications

    NASA Technical Reports Server (NTRS)

    Agrawal, Gagan; Sussman, Alan; Saltz, Joel

    1993-01-01

    Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.

  1. The implementation of an aeronautical CFD flow code onto distributed memory parallel systems

    NASA Astrophysics Data System (ADS)

    Ierotheou, C. S.; Forsey, C. R.; Leatham, M.

    2000-04-01

    The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier-Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright

  2. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    NASA Technical Reports Server (NTRS)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less costly than development of comparable parallel code. Moreover, SequenceL not only automatically parallelizes the code, but since it is based on CSP-NT, it is provably race free, thus eliminating the largest quality challenge the parallelized software developer faces.

  3. On the estimation and detection of the Rees-Sciama effect

    NASA Astrophysics Data System (ADS)

    Fullana, M. J.; Arnau, J. V.; Thacker, R. J.; Couchman, H. M. P.; Sáez, D.

    2017-02-01

    Maps of the Rees-Sciama (RS) effect are simulated using the parallel N-body code, HYDRA, and a run-time ray-tracing procedure. A method designed for the analysis of small, square cosmic microwave background (CMB) maps is applied to our RS maps. Each of these techniques has been tested and successfully applied in previous papers. Within a range of angular scales, our estimate of the RS angular power spectrum due to variations in the peculiar gravitational potential on scales smaller than 42/h megaparsecs is shown to be robust. An exhaustive study of the redshifts and spatial scales relevant for the production of RS anisotropy is developed for the first time. Results from this study demonstrate that (I) to estimate the full integrated RS effect, the initial redshift for the calculations (integration) must be greater than 25, (II) the effect produced by strongly non-linear structures is very small and peaks at angular scales close to 4.3 arcmin, and (III) the RS anisotropy cannot be detected either directly-in temperature CMB maps-or by looking for cross-correlations between these maps and tracers of the dark matter distribution. To estimate the RS effect produced by scales larger than 42/h megaparsecs, where the density contrast is not strongly non-linear, high accuracy N-body simulations appear unnecessary. Simulations based on approximations such as the Zel'dovich approximation and adhesion prescriptions, for example, may be adequate. These results can be used to guide the design of future RS simulations.

  4. User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earth Sciences Division; Zhang, Keni; Zhang, Keni

    TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for computationally efficient parallel simulation of isothermal and nonisothermal flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media. In recent years, computational requirements have become increasingly intensive in large or highly nonlinear problems for applications in areas such as radioactive waste disposal, CO2 geological sequestration, environmental assessment and remediation, reservoir engineering, and groundwater hydrology. The primary objective of developing the parallel-simulation capability is to significantly improve the computational performance of the TOUGH2 family of codes. The particular goal for the parallel simulator ismore » to achieve orders-of-magnitude improvement in computational time for models with ever-increasing complexity. TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2 Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for applications in the Yucca Mountain project, and was designed for execution on CRAY T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes all fluid property modules of the standard version TOUGH2 V2.0. It provides computationally efficient capabilities using supercomputers, Linux clusters, or multi-core PCs, and also offers many user-friendly features. The parallel simulator inherits all process capabilities from V2.0 together with additional capabilities for handling fractured media from V1.4. This report provides a quick starting guide on how to set up and run the TOUGH2-MP program for users with a basic knowledge of running the (standard) version TOUGH2 code, The report also gives a brief technical description of the code, including a discussion of parallel methodology, code structure, as well as mathematical and numerical methods used. To familiarize users with the parallel code, illustrative sample problems are presented.« less

  5. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  6. Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Morrison, J. H.

    2004-01-01

    In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.

  7. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  8. A Keplerian-based Hamiltonian splitting for gravitational N-body simulations

    NASA Astrophysics Data System (ADS)

    Gonçalves Ferrari, G.; Boekholt, T.; Portegies Zwart, S. F.

    2014-05-01

    We developed a Keplerian-based Hamiltonian splitting for solving the gravitational N-body problem. This splitting allows us to approximate the solution of a general N-body problem by a composition of multiple, independently evolved two-body problems. While the Hamiltonian splitting is exact, we show that the composition of independent two-body problems results in a non-symplectic non-time-symmetric first-order map. A time-symmetric second-order map is then constructed by composing this basic first-order map with its self-adjoint. The resulting method is precise for each individual two-body solution and produces quick and accurate results for near-Keplerian N-body systems, like planetary systems or a cluster of stars that orbit a supermassive black hole. The method is also suitable for integration of N-body systems with intrinsic hierarchies, like a star cluster with primordial binaries. The superposition of Kepler solutions for each pair of particles makes the method excellently suited for parallel computing; we achieve ≳64 per cent efficiency for only eight particles per core, but close to perfect scaling for 16 384 particles on a 128 core distributed-memory computer. We present several implementations in SAKURA, one of which is publicly available via the AMUSE framework.

  9. A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction

    DOE PAGES

    Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...

    1995-01-01

    In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less

  10. Pentium Pro inside. 1; A treecode at 430 Gigaflops on ASCI Red

    NASA Technical Reports Server (NTRS)

    Warren, M. S.; Becker, D. J.; Sterling, T.; Salmon, J. K.; Goda, M. P.

    1997-01-01

    As an entry for the 1997 Gordon Bell performance prize, we present results from two methods of solving the gravitational N-body problem on the Intel Teraflops system at Sandia National Laboratory (ASCI Red). The first method, an O(N2) algorithm, obtained 635 Gigaflops for a 1 million particle problem on 6800 Pentium Pro processors. The second solution method, a tree-code which scales as O(N log N), sustained 170 Gigaflops over a continuous 9.4 hour period on 4096 processors, integrating the motion of 322 million mutually interacting particles in a cosmology simulation, while saving over 100 Gigabytes of raw data. Additionally, the tree-code sustained 430 Gigaflops on 6800 processors for the first 5 time-steps of that simulation. This tree-code solution is approximately 105 times more efficient than the O(N2) algorithm for this problem. As an entry for the 1997 Gordon Bell price/performance prize, we present two calculations from the disciplines of astrophysics and fluid dynamics. The simulations were performed on two 16 Pentium Pro processor Beowulf-class computers (Loki and Hyglac) constructed entirely from commodity personal computer technology, at a cost of roughly $50k each in September, 1996. The price of an equivalent system in August 1997 is less than $30. At Los Alamos, Loki performed a gravitational tree-code N-body simulation of galaxy formation using 9.75 million particles, which sustained an average of 879 Mflops over a ten day period, and produced roughly 10 Gbytes of raw data.

  11. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  12. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  13. Parallel Computing Strategies for Irregular Algorithms

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.

  14. Effect of D23N mutation on the dimer conformation of amyloid β-proteins: ab initio molecular simulations in water.

    PubMed

    Okamoto, Akisumi; Yano, Atsushi; Nomura, Kazuya; Higai, Shin'ichi; Kurita, Noriyuki

    2014-05-01

    The molecular pathogenesis of Alzheimer's disease (AD) is deeply involved in aggregations of amyloid β-proteins (Aβ) in a diseased brain. The recent experimental studies indicated that the mutation of Asp23 by Asn (D23N) within the coding sequence of Aβ increases the risk for the pathogeny of cerebral amyloid angiopathy and early-onset familial ADs. Fibrils of the D23N mutated Aβs can form both parallel and antiparallel structures, and the parallel one is considered to be associated with the pathogeny. However, the structure and the aggregation mechanism of the mutated Aβ fibrils are not elucidated at atomic and electronic levels. We here investigated solvated structures of the two types of Aβ dimers, each of which is composed of the wild-type or the D23N mutated Aβ, using classical molecular mechanics and ab initio fragment molecular orbital (FMO) methods, in order to reveal the effect of the D23N mutation on the structure of Aβ dimer as well as the specific interactions between the Aβ monomers. The results elucidate that the effect of the D23N mutation is significant for the parallel structure of Aβ dimer and that the solvating water molecules around the Aβ dimer have significant contribution to the stability of Aβ dimer. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Richard D.; Hones, Holger E.

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. Theremore » are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.« less

  16. GRAVIDY, a GPU modular, parallel direct-summation N-body integrator: dynamics with softening

    NASA Astrophysics Data System (ADS)

    Maureira-Fredes, Cristián; Amaro-Seoane, Pau

    2018-01-01

    A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and sources of gravitational radiation. The direct-summation of N gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. We present a new graphics processing unit (GPU), direct-summation N-body integrator written from scratch and based on this scheme, which includes relativistic corrections for sources of gravitational radiation. GRAVIDY has high modularity, allowing users to readily introduce new physics, it exploits available computational resources and will be maintained by regular updates. GRAVIDY can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single-GPU version is between one and two orders of magnitude faster than the single-CPU version. A test run using four GPUs in parallel shows a speed-up factor of about 3 as compared to the single-GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards.

  17. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less

  18. A VLSI chip set for real time vector quantization of image sequences

    NASA Technical Reports Server (NTRS)

    Baker, Richard L.

    1989-01-01

    The architecture and implementation of a VLSI chip set that vector quantizes (VQ) image sequences in real time is described. The chip set forms a programmable Single-Instruction, Multiple-Data (SIMD) machine which can implement various vector quantization encoding structures. Its VQ codebook may contain unlimited number of codevectors, N, having dimension up to K = 64. Under a weighted least squared error criterion, the engine locates at video rates the best code vector in full-searched or large tree searched VQ codebooks. The ability to manipulate tree structured codebooks, coupled with parallelism and pipelining, permits searches in as short as O (log N) cycles. A full codebook search results in O(N) performance, compared to O(KN) for a Single-Instruction, Single-Data (SISD) machine. With this VLSI chip set, an entire video code can be built on a single board that permits realtime experimentation with very large codebooks.

  19. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  20. MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Samsing, Johan; Askar, Abbas; Giersz, Mirek

    2018-03-01

    We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjusic, Tommy; Kartsaklis, Christos

    Memory scalability is an enduring problem and bottleneck that plagues many parallel codes. Parallel codes designed for High Performance Systems are typically designed over the span of several, and in some instances 10+, years. As a result, optimization practices which were appropriate for earlier systems may no longer be valid and thus require careful optimization consideration. Specifically, parallel codes whose memory footprint is a function of their scalability must be carefully considered for future exa-scale systems. In this paper we present a methodology and tool to study the memory scalability of parallel codes. Using our methodology we evaluate an applicationmore » s memory footprint as a function of scalability, which we coined memory efficiency, and describe our results. In particular, using our in-house tools we can pinpoint the specific application components which contribute to the application s overall memory foot-print (application data- structures, libraries, etc.).« less

  2. Acceleration of Semiempirical QM/MM Methods through Message Passage Interface (MPI), Hybrid MPI/Open Multiprocessing, and Self-Consistent Field Accelerator Implementations.

    PubMed

    Ojeda-May, Pedro; Nam, Kwangho

    2017-08-08

    The strategy and implementation of scalable and efficient semiempirical (SE) QM/MM methods in CHARMM are described. The serial version of the code was first profiled to identify routines that required parallelization. Afterward, the code was parallelized and accelerated with three approaches. The first approach was the parallelization of the entire QM/MM routines, including the Fock matrix diagonalization routines, using the CHARMM message passage interface (MPI) machinery. In the second approach, two different self-consistent field (SCF) energy convergence accelerators were implemented using density and Fock matrices as targets for their extrapolations in the SCF procedure. In the third approach, the entire QM/MM and MM energy routines were accelerated by implementing the hybrid MPI/open multiprocessing (OpenMP) model in which both the task- and loop-level parallelization strategies were adopted to balance loads between different OpenMP threads. The present implementation was tested on two solvated enzyme systems (including <100 QM atoms) and an S N 2 symmetric reaction in water. The MPI version exceeded existing SE QM methods in CHARMM, which include the SCC-DFTB and SQUANTUM methods, by at least 4-fold. The use of SCF convergence accelerators further accelerated the code by ∼12-35% depending on the size of the QM region and the number of CPU cores used. Although the MPI version displayed good scalability, the performance was diminished for large numbers of MPI processes due to the overhead associated with MPI communications between nodes. This issue was partially overcome by the hybrid MPI/OpenMP approach which displayed a better scalability for a larger number of CPU cores (up to 64 CPUs in the tested systems).

  3. Advanced capabilities for materials modelling with Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  4. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S

    2017-10-24

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  5. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    PubMed

    Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano

    2017-09-27

    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.

  6. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body gravitation with the J2 spherical harmonic, other body gravitation, thrust, constant atmospheric drag from Earth's atmosphere, and solar radiation pressure for a sphere under constant illumination. The purpose of this Engineering Note is to demonstrate the performance of TS integration in an operational trajectory analysis code and to compare it with a standard method, eighth-order RKF. Results show that TS is 16.6 times faster on average and is more accurate in 87.5% of the cases presented.

  7. Photodynamical modeling of hierarchical stellar system KOI-126

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael

    The power and precision of the Kepler space telescope has provided the astrophysical field with a valuable insight into the dynamics of extra-solar systems. KOI-126 represents the first eclipsing hierarchical triple stellar system identified in the Kepler mission's photometry. The dynamics of the system are such that ascertaining the parameters of each body accurately (better than a few percent) is possible from the photometry alone. This allows determination of the characteristics while avoiding biases inherent in traditional studies of low-mass eclipsing systems. The parameter set for KOI-126 was originally reported on by Carter et al. and is uniquely composed of a low-mass binary, KOI-126 B and KOI-126 C. This pair orbits a third, more massive star KOI-126 A. The original analysis employed a full dynamical-photometric model, utilizing a Levenberg-Marquardt algorithm and least-squares minimization, to fit the short-cadence (i.e. successive 58.84 second cadence exposures) photometric data from the Kepler spacecraft captured over a period of 247 days. The updated catalog of short-cadence data now covers a span of 1,300 days. In light of the new data, and the valuable contribution accurately sampled fully-convective stars offer to theoretical stellar models, it is therefore relevant to refine the parameters of this system. Furthermore, with the ubiquity of multi-stellar systems, a well documented, portable, scalable computer modeling code for N-body systems is introduced. Thus, a new analysis is done on KOI-126 using this parallelized dynamical-photometric modeling package written in Python, based on Carter et al.'s original code, titled Pynamic. Pynamic allows the use of several fitting algorithms, but in this analysis utilizes the affine-invariant Markov chain Monte Carlo ensemble.

  8. New Bandwidth Efficient Parallel Concatenated Coding Schemes

    NASA Technical Reports Server (NTRS)

    Denedetto, S.; Divsalar, D.; Montorsi, G.; Pollara, F.

    1996-01-01

    We propose a new solution to parallel concatenation of trellis codes with multilevel amplitude/phase modulations and a suitable iterative decoding structure. Examples are given for throughputs 2 bits/sec/Hz with 8PSK and 16QAM signal constellations.

  9. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  10. Parallelizing serial code for a distributed processing environment with an application to high frequency electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Work, Paul R.

    1991-12-01

    This thesis investigates the parallelization of existing serial programs in computational electromagnetics for use in a parallel environment. Existing algorithms for calculating the radar cross section of an object are covered, and a ray-tracing code is chosen for implementation on a parallel machine. Current parallel architectures are introduced and a suitable parallel machine is selected for the implementation of the chosen ray-tracing algorithm. The standard techniques for the parallelization of serial codes are discussed, including load balancing and decomposition considerations, and appropriate methods for the parallelization effort are selected. A load balancing algorithm is modified to increase the efficiency of the application, and a high level design of the structure of the serial program is presented. A detailed design of the modifications for the parallel implementation is also included, with both the high level and the detailed design specified in a high level design language called UNITY. The correctness of the design is proven using UNITY and standard logic operations. The theoretical and empirical results show that it is possible to achieve an efficient parallel application for a serial computational electromagnetic program where the characteristics of the algorithm and the target architecture critically influence the development of such an implementation.

  11. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  12. Scalability study of parallel spatial direct numerical simulation code on IBM SP1 parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad

    1994-01-01

    The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

  13. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  14. PARALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COSMOLOGICAL DATA SETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skory, Stephen; Turk, Matthew J.; Norman, Michael L.

    2010-11-15

    Modern N-body cosmological simulations contain billions (10{sup 9}) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, suchmore » that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit {sup yt}, an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 2000{sup 3} particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.« less

  15. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  16. Whole-body nonenhanced PET/MR versus PET/CT in the staging and restaging of cancers: preliminary observations.

    PubMed

    Huellner, Martin W; Appenzeller, Philippe; Kuhn, Félix P; Husmann, Lars; Pietsch, Carsten M; Burger, Irene A; Porto, Miguel; Delso, Gaspar; von Schulthess, Gustav K; Veit-Haibach, Patrick

    2014-12-01

    To assess the diagnostic performance of whole-body non-contrast material-enhanced positron emission tomography (PET)/magnetic resonance (MR) imaging and PET/computed tomography (CT) for staging and restaging of cancers and provide guidance for modality and sequence selection. This study was approved by the institutional review board and national government authorities. One hundred six consecutive patients (median age, 68 years; 46 female and 60 male patients) referred for staging or restaging of oncologic malignancies underwent whole-body imaging with a sequential trimodality PET/CT/MR system. The MR protocol included short inversion time inversion-recovery ( STIR short inversion time inversion-recovery ), Dixon-type liver accelerated volume acquisition ( LAVA liver accelerated volume acquisition ; GE Healthcare, Waukesha, Wis), and respiratory-gated periodically rotated overlapping parallel lines with enhanced reconstruction ( PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction ; GE Healthcare) sequences. Primary tumors (n = 43), local lymph node metastases (n = 74), and distant metastases (n = 66) were evaluated for conspicuity (scored 0-4), artifacts (scored 0-2), and reader confidence on PET/CT and PET/MR images. Subanalysis for lung lesions (n = 46) was also performed. Relevant incidental findings with both modalities were compared. Interreader agreement was analyzed with intraclass correlation coefficients and κ statistics. Lesion conspicuity, image artifacts, and incidental findings were analyzed with nonparametric tests. Primary tumors were less conspicuous on STIR short inversion time inversion-recovery (3.08, P = .016) and LAVA liver accelerated volume acquisition (2.64, P = .002) images than on CT images (3.49), while findings with the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.70, P = .436) were comparable to those at CT. In distant metastases, the PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction sequence (3.84) yielded better results than CT (2.88, P < .001). Subanalysis for lung lesions yielded similar results (primary lung tumors: CT, 3.71; STIR short inversion time inversion-recovery , 3.32 [P = .014]; LAVA liver accelerated volume acquisition , 2.52 [P = .002]; PROPELLER periodically rotated overlapping parallel lines with enhanced reconstruction , 3.64 [P = .546]). Readers classified lesions more confidently with PET/MR than PET/CT. However, PET/CT showed more incidental findings than PET/MR (P = .039), especially in the lung (P < .001). MR images had more artifacts than CT images. PET/MR performs comparably to PET/CT in whole-body oncology and neoplastic lung disease, with the use of appropriate sequences. Further studies are needed to define regionalized PET/MR protocols with sequences tailored to specific tumor entities. © RSNA, 2014 Online supplemental material is available for this article.

  17. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  18. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  19. Parallel processing in the honeybee olfactory pathway: structure, function, and evolution.

    PubMed

    Rössler, Wolfgang; Brill, Martin F

    2013-11-01

    Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.

  20. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  1. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  2. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  3. The Tera Multithreaded Architecture and Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  4. Molecular Dynamics of Hot Dense Plasmas: New Horizons

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2011-06-01

    We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. We will also discuss a new idea called kinetic theory MD which now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas. We discuss how this approach can be derived rigorously from the n-body quantum Wigner equation and illustrate the approach with an example. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Sixth- and eighth-order Hermite integrator for N-body simulations

    NASA Astrophysics Data System (ADS)

    Nitadori, Keigo; Makino, Junichiro

    2008-10-01

    We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order ( snap) and third-order ( crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.

  6. Missile Aerodynamics (Aerodynamique des Missiles)

    DTIC Science & Technology

    1998-11-01

    Magnus effect. effects on a spinning finned cylindrical body. Despite the large As noted above, the source, magnitude and even the direction amount of...axis, and to circular- cylindrical bodies in combination with determine directly the pressures acting on the body. triangular, rectangular, or...pressure drop in smooth cylindrical codes, as well as for testing and checking CFD-based tubes", NACA ARR L4C16, 1944. results. 6. Nielsen, J. N. and

  7. Studies of Planet Formation using a Hybrid N-body + Planetesimal Code

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Bromley, Benjamin C.; Salamon, Michael (Technical Monitor)

    2005-01-01

    The goal of our proposal was to use a hybrid multi-annulus planetesimal/n-body code to examine the planetesimal theory, one of the two main theories of planet formation. We developed this code to follow the evolution of numerous 1 m to 1 km planetesimals as they collide, merge, and grow into full-fledged planets. Our goal was to apply the code to several well-posed, topical problems in planet formation and to derive observational consequences of the models. We planned to construct detailed models to address two fundamental issues: 1) icy planets - models for icy planet formation will demonstrate how the physical properties of debris disks, including the Kuiper Belt in our solar system, depend on initial conditions and input physics; and 2) terrestrial planets - calculations following the evolution of 1-10 km planetesimals into Earth-mass planets and rings of dust will provide a better understanding of how terrestrial planets form and interact with their environment. During the past year, we made progress on each issue. Papers published in 2004 are summarized. Summaries of work to be completed during the first half of 2005 and work planned for the second half of 2005 are included.

  8. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    NASA Astrophysics Data System (ADS)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.

  9. The Particle Accelerator Simulation Code PyORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less

  10. Parallel Event Analysis Under Unix

    NASA Astrophysics Data System (ADS)

    Looney, S.; Nilsson, B. S.; Oest, T.; Pettersson, T.; Ranjard, F.; Thibonnier, J.-P.

    The ALEPH experiment at LEP, the CERN CN division and Digital Equipment Corp. have, in a joint project, developed a parallel event analysis system. The parallel physics code is identical to ALEPH's standard analysis code, ALPHA, only the organisation of input/output is changed. The user may switch between sequential and parallel processing by simply changing one input "card". The initial implementation runs on an 8-node DEC 3000/400 farm, using the PVM software, and exhibits a near-perfect speed-up linearity, reducing the turn-around time by a factor of 8.

  11. Code Optimization and Parallelization on the Origins: Looking from Users' Perspective

    NASA Technical Reports Server (NTRS)

    Chang, Yan-Tyng Sherry; Thigpen, William W. (Technical Monitor)

    2002-01-01

    Parallel machines are becoming the main compute engines for high performance computing. Despite their increasing popularity, it is still a challenge for most users to learn the basic techniques to optimize/parallelize their codes on such platforms. In this paper, we present some experiences on learning these techniques for the Origin systems at the NASA Advanced Supercomputing Division. Emphasis of this paper will be on a few essential issues (with examples) that general users should master when they work with the Origins as well as other parallel systems.

  12. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  13. The Fortran-P Translator: Towards Automatic Translation of Fortran 77 Programs for Massively Parallel Processors

    DOE PAGES

    O'keefe, Matthew; Parr, Terence; Edgar, B. Kevin; ...

    1995-01-01

    Massively parallel processors (MPPs) hold the promise of extremely high performance that, if realized, could be used to study problems of unprecedented size and complexity. One of the primary stumbling blocks to this promise has been the lack of tools to translate application codes to MPP form. In this article we show how applications codes written in a subset of Fortran 77, called Fortran-P, can be translated to achieve good performance on several massively parallel machines. This subset can express codes that are self-similar, where the algorithm applied to the global data domain is also applied to each subdomain. Wemore » have found many codes that match the Fortran-P programming style and have converted them using our tools. We believe a self-similar coding style will accomplish what a vectorizable style has accomplished for vector machines by allowing the construction of robust, user-friendly, automatic translation systems that increase programmer productivity and generate fast, efficient code for MPPs.« less

  14. Feasibility Study of Alternative Fabrication Methods.

    DTIC Science & Technology

    1979-08-01

    must comply with the I requirements of the latest edition of the National Electrical Code. The Body and Liner Assembly System will comply with I the...latest edition of the National Electrical Code per AMCR 385 (Army Material Command Safety Manual). Also, OSHA’s 1 Occupational Safety and Health...the top of the elevator. On the top and at the rear of * A-4 50 UD( AISA 6 --7 G OVe CASE THOMS ’ON J .7O37IA (PLACES) _ _ -- 3. BAL - 1N-TOS10 12N

  15. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  16. ICE-COLA: towards fast and accurate synthetic galaxy catalogues optimizing a quasi-N-body method

    NASA Astrophysics Data System (ADS)

    Izard, Albert; Crocce, Martin; Fosalba, Pablo

    2016-07-01

    Next generation galaxy surveys demand the development of massive ensembles of galaxy mocks to model the observables and their covariances, what is computationally prohibitive using N-body simulations. COmoving Lagrangian Acceleration (COLA) is a novel method designed to make this feasible by following an approximate dynamics but with up to three orders of magnitude speed-ups when compared to an exact N-body. In this paper, we investigate the optimization of the code parameters in the compromise between computational cost and recovered accuracy in observables such as two-point clustering and halo abundance. We benchmark those observables with a state-of-the-art N-body run, the MICE Grand Challenge simulation. We find that using 40 time-steps linearly spaced since zI ˜ 20, and a force mesh resolution three times finer than that of the number of particles, yields a matter power spectrum within 1 per cent for k ≲ 1 h Mpc-1 and a halo mass function within 5 per cent of those in the N-body. In turn, the halo bias is accurate within 2 per cent for k ≲ 0.7 h Mpc-1 whereas, in redshift space, the halo monopole and quadrupole are within 4 per cent for k ≲ 0.4 h Mpc-1. These results hold for a broad range in redshift (0 < z < 1) and for all halo mass bins investigated (M > 1012.5 h-1 M⊙). To bring accuracy in clustering to one per cent level we study various methods that re-calibrate halo masses and/or velocities. We thus propose an optimized choice of COLA code parameters as a powerful tool to optimally exploit future galaxy surveys.

  17. Enhancing Scalability and Efficiency of the TOUGH2_MP for LinuxClusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu

    2006-04-17

    TOUGH2{_}MP, the parallel version TOUGH2 code, has been enhanced by implementing more efficient communication schemes. This enhancement is achieved through reducing the amount of small-size messages and the volume of large messages. The message exchange speed is further improved by using non-blocking communications for both linear and nonlinear iterations. In addition, we have modified the AZTEC parallel linear-equation solver to nonblocking communication. Through the improvement of code structuring and bug fixing, the new version code is now more stable, while demonstrating similar or even better nonlinear iteration converging speed than the original TOUGH2 code. As a result, the new versionmore » of TOUGH2{_}MP is improved significantly in its efficiency. In this paper, the scalability and efficiency of the parallel code are demonstrated by solving two large-scale problems. The testing results indicate that speedup of the code may depend on both problem size and complexity. In general, the code has excellent scalability in memory requirement as well as computing time.« less

  18. Neural representation of objects in space: a dual coding account.

    PubMed Central

    Humphreys, G W

    1998-01-01

    I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227

  19. MAGI: many-component galaxy initializer

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2018-04-01

    Providing initial conditions is an essential procedure for numerical simulations of galaxies. The initial conditions for idealized individual galaxies in N-body simulations should resemble observed galaxies and be dynamically stable for time-scales much longer than their characteristic dynamical times. However, generating a galaxy model ab initio as a system in dynamical equilibrium is a difficult task, since a galaxy contains several components, including a bulge, disc, and halo. Moreover, it is desirable that the initial-condition generator be fast and easy to use. We have now developed an initial-condition generator for galactic N-body simulations that satisfies these requirements. The developed generator adopts a distribution-function-based method, and it supports various kinds of density models, including custom-tabulated inputs and the presence of more than one disc. We tested the dynamical stability of systems generated by our code, representing early- and late-type galaxies, with N = 2097 152 and 8388 608 particles, respectively, and we found that the model galaxies maintain their initial distributions for at least 1 Gyr. The execution times required to generate the two models were 8.5 and 221.7 seconds, respectively, which is negligible compared to typical execution times for N-body simulations. The code is provided as open-source software and is publicly and freely available at https://bitbucket.org/ymiki/magi.

  20. Neutron Energy Spectra and Yields from the 7Li(p,n) Reaction for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Friedman, M.; Schmidt, S.; Shor, A.; Berkovits, D.; Cohen, D.; Feinberg, G.; Fiebiger, S.; Krása, A.; Paul, M.; Plag, R.; Plompen, A.; Reifarth, R.

    2016-01-01

    Neutrons produced by the 7Li(p, n)7Be reaction close to threshold are widely used to measure the cross section of s-process nucleosynthesis reactions. While experiments have been performed so far with Van de Graaff accelerators, the use of RF accelerators with higher intensities is planned to enable investigations on radioactive isotopes. In parallel, high-power Li targets for the production of high-intensity neutrons at stellar energies are developed at Goethe University (Frankfurt, Germany) and SARAF (Soreq NRC, Israel). However, such setups pose severe challenges for the measurement of the proton beam intensity or the neutron fluence. In order to develop appropriate methods, we studied in detail the neutron energy distribution and intensity produced by the thick-target 7Li(p,n)7Be reaction and compared them to state-of- the-art simulation codes. Measurements were performed with the bunched and chopped proton beam at the Van de Graaff facility of the Institute for Reference Materials and Measurements (IRMM) using the time-of-flight (TOF) technique with thin (1/8") and thick (1") detectors. The importance of detailed simulations of the detector structure and geometry for the conversion of TOF to a neutron energy is stressed. The measured neutron spectra are consistent with those previously reported and agree well with Monte Carlo simulations that include experimentally determined 7Li(p,n) cross sections, two-body kinematics and proton energy loss in the Li-target.

  1. Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1998-01-01

    A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications have included the implementation of parallel processing software, incorporation of new physical models and generalization of the multiblock capability. The final report contains details of code modifications, numerical results for several nozzle and turbopump geometries, and the implementation of the parallelization software.

  2. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  3. DOE SBIR Phase-1 Report on Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda Multiphase Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Dale M. Snider

    2011-02-28

    This report gives the result from the Phase-1 work on demonstrating greater than 10x speedup of the Barracuda computer program using parallel methods and GPU processors (General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative speedup, compared to a single CPU, increases with increased number of particles giving greater than 12x speedup. Phase-1 work provided a path for reformatting data structure modifications to give good parallel performance while keeping a friendlymore » environment for new physics development and code maintenance. The implementation of data structure changes will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda in Phase-2, with the caveat that implemented computer practices for parallel programming done in Phase-1 gives immediate speedup in the current Barracuda serial running code. The Phase-1 tasks were completed successfully laying the frame work for Phase-2. The detailed results of Phase-1 are within this document. In general, the speedup of one function would be expected to be higher than the speedup of the entire code because of I/O functions and communication between the algorithms. However, because one of the most difficult Barracuda algorithms was parallelized in Phase-1 and because advanced parallelization methods and proposed parallelization optimization techniques identified in Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single CPU) is expected to be greater than 10x. This means that a job which takes 30 days to complete will be done in 3 days. Tasks completed in Phase-1 are: Task 1: Profile the entire Barracuda code and select which subroutines are to be parallelized (See Section Choosing a Function to Accelerate) Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD chose the small business EMPhotonics for the Phase-1 the technical partner. See Section Technical Objective and Approach) Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-1 and its subsections) Task 4: Testing, refinement, and optimization of parallel methodology (See Section Results from Phase-1 and Section Result Comparison Program) Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See Section Results from Phase-1 and its subsections) Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) With the completion of Phase 1 we have the base understanding to completely parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is given in Plan for Phase-2.« less

  4. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-02-15

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k{approx}20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discussmore » how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.« less

  5. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  6. Monte Carlo event generators in atomic collisions: A new tool to tackle the few-body dynamics

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Kirchner, T.; Schulz, M.

    2010-04-01

    We present a set of routines to produce theoretical event files, for both single and double ionization of atoms by ion impact, based on a Monte Carlo event generator (MCEG) scheme. Such event files are the theoretical counterpart of the data obtained from a kinematically complete experiment; i.e. they contain the momentum components of all collision fragments for a large number of ionization events. Among the advantages of working with theoretical event files is the possibility to incorporate the conditions present in a real experiment, such as the uncertainties in the measured quantities. Additionally, by manipulating them it is possible to generate any type of cross sections, specially those that are usually too complicated to compute with conventional methods due to a lack of symmetry. Consequently, the numerical effort of such calculations is dramatically reduced. We show examples for both single and double ionization, with special emphasis on a new data analysis tool, called four-body Dalitz plots, developed very recently. Program summaryProgram title: MCEG Catalogue identifier: AEFV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2695 No. of bytes in distributed program, including test data, etc.: 18 501 Distribution format: tar.gz Programming language: FORTRAN 77 with parallelization directives using scripting Computer: Single machines using Linux and Linux servers/clusters (with cores with any clock speed, cache memory and bits in a word) Operating system: Linux (any version and flavor) and FORTRAN 77 compilers Has the code been vectorised or parallelized?: Yes RAM: 64-128 kBytes (the codes are very cpu intensive) Classification: 2.6 Nature of problem: The code deals with single and double ionization of atoms by ion impact. Conventional theoretical approaches aim at a direct calculation of the corresponding cross sections. This has the important shortcoming that it is difficult to account for the experimental conditions when comparing results to measured data. In contrast, the present code generates theoretical event files of the same type as are obtained in a real experiment. From these event files any type of cross sections can be easily extracted. The theoretical schemes are based on distorted wave formalisms for both processes of interest. Solution method: The codes employ a Monte Carlo Event Generator based on theoretical formalisms to generate event files for both single and double ionization. One of the main advantages of having access to theoretical event files is the possibility of adding the conditions present in real experiments (parameter uncertainties, environmental conditions, etc.) and to incorporate additional physics in the resulting event files (e.g. elastic scattering or other interactions absent in the underlying calculations). Additional comments: The computational time can be dramatically reduced if a large number of processors is used. Since the codes has no communication between processes it is possible to achieve an efficiency of a 100% (this number certainly will be penalized by the queuing waiting time). Running time: Times vary according to the process, single or double ionization, to be simulated, the number of processors and the type of theoretical model. The typical running time is between several hours and up to a few weeks.

  7. Visuospatial memory computations during whole-body rotations in roll.

    PubMed

    Van Pelt, S; Van Gisbergen, J A M; Medendorp, W P

    2005-08-01

    We used a memory-saccade task to test whether the location of a target, briefly presented before a whole-body rotation in roll, is stored in egocentric or in allocentric coordinates. To make this distinction, we exploited the fact that subjects, when tilted sideways in darkness, make systematic errors when indicating the direction of gravity (an allocentric task) even though they have a veridical percept of their self-orientation in space. We hypothesized that if spatial memory is coded allocentrically, these distortions affect the coding of remembered targets and their readout after a body rotation. Alternatively, if coding is egocentric, updating for body rotation becomes essential and errors in performance should be related to the amount of intervening rotation. Subjects (n = 6) were tested making saccades to remembered world-fixed targets after passive body tilts. Initial and final tilt angle ranged between -120 degrees CCW and 120 degrees CW. The results showed that subjects made large systematic directional errors in their saccades (up to 90 degrees ). These errors did not occur in the absence of intervening body rotation, ruling out a memory degradation effect. Regression analysis showed that the errors were closely related to the amount of subjective allocentric distortion at both the initial and final tilt angle, rather than to the amount of intervening rotation. We conclude that the brain uses an allocentric reference frame, possibly gravity-based, to code visuospatial memories during whole-body tilts. This supports the notion that the brain can define information in multiple frames of reference, depending on sensory inputs and task demands.

  8. Final report for the Tera Computer TTI CRADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, G.S.; Pavlakos, C.; Silva, C.

    1997-01-01

    Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTAmore » parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.« less

  9. Computational Cosmology at the Bleeding Edge

    NASA Astrophysics Data System (ADS)

    Habib, Salman

    2013-04-01

    Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.

  10. A Large number of fast cosmological simulations

    NASA Astrophysics Data System (ADS)

    Koda, Jun; Kazin, E.; Blake, C.

    2014-01-01

    Mock galaxy catalogs are essential tools to analyze large-scale structure data. Many independent realizations of mock catalogs are necessary to evaluate the uncertainties in the measurements. We perform 3600 cosmological simulations for the WiggleZ Dark Energy Survey to obtain the new improved Baron Acoustic Oscillation (BAO) cosmic distance measurements using the density field "reconstruction" technique. We use 1296^3 particles in a periodic box of 600/h Mpc on a side, which is the minimum requirement from the survey volume and observed galaxies. In order to perform such large number of simulations, we developed a parallel code using the COmoving Lagrangian Acceleration (COLA) method, which can simulate cosmological large-scale structure reasonably well with only 10 time steps. Our simulation is more than 100 times faster than conventional N-body simulations; one COLA simulation takes only 15 minutes with 216 computing cores. We have completed the 3600 simulations with a reasonable computation time of 200k core hours. We also present the results of the revised WiggleZ BAO distance measurement, which are significantly improved by the reconstruction technique.

  11. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    PubMed

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  12. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP

    PubMed Central

    Krstic, D.; Nikezic, D.

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient’s body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5. PMID:28362837

  13. Optimizing transformations of stencil operations for parallel cache-based architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassetti, F.; Davis, K.

    This paper describes a new technique for optimizing serial and parallel stencil- and stencil-like operations for cache-based architectures. This technique takes advantage of the semantic knowledge implicity in stencil-like computations. The technique is implemented as a source-to-source program transformation; because of its specificity it could not be expected of a conventional compiler. Empirical results demonstrate a uniform factor of two speedup. The experiments clearly show the benefits of this technique to be a consequence, as intended, of the reduction in cache misses. The test codes are based on a 5-point stencil obtained by the discretization of the Poisson equation andmore » applied to a two-dimensional uniform grid using the Jacobi method as an iterative solver. Results are presented for a 1-D tiling for a single processor, and in parallel using 1-D data partition. For the parallel case both blocking and non-blocking communication are tested. The same scheme of experiments has bee n performed for the 2-D tiling case. However, for the parallel case the 2-D partitioning is not discussed here, so the parallel case handled for 2-D is 2-D tiling with 1-D data partitioning.« less

  14. Trinary signed-digit arithmetic using an efficient encoding scheme

    NASA Astrophysics Data System (ADS)

    Salim, W. Y.; Alam, M. S.; Fyath, R. S.; Ali, S. A.

    2000-09-01

    The trinary signed-digit (TSD) number system is of interest for ultrafast optoelectronic computing systems since it permits parallel carry-free addition and borrow-free subtraction of two arbitrary length numbers in constant time. In this paper, a simple coding scheme is proposed to encode the decimal number directly into the TSD form. The coding scheme enables one to perform parallel one-step TSD arithmetic operation. The proposed coding scheme uses only a 5-combination coding table instead of the 625-combination table reported recently for recoded TSD arithmetic technique.

  15. One-step trinary signed-digit arithmetic using an efficient encoding scheme

    NASA Astrophysics Data System (ADS)

    Salim, W. Y.; Fyath, R. S.; Ali, S. A.; Alam, Mohammad S.

    2000-11-01

    The trinary signed-digit (TSD) number system is of interest for ultra fast optoelectronic computing systems since it permits parallel carry-free addition and borrow-free subtraction of two arbitrary length numbers in constant time. In this paper, a simple coding scheme is proposed to encode the decimal number directly into the TSD form. The coding scheme enables one to perform parallel one-step TSD arithmetic operation. The proposed coding scheme uses only a 5-combination coding table instead of the 625-combination table reported recently for recoded TSD arithmetic technique.

  16. The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete; hide

    1998-01-01

    Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.

  17. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  18. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  19. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  20. Transferring ecosystem simulation codes to supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1995-01-01

    Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster.

  1. Reconstruction for time-domain in vivo EPR 3D multigradient oximetric imaging--a parallel processing perspective.

    PubMed

    Dharmaraj, Christopher D; Thadikonda, Kishan; Fletcher, Anthony R; Doan, Phuc N; Devasahayam, Nallathamby; Matsumoto, Shingo; Johnson, Calvin A; Cook, John A; Mitchell, James B; Subramanian, Sankaran; Krishna, Murali C

    2009-01-01

    Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP. The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction. Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set with 23 x 23 x 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging, almost in real-time.

  2. Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators

    PubMed Central

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in multi-dimensional media. PMID:24497950

  3. PETSc Users Manual Revision 3.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.; Brown, J.; Buschelman, K.

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less

  4. PETSc Users Manual Revision 3.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.; Brown, J.; Buschelman, K.

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less

  5. PETSc Users Manual Revision 3.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balay, S.; Abhyankar, S.; Adams, M.

    This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself. ;For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less

  6. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface

    USGS Publications Warehouse

    Alvioli, M.; Baum, R.L.

    2016-01-01

    We describe a parallel implementation of TRIGRS, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model for the timing and distribution of rainfall-induced shallow landslides. We have parallelized the four time-demanding execution modes of TRIGRS, namely both the saturated and unsaturated model with finite and infinite soil depth options, within the Message Passing Interface framework. In addition to new features of the code, we outline details of the parallel implementation and show the performance gain with respect to the serial code. Results are obtained both on commercial hardware and on a high-performance multi-node machine, showing the different limits of applicability of the new code. We also discuss the implications for the application of the model on large-scale areas and as a tool for real-time landslide hazard monitoring.

  7. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  8. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functionalmore » characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.« less

  9. Planet formation: is it good or bad to have a stellar companion?

    NASA Astrophysics Data System (ADS)

    Marzari, F.; Thebault, P.; Scholl, H.

    2010-04-01

    Planet formation in binary star systems is a complex issue due to the gravitational perturbations of the companion star. One of the crucial steps of the core-accretion model is planetesimal accretion into large protoplanets which finally coalesce into planets. In a planetesimal swarm surrounding the primary star, the average mutual impact velocity determines if larger bodies form or if the population is grinded down to dust, halting the planet formation process. This velocity is strongly influenced by the companion gravitational pull and by gas drag. The combined effect of these two forces may act in favour of or against planet formation, setting a lower or equal probability of the existence of extrasolar planets around single or binary stars. Planetesimal accretion in binaries has been studied so far with two different approaches. N-body codes based on the assumption that the disk is axisymmetric are very cost-effective since they allow the study of the mutual relative velocity with limited CPU usage. A large amount of planetesimal trajectories can be computed making it possible to outline the regions around the star where planet formation is possible. The main limitation of the N-body codes is the axisymmetric assumption. The companion perturbations affect not only the planetesimal orbits, but also the gaseous disk, by forcing spiral density waves. In addition, the overall shape of the disk changes from circular to elliptic. Hybrid codes have been recently developed which solve the equations for the disk with a hydrodynamical grid code and use the computed gas density and velocity vector to calculate an accurate value of the gas drag force on the planetesimals. These codes are more complex and may compute the trajectories of only a limited number of planetesimals.

  10. An Expert System for the Development of Efficient Parallel Code

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  11. Analyzing and Visualizing Cosmological Simulations with ParaView

    NASA Astrophysics Data System (ADS)

    Woodring, Jonathan; Heitmann, Katrin; Ahrens, James; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman; Pope, Adrian

    2011-07-01

    The advent of large cosmological sky surveys—ushering in the era of precision cosmology—has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.

  12. The Arrow of Time in the Collapse of Collisionless Self-gravitating Systems: Non-validity of the Vlasov-Poisson Equation during Violent Relaxation

    NASA Astrophysics Data System (ADS)

    Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos

    2017-09-01

    The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.

  13. Performance and Application of Parallel OVERFLOW Codes on Distributed and Shared Memory Platforms

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Rizk, Yehia M.

    1999-01-01

    The presentation discusses recent studies on the performance of the two parallel versions of the aerodynamics CFD code, OVERFLOW_MPI and _MLP. Developed at NASA Ames, the serial version, OVERFLOW, is a multidimensional Navier-Stokes flow solver based on overset (Chimera) grid technology. The code has recently been parallelized in two ways. One is based on the explicit message-passing interface (MPI) across processors and uses the _MPI communication package. This approach is primarily suited for distributed memory systems and workstation clusters. The second, termed the multi-level parallel (MLP) method, is simple and uses shared memory for all communications. The _MLP code is suitable on distributed-shared memory systems. For both methods, the message passing takes place across the processors or processes at the advancement of each time step. This procedure is, in effect, the Chimera boundary conditions update, which is done in an explicit "Jacobi" style. In contrast, the update in the serial code is done in more of the "Gauss-Sidel" fashion. The programming efforts for the _MPI code is more complicated than for the _MLP code; the former requires modification of the outer and some inner shells of the serial code, whereas the latter focuses only on the outer shell of the code. The _MPI version offers a great deal of flexibility in distributing grid zones across a specified number of processors in order to achieve load balancing. The approach is capable of partitioning zones across multiple processors or sending each zone and/or cluster of several zones into a single processor. The message passing across the processors consists of Chimera boundary and/or an overlap of "halo" boundary points for each partitioned zone. The MLP version is a new coarse-grain parallel concept at the zonal and intra-zonal levels. A grouping strategy is used to distribute zones into several groups forming sub-processes which will run in parallel. The total volume of grid points in each group are approximately balanced. A proper number of threads are initially allocated to each group, and in subsequent iterations during the run-time, the number of threads are adjusted to achieve load balancing across the processes. Each process exploits the multitasking directives already established in Overflow.

  14. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  15. Microtubule Actin Crosslinking Factor 1 Regulates the Balbiani Body and Animal-Vegetal Polarity of the Zebrafish Oocyte

    PubMed Central

    Gupta, Tripti; Marlow, Florence L.; Ferriola, Deborah; Mackiewicz, Katarzyna; Dapprich, Johannes; Monos, Dimitri; Mullins, Mary C.

    2010-01-01

    Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg. PMID:20808893

  16. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte.

    PubMed

    Gupta, Tripti; Marlow, Florence L; Ferriola, Deborah; Mackiewicz, Katarzyna; Dapprich, Johannes; Monos, Dimitri; Mullins, Mary C

    2010-08-19

    Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg.

  17. Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.

    2000-01-01

    Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining, gather/scatter, and redistribution. At the end of the conversion process most intermediate Charon function calls will have been removed, the non-distributed arrays will have been deleted, and virtually the only remaining Charon functions calls are the high-level, highly optimized communications. Distribution of the data is under complete control of the programmer, although a wide range of useful distributions is easily available through predefined functions. A crucial aspect of the library is that it does not allocate space for distributed arrays, but accepts programmer-specified memory. This has two major consequences. First, codes parallelized using Charon do not suffer from encapsulation; user data is always directly accessible. This provides high efficiency, and also retains the possibility of using message passing directly for highly irregular communications. Second, non-distributed arrays can be interpreted as (trivial) distributions in the Charon sense, which allows them to be mapped to truly distributed arrays, and vice versa. This is the mechanism that enables incremental parallelization. In this paper we provide a brief introduction of the library and then focus on the actual steps in the parallelization process, using some representative examples from, among others, the NAS Parallel Benchmarks. We show how a complicated two-dimensional pipeline-the prototypical non-data-parallel algorithm- can be constructed with ease. To demonstrate the flexibility of the library, we give examples of the stepwise, efficient parallel implementation of nonlocal boundary conditions common in aircraft simulations, as well as the construction of the sequence of grids required for multigrid.

  18. Improve load balancing and coding efficiency of tiles in high efficiency video coding by adaptive tile boundary

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin

    2017-01-01

    High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.

  19. Fast Multipole Methods for Three-Dimensional N-body Problems

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.

  20. Automated and Assistive Tools for Accelerated Code migration of Scientific Computing on to Heterogeneous MultiCore Systems

    DTIC Science & Technology

    2017-04-13

    modelling code, a parallel benchmark , and a communication avoiding version of the QR algorithm. Further, several improvements to the OmpSs model were...movement; and a port of the dynamic load balancing library to OmpSs. Finally, several updates to the tools infrastructure were accomplished, including: an...OmpSs: a basic algorithm on image processing applications, a mini application representative of an ocean modelling code, a parallel benchmark , and a

  1. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  2. Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.

    1998-01-01

    A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications will include the implementation of parallel processing software, incorporating new physical models and generalizing the multi-block capability to allow the simultaneous simulation of nozzle and turbopump configurations. The current report contains details of code modifications, numerical results of several flow simulations and the status of the parallelization effort.

  3. GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling

    NASA Astrophysics Data System (ADS)

    Miki, Yohei; Umemura, Masayuki

    2017-04-01

    The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.

  4. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  5. emcee: The MCMC Hammer

    NASA Astrophysics Data System (ADS)

    Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin; Goodman, Jonathan

    2013-03-01

    We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ˜N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

  6. In situ Orbit Extraction from Live, High Precision Collisionless Simulations of Systems Formed by Cold Collapse

    NASA Astrophysics Data System (ADS)

    Noriega-Mendoza, H.; Aguilar, L. A.

    2018-04-01

    We performed high precision, N-body simulations of the cold collapse of initially spherical, collisionless systems using the GYRFALCON code of Dehnen (2000). The collapses produce very prolate spheroidal configurations. After the collapse, the systems are simulated for 85 and 170 half-mass radius dynamical timescales, during which energy conservation is better than 0.005%. We use this period to extract individual particle orbits directly from the simulations. We then use the TAXON code of Carpintero and Aguilar (1998) to classify 1 to 1.5% of the extracted orbits from our final, relaxed configurations: less than 15% are chaotic orbits, 30% are box orbits and 60% are tube orbits (long and short axis). Our goal has been to prove that direct orbit extraction is feasible, and that there is no need to "freeze" the final N-body system configuration to extract a time-independent potential.

  7. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-02-01

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu [Phys. Rev. DPRVDAQ1550-7998 78, 123524 (2008)10.1103/PhysRevD.78.123524] and Schmidt [Phys. Rev. DPRVDAQ1550-7998 79, 083518 (2009)10.1103/PhysRevD.79.083518], and extend the resolution up to k˜20h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  8. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  9. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    NASA Astrophysics Data System (ADS)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  10. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  11. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less

  13. Accelerated Adaptive MGS Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Lam, Raymond K.; Ohara, Catherine M.; Green, Joseph J.; Bikkannavar, Siddarayappa A.; Basinger, Scott A.; Redding, David C.; Shi, Fang

    2011-01-01

    The Modified Gerchberg-Saxton (MGS) algorithm is an image-based wavefront-sensing method that can turn any science instrument focal plane into a wavefront sensor. MGS characterizes optical systems by estimating the wavefront errors in the exit pupil using only intensity images of a star or other point source of light. This innovative implementation of MGS significantly accelerates the MGS phase retrieval algorithm by using stream-processing hardware on conventional graphics cards. Stream processing is a relatively new, yet powerful, paradigm to allow parallel processing of certain applications that apply single instructions to multiple data (SIMD). These stream processors are designed specifically to support large-scale parallel computing on a single graphics chip. Computationally intensive algorithms, such as the Fast Fourier Transform (FFT), are particularly well suited for this computing environment. This high-speed version of MGS exploits commercially available hardware to accomplish the same objective in a fraction of the original time. The exploit involves performing matrix calculations in nVidia graphic cards. The graphical processor unit (GPU) is hardware that is specialized for computationally intensive, highly parallel computation. From the software perspective, a parallel programming model is used, called CUDA, to transparently scale multicore parallelism in hardware. This technology gives computationally intensive applications access to the processing power of the nVidia GPUs through a C/C++ programming interface. The AAMGS (Accelerated Adaptive MGS) software takes advantage of these advanced technologies, to accelerate the optical phase error characterization. With a single PC that contains four nVidia GTX-280 graphic cards, the new implementation can process four images simultaneously to produce a JWST (James Webb Space Telescope) wavefront measurement 60 times faster than the previous code.

  14. SPH/N-Body simulations of small (D = 10km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Brož, M.; Nesvorný, D.; Enke, B.; Durda, D.; Walsh, K.; Richardson, D. C.

    2017-11-01

    We report on our study of asteroidal breakups, i.e. fragmentations of targets, subsequent gravitational reaccumulation and formation of small asteroid families. We focused on parent bodies with diameters Dpb = 10km . Simulations were performed with a smoothed-particle hydrodynamics (SPH) code combined with an efficient N-body integrator. We assumed various projectile sizes, impact velocities and impact angles (125 runs in total). Resulting size-frequency distributions are significantly different from scaled-down simulations with Dpb = 100km targets (Durda et al., 2007). We derive new parametric relations describing fragment distributions, suitable for Monte-Carlo collisional models. We also characterize velocity fields and angular distributions of fragments, which can be used as initial conditions for N-body simulations of small asteroid families. Finally, we discuss a number of uncertainties related to SPH simulations.

  15. Parallelization of Lower-Upper Symmetric Gauss-Seidel Method for Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jost, Gabriele; Chang, Sherry

    2005-01-01

    Development of technologies for exploration of the solar system has revived an interest in computational simulation of chemically reacting flows since planetary probe vehicles exhibit non-equilibrium phenomena during the atmospheric entry of a planet or a moon as well as the reentry to the Earth. Stability in combustion is essential for new propulsion systems. Numerical solution of real-gas flows often increases computational work by an order-of-magnitude compared to perfect gas flow partly because of the increased complexity of equations to solve. Recently, as part of Project Columbia, NASA has integrated a cluster of interconnected SGI Altix systems to provide a ten-fold increase in current supercomputing capacity that includes an SGI Origin system. Both the new and existing machines are based on cache coherent non-uniform memory access architecture. Lower-Upper Symmetric Gauss-Seidel (LU-SGS) relaxation method has been implemented into both perfect and real gas flow codes including Real-Gas Aerodynamic Simulator (RGAS). However, the vectorized RGAS code runs inefficiently on cache-based shared-memory machines such as SGI system. Parallelization of a Gauss-Seidel method is nontrivial due to its sequential nature. The LU-SGS method has been vectorized on an oblique plane in INS3D-LU code that has been one of the base codes for NAS Parallel benchmarks. The oblique plane has been called a hyperplane by computer scientists. It is straightforward to parallelize a Gauss-Seidel method by partitioning the hyperplanes once they are formed. Another way of parallelization is to schedule processors like a pipeline using software. Both hyperplane and pipeline methods have been implemented using openMP directives. The present paper reports the performance of the parallelized RGAS code on SGI Origin and Altix systems.

  16. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  17. Implementing Shared Memory Parallelism in MCBEND

    NASA Astrophysics Data System (ADS)

    Bird, Adam; Long, David; Dobson, Geoff

    2017-09-01

    MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers's ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.

  18. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  19. HPC Institutional Computing Project: W15_lesreactiveflow KIVA-hpFE Development: A Robust and Accurate Engine Modeling Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Waters, Jiajia

    KIVA-hpFE is a high performance computer software for solving the physics of multi-species and multiphase turbulent reactive flow in complex geometries having immersed moving parts. The code is written in Fortran 90/95 and can be used on any computer platform with any popular complier. The code is in two versions, a serial version and a parallel version utilizing MPICH2 type Message Passing Interface (MPI or Intel MPI) for solving distributed domains. The parallel version is at least 30x faster than the serial version and much faster than our previous generation of parallel engine modeling software, by many factors. The 5thmore » generation algorithm construction is a Galerkin type Finite Element Method (FEM) solving conservative momentum, species, and energy transport equations along with two-equation turbulent model k-ω Reynolds Averaged Navier-Stokes (RANS) model and a Vreman type dynamic Large Eddy Simulation (LES) method. The LES method is capable modeling transitional flow from laminar to fully turbulent; therefore, this LES method does not require special hybrid or blending to walls. The FEM projection method also uses a Petrov-Galerkin (P-G) stabilization along with pressure stabilization. We employ hierarchical basis sets, constructed on the fly with enrichment in areas associated with relatively larger error as determined by error estimation methods. In addition, when not using the hp-adaptive module, the code employs Lagrangian basis or shape functions. The shape functions are constructed for hexahedral, prismatic and tetrahedral elements. The software is designed to solve many types of reactive flow problems, from burners to internal combustion engines and turbines. In addition, the formulation allows for direct integration of solid bodies (conjugate heat transfer), as in heat transfer through housings, parts, cylinders. It can also easily be extended to stress modeling of solids, used in fluid structure interactions problems, solidification, porous media modeling and magneto hydrodynamics.« less

  20. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  1. Parallel performance of TORT on the CRAY J90: Model and measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1997-10-01

    A limitation on the parallel performance of TORT on the CRAY J90 is the amount of extra work introduced by the multitasking algorithm itself. The extra work beyond that of the serial version of the code, called overhead, arises from the synchronization of the parallel tasks and the accumulation of results by the master task. The goal of recent updates to TORT was to reduce the time consumed by these activities. To help understand which components of the multitasking algorithm contribute significantly to the overhead, a parallel performance model was constructed and compared to measurements of actual timings of themore » code.« less

  2. Boltzmann Transport Code Update: Parallelization and Integrated Design Updates

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.

    2003-01-01

    The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.

  3. Development and Application of a Parallel LCAO Cluster Method

    NASA Astrophysics Data System (ADS)

    Patton, David C.

    1997-08-01

    CPU intensive steps in the SCF electronic structure calculations of clusters and molecules with a first-principles LCAO method have been fully parallelized via a message passing paradigm. Identification of the parts of the code that are composed of many independent compute-intensive steps is discussed in detail as they are the most readily parallelized. Most of the parallelization involves spatially decomposing numerical operations on a mesh. One exception is the solution of Poisson's equation which relies on distribution of the charge density and multipole methods. The method we use to parallelize this part of the calculation is quite novel and is covered in detail. We present a general method for dynamically load-balancing a parallel calculation and discuss how we use this method in our code. The results of benchmark calculations of the IR and Raman spectra of PAH molecules such as anthracene (C_14H_10) and tetracene (C_18H_12) are presented. These benchmark calculations were performed on an IBM SP2 and a SUN Ultra HPC server with both MPI and PVM. Scalability and speedup for these calculations is analyzed to determine the efficiency of the code. In addition, performance and usage issues for MPI and PVM are presented.

  4. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  5. Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.

    2013-12-01

    Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.

  6. Initial conditions for accurate N-body simulations of massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.

    2017-04-01

    The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, I.e. 1 per cent level, numerical simulations for this cosmological scenario.

  7. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  8. Molecular Dynamics Simulations of an Idealized Shock Tube: N2 in Ar Bath Driven by He

    NASA Astrophysics Data System (ADS)

    Piskulich, Ezekiel Ashe; Sewell, Thomas D.; Thompson, Donald L.

    2015-06-01

    The dynamics of 10% N2 in Ar initially at 298 K in an idealized shock tube driven by He was studied using molecular dynamics. The simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Nitrogen was modeled as a Morse oscillator and non-covalent interactions were approximated by the Buckingham exponential-6 pair potential. The initial pressures in the He driver gas and the driven N2/Ar gas were 1000 atm and 20 atm, respectively. Microcanonical trajectories were followed for 2 ns following release of the driver gas. Results for excitation and subsequent relaxation of the N2, as well as properties of the gas during the simulations, will be reported.

  9. Aerodynamic simulation on massively parallel systems

    NASA Technical Reports Server (NTRS)

    Haeuser, Jochem; Simon, Horst D.

    1992-01-01

    This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.

  10. Bilingual parallel programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach providesmore » and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.« less

  11. BHDD: Primordial black hole binaries code

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  12. Visual coding of human bodies: perceptual aftereffects reveal norm-based, opponent coding of body identity.

    PubMed

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J

    2013-04-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this aftereffect increased with adaptor extremity, as predicted by norm-based, opponent coding of body identity. A size change between adapt and test bodies minimized the effects of low-level, retinotopic adaptation. These results demonstrate that body identity, like face identity, is opponent coded in higher-level vision. More generally, they show that a norm-based multidimensional framework, which is well established for face perception, may provide a powerful framework for understanding body perception.

  13. Children's judgments about ownership rights and body rights: Evidence for a common basis.

    PubMed

    Van de Vondervoort, Julia W; Meinz, Paul; Friedman, Ori

    2017-03-01

    We report two experiments supporting the theory that children's understanding of ownership rights is related to their notions of body rights. Experiment 1 investigated 4- to 7-year-olds' (N=123) developing sensitivity to physical contact in their judgments about the acceptability of behaving in relation to owned objects and body parts. Experiment 2 used a simpler design to investigate this in 3- and 4-year-olds (N=112). Findings confirmed two predictions of the theory. First, in both experiments, children's judgments about ownership and body rights were similarly affected by physical contact. Second, judgments about both kinds of rights were yoked in development; age-related changes in judgments about ownership rights were paralleled by changes in judgments about body rights. Our findings have additional import for theories of ownership rights because they suggest that physical contact may be a crucial factor in whether behaviors targeting property are judged to be permissible. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Geology of the Brick Flat massive sulfide body, Iron Mountain cluster, West Shasta district, California ( USA).

    USGS Publications Warehouse

    Albers, J.P.

    1985-01-01

    The Brick Flat massive sulfide body is one of a group of 8 individual bodies that constitute the Iron Mountain cluster in the S part of the West Shasta district. Before they were separated by postmineral faulting, 5 of the 8 sulfide bodies formed a single large deposit about 1375 m long with a mass of some 23 million metric tons. The pyritic Brick Flat sulfide body is one of the 5 faulted segements of this deposit. The Brick Flat massive sulfide lies within medium phenocryst rhyolite that is characteristic of the ore-bearing middle unit of the Balaklala Rhyolite. It is interpreted to be downfaulted a vertical distance of 75 to 85 m from the Old Mine sulfide-gossan orebody along the N-dipping Camden South fault. It is bounded in turn on its N side by another parallel fault, the Camden North, which drops the orebody down another 75 m to the level of the Richmond orebody. -from Author

  15. MHD Code Optimizations and Jets in Dense Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Gaibler, Volker; Vigelius, Matthias; Krause, Martin; Camenzind, Max

    We have further optimized and extended the 3D-MHD-code NIRVANA. The magnetized part runs in parallel, reaching 19 Gflops per SX-6 node, and has a passively advected particle population. In addition, the code is MPI-parallel now - on top of the shared memory parallelization. On a 512^3 grid, we reach 561 Gflops with 32 nodes on the SX-8. Also, we have successfully used FLASH on the Opteron cluster. Scientific results are preliminary so far. We report one computation of highly resolved cocoon turbulence. While we find some similarities to earlier 2D work by us and others, we note a strange reluctancy of cold material to enter the low density cocoon, which has to be investigated further.

  16. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  17. Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.

    1982-06-01

    In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.

  18. Statistical Analysis of CFD Solutions from the Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    2002-01-01

    A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.

  19. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    ERIC Educational Resources Information Center

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  20. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  1. Performance Modeling and Measurement of Parallelized Code for Distributed Shared Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry

    1998-01-01

    This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.

  2. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  3. A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.

    1993-01-01

    Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).

  4. Porting LAMMPS to GPUs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, William Michael; Plimpton, Steven James; Wang, Peng

    2010-03-01

    LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.

  5. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, R.; Imbriale, W.; Liewer, P.; Lyons, J.; Manshadi, F.; Patterson, J.

    1987-01-01

    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture.

  6. I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies.

    PubMed

    Hu, Zhengbing; Petoukhov, Sergey V; Petukhova, Elena S

    2017-12-01

    The ancient Chinese book I-Ching was written a few thousand years ago. It introduces the system of symbols Yin and Yang (equivalents of 0 and 1). It had a powerful impact on culture, medicine and science of ancient China and several other countries. From the modern standpoint, I-Ching declares the importance of dyadic groups of binary numbers for the Nature. The system of I-Ching is represented by the tables with dyadic groups of 4 bigrams, 8 trigrams and 64 hexagrams, which were declared as fundamental archetypes of the Nature. The ancient Chinese did not know about the genetic code of protein sequences of amino acids but this code is organized in accordance with the I-Ching: in particularly, the genetic code is constructed on DNA molecules using 4 nitrogenous bases, 16 doublets, and 64 triplets. The article also describes the usage of dyadic groups as a foundation of the bio-mathematical doctrine of the geno-logic code, which exists in parallel with the known genetic code of amino acids but serves for a different goal: to code the inherited algorithmic processes using the logical holography and the spectral logic of systems of genetic Boolean functions. Some relations of this doctrine with the I-Ching are discussed. In addition, the ratios of musical harmony that can be revealed in the parameters of DNA structure are also represented in the I-Ching book. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Twostep-by-twostep PIRK-type PC methods with continuous output formulas

    NASA Astrophysics Data System (ADS)

    Cong, Nguyen Huu; Xuan, Le Ngoc

    2008-11-01

    This paper deals with parallel predictor-corrector (PC) iteration methods based on collocation Runge-Kutta (RK) corrector methods with continuous output formulas for solving nonstiff initial-value problems (IVPs) for systems of first-order differential equations. At nth step, the continuous output formulas are used not only for predicting the stage values in the PC iteration methods but also for calculating the step values at (n+2)th step. In this case, the integration processes can be proceeded twostep-by-twostep. The resulting twostep-by-twostep (TBT) parallel-iterated RK-type (PIRK-type) methods with continuous output formulas (twostep-by-twostep PIRKC methods or TBTPIRKC methods) give us a faster integration process. Fixed stepsize applications of these TBTPIRKC methods to a few widely-used test problems reveal that the new PC methods are much more efficient when compared with the well-known parallel-iterated RK methods (PIRK methods), parallel-iterated RK-type PC methods with continuous output formulas (PIRKC methods) and sequential explicit RK codes DOPRI5 and DOP853 available from the literature.

  8. Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan

    2018-05-01

    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.

  9. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  10. Runtime Detection of C-Style Errors in UPC Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirkelbauer, P; Liao, C; Panas, T

    2011-09-29

    Unified Parallel C (UPC) extends the C programming language (ISO C 99) with explicit parallel programming support for the partitioned global address space (PGAS), which provides a global memory space with localized partitions to each thread. Like its ancestor C, UPC is a low-level language that emphasizes code efficiency over safety. The absence of dynamic (and static) safety checks allows programmer oversights and software flaws that can be hard to spot. In this paper, we present an extension of a dynamic analysis tool, ROSE-Code Instrumentation and Runtime Monitor (ROSECIRM), for UPC to help programmers find C-style errors involving the globalmore » address space. Built on top of the ROSE source-to-source compiler infrastructure, the tool instruments source files with code that monitors operations and keeps track of changes to the system state. The resulting code is linked to a runtime monitor that observes the program execution and finds software defects. We describe the extensions to ROSE-CIRM that were necessary to support UPC. We discuss complications that arise from parallel code and our solutions. We test ROSE-CIRM against a runtime error detection test suite, and present performance results obtained from running error-free codes. ROSE-CIRM is released as part of the ROSE compiler under a BSD-style open source license.« less

  11. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  12. An N-body Integrator for Planetary Rings

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  13. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  14. PICsar: Particle in cell pulsar magnetosphere simulator

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.

    2016-07-01

    PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with 1000 CPUs.

  15. Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas

    DOE PAGES

    Smith, H. M.; Fredrickson, E. D.

    2017-02-07

    Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotationmore » with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). Lastly, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.« less

  16. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  17. Fast and reliable symplectic integration for planetary system N-body problems

    NASA Astrophysics Data System (ADS)

    Hernandez, David M.

    2016-06-01

    We apply one of the exactly symplectic integrators, which we call HB15, of Hernandez & Bertschinger, along with the Kepler problem solver of Wisdom & Hernandez, to solve planetary system N-body problems. We compare the method to Wisdom-Holman (WH) methods in the MERCURY software package, the MERCURY switching integrator, and others and find HB15 to be the most efficient method or tied for the most efficient method in many cases. Unlike WH, HB15 solved N-body problems exhibiting close encounters with small, acceptable error, although frequent encounters slowed the code. Switching maps like MERCURY change between two methods and are not exactly symplectic. We carry out careful tests on their properties and suggest that they must be used with caution. We then use different integrators to solve a three-body problem consisting of a binary planet orbiting a star. For all tested tolerances and time steps, MERCURY unbinds the binary after 0 to 25 years. However, in the solutions of HB15, a time-symmetric HERMITE code, and a symplectic Yoshida method, the binary remains bound for >1000 years. The methods' solutions are qualitatively different, despite small errors in the first integrals in most cases. Several checks suggest that the qualitative binary behaviour of HB15's solution is correct. The Bulirsch-Stoer and Radau methods in the MERCURY package also unbind the binary before a time of 50 years, suggesting that this dynamical error is due to a MERCURY bug.

  18. Text Talk, Body Talk, Table Talk: A Design of Ratio and Proportion as Classroom Parallel Events

    ERIC Educational Resources Information Center

    Abrahamson, Dor

    2003-01-01

    The paper describes the rationale and 10-day implementation in a 5th-grade classroom (n=19) of an experimental ratio-and-proportion instructional design. In this constructivist-phenomenological design, coming from our theoretical perspective, design research, and domain analysis, students: (1) link "real-world" and "mathematical" objects…

  19. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  20. High Performance Fortran for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.

  1. Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2000-01-01

    An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.

  2. PELEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.

  3. Understanding the Cray X1 System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    2004-01-01

    This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.

  4. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    NASA Astrophysics Data System (ADS)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  5. Composing Data Parallel Code for a SPARQL Graph Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste

    Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less

  6. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  7. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN

    PubMed Central

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. PMID:25506097

  8. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN.

    PubMed

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.

  9. Parallelization of an Object-Oriented Unstructured Aeroacoustics Solver

    NASA Technical Reports Server (NTRS)

    Baggag, Abdelkader; Atkins, Harold; Oezturan, Can; Keyes, David

    1999-01-01

    A computational aeroacoustics code based on the discontinuous Galerkin method is ported to several parallel platforms using MPI. The discontinuous Galerkin method is a compact high-order method that retains its accuracy and robustness on non-smooth unstructured meshes. In its semi-discrete form, the discontinuous Galerkin method can be combined with explicit time marching methods making it well suited to time accurate computations. The compact nature of the discontinuous Galerkin method also makes it well suited for distributed memory parallel platforms. The original serial code was written using an object-oriented approach and was previously optimized for cache-based machines. The port to parallel platforms was achieved simply by treating partition boundaries as a type of boundary condition. Code modifications were minimal because boundary conditions were abstractions in the original program. Scalability results are presented for the SCI Origin, IBM SP2, and clusters of SGI and Sun workstations. Slightly superlinear speedup is achieved on a fixed-size problem on the Origin, due to cache effects.

  10. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.

    2003-01-01

    The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.

  11. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  12. Retargeting of existing FORTRAN program and development of parallel compilers

    NASA Technical Reports Server (NTRS)

    Agrawal, Dharma P.

    1988-01-01

    The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.

  13. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier

    1992-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  14. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  15. Turbo Trellis Coded Modulation With Iterative Decoding for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1997-01-01

    In this paper, analytical bounds on the performance of parallel concatenation of two codes, known as turbo codes, and serial concatenation of two codes over fading channels are obtained. Based on this analysis, design criteria for the selection of component trellis codes for MPSK modulation, and a suitable bit-by-bit iterative decoding structure are proposed. Examples are given for throughput of 2 bits/sec/Hz with 8PSK modulation. The parallel concatenation example uses two rate 4/5 8-state convolutional codes with two interleavers. The convolutional codes' outputs are then mapped to two 8PSK modulations. The serial concatenated code example uses an 8-state outer code with rate 4/5 and a 4-state inner trellis code with 5 inputs and 2 x 8PSK outputs per trellis branch. Based on the above mentioned design criteria for fading channels, a method to obtain he structure of the trellis code with maximum diversity is proposed. Simulation results are given for AWGN and an independent Rayleigh fading channel with perfect Channel State Information (CSI).

  16. Genetically improved BarraCUDA.

    PubMed

    Langdon, W B; Lam, Brian Yee Hong

    2017-01-01

    BarraCUDA is an open source C program which uses the BWA algorithm in parallel with nVidia CUDA to align short next generation DNA sequences against a reference genome. Recently its source code was optimised using "Genetic Improvement". The genetically improved (GI) code is up to three times faster on short paired end reads from The 1000 Genomes Project and 60% more accurate on a short BioPlanet.com GCAT alignment benchmark. GPGPU BarraCUDA running on a single K80 Tesla GPU can align short paired end nextGen sequences up to ten times faster than bwa on a 12 core server. The speed up was such that the GI version was adopted and has been regularly downloaded from SourceForge for more than 12 months.

  17. GRAPE-4: A special-purpose computer for gravitational N-body problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makino, Junichiro; Taiji, Makoto; Ebisuzaki, Toshikazu

    1995-12-01

    We describe GRAPE-4, a special-purpose computer for gravitational N-body simulations. In gravitational N-body simulations, almost all computing time is spent for the calculation of interaction between particles. GRAPE-4 is a specialized hardware to calculate the interaction between particles. It is used with a general-purpose host computer that performs all calculations other than the force calculation. With this architecture, it is relatively easy to realize a massively parallel system. In 1991, we developed the GRAPE-3 system with the peak speed equivalent to 14.4 Gflops. It consists of 48 custom pipelined processors. In 1992 we started the development of GRAPE-4. The GRAPE-4more » system will consist of 1920 custom pipeline chips. Each chip has the speed of 600 Mflops, when operated on 30 MHz clock. A prototype system with two custom LSIs has been completed July 1994, and the full system is now under manufacturing.« less

  18. Effective Vectorization with OpenMP 4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Joseph N.; Hernandez, Oscar R.; Lopez, Matthew Graham

    This paper describes how the Single Instruction Multiple Data (SIMD) model and its extensions in OpenMP work, and how these are implemented in different compilers. Modern processors are highly parallel computational machines which often include multiple processors capable of executing several instructions in parallel. Understanding SIMD and executing instructions in parallel allows the processor to achieve higher performance without increasing the power required to run it. SIMD instructions can significantly reduce the runtime of code by executing a single operation on large groups of data. The SIMD model is so integral to the processor s potential performance that, if SIMDmore » is not utilized, less than half of the processor is ever actually used. Unfortunately, using SIMD instructions is a challenge in higher level languages because most programming languages do not have a way to describe them. Most compilers are capable of vectorizing code by using the SIMD instructions, but there are many code features important for SIMD vectorization that the compiler cannot determine at compile time. OpenMP attempts to solve this by extending the C++/C and Fortran programming languages with compiler directives that express SIMD parallelism. OpenMP is used to pass hints to the compiler about the code to be executed in SIMD. This is a key resource for making optimized code, but it does not change whether or not the code can use SIMD operations. However, in many cases critical functions are limited by a poor understanding of how SIMD instructions are actually implemented, as SIMD can be implemented through vector instructions or simultaneous multi-threading (SMT). We have found that it is often the case that code cannot be vectorized, or is vectorized poorly, because the programmer does not have sufficient knowledge of how SIMD instructions work.« less

  19. Parallel Monte Carlo transport modeling in the context of a time-dependent, three-dimensional multi-physics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procassini, R.J.

    1997-12-31

    The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less

  20. Implementation of parallel moment equations in NIMROD

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu Q.; Held, Eric D.; Ji, Jeong-Young

    2017-10-01

    As collisionality is low (the Knudsen number is large) in many plasma applications, kinetic effects become important, particularly in parallel dynamics for magnetized plasmas. Fluid models can capture some kinetic effects when integral parallel closures are adopted. The adiabatic and linear approximations are used in solving general moment equations to obtain the integral closures. In this work, we present an effort to incorporate non-adiabatic (time-dependent) and nonlinear effects into parallel closures. Instead of analytically solving the approximate moment system, we implement exact parallel moment equations in the NIMROD fluid code. The moment code is expected to provide a natural convergence scheme by increasing the number of moments. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  1. IEEE Workshop on Real-Time Operating Systems and Software (7th) Held in Charlottesville, Virginia on May 10-11, 1990. Revision

    DTIC Science & Technology

    1990-10-01

    RE N Submitted to: Scientific Officer Code: 1133 Gary M. Koob Office of Naval Research 800 North Quincy Street Arlington, VA 22217-50(X) ’ Submitted by... research in addition to teaching. Research is a vital part of the educational program and interests parallel academic specialues. These 3 range from the...Science. Within these disciplines there are well equipped laboratories for conducting highly specialized research . All departments offer the doctorate

  2. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    NASA Astrophysics Data System (ADS)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  3. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  4. Some Progress in Large-Eddy Simulation using the 3-D Vortex Particle Method

    NASA Technical Reports Server (NTRS)

    Winckelmans, G. S.

    1995-01-01

    This two-month visit at CTR was devoted to investigating possibilities in LES modeling in the context of the 3-D vortex particle method (=vortex element method, VEM) for unbounded flows. A dedicated code was developed for that purpose. Although O(N(sup 2)) and thus slow, it offers the advantage that it can easily be modified to try out many ideas on problems involving up to N approx. 10(exp 4) particles. Energy spectrums (which require O(N(sup 2)) operations per wavenumber) are also computed. Progress was realized in the following areas: particle redistribution schemes, relaxation schemes to maintain the solenoidal condition on the particle vorticity field, simple LES models and their VEM extension, possible new avenues in LES. Model problems that involve strong interaction between vortex tubes were computed, together with diagnostics: total vorticity, linear and angular impulse, energy and energy spectrum, enstrophy. More work is needed, however, especially regarding relaxation schemes and further validation and development of LES models for VEM. Finally, what works well will eventually have to be incorporated into the fast parallel tree code.

  5. Biomechanical Comparison of Parallel and Crossed Suture Repair for Longitudinal Meniscus Tears.

    PubMed

    Milchteim, Charles; Branch, Eric A; Maughon, Ty; Hughey, Jay; Anz, Adam W

    2016-04-01

    Longitudinal meniscus tears are commonly encountered in clinical practice. Meniscus repair devices have been previously tested and presented; however, prior studies have not evaluated repair construct designs head to head. This study compared a new-generation meniscus repair device, SpeedCinch, with a similar established device, Fast-Fix 360, and a parallel repair construct to a crossed construct. Both devices utilize self-adjusting No. 2-0 ultra-high molecular weight polyethylene (UHMWPE) and 2 polyether ether ketone (PEEK) anchors. Crossed suture repair constructs have higher failure loads and stiffness compared with simple parallel constructs. The newer repair device would exhibit similar performance to an established device. Controlled laboratory study. Sutures were placed in an open fashion into the body and posterior horn regions of the medial and lateral menisci in 16 cadaveric knees. Evaluation of 2 repair devices and 2 repair constructs created 4 groups: 2 parallel vertical sutures created with the Fast-Fix 360 (2PFF), 2 crossed vertical sutures created with the Fast-Fix 360 (2XFF), 2 parallel vertical sutures created with the SpeedCinch (2PSC), and 2 crossed vertical sutures created with the SpeedCinch (2XSC). After open placement of the repair construct, each meniscus was explanted and tested to failure on a uniaxial material testing machine. All data were checked for normality of distribution, and 1-way analysis of variance by ranks was chosen to evaluate for statistical significance of maximum failure load and stiffness between groups. Statistical significance was defined as P < .05. The mean maximum failure loads ± 95% CI (range) were 89.6 ± 16.3 N (125.7-47.8 N) (2PFF), 72.1 ± 11.7 N (103.4-47.6 N) (2XFF), 71.9 ± 15.5 N (109.4-41.3 N) (2PSC), and 79.5 ± 25.4 N (119.1-30.9 N) (2XSC). Interconstruct comparison revealed no statistical difference between all 4 constructs regarding maximum failure loads (P = .49). Stiffness values were also similar, with no statistical difference on comparison (P = .28). Both devices in the current study had similar failure load and stiffness when 2 vertical or 2 crossed sutures were tested in cadaveric human menisci. Simple parallel vertical sutures perform similarly to crossed suture patterns at the time of implantation.

  6. Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes

    NASA Technical Reports Server (NTRS)

    Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.

    1989-01-01

    The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.

  7. Parallel processing a three-dimensional free-lagrange code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Trease, H.E.

    1989-01-01

    A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less

  8. Parallel processing a real code: A case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Trease, H.E.

    1988-01-01

    A three-dimensional, time-dependent Free-Lagrange hydrodynamics code has been multitasked and autotasked on a Cray X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the Cray multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The 3-D algorithm has presented a number of problems that simpler algorithms, such as 1-D hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a Cray 1, to a multitasking code are discussed, Autotasking of a rewritten version ofmore » the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given. 8 refs., 13 figs.« less

  9. MILC Code Performance on High End CPU and GPU Supercomputer Clusters

    NASA Astrophysics Data System (ADS)

    DeTar, Carleton; Gottlieb, Steven; Li, Ruizi; Toussaint, Doug

    2018-03-01

    With recent developments in parallel supercomputing architecture, many core, multi-core, and GPU processors are now commonplace, resulting in more levels of parallelism, memory hierarchy, and programming complexity. It has been necessary to adapt the MILC code to these new processors starting with NVIDIA GPUs, and more recently, the Intel Xeon Phi processors. We report on our efforts to port and optimize our code for the Intel Knights Landing architecture. We consider performance of the MILC code with MPI and OpenMP, and optimizations with QOPQDP and QPhiX. For the latter approach, we concentrate on the staggered conjugate gradient and gauge force. We also consider performance on recent NVIDIA GPUs using the QUDA library.

  10. Visual analysis of inter-process communication for large-scale parallel computing.

    PubMed

    Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu

    2009-01-01

    In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.

  11. TORUS: Radiation transport and hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Harries, Tim

    2014-04-01

    TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

  12. Hybrid MPI-OpenMP Parallelism in the ONETEP Linear-Scaling Electronic Structure Code: Application to the Delamination of Cellulose Nanofibrils.

    PubMed

    Wilkinson, Karl A; Hine, Nicholas D M; Skylaris, Chris-Kriton

    2014-11-11

    We present a hybrid MPI-OpenMP implementation of Linear-Scaling Density Functional Theory within the ONETEP code. We illustrate its performance on a range of high performance computing (HPC) platforms comprising shared-memory nodes with fast interconnect. Our work has focused on applying OpenMP parallelism to the routines which dominate the computational load, attempting where possible to parallelize different loops from those already parallelized within MPI. This includes 3D FFT box operations, sparse matrix algebra operations, calculation of integrals, and Ewald summation. While the underlying numerical methods are unchanged, these developments represent significant changes to the algorithms used within ONETEP to distribute the workload across CPU cores. The new hybrid code exhibits much-improved strong scaling relative to the MPI-only code and permits calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the developments described here.

  13. A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan

    2003-05-01

    New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.

  14. GASPRNG: GPU accelerated scalable parallel random number generator library

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or workstation with NVIDIA GPU (Tested on Fermi GTX480, Tesla C1060, Tesla M2070). Operating system: Linux with CUDA version 4.0 or later. Should also run on MacOS, Windows, or UNIX. Has the code been vectorized or parallelized?: Yes. Parallelized using MPI directives. RAM: 512 MB˜ 732 MB (main memory on host CPU, depending on the data type of random numbers.) / 512 MB (GPU global memory) Classification: 4.13, 6.5. Nature of problem: Many computational science applications are able to consume large numbers of random numbers. For example, Monte Carlo simulations are able to consume limitless random numbers for the computation as long as resources for the computing are supported. Moreover, parallel computational science applications require independent streams of random numbers to attain statistically significant results. The SPRNG library provides this capability, but at a significant computational cost. The GASPRNG library presented here accelerates the generators of independent streams of random numbers using graphical processing units (GPUs). Solution method: Multiple copies of random number generators in GPUs allow a computational science application to consume large numbers of random numbers from independent, parallel streams. GASPRNG is a random number generators library to allow a computational science application to employ multiple copies of random number generators to boost performance. Users can interface GASPRNG with software code executing on microprocessors and/or GPUs. Running time: The tests provided take a few minutes to run.

  15. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  16. Parallelization of PANDA discrete ordinates code using spatial decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.

    2006-07-01

    We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less

  17. Flood predictions using the parallel version of distributed numerical physical rainfall-runoff model TOPKAPI

    NASA Astrophysics Data System (ADS)

    Boyko, Oleksiy; Zheleznyak, Mark

    2015-04-01

    The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.

  18. Accurate Treatment of Collision and Water-Delivery in Models of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Haghighipour, N.; Maindl, T. I.; Schaefer, C. M.; Wandel, O.

    2017-08-01

    We have developed a comprehensive approach in simulating collisions and growth of embryos to terrestrial planets where we use a combination of SPH and N-body codes to model collisions and the transfer of water and chemical compounds accurately.

  19. Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters

    NASA Astrophysics Data System (ADS)

    Esler, Kenneth

    2011-03-01

    Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.

  20. A practical approach to portability and performance problems on massively parallel supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1994-12-08

    We present an overview of the tactics we have used to achieve a high-level of performance while improving portability for a large-scale molecular dynamics code SPaSM. SPaSM was originally implemented in ANSI C with message passing for the Connection Machine 5 (CM-5). In 1993, SPaSM was selected as one of the winners in the IEEE Gordon Bell Prize competition for sustaining 50 Gflops on the 1024 node CM-5 at Los Alamos National Laboratory. Achieving this performance on the CM-5 required rewriting critical sections of code in CDPEAC assembler language. In addition, the code made extensive use of CM-5 parallel I/Omore » and the CMMD message passing library. Given this highly specialized implementation, we describe how we have ported the code to the Cray T3D and high performance workstations. In addition we will describe how it has been possible to do this using a single version of source code that runs on all three platforms without sacrificing any performance. Sound too good to be true? We hope to demonstrate that one can realize both code performance and portability without relying on the latest and greatest prepackaged tool or parallelizing compiler.« less

  1. Parallelization of Finite Element Analysis Codes Using Heterogeneous Distributed Computing

    NASA Technical Reports Server (NTRS)

    Ozguner, Fusun

    1996-01-01

    Performance gains in computer design are quickly consumed as users seek to analyze larger problems to a higher degree of accuracy. Innovative computational methods, such as parallel and distributed computing, seek to multiply the power of existing hardware technology to satisfy the computational demands of large applications. In the early stages of this project, experiments were performed using two large, coarse-grained applications, CSTEM and METCAN. These applications were parallelized on an Intel iPSC/860 hypercube. It was found that the overall speedup was very low, due to large, inherently sequential code segments present in the applications. The overall execution time T(sub par), of the application is dependent on these sequential segments. If these segments make up a significant fraction of the overall code, the application will have a poor speedup measure.

  2. Parallel computing techniques for rotorcraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Ekici, Kivanc

    The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).

  3. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  4. Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors.

    PubMed

    Feinstein, Wei P; Moreno, Juana; Jarrell, Mark; Brylinski, Michal

    2015-06-01

    Intel Xeon Phi is a new addition to the family of powerful parallel accelerators. The range of its potential applications in computationally driven research is broad; however, at present, the repository of scientific codes is still relatively limited. In this study, we describe the development and benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the prediction of ligand-binding sites in proteins. Implemented for the Intel Xeon Phi platform, the parallelization of the structure alignment portion of eFindSite using pragma-based OpenMP brings about the desired performance improvements, which scale well with the number of computing cores. Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the CPU and the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. For example, ligand-binding predictions for 501 benchmarking proteins are completed in 2.1 hours on a single Stampede node equipped with the Intel Xeon Phi card compared to 3.1 hours without the accelerator and 36.8 hours required by a serial version. In addition to the satisfactory parallel performance, porting existing scientific codes to the Intel Xeon Phi architecture is relatively straightforward with a short development time due to the support of common parallel programming models by the coprocessor. The parallel version of eFindSite is freely available to the academic community at www.brylinski.org/efindsite.

  5. LUNAR ACCRETION FROM A ROCHE-INTERIOR FLUID DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, Julien; Canup, Robin M., E-mail: julien@boulder.swri.edu, E-mail: robin@boulder.swri.edu

    2012-11-20

    We use a hybrid numerical approach to simulate the formation of the Moon from an impact-generated disk, consisting of a fluid model for the disk inside the Roche limit and an N-body code to describe accretion outside the Roche limit. As the inner disk spreads due to a thermally regulated viscosity, material is delivered across the Roche limit and accretes into moonlets that are added to the N-body simulation. Contrary to an accretion timescale of a few months obtained with prior pure N-body codes, here the final stage of the Moon's growth is controlled by the slow spreading of themore » inner disk, resulting in a total lunar accretion timescale of {approx}10{sup 2} years. It has been proposed that the inner disk may compositionally equilibrate with the Earth through diffusive mixing, which offers a potential explanation for the identical oxygen isotope compositions of the Earth and Moon. However, the mass fraction of the final Moon that is derived from the inner disk is limited by resonant torques between the disk and exterior growing moons. For initial disks containing <2.5 lunar masses (M{sub Last-Quarter-Moon }), we find that a final Moon with mass > 0.8 M{sub Last-Quarter-Moon} contains {<=}60% material derived from the inner disk, with this material preferentially delivered to the Moon at the end of its accretion.« less

  6. Near-field nano-imager

    NASA Technical Reports Server (NTRS)

    Liu, Boyang (Inventor); Ho, Seng-Tiong (Inventor)

    2010-01-01

    An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n.sub.2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points. And at each crossing point, a semiconductor component is filled between the second surface of a corresponding first electrode strip and the first surface of a corresponding second electrode strip to form an addressable pixel.

  7. The Advanced Software Development and Commercialization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallopoulos, E.; Canfield, T.R.; Minkoff, M.

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time,more » on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.« less

  8. Exploring the Ability of a Coarse-grained Potential to Describe the Stress-strain Response of Glassy Polystyrene

    DTIC Science & Technology

    2012-10-01

    using the open-source code Large-scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) (http://lammps.sandia.gov) (23). The commercial...parameters are proprietary and cannot be ported to the LAMMPS 4 simulation code. In our molecular dynamics simulations at the atomistic resolution, we...IBI iterative Boltzmann inversion LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator MAPS Materials Processes and Simulations MS

  9. Implementation and Characterization of Three-Dimensional Particle-in-Cell Codes on Multiple-Instruction-Multiple-Data Massively Parallel Supercomputers

    NASA Technical Reports Server (NTRS)

    Lyster, P. M.; Liewer, P. C.; Decyk, V. K.; Ferraro, R. D.

    1995-01-01

    A three-dimensional electrostatic particle-in-cell (PIC) plasma simulation code has been developed on coarse-grain distributed-memory massively parallel computers with message passing communications. Our implementation is the generalization to three-dimensions of the general concurrent particle-in-cell (GCPIC) algorithm. In the GCPIC algorithm, the particle computation is divided among the processors using a domain decomposition of the simulation domain. In a three-dimensional simulation, the domain can be partitioned into one-, two-, or three-dimensional subdomains ("slabs," "rods," or "cubes") and we investigate the efficiency of the parallel implementation of the push for all three choices. The present implementation runs on the Intel Touchstone Delta machine at Caltech; a multiple-instruction-multiple-data (MIMD) parallel computer with 512 nodes. We find that the parallel efficiency of the push is very high, with the ratio of communication to computation time in the range 0.3%-10.0%. The highest efficiency (> 99%) occurs for a large, scaled problem with 64(sup 3) particles per processing node (approximately 134 million particles of 512 nodes) which has a push time of about 250 ns per particle per time step. We have also developed expressions for the timing of the code which are a function of both code parameters (number of grid points, particles, etc.) and machine-dependent parameters (effective FLOP rate, and the effective interprocessor bandwidths for the communication of particles and grid points). These expressions can be used to estimate the performance of scaled problems--including those with inhomogeneous plasmas--to other parallel machines once the machine-dependent parameters are known.

  10. MIST: An Open Source Environmental Modelling Programming Language Incorporating Easy to Use Data Parallelism.

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2014-05-01

    Model Integration System (MIST) is open-source environmental modelling programming language that directly incorporates data parallelism. The language is designed to enable straightforward programming structures, such as nested loops and conditional statements to be directly translated into sequences of whole-array (or more generally whole data-structure) operations. MIST thus enables the programmer to use well-understood constructs, directly relating to the mathematical structure of the model, without having to explicitly vectorize code or worry about details of parallelization. A range of common modelling operations are supported by dedicated language structures operating on cell neighbourhoods rather than individual cells (e.g.: the 3x3 local neighbourhood needed to implement an averaging image filter can be simply accessed from within a simple loop traversing all image pixels). This facility hides details of inter-process communication behind more mathematically relevant descriptions of model dynamics. The MIST automatic vectorization/parallelization process serves both to distribute work among available nodes and separately to control storage requirements for intermediate expressions - enabling operations on very large domains for which memory availability may be an issue. MIST is designed to facilitate efficient interpreter based implementations. A prototype open source interpreter is available, coded in standard FORTRAN 95, with tools to rapidly integrate existing FORTRAN 77 or 95 code libraries. The language is formally specified and thus not limited to FORTRAN implementation or to an interpreter-based approach. A MIST to FORTRAN compiler is under development and volunteers are sought to create an ANSI-C implementation. Parallel processing is currently implemented using OpenMP. However, parallelization code is fully modularised and could be replaced with implementations using other libraries. GPU implementation is potentially possible.

  11. Using a source-to-source transformation to introduce multi-threading into the AliRoot framework for a parallel event reconstruction

    NASA Astrophysics Data System (ADS)

    Lohn, Stefan B.; Dong, Xin; Carminati, Federico

    2012-12-01

    Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.

  12. Calculation of water drop trajectories to and about arbitrary three-dimensional lifting and nonlifting bodies in potential airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1985-01-01

    Subsonic, external flow about nonlifting bodies, lifting bodies or combinations of lifting and nonlifting bodies is calculated by a modified version of the Hess lifting code. Trajectory calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Inlet flow can be accommodated, and high Mach number compressibility effects are corrected for approximately. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  13. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.

  14. Execution of a parallel edge-based Navier-Stokes solver on commodity graphics processor units

    NASA Astrophysics Data System (ADS)

    Corral, Roque; Gisbert, Fernando; Pueblas, Jesus

    2017-02-01

    The implementation of an edge-based three-dimensional Reynolds Average Navier-Stokes solver for unstructured grids able to run on multiple graphics processing units (GPUs) is presented. Loops over edges, which are the most time-consuming part of the solver, have been written to exploit the massively parallel capabilities of GPUs. Non-blocking communications between parallel processes and between the GPU and the central processor unit (CPU) have been used to enhance code scalability. The code is written using a mixture of C++ and OpenCL, to allow the execution of the source code on GPUs. The Message Passage Interface (MPI) library is used to allow the parallel execution of the solver on multiple GPUs. A comparative study of the solver parallel performance is carried out using a cluster of CPUs and another of GPUs. It is shown that a single GPU is up to 64 times faster than a single CPU core. The parallel scalability of the solver is mainly degraded due to the loss of computing efficiency of the GPU when the size of the case decreases. However, for large enough grid sizes, the scalability is strongly improved. A cluster featuring commodity GPUs and a high bandwidth network is ten times less costly and consumes 33% less energy than a CPU-based cluster with an equivalent computational power.

  15. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  16. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  17. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    NASA Astrophysics Data System (ADS)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  18. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  19. Performance of a parallel thermal-hydraulics code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fann, G.I.; Trent, D.S.

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scalingmore » performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.« less

  20. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  1. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report first results for several benchmark codes and one full application that have been parallelized using our system.

  2. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    2000-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAFT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAFT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  3. Automatic Data Distribution for CFD Applications on Structured Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Yan, Jerry

    1999-01-01

    Data distribution is an important step in implementation of any parallel algorithm. The data distribution determines data traffic, utilization of the interconnection network and affects the overall code efficiency. In recent years a number data distribution methods have been developed and used in real programs for improving data traffic. We use some of the methods for translating data dependence and affinity relations into data distribution directives. We describe an automatic data alignment and placement tool (ADAPT) which implements these methods and show it results for some CFD codes (NPB and ARC3D). Algorithms for program analysis and derivation of data distribution implemented in ADAPT are efficient three pass algorithms. Most algorithms have linear complexity with the exception of some graph algorithms having complexity O(n(sup 4)) in the worst case.

  4. Medical Sequencing at the extremes of Human Body Mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy

    2006-09-01

    Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight,more » we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.« less

  5. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.

    2005-01-01

    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.

  6. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  7. mocca code for star cluster simulations - VI. Bimodal spatial distribution of blue stragglers

    NASA Astrophysics Data System (ADS)

    Hypki, Arkadiusz; Giersz, Mirek

    2017-11-01

    The paper presents an analysis of formation mechanism and properties of spatial distributions of blue stragglers in evolving globular clusters, based on numerical simulations done with the mocca code. First, there are presented N-body and mocca simulations which try to reproduce the simulations presented by Ferraro et al. (2012). Then, we show the agreement between N-body and the mocca code. Finally, we discuss the formation process of the bimodal distribution. We report that we could not reproduce simulations from Ferraro et al. (2012). Moreover, we show that the so-called bimodal spatial distribution of blue stragglers is a very transient feature. It is formed for one snapshot in time and it can easily vanish in the next one. Moreover, we show that the radius of avoidance proposed by Ferraro et al. (2012) goes out of sync with the apparent minimum of the bimodal distribution after about two half-mass relaxation times (without finding out what is the reason for that). This finding creates a real challenge for the dynamical clock, which uses this radius to determine the dynamical age of globular clusters. Additionally, the paper discusses a few important problems concerning the apparent visibilities of the bimodal distributions, which have to be taken into account while studying the spatial distributions of blue stragglers.

  8. TMVOC-MP: a parallel numerical simulator for Three-PhaseNon-isothermal Flows of Multicomponent Hydrocarbon Mixtures inporous/fractured media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Yamamoto, Hajime; Pruess, Karsten

    2008-02-15

    TMVOC-MP is a massively parallel version of the TMVOC code (Pruess and Battistelli, 2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous/fractured media. TMVOC-MP was developed by introducing massively parallel computing techniques into TMVOC. It retains the physical process model of TMVOC, designed for applications to contamination problems that involve hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP can model contaminant behavior under 'natural' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted sourcemore » remediation. With its sophisticated parallel computing techniques, TMVOC-MP can handle much larger problems than TMVOC, and can be much more computationally efficient. TMVOC-MP models multiphase fluid systems containing variable proportions of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The user can specify the number and nature of NCGs and VOCs. There are no intrinsic limitations to the number of NCGs or VOCs, although the arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may select NCGs from a data bank provided in the software. The currently available choices include O{sub 2}, N{sub 2}, CO{sub 2}, CH{sub 4}, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N{sub 2} and O{sub 2}). Thermophysical property data of VOCs can be selected from a chemical data bank, included with TMVOC-MP, that provides parameters for 26 commonly encountered chemicals. Users also can input their own data for other fluids. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL phases. Any combination of the three phases may present, and phases may appear and disappear in the course of a simulation. In addition, VOCs may be adsorbed by the porous medium, and may biodegrade according to a simple half-life model. Detailed discussion of physical processes, assumptions, and fluid properties used in TMVOC-MP can be found in the TMVOC user's guide (Pruess and Battistelli, 2002). TMVOC-MP was developed based on the parallel framework of the TOUGH2-MP code (Zhang et al. 2001, Wu et al. 2002). It uses the MPI (Message Passing Forum, 1994) for parallel implementation. A domain decomposition approach is adopted for the parallelization. The code partitions a simulation domain, defined by an unstructured grid, using partitioning algorithm from the METIS software package (Karypsis and Kumar, 1998). In parallel simulation, each processor is in charge of one part of the simulation domain for assembling mass and energy balance equations, solving linear equation systems, updating thermophysical properties, and performing other local computations. The local linear-equation systems are solved in parallel by multiple processors with the Aztec linear solver package (Tuminaro et al., 1999). Although each processor solves the linearized equations of subdomains independently, the entire linear equation system is solved together by all processors collaboratively via communication between neighboring processors during each iteration. Detailed discussion of the prototype of the data-exchange scheme can be found in Elmroth et al. (2001). In addition, FORTRAN 90 features are introduced to TMVOC-MP, such as dynamic memory allocation, array operation, matrix manipulation, and replacing 'common blocks' (used in the original TMVOC) with modules. All new subroutines are written in FORTRAN 90. Program units imported from the original TMVOC remain in standard FORTRAN 77. This report provides a quick starting guide for using the TMVOC-MP program. We suppose that the users have basic knowledge of using the original TMVOC code. The users can find the detailed technical description of the physical processes modeled, and the mathematical and numerical methods in the user's guide for TMVOC (Pruess and Battistelli, 2002).« less

  9. Parallelization of KENO-Va Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Ramón, Javier; Peña, Jorge

    1995-07-01

    KENO-Va is a code integrated within the SCALE system developed by Oak Ridge that solves the transport equation through the Monte Carlo Method. It is being used at the Consejo de Seguridad Nuclear (CSN) to perform criticality calculations for fuel storage pools and shipping casks. Two parallel versions of the code: one for shared memory machines and other for distributed memory systems using the message-passing interface PVM have been generated. In both versions the neutrons of each generation are tracked in parallel. In order to preserve the reproducibility of the results in both versions, advanced seeds for random numbers were used. The CONVEX C3440 with four processors and shared memory at CSN was used to implement the shared memory version. A FDDI network of 6 HP9000/735 was employed to implement the message-passing version using proprietary PVM. The speedup obtained was 3.6 in both cases.

  10. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  11. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  12. Parallel database search and prime factorization with magnonic holographic memory devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khitun, Alexander

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploitmore » wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.« less

  13. Parallel database search and prime factorization with magnonic holographic memory devices

    NASA Astrophysics Data System (ADS)

    Khitun, Alexander

    2015-12-01

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.

  14. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Murman, S. M.; Berger, M. J.

    2003-01-01

    This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.

  15. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the technical aspects of debugging computer code that has been automatically converted for use in a parallel computing system. Shared memory parallelization and distributed memory parallelization entail separate and distinct challenges for a debugging program. A prototype system has been developed which integrates various tools for the debugging of automatically parallelized programs including the CAPTools Database which provides variable definition information across subroutines as well as array distribution information.

  16. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  17. Schnek: A C++ library for the development of parallel simulation codes on regular grids

    NASA Astrophysics Data System (ADS)

    Schmitz, Holger

    2018-05-01

    A large number of algorithms across the field of computational physics are formulated on grids with a regular topology. We present Schnek, a library that enables fast development of parallel simulations on regular grids. Schnek contains a number of easy-to-use modules that greatly reduce the amount of administrative code for large-scale simulation codes. The library provides an interface for reading simulation setup files with a hierarchical structure. The structure of the setup file is translated into a hierarchy of simulation modules that the developer can specify. The reader parses and evaluates mathematical expressions and initialises variables or grid data. This enables developers to write modular and flexible simulation codes with minimal effort. Regular grids of arbitrary dimension are defined as well as mechanisms for defining physical domain sizes, grid staggering, and ghost cells on these grids. Ghost cells can be exchanged between neighbouring processes using MPI with a simple interface. The grid data can easily be written into HDF5 files using serial or parallel I/O.

  18. Interoception, contemplative practice, and health

    PubMed Central

    Farb, Norman; Daubenmier, Jennifer; Price, Cynthia J.; Gard, Tim; Kerr, Catherine; Dunn, Barnaby D.; Klein, Anne Carolyn; Paulus, Martin P.; Mehling, Wolf E.

    2015-01-01

    Interoception can be broadly defined as the sense of signals originating within the body. As such, interoception is critical for our sense of embodiment, motivation, and well-being. And yet, despite its importance, interoception remains poorly understood within modern science. This paper reviews interdisciplinary perspectives on interoception, with the goal of presenting a unified perspective from diverse fields such as neuroscience, clinical practice, and contemplative studies. It is hoped that this integrative effort will advance our understanding of how interoception determines well-being, and identify the central challenges to such understanding. To this end, we introduce an expanded taxonomy of interoceptive processes, arguing that many of these processes can be understood through an emerging predictive coding model for mind–body integration. The model, which describes the tension between expected and felt body sensation, parallels contemplative theories, and implicates interoception in a variety of affective and psychosomatic disorders. We conclude that maladaptive construal of bodily sensations may lie at the heart of many contemporary maladies, and that contemplative practices may attenuate these interpretative biases, restoring a person’s sense of presence and agency in the world. PMID:26106345

  19. Factorization in large-scale many-body calculations

    DOE PAGES

    Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.

    2013-08-07

    One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less

  20. ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Freitag, Marc Dewi

    2013-02-01

    ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).

  1. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  2. LDRD final report on massively-parallel linear programming : the parPCx system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less

  3. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacón, L.; Cappello, S.

    2010-08-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.

  4. A domain specific language for performance portable molecular dynamics algorithms

    NASA Astrophysics Data System (ADS)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  5. Optimization of Particle-in-Cell Codes on RISC Processors

    NASA Technical Reports Server (NTRS)

    Decyk, Viktor K.; Karmesin, Steve Roy; Boer, Aeint de; Liewer, Paulette C.

    1996-01-01

    General strategies are developed to optimize particle-cell-codes written in Fortran for RISC processors which are commonly used on massively parallel computers. These strategies include data reorganization to improve cache utilization and code reorganization to improve efficiency of arithmetic pipelines.

  6. Balloon Borne Ultraviolet Spectrometer.

    DTIC Science & Technology

    1978-12-28

    n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram

  7. A molecular dynamics implementation of the 3D Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.

    2012-02-01

    The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for water molecules, velocity-Verlet integration, representation of molecules as rigid particles with rotations described using quaternion algebra. Restrictions: Memory and cpu time limit the size of simulations. Additional comments: Software web site: https://gitorious.org/cashew/. Running time: Depends on the size of system. The sample tests provided only take a few seconds.

  8. Parallelization of sequential Gaussian, indicator and direct simulation algorithms

    NASA Astrophysics Data System (ADS)

    Nunes, Ruben; Almeida, José A.

    2010-08-01

    Improving the performance and robustness of algorithms on new high-performance parallel computing architectures is a key issue in efficiently performing 2D and 3D studies with large amount of data. In geostatistics, sequential simulation algorithms are good candidates for parallelization. When compared with other computational applications in geosciences (such as fluid flow simulators), sequential simulation software is not extremely computationally intensive, but parallelization can make it more efficient and creates alternatives for its integration in inverse modelling approaches. This paper describes the implementation and benchmarking of a parallel version of the three classic sequential simulation algorithms: direct sequential simulation (DSS), sequential indicator simulation (SIS) and sequential Gaussian simulation (SGS). For this purpose, the source used was GSLIB, but the entire code was extensively modified to take into account the parallelization approach and was also rewritten in the C programming language. The paper also explains in detail the parallelization strategy and the main modifications. Regarding the integration of secondary information, the DSS algorithm is able to perform simple kriging with local means, kriging with an external drift and collocated cokriging with both local and global correlations. SIS includes a local correction of probabilities. Finally, a brief comparison is presented of simulation results using one, two and four processors. All performance tests were carried out on 2D soil data samples. The source code is completely open source and easy to read. It should be noted that the code is only fully compatible with Microsoft Visual C and should be adapted for other systems/compilers.

  9. An MPI + $X$ implementation of contact global search using Kokkos

    DOE PAGES

    Hansen, Glen A.; Xavier, Patrick G.; Mish, Sam P.; ...

    2015-10-05

    This paper describes an approach that seeks to parallelize the spatial search associated with computational contact mechanics. In contact mechanics, the purpose of the spatial search is to find “nearest neighbors,” which is the prelude to an imprinting search that resolves the interactions between the external surfaces of contacting bodies. In particular, we are interested in the contact global search portion of the spatial search associated with this operation on domain-decomposition-based meshes. Specifically, we describe an implementation that combines standard domain-decomposition-based MPI-parallel spatial search with thread-level parallelism (MPI-X) available on advanced computer architectures (those with GPU coprocessors). Our goal ismore » to demonstrate the efficacy of the MPI-X paradigm in the overall contact search. Standard MPI-parallel implementations typically use a domain decomposition of the external surfaces of bodies within the domain in an attempt to efficiently distribute computational work. This decomposition may or may not be the same as the volume decomposition associated with the host physics. The parallel contact global search phase is then employed to find and distribute surface entities (nodes and faces) that are needed to compute contact constraints between entities owned by different MPI ranks without further inter-rank communication. Key steps of the contact global search include computing bounding boxes, building surface entity (node and face) search trees and finding and distributing entities required to complete on-rank (local) spatial searches. To enable source-code portability and performance across a variety of different computer architectures, we implemented the algorithm using the Kokkos hardware abstraction library. While we targeted development towards machines with a GPU accelerator per MPI rank, we also report performance results for OpenMP with a conventional multi-core compute node per rank. Results here demonstrate a 47 % decrease in the time spent within the global search algorithm, comparing the reference ACME algorithm with the GPU implementation, on an 18M face problem using four MPI ranks. As a result, while further work remains to maximize performance on the GPU, this result illustrates the potential of the proposed implementation.« less

  10. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  11. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  12. Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  13. Some Problems and Solutions in Transferring Ecosystem Simulation Codes to Supercomputers

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schulbach, C. H.

    1994-01-01

    Many computer codes for the simulation of ecological systems have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Recent recognition of ecosystem science as a High Performance Computing and Communications Program Grand Challenge area emphasizes supercomputers (both parallel and distributed systems) as the next set of tools for ecological simulation. Transferring ecosystem simulation codes to such systems is not a matter of simply compiling and executing existing code on the supercomputer since there are significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers. To more appropriately match the application to the architecture (necessary to achieve reasonable performance), the parallelism (if it exists) of the original application must be exploited. We discuss our work in transferring a general grassland simulation model (developed on a VAX in the FORTRAN computer programming language) to a Cray Y-MP. We show the Cray shared-memory vector-architecture, and discuss our rationale for selecting the Cray. We describe porting the model to the Cray and executing and verifying a baseline version, and we discuss the changes we made to exploit the parallelism in the application and to improve code execution. As a result, the Cray executed the model 30 times faster than the VAX 11/785 and 10 times faster than a Sun 4 workstation. We achieved an additional speed-up of approximately 30 percent over the original Cray run by using the compiler's vectorizing capabilities and the machine's ability to put subroutines and functions "in-line" in the code. With the modifications, the code still runs at only about 5% of the Cray's peak speed because it makes ineffective use of the vector processing capabilities of the Cray. We conclude with a discussion and future plans.

  14. Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.

    2013-12-01

    Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third-party library to provide hydrologic flow, energy transport, and biogeochemical capability to the community land model, CLM, part of the open-source community earth system model (CESM) for climate. In this presentation, the advantages and disadvantages of open source software development in support of geoscience research at government laboratories, universities, and the private sector are discussed. Since the code is open-source (i.e. it's transparent and readily available to competitors), the PFLOTRAN team's development strategy within a competitive research environment is presented. Finally, the developers discuss their approach to object-oriented programming and the leveraging of modern Fortran in support of collaborative geoscience research as the Fortran standard evolves among compiler vendors.

  15. Ductile shear in granitic gneisses adjacent to the Beaver Creek fault zone, northwest lowlands, New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcoline, J.

    1993-03-01

    Greenville-age rocks are exposed in the Beaver Creek area in the Northwest Lowlands of New York State. The prominent structural grain in the area strikes approximately N40E and is defined by a series of metasedimentary and metaigneous rocks elongate parallel to the Beaver Creek Fault Zone. A series of 7 granitic augen gneiss bodies lies to the west of the fault. These bodies are elongate parallel to the Beaver Creek Fault Zone and are bordered by metasedimentary units. Structural analysis of the 7 granitic gneiss bodies shows that the bodies underwent several phases of ductile shear. These shearing events aremore » responsible for both fabric development and the overall shape of the bodies. The granitic gneiss is a well-foliated and lineated augen gneiss. The foliation is defined by biotite alignment, quartz ribbons, and feldspar augen. The foliation has a strike of N42E, with dips ranging from 85SE to vertical. Quartz ribbon lineations plunge 20--25 NE. The gneiss exhibits three distinct ductile shear fabrics showing oblique slip with a large strike-slip component. Fabric asymmetry indicates oblique slip with a large component of sinistral shear. The second shear fabric is somewhat recovered but not annealed. Quartz ribbons are dominantly monogranular and many show pronounced undulose extinction. Feldspar porphyroclasts form well-defined sigma grains showing a component of sinistral shear. The youngest ductile shear fabric is defined by quartz grain shape preferred orientation and mica fish. This third fabric exhibits a component of dextral shear, rather than sinistral shear. A late cataclastic texture crosscuts the earlier ductile fabrics. The elongate character of the 7 bodies and their NE/SE alignment is probably due to the regional shearing processes responsible for forming the fabric in the rocks.« less

  16. OSIRIS - an object-oriented parallel 3D PIC code for modeling laser and particle beam-plasma interaction

    NASA Astrophysics Data System (ADS)

    Hemker, Roy

    1999-11-01

    The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.

  17. Design of neurophysiologically motivated structures of time-pulse coded neurons

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.

    2009-04-01

    The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.

  18. A parallel solver for huge dense linear systems

    NASA Astrophysics Data System (ADS)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.

  19. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  20. Production Level CFD Code Acceleration for Hybrid Many-Core Architectures

    NASA Technical Reports Server (NTRS)

    Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.

    2012-01-01

    In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.

  1. The effects of polyethylene glycosylated creatine supplementation on anaerobic performance measures and body composition.

    PubMed

    Camic, Clayton L; Housh, Terry J; Zuniga, Jorge M; Traylor, Daniel A; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O; Housh, Dona J

    2014-03-01

    The purpose of this study was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation (1.25 and 2.50 g·d) on anaerobic performance measures (vertical and broad jumps, 40-yard dash, 20-yard shuttle run, and 3-cone drill), upper- and lower-body muscular strength and endurance (bench press and leg extension), and body composition. This study used a randomized, double-blind, placebo-controlled parallel design. Seventy-seven adult men (mean age ± SD, 22.1 ± 2.5 years; body mass, 81.7 ± 10.8 kg) volunteered to participate and were randomly assigned to a placebo (n = 23), 1.25 g·d of PEG-creatine (n = 27), or 2.50 g·d of PEG-creatine (n = 27) group. The subjects performed anaerobic performance measures, muscular strength (one-repetition maximum [1RM]), and endurance (80% 1RM) tests for bench press and leg extension, and underwater weighing for the determination of body composition at day 0 (baseline), day 14, and day 28. The results indicated that there were improvements (p < 0.0167) in vertical jump, 20-yard shuttle run, 3-cone drill, muscular endurance for bench press, and body mass for at least one of the PEG-creatine groups without changes for the placebo group. Thus, the present results demonstrated that PEG-creatine supplementation at 1.25 or 2.50 g·d had an ergogenic effect on lower-body vertical power, agility, change-of-direction ability, upper-body muscular endurance, and body mass.

  2. Performance Improvements of the CYCOFOS Flow Model

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Hari; Moulitsas, Irene; Syrakos, Alexandros; Zodiatis, George; Nikolaides, Andreas; Hayes, Daniel; Georgiou, Georgios C.

    2013-04-01

    The CYCOFOS-Cyprus Coastal Ocean Forecasting and Observing System has been operational since early 2002, providing daily sea current, temperature, salinity and sea level forecasting data for the next 4 and 10 days to end-users in the Levantine Basin, necessary for operational application in marine safety, particularly concerning oil spills and floating objects predictions. CYCOFOS flow model, similar to most of the coastal and sub-regional operational hydrodynamic forecasting systems of the MONGOOS-Mediterranean Oceanographic Network for Global Ocean Observing System is based on the POM-Princeton Ocean Model. CYCOFOS is nested with the MyOcean Mediterranean regional forecasting data and with SKIRON and ECMWF for surface forcing. The increasing demand for higher and higher resolution data to meet coastal and offshore downstream applications motivated the parallelization of the CYCOFOS POM model. This development was carried out in the frame of the IPcycofos project, funded by the Cyprus Research Promotion Foundation. The parallel processing provides a viable solution to satisfy these demands without sacrificing accuracy or omitting any physical phenomena. Prior to IPcycofos project, there are been several attempts to parallelise the POM, as for example the MP-POM. The existing parallel code models rely on the use of specific outdated hardware architectures and associated software. The objective of the IPcycofos project is to produce an operational parallel version of the CYCOFOS POM code that can replicate the results of the serial version of the POM code used in CYCOFOS. The parallelization of the CYCOFOS POM model use Message Passing Interface-MPI, implemented on commodity computing clusters running open source software and not depending on any specialized vendor hardware. The parallel CYCOFOS POM code constructed in a modular fashion, allowing a fast re-locatable downscaled implementation. The MPI takes advantage of the Cartesian nature of the POM mesh, and use the built-in functionality of MPI routines to split the mesh, using a weighting scheme, along longitude and latitude among the processors. Each server processor work on the model based on domain decomposition techniques. The new parallel CYCOFOS POM code has been benchmarked against the serial POM version of CYCOFOS for speed, accuracy, and resolution and the results are more than satisfactory. With a higher resolution CYCOFOS Levantine model domain the forecasts need much less time than the serial CYCOFOS POM coarser version, both with identical accuracy.

  3. LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Charnoz, S.

    2013-10-01

    Context. In most current debris disc models, the dynamical and the collisional evolutions are studied separately with N-body and statistical codes, respectively, because of stringent computational constraints. In particular, incorporating collisional effects (especially destructive collisions) into an N-body scheme has proven a very arduous task because of the exponential increase of particles it would imply. Aims: We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough to be applied to any astrophysical case where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, bright exozodiacal discs, etc. Methods: The code takes its basic architecture from the LIDT3D algorithm for protoplanetary discs, but has been strongly modified and updated to handle the very constraining specificities of debris disc physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas that never relaxes initial conditions, etc. It has a 3D Lagrangian-Eulerian structure, where grains of a given size at a given location in a disc are grouped into super-particles or tracers whose orbits are evolved with an N-body code and whose mutual collisions are individually tracked and treated using a particle-in-a-box prescription designed to handle fragmenting impacts. To cope with the wide range of possible dynamics for same-sized particles at any given location in the disc, and in order not to lose important dynamical information, tracers are sorted and regrouped into dynamical families depending on their orbits. A complex reassignment routine that searches for redundant tracers in each family and reassignes them where they are needed, prevents the number of tracers from diverging. Results: The LIDT-DD code has been successfully tested on simplified cases for which robust results have been obtained in past studies: we retrieve the classical features of particle size distributions in unperturbed discs and the outer radial density profiles in ~r-1.5 outside narrow collisionally active rings as well as the depletion of small grains in dynamically cold discs. The potential of the new code is illustrated with the test case of the violent breakup of a massive planetesimal within a debris disc. Preliminary results show that we are able for the first time to quantify the timescale over which the signature of such massive break-ups can be detected. In addition to studying such violent transient events, the main potential future applications of the code are planet and disc interactions, and more generally, any configurations where dynamics and collisions are expected to be intricately connected.

  4. Implementation of a flexible and scalable particle-in-cell method for massively parallel computations in the mantle convection code ASPECT

    NASA Astrophysics Data System (ADS)

    Gassmöller, Rene; Bangerth, Wolfgang

    2016-04-01

    Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a modern advection-field approach, and demonstrate under which conditions which method is more efficient. We implemented the presented methods in ASPECT (aspect.dealii.org), a freely available open-source community code for geodynamic simulations. The structure of the particle code is highly modular, and segregated from the PDE solver, and can thus be easily transferred to other programs, or adapted for various application cases.

  5. SKIRT: Hybrid parallelization of radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.

    2017-07-01

    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.

  6. Development of a Simulink Library for the Design, Testing and Simulation of Software Defined GPS Radios. With Application to the Development of Parallel Correlator Structures

    DTIC Science & Technology

    2014-05-01

    function Value = Select_Element(Index,Signal) %# eml Value = Signal(Index); Code Listing 1 Code for Selector Block 12 | P a g e 4.3...code for the Simulink function shiftedSignal = fcn(signal,Shift) %# eml shiftedSignal = circshift(signal,Shift); Code Listing 2 Code for CircShift

  7. Self-Scheduling Parallel Methods for Multiple Serial Codes with Application to WOPWOP

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Brentner, Kenneth S.

    2000-01-01

    This paper presents a scheme for efficiently running a large number of serial jobs on parallel computers. Two examples are given of computer programs that run relatively quickly, but often they must be run numerous times to obtain all the results needed. It is very common in science and engineering to have codes that are not massive computing challenges in themselves, but due to the number of instances that must be run, they do become large-scale computing problems. The two examples given here represent common problems in aerospace engineering: aerodynamic panel methods and aeroacoustic integral methods. The first example simply solves many systems of linear equations. This is representative of an aerodynamic panel code where someone would like to solve for numerous angles of attack. The complete code for this first example is included in the appendix so that it can be readily used by others as a template. The second example is an aeroacoustics code (WOPWOP) that solves the Ffowcs Williams Hawkings equation to predict the far-field sound due to rotating blades. In this example, one quite often needs to compute the sound at numerous observer locations, hence parallelization is utilized to automate the noise computation for a large number of observers.

  8. Breakdown of Spatial Parallel Coding in Children's Drawing

    ERIC Educational Resources Information Center

    De Bruyn, Bart; Davis, Alyson

    2005-01-01

    When drawing real scenes or copying simple geometric figures young children are highly sensitive to parallel cues and use them effectively. However, this sensitivity can break down in surprisingly simple tasks such as copying a single line where robust directional errors occur despite the presence of parallel cues. Before we can conclude that this…

  9. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.

  10. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  11. The dynamics of stellar discs in live dark-matter haloes

    NASA Astrophysics Data System (ADS)

    Fujii, M. S.; Bédorf, J.; Baba, J.; Portegies Zwart, S.

    2018-06-01

    Recent developments in computer hardware and software enable researchers to simulate the self-gravitating evolution of galaxies at a resolution comparable to the actual number of stars. Here we present the results of a series of such simulations. We performed N-body simulations of disc galaxies with between 100 and 500 million particles over a wide range of initial conditions. Our calculations include a live bulge, disc, and dark-matter halo, each of which is represented by self-gravitating particles in the N-body code. The simulations are performed using the gravitational N-body tree-code BONSAI running on the Piz Daint supercomputer. We find that the time-scale over which the bar forms increases exponentially with decreasing disc-mass fraction and that the bar formation epoch exceeds a Hubble time when the disc-mass fraction is ˜0.35. These results can be explained with the swing-amplification theory. The condition for the formation of m = 2 spirals is consistent with that for the formation of the bar, which is also an m = 2 phenomenon. We further argue that the non-barred grand-design spiral galaxies are transitional, and that they evolve to barred galaxies on a dynamical time-scale. We also confirm that the disc-mass fraction and shear rate are important parameters for the morphology of disc galaxies. The former affects the number of spiral arms and the bar formation epoch, and the latter determines the pitch angle of the spiral arms.

  12. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, S; Nazareth, D; Bellor, M

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less

  13. Efficient dynamic simulation for multiple chain robotic mechanisms

    NASA Technical Reports Server (NTRS)

    Lilly, Kathryn W.; Orin, David E.

    1989-01-01

    An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms is presented, where m is the number of chains, and N is the number of degrees of freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6) for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel implementation of the dynamics for each chain results in an O(N) + O(log sub 2 m+1) algorithm.

  14. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  15. EASY-II Renaissance: n, p, d, α, γ-induced Inventory Code System

    NASA Astrophysics Data System (ADS)

    Sublet, J.-Ch.; Eastwood, J. W.; Morgan, J. G.

    2014-04-01

    The European Activation SYstem has been re-engineered and re-written in modern programming languages so as to answer today's and tomorrow's needs in terms of activation, transmutation, depletion, decay and processing of radioactive materials. The new FISPACT-II inventory code development project has allowed us to embed many more features in terms of energy range: up to GeV; incident particles: alpha, gamma, proton, deuteron and neutron; and neutron physics: self-shielding effects, temperature dependence and covariance, so as to cover all anticipated application needs: nuclear fission and fusion, accelerator physics, isotope production, stockpile and fuel cycle stewardship, materials characterization and life, and storage cycle management. In parallel, the maturity of modern, truly general purpose libraries encompassing thousands of target isotopes such as TENDL-2012, the evolution of the ENDF-6 format and the capabilities of the latest generation of processing codes PREPRO, NJOY and CALENDF have allowed the activation code to be fed with more robust, complete and appropriate data: cross sections with covariance, probability tables in the resonance ranges, kerma, dpa, gas and radionuclide production and 24 decay types. All such data for the five most important incident particles (n, p, d, α, γ), are placed in evaluated data files up to an incident energy of 200 MeV. The resulting code system, EASY-II is designed as a functional replacement for the previous European Activation System, EASY-2010. It includes many new features and enhancements, but also benefits already from the feedback from extensive validation and verification activities performed with its predecessor.

  16. Perturbed redshifts from N -body simulations

    NASA Astrophysics Data System (ADS)

    Adamek, Julian

    2018-01-01

    In order to keep pace with the increasing data quality of astronomical surveys the observed source redshift has to be modeled beyond the well-known Doppler contribution. In this article I want to examine the gauge issue that is often glossed over when one assigns a perturbed redshift to simulated data generated with a Newtonian N -body code. A careful analysis reveals the presence of a correction term that has so far been neglected. It is roughly proportional to the observed length scale divided by the Hubble scale and therefore suppressed inside the horizon. However, on gigaparsec scales it can be comparable to the gravitational redshift and hence amounts to an important relativistic effect.

  17. Employing Nested OpenMP for the Parallelization of Multi-Zone Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Jost, Gabriele

    2004-01-01

    In this paper we describe the parallelization of the multi-zone code versions of the NAS Parallel Benchmarks employing multi-level OpenMP parallelism. For our study we use the NanosCompiler, which supports nesting of OpenMP directives and provides clauses to control the grouping of threads, load balancing, and synchronization. We report the benchmark results, compare the timings with those of different hybrid parallelization paradigms and discuss OpenMP implementation issues which effect the performance of multi-level parallel applications.

  18. Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications.

    PubMed

    Tyagi, Neelam; Bose, Abhijit; Chetty, Indrin J

    2004-09-01

    We have parallelized the Dose Planning Method (DPM), a Monte Carlo code optimized for radiotherapy class problems, on distributed-memory processor architectures using the Message Passing Interface (MPI). Parallelization has been investigated on a variety of parallel computing architectures at the University of Michigan-Center for Advanced Computing, with respect to efficiency and speedup as a function of the number of processors. We have integrated the parallel pseudo random number generator from the Scalable Parallel Pseudo-Random Number Generator (SPRNG) library to run with the parallel DPM. The Intel cluster consisting of 800 MHz Intel Pentium III processor shows an almost linear speedup up to 32 processors for simulating 1 x 10(8) or more particles. The speedup results are nearly linear on an Athlon cluster (up to 24 processors based on availability) which consists of 1.8 GHz+ Advanced Micro Devices (AMD) Athlon processors on increasing the problem size up to 8 x 10(8) histories. For a smaller number of histories (1 x 10(8)) the reduction of efficiency with the Athlon cluster (down to 83.9% with 24 processors) occurs because the processing time required to simulate 1 x 10(8) histories is less than the time associated with interprocessor communication. A similar trend was seen with the Opteron Cluster (consisting of 1400 MHz, 64-bit AMD Opteron processors) on increasing the problem size. Because of the 64-bit architecture Opteron processors are capable of storing and processing instructions at a faster rate and hence are faster as compared to the 32-bit Athlon processors. We have validated our implementation with an in-phantom dose calculation study using a parallel pencil monoenergetic electron beam of 20 MeV energy. The phantom consists of layers of water, lung, bone, aluminum, and titanium. The agreement in the central axis depth dose curves and profiles at different depths shows that the serial and parallel codes are equivalent in accuracy.

  19. Generating performance portable geoscientific simulation code with Firedrake (Invited)

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.

    2013-12-01

    This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations, can be written as short C kernels operating locally on the underlying mesh, with no explicit parallelism. The executable code is then generated in C, CUDA or OpenCL and executed in parallel on the target architecture. The system also offers features of special relevance to the geosciences. In particular, the large scale separation between the vertical and horizontal directions in many geoscientific processes can be exploited to offer the flexibility of unstructured meshes in the horizontal direction, without the performance penalty usually associated with those methods.

  20. Scalable descriptive and correlative statistics with Titan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Pebay, Philippe Pierre

    This report summarizes the existing statistical engines in VTK/Titan and presents the parallel versions thereof which have already been implemented. The ease of use of these parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; then, this theoretical property is verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.

  1. Modeling Cooperative Threads to Project GPU Performance for Adaptive Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jiayuan; Uram, Thomas; Morozov, Vitali A.

    Most accelerators, such as graphics processing units (GPUs) and vector processors, are particularly suitable for accelerating massively parallel workloads. On the other hand, conventional workloads are developed for multi-core parallelism, which often scale to only a few dozen OpenMP threads. When hardware threads significantly outnumber the degree of parallelism in the outer loop, programmers are challenged with efficient hardware utilization. A common solution is to further exploit the parallelism hidden deep in the code structure. Such parallelism is less structured: parallel and sequential loops may be imperfectly nested within each other, neigh boring inner loops may exhibit different concurrency patternsmore » (e.g. Reduction vs. Forall), yet have to be parallelized in the same parallel section. Many input-dependent transformations have to be explored. A programmer often employs a larger group of hardware threads to cooperatively walk through a smaller outer loop partition and adaptively exploit any encountered parallelism. This process is time-consuming and error-prone, yet the risk of gaining little or no performance remains high for such workloads. To reduce risk and guide implementation, we propose a technique to model workloads with limited parallelism that can automatically explore and evaluate transformations involving cooperative threads. Eventually, our framework projects the best achievable performance and the most promising transformations without implementing GPU code or using physical hardware. We envision our technique to be integrated into future compilers or optimization frameworks for autotuning.« less

  2. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  3. The Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    NASA Technical Reports Server (NTRS)

    Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.

  4. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.

    2013-04-01

    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.

  5. Scalable Computing of the Mesh Size Effect on Modeling Damage Mechanics in Woven Armor Composites

    DTIC Science & Technology

    2008-12-01

    manner of a user defined material subroutine to provide overall stress increments to, the parallel LS-DYNA3D a Lagrangian explicit code used in...finite element code, as a user defined material subroutine . The ability of this subroutine to model the effect of the progressions of a select number...is added as a user defined material subroutine to parallel LS-DYNA3D. The computations of the global mesh are handled by LS-DYNA3D and are spread

  6. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  7. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  8. Calculation of Water Drop Trajectories to and About Arbitrary Three-Dimensional Bodies in Potential Airflow

    NASA Technical Reports Server (NTRS)

    Norment, H. G.

    1980-01-01

    Calculations can be performed for any atmospheric conditions and for all water drop sizes, from the smallest cloud droplet to large raindrops. Any subsonic, external, non-lifting flow can be accommodated; flow into, but not through, inlets also can be simulated. Experimental water drop drag relations are used in the water drop equations of motion and effects of gravity settling are included. Seven codes are described: (1) a code used to debug and plot body surface description data; (2) a code that processes the body surface data to yield the potential flow field; (3) a code that computes flow velocities at arrays of points in space; (4) a code that computes water drop trajectories from an array of points in space; (5) a code that computes water drop trajectories and fluxes to arbitrary target points; (6) a code that computes water drop trajectories tangent to the body; and (7) a code that produces stereo pair plots which include both the body and trajectories. Code descriptions include operating instructions, card inputs and printouts for example problems, and listing of the FORTRAN codes. Accuracy of the calculations is discussed, and trajectory calculation results are compared with prior calculations and with experimental data.

  9. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  10. Targeting multiple heterogeneous hardware platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware-specific optimizations as necessary.

  11. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.

    The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less

  12. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    DOE PAGES

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; ...

    2016-03-03

    The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less

  13. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less

  14. Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Qaddouri, Abdessamad

    Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.

  15. Efficiency of International Classification of Diseases, Ninth Revision, Billing Code Searches to Identify Emergency Department Visits for Blood or Body Fluid Exposures through a Statewide Multicenter Database

    PubMed Central

    Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.

    2016-01-01

    BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713

  16. HNBody: A Simulation Package for Hierarchical N-Body Systems

    NASA Astrophysics Data System (ADS)

    Rauch, Kevin P.

    2018-04-01

    HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).

  17. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  18. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE PAGES

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...

    2016-01-26

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  19. Performance of the OVERFLOW-MLP and LAURA-MLP CFD Codes on the NASA Ames 512 CPU Origin System

    NASA Technical Reports Server (NTRS)

    Taft, James R.

    2000-01-01

    The shared memory Multi-Level Parallelism (MLP) technique, developed last year at NASA Ames has been very successful in dramatically improving the performance of important NASA CFD codes. This new and very simple parallel programming technique was first inserted into the OVERFLOW production CFD code in FY 1998. The OVERFLOW-MLP code's parallel performance scaled linearly to 256 CPUs on the NASA Ames 256 CPU Origin 2000 system (steger). Overall performance exceeded 20.1 GFLOP/s, or about 4.5x the performance of a dedicated 16 CPU C90 system. All of this was achieved without any major modification to the original vector based code. The OVERFLOW-MLP code is now in production on the inhouse Origin systems as well as being used offsite at commercial aerospace companies. Partially as a result of this work, NASA Ames has purchased a new 512 CPU Origin 2000 system to further test the limits of parallel performance for NASA codes of interest. This paper presents the performance obtained from the latest optimization efforts on this machine for the LAURA-MLP and OVERFLOW-MLP codes. The Langley Aerothermodynamics Upwind Relaxation Algorithm (LAURA) code is a key simulation tool in the development of the next generation shuttle, interplanetary reentry vehicles, and nearly all "X" plane development. This code sustains about 4-5 GFLOP/s on a dedicated 16 CPU C90. At this rate, expected workloads would require over 100 C90 CPU years of computing over the next few calendar years. It is not feasible to expect that this would be affordable or available to the user community. Dramatic performance gains on cheaper systems are needed. This code is expected to be perhaps the largest consumer of NASA Ames compute cycles per run in the coming year.The OVERFLOW CFD code is extensively used in the government and commercial aerospace communities to evaluate new aircraft designs. It is one of the largest consumers of NASA supercomputing cycles and large simulations of highly resolved full aircraft are routinely undertaken. Typical large problems might require 100s of Cray C90 CPU hours to complete. The dramatic performance gains with the 256 CPU steger system are exciting. Obtaining results in hours instead of months is revolutionizing the way in which aircraft manufacturers are looking at future aircraft simulation work. Figure 2 below is a current state of the art plot of OVERFLOW-MLP performance on the 512 CPU Lomax system. As can be seen, the chart indicates that OVERFLOW-MLP continues to scale linearly with CPU count up to 512 CPUs on a large 35 million point full aircraft RANS simulation. At this point performance is such that a fully converged simulation of 2500 time steps is completed in less than 2 hours of elapsed time. Further work over the next few weeks will improve the performance of this code even further.The LAURA code has been converted to the MLP format as well. This code is currently being optimized for the 512 CPU system. Performance statistics indicate that the goal of 100 GFLOP/s will be achieved by year's end. This amounts to 20x the 16 CPU C90 result and strongly demonstrates the viability of the new parallel systems rapidly solving very large simulations in a production environment.

  20. Development of Parallel Code for the Alaska Tsunami Forecast Model

    NASA Astrophysics Data System (ADS)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  1. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    DOE PAGES

    Frerichs, H.; Schmitz, Oliver; Evans, Todd; ...

    2015-07-13

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e. where the safety factor is equal to rational values q = m/n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are alignedmore » with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. Lastly, an additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.« less

  2. The EMCC / DARPA Massively Parallel Electromagnetic Scattering Project

    NASA Technical Reports Server (NTRS)

    Woo, Alex C.; Hill, Kueichien C.

    1996-01-01

    The Electromagnetic Code Consortium (EMCC) was sponsored by the Advanced Research Program Agency (ARPA) to demonstrate the effectiveness of massively parallel computing in large scale radar signature predictions. The EMCC/ARPA project consisted of three parts.

  3. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-02-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  4. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    PubMed

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  5. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  6. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Technical Reports Server (NTRS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-01-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  7. Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Taylor, Arthur C., III

    1994-01-01

    This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.

  8. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren

    2011-10-01

    Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.

  9. FoSSI: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Frickenhaus, Stephan; Hiller, Wolfgang; Best, Meike

    The portable software FoSSI is introduced that—in combination with additional free solver software packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems arising in finite element model codes. FoSSI is intended to support rapid model code development, completely hiding the complexity of the underlying solver packages. In particular, the model developer need not be an expert in parallelization and is yet free to switch between different solver packages by simple modifications of the interface call. FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence, FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar features for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both formulated in finite elements. The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the code for domain-local operations of factorization, preconditioning and matrix-vector product can be readily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code development in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse linear Equations Solver.

  10. Effective Vaccine Communication during the Disneyland Measles Outbreak

    PubMed Central

    Broniatowski, David Andre; Hilyard, Karen M.; Dredze, Mark

    2016-01-01

    Vaccine refusal rates have increased in recent years, highlighting the need for effective risk communication, especially over social media. Fuzzy-trace theory predicts that individuals encode bottom-line meaning ("gist") and statistical information ("verbatim") in parallel and that articles expressing a clear gist will be most compelling. We coded news articles (n=4,686) collected during the 2014–2015 Disneyland measles for content including statistics, stories, or opinions containing bottom-line gists regarding vaccines and vaccine-preventable illnesses. We measured the extent to which articles were compelling by how frequently they were shared on Facebook. The most widely shared articles expressed bottom-line opinions, although articles containing statistics were also more likely to be shared than articles lacking statistics. Stories had limited impact on Facebook shares. Results support Fuzzy Trace Theory's predictions regarding the distinct yet parallel impact of categorical gist and statistical verbatim information on public health communication. PMID:27179915

  11. Effective vaccine communication during the disneyland measles outbreak.

    PubMed

    Broniatowski, David A; Hilyard, Karen M; Dredze, Mark

    2016-06-14

    Vaccine refusal rates have increased in recent years, highlighting the need for effective risk communication, especially over social media. Fuzzy-trace theory predicts that individuals encode bottom-line meaning ("gist") and statistical information ("verbatim") in parallel and those articles expressing a clear gist will be most compelling. We coded news articles (n=4581) collected during the 2014-2015 Disneyland measles for content including statistics, stories, or bottom-line gists regarding vaccines and vaccine-preventable illnesses. We measured the extent to which articles were compelling by how frequently they were shared on Facebook. The most widely shared articles expressed bottom-line gists, although articles containing statistics were also more likely to be shared than articles lacking statistics. Stories had limited impact on Facebook shares. Results support Fuzzy Trace Theory's predictions regarding the distinct yet parallel impact of categorical gist and statistical verbatim information on public health communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  13. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  14. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.

    PubMed

    Ruymgaart, A Peter; Elber, Ron

    2012-11-13

    We report Graphics Processing Unit (GPU) and Open-MP parallel implementations of water-specific force calculations and of bond constraints for use in Molecular Dynamics simulations. We focus on a typical laboratory computing-environment in which a CPU with a few cores is attached to a GPU. We discuss in detail the design of the code and we illustrate performance comparable to highly optimized codes such as GROMACS. Beside speed our code shows excellent energy conservation. Utilization of water-specific lists allows the efficient calculations of non-bonded interactions that include water molecules and results in a speed-up factor of more than 40 on the GPU compared to code optimized on a single CPU core for systems larger than 20,000 atoms. This is up four-fold from a factor of 10 reported in our initial GPU implementation that did not include a water-specific code. Another optimization is the implementation of constrained dynamics entirely on the GPU. The routine, which enforces constraints of all bonds, runs in parallel on multiple Open-MP cores or entirely on the GPU. It is based on Conjugate Gradient solution of the Lagrange multipliers (CG SHAKE). The GPU implementation is partially in double precision and requires no communication with the CPU during the execution of the SHAKE algorithm. The (parallel) implementation of SHAKE allows an increase of the time step to 2.0fs while maintaining excellent energy conservation. Interestingly, CG SHAKE is faster than the usual bond relaxation algorithm even on a single core if high accuracy is expected. The significant speedup of the optimized components transfers the computational bottleneck of the MD calculation to the reciprocal part of Particle Mesh Ewald (PME).

  15. GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes

    NASA Astrophysics Data System (ADS)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  16. The interaction between fishbone modes and shear Alfvén waves in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    He, Hongda; Liu, Yueqiang; Dong, J. Q.; Hao, G. Z.; Wu, Tingting; He, Zhixiong; Zhao, K.

    2016-05-01

    The resonant interaction between the energetic particle triggered fishbone mode and the shear Alfvén waves is computationally investigated and firmly demonstrated based on a tokamak plasma equilibrium, using the self-consistent MHD-kinetic hybrid code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503). This type of continuum resonance, occurring critically due to the mode’s toroidal rotation in the plasma frame, significantly modifies the eigenmode structure of the fishbone instability, by introducing two large peaks of the perturbed parallel current density near but offside the q  =  1 rational surface (q is the safety factor). The self-consistently computed radial plasma displacement substantially differs from that being assumed in the conventional fishbone theory.

  17. Displacement and deformation measurement for large structures by camera network

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  18. Neural mechanisms of selective attention in the somatosensory system.

    PubMed

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  19. Neural mechanisms of selective attention in the somatosensory system

    PubMed Central

    Hysaj, Kristjana; Niebur, Ernst

    2016-01-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  20. Classical trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.

    1989-01-01

    Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.

Top