Sample records for parallel performance models

  1. Multitasking TORT under UNICOS: Parallel performance models and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  2. Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  3. Performance Modeling and Measurement of Parallelized Code for Distributed Shared Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry

    1998-01-01

    This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.

  4. Performance Analysis and Optimization on the UCLA Parallel Atmospheric General Circulation Model Code

    NASA Technical Reports Server (NTRS)

    Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos

    1996-01-01

    An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.

  5. Modelling parallel programs and multiprocessor architectures with AXE

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.

    1991-01-01

    AXE, An Experimental Environment for Parallel Systems, was designed to model and simulate for parallel systems at the process level. It provides an integrated environment for specifying computation models, multiprocessor architectures, data collection, and performance visualization. AXE is being used at NASA-Ames for developing resource management strategies, parallel problem formulation, multiprocessor architectures, and operating system issues related to the High Performance Computing and Communications Program. AXE's simple, structured user-interface enables the user to model parallel programs and machines precisely and efficiently. Its quick turn-around time keeps the user interested and productive. AXE models multicomputers. The user may easily modify various architectural parameters including the number of sites, connection topologies, and overhead for operating system activities. Parallel computations in AXE are represented as collections of autonomous computing objects known as players. Their use and behavior is described. Performance data of the multiprocessor model can be observed on a color screen. These include CPU and message routing bottlenecks, and the dynamic status of the software.

  6. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  7. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less

  8. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  9. Performance of GeantV EM Physics Models

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2017-10-01

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  10. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  11. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2004-12-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  12. Anatomically constrained neural network models for the categorization of facial expression

    NASA Astrophysics Data System (ADS)

    McMenamin, Brenton W.; Assadi, Amir H.

    2005-01-01

    The ability to recognize facial expression in humans is performed with the amygdala which uses parallel processing streams to identify the expressions quickly and accurately. Additionally, it is possible that a feedback mechanism may play a role in this process as well. Implementing a model with similar parallel structure and feedback mechanisms could be used to improve current facial recognition algorithms for which varied expressions are a source for error. An anatomically constrained artificial neural-network model was created that uses this parallel processing architecture and feedback to categorize facial expressions. The presence of a feedback mechanism was not found to significantly improve performance for models with parallel architecture. However the use of parallel processing streams significantly improved accuracy over a similar network that did not have parallel architecture. Further investigation is necessary to determine the benefits of using parallel streams and feedback mechanisms in more advanced object recognition tasks.

  13. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functionalmore » characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.« less

  14. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage

    NASA Astrophysics Data System (ADS)

    Jiang, Yao; Li, Tie-Min; Wang, Li-Ping

    2015-09-01

    This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.

  15. Efficient Parallel Levenberg-Marquardt Model Fitting towards Real-Time Automated Parametric Imaging Microscopy

    PubMed Central

    Zhu, Xiang; Zhang, Dianwen

    2013-01-01

    We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785

  16. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  17. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  18. Studying an Eulerian Computer Model on Different High-performance Computer Platforms and Some Applications

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2010-11-01

    The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.

  19. Parallel performance of TORT on the CRAY J90: Model and measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1997-10-01

    A limitation on the parallel performance of TORT on the CRAY J90 is the amount of extra work introduced by the multitasking algorithm itself. The extra work beyond that of the serial version of the code, called overhead, arises from the synchronization of the parallel tasks and the accumulation of results by the master task. The goal of recent updates to TORT was to reduce the time consumed by these activities. To help understand which components of the multitasking algorithm contribute significantly to the overhead, a parallel performance model was constructed and compared to measurements of actual timings of themore » code.« less

  20. Improving parallel I/O autotuning with performance modeling

    DOE PAGES

    Behzad, Babak; Byna, Surendra; Wild, Stefan M.; ...

    2014-01-01

    Various layers of the parallel I/O subsystem offer tunable parameters for improving I/O performance on large-scale computers. However, searching through a large parameter space is challenging. We are working towards an autotuning framework for determining the parallel I/O parameters that can achieve good I/O performance for different data write patterns. In this paper, we characterize parallel I/O and discuss the development of predictive models for use in effectively reducing the parameter space. Furthermore, applying our technique on tuning an I/O kernel derived from a large-scale simulation code shows that the search time can be reduced from 12 hours to 2more » hours, while achieving 54X I/O performance speedup.« less

  1. The source of dual-task limitations: Serial or parallel processing of multiple response selections?

    PubMed Central

    Marois, René

    2014-01-01

    Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266

  2. MPI, HPF or OpenMP: A Study with the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Hribar, Michelle; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1999-01-01

    Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but the task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study,potentials of applying some of the techniques to realistic aerospace applications will be presented

  3. MPI, HPF or OpenMP: A Study with the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Hribar, M.; Waheed, A.; Yan, J.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but this task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study, we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study, potentials of applying some of the techniques to realistic aerospace applications will be presented.

  4. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  5. Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma

    NASA Astrophysics Data System (ADS)

    Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger

    2011-06-01

    We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.

  6. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  7. On the impact of communication complexity on the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D. B.; Van Rosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  8. Implementation and performance of parallel Prolog interpreter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Kale, L.V.; Balkrishna, R.

    1988-01-01

    In this paper, the authors discuss the implementation of a parallel Prolog interpreter on different parallel machines. The implementation is based on the REDUCE--OR process model which exploits both AND and OR parallelism in logic programs. It is machine independent as it runs on top of the chare-kernel--a machine-independent parallel programming system. The authors also give the performance of the interpreter running a diverse set of benchmark pargrams on parallel machines including shared memory systems: an Alliant FX/8, Sequent and a MultiMax, and a non-shared memory systems: Intel iPSC/32 hypercube, in addition to its performance on a multiprocessor simulation system.

  9. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  10. Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: Application to sea-ice

    NASA Astrophysics Data System (ADS)

    Samaké, Abdoulaye; Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar

    2017-12-01

    We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto-Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.

  11. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  12. Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.

  13. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  14. Distributed computing feasibility in a non-dedicated homogeneous distributed system

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Sun, Xian-He

    1993-01-01

    The low cost and availability of clusters of workstations have lead researchers to re-explore distributed computing using independent workstations. This approach may provide better cost/performance than tightly coupled multiprocessors. In practice, this approach often utilizes wasted cycles to run parallel jobs. The feasibility of such a non-dedicated parallel processing environment assuming workstation processes have preemptive priority over parallel tasks is addressed. An analytical model is developed to predict parallel job response times. Our model provides insight into how significantly workstation owner interference degrades parallel program performance. A new term task ratio, which relates the parallel task demand to the mean service demand of nonparallel workstation processes, is introduced. It was proposed that task ratio is a useful metric for determining how large the demand of a parallel applications must be in order to make efficient use of a non-dedicated distributed system.

  15. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  16. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.

  17. Parallel computing of a climate model on the dawn 1000 by domain decomposition method

    NASA Astrophysics Data System (ADS)

    Bi, Xunqiang

    1997-12-01

    In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.

  18. A hybrid parallel framework for the cellular Potts model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi; He, Kejing; Dong, Shoubin

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approachmore » achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).« less

  19. Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.

  20. An OpenACC-Based Unified Programming Model for Multi-accelerator Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungwon; Lee, Seyong; Vetter, Jeffrey S

    2015-01-01

    This paper proposes a novel SPMD programming model of OpenACC. Our model integrates the different granularities of parallelism from vector-level parallelism to node-level parallelism into a single, unified model based on OpenACC. It allows programmers to write programs for multiple accelerators using a uniform programming model whether they are in shared or distributed memory systems. We implement a prototype of our model and evaluate its performance with a GPU-based supercomputer using three benchmark applications.

  1. Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface

    USGS Publications Warehouse

    Alvioli, M.; Baum, R.L.

    2016-01-01

    We describe a parallel implementation of TRIGRS, the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model for the timing and distribution of rainfall-induced shallow landslides. We have parallelized the four time-demanding execution modes of TRIGRS, namely both the saturated and unsaturated model with finite and infinite soil depth options, within the Message Passing Interface framework. In addition to new features of the code, we outline details of the parallel implementation and show the performance gain with respect to the serial code. Results are obtained both on commercial hardware and on a high-performance multi-node machine, showing the different limits of applicability of the new code. We also discuss the implications for the application of the model on large-scale areas and as a tool for real-time landslide hazard monitoring.

  2. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  3. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  4. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  5. Performance Evaluation in Network-Based Parallel Computing

    NASA Technical Reports Server (NTRS)

    Dezhgosha, Kamyar

    1996-01-01

    Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.

  6. Improving operating room productivity via parallel anesthesia processing.

    PubMed

    Brown, Michael J; Subramanian, Arun; Curry, Timothy B; Kor, Daryl J; Moran, Steven L; Rohleder, Thomas R

    2014-01-01

    Parallel processing of regional anesthesia may improve operating room (OR) efficiency in patients undergoes upper extremity surgical procedures. The purpose of this paper is to evaluate whether performing regional anesthesia outside the OR in parallel increases total cases per day, improve efficiency and productivity. Data from all adult patients who underwent regional anesthesia as their primary anesthetic for upper extremity surgery over a one-year period were used to develop a simulation model. The model evaluated pure operating modes of regional anesthesia performed within and outside the OR in a parallel manner. The scenarios were used to evaluate how many surgeries could be completed in a standard work day (555 minutes) and assuming a standard three cases per day, what was the predicted end-of-day time overtime. Modeling results show that parallel processing of regional anesthesia increases the average cases per day for all surgeons included in the study. The average increase was 0.42 surgeries per day. Where it was assumed that three cases per day would be performed by all surgeons, the days going to overtime was reduced by 43 percent with parallel block. The overtime with parallel anesthesia was also projected to be 40 minutes less per day per surgeon. Key limitations include the assumption that all cases used regional anesthesia in the comparisons. Many days may have both regional and general anesthesia. Also, as a case study, single-center research may limit generalizability. Perioperative care providers should consider parallel administration of regional anesthesia where there is a desire to increase daily upper extremity surgical case capacity. Where there are sufficient resources to do parallel anesthesia processing, efficiency and productivity can be significantly improved. Simulation modeling can be an effective tool to show practice change effects at a system-wide level.

  7. Parallel Computing Using Web Servers and "Servlets".

    ERIC Educational Resources Information Center

    Lo, Alfred; Bloor, Chris; Choi, Y. K.

    2000-01-01

    Describes parallel computing and presents inexpensive ways to implement a virtual parallel computer with multiple Web servers. Highlights include performance measurement of parallel systems; models for using Java and intranet technology including single server, multiple clients and multiple servers, single client; and a comparison of CGI (common…

  8. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; et al.

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less

  9. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  10. Implementing a Parallel Image Edge Detection Algorithm Based on the Otsu-Canny Operator on the Hadoop Platform

    PubMed Central

    Wang, Min; Tian, Yun

    2018-01-01

    The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance. PMID:29861711

  11. Performance Characteristics of the Multi-Zone NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; VanderWijngaart, Rob F.

    2003-01-01

    We describe a new suite of computational benchmarks that models applications featuring multiple levels of parallelism. Such parallelism is often available in realistic flow computations on systems of grids, but had not previously been captured in bench-marks. The new suite, named NPB Multi-Zone, is extended from the NAS Parallel Benchmarks suite, and involves solving the application benchmarks LU, BT and SP on collections of loosely coupled discretization meshes. The solutions on the meshes are updated independently, but after each time step they exchange boundary value information. This strategy provides relatively easily exploitable coarse-grain parallelism between meshes. Three reference implementations are available: one serial, one hybrid using the Message Passing Interface (MPI) and OpenMP, and another hybrid using a shared memory multi-level programming model (SMP+OpenMP). We examine the effectiveness of hybrid parallelization paradigms in these implementations on three different parallel computers. We also use an empirical formula to investigate the performance characteristics of the multi-zone benchmarks.

  12. Modeling Cooperative Threads to Project GPU Performance for Adaptive Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jiayuan; Uram, Thomas; Morozov, Vitali A.

    Most accelerators, such as graphics processing units (GPUs) and vector processors, are particularly suitable for accelerating massively parallel workloads. On the other hand, conventional workloads are developed for multi-core parallelism, which often scale to only a few dozen OpenMP threads. When hardware threads significantly outnumber the degree of parallelism in the outer loop, programmers are challenged with efficient hardware utilization. A common solution is to further exploit the parallelism hidden deep in the code structure. Such parallelism is less structured: parallel and sequential loops may be imperfectly nested within each other, neigh boring inner loops may exhibit different concurrency patternsmore » (e.g. Reduction vs. Forall), yet have to be parallelized in the same parallel section. Many input-dependent transformations have to be explored. A programmer often employs a larger group of hardware threads to cooperatively walk through a smaller outer loop partition and adaptively exploit any encountered parallelism. This process is time-consuming and error-prone, yet the risk of gaining little or no performance remains high for such workloads. To reduce risk and guide implementation, we propose a technique to model workloads with limited parallelism that can automatically explore and evaluate transformations involving cooperative threads. Eventually, our framework projects the best achievable performance and the most promising transformations without implementing GPU code or using physical hardware. We envision our technique to be integrated into future compilers or optimization frameworks for autotuning.« less

  13. NAS Parallel Benchmark. Results 11-96: Performance Comparison of HPF and MPI Based NAS Parallel Benchmarks. 1.0

    NASA Technical Reports Server (NTRS)

    Saini, Subash; Bailey, David; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    High Performance Fortran (HPF), the high-level language for parallel Fortran programming, is based on Fortran 90. HALF was defined by an informal standards committee known as the High Performance Fortran Forum (HPFF) in 1993, and modeled on TMC's CM Fortran language. Several HPF features have since been incorporated into the draft ANSI/ISO Fortran 95, the next formal revision of the Fortran standard. HPF allows users to write a single parallel program that can execute on a serial machine, a shared-memory parallel machine, or a distributed-memory parallel machine. HPF eliminates the complex, error-prone task of explicitly specifying how, where, and when to pass messages between processors on distributed-memory machines, or when to synchronize processors on shared-memory machines. HPF is designed in a way that allows the programmer to code an application at a high level, and then selectively optimize portions of the code by dropping into message-passing or calling tuned library routines as 'extrinsics'. Compilers supporting High Performance Fortran features first appeared in late 1994 and early 1995 from Applied Parallel Research (APR) Digital Equipment Corporation, and The Portland Group (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP/2 in April of 1996. Over the past two years, these implementations have shown steady improvement in terms of both features and performance. The performance of various hardware/ programming model (HPF and MPI (message passing interface)) combinations will be compared, based on latest NAS (NASA Advanced Supercomputing) Parallel Benchmark (NPB) results, thus providing a cross-machine and cross-model comparison. Specifically, HPF based NPB results will be compared with MPI based NPB results to provide perspective on performance currently obtainable using HPF versus MPI or versus hand-tuned implementations such as those supplied by the hardware vendors. In addition we would also present NPB (Version 1.0) performance results for the following systems: DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, and VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz) NEC SX-4/32, SGI/CRAY T3E, SGI Origin2000.

  14. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    PubMed

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  15. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    PubMed Central

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812

  16. Roofline model toolkit: A practical tool for architectural and program analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Yu Jung; Williams, Samuel; Van Straalen, Brian

    We present preliminary results of the Roofline Toolkit for multicore, many core, and accelerated architectures. This paper focuses on the processor architecture characterization engine, a collection of portable instrumented micro benchmarks implemented with Message Passing Interface (MPI), and OpenMP used to express thread-level parallelism. These benchmarks are specialized to quantify the behavior of different architectural features. Compared to previous work on performance characterization, these microbenchmarks focus on capturing the performance of each level of the memory hierarchy, along with thread-level parallelism, instruction-level parallelism and explicit SIMD parallelism, measured in the context of the compilers and run-time environments. We also measuremore » sustained PCIe throughput with four GPU memory managed mechanisms. By combining results from the architecture characterization with the Roofline model based solely on architectural specifications, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we instrument three applications and plot their resultant performance on the corresponding Roofline model when run on a Blue Gene/Q architecture.« less

  17. Partial Overhaul and Initial Parallel Optimization of KINETICS, a Coupled Dynamics and Chemistry Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Howard; Willacy, Karen; Allen, Mark

    2012-01-01

    KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive and computationally demanding. The potential performance gain from using a supercomputer motivates the adaptation from a serial version to a parallelized one. Although the initial parallelization had been done, bottlenecks caused by an abundance of communication calls between processors led to an unfavorable drop in performance. Before starting on the parallel optimization process, a partial overhaul was required because a large emphasis was placed on streamlining the code for user convenience and revising the program to accommodate the new supercomputers at Caltech and JPL. After the first round of optimizations, the partial runtime was reduced by a factor of 23; however, performance gains are dependent on the size of the data, the number of processors requested, and the computer used.

  18. The Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    NASA Technical Reports Server (NTRS)

    Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.

  19. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers

    PubMed Central

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation. PMID:28239346

  20. Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers.

    PubMed

    Chen, Weiliang; De Schutter, Erik

    2017-01-01

    Stochastic, spatial reaction-diffusion simulations have been widely used in systems biology and computational neuroscience. However, the increasing scale and complexity of models and morphologies have exceeded the capacity of any serial implementation. This led to the development of parallel solutions that benefit from the boost in performance of modern supercomputers. In this paper, we describe an MPI-based, parallel operator-splitting implementation for stochastic spatial reaction-diffusion simulations with irregular tetrahedral meshes. The performance of our implementation is first examined and analyzed with simulations of a simple model. We then demonstrate its application to real-world research by simulating the reaction-diffusion components of a published calcium burst model in both Purkinje neuron sub-branch and full dendrite morphologies. Simulation results indicate that our implementation is capable of achieving super-linear speedup for balanced loading simulations with reasonable molecule density and mesh quality. In the best scenario, a parallel simulation with 2,000 processes runs more than 3,600 times faster than its serial SSA counterpart, and achieves more than 20-fold speedup relative to parallel simulation with 100 processes. In a more realistic scenario with dynamic calcium influx and data recording, the parallel simulation with 1,000 processes and no load balancing is still 500 times faster than the conventional serial SSA simulation.

  1. Performance of a parallel code for the Euler equations on hypercube computers

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Chan, Tony F.; Jesperson, Dennis C.; Tuminaro, Raymond S.

    1990-01-01

    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made.

  2. On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic

    Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less

  3. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    NASA Astrophysics Data System (ADS)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrisochoides, N.; Sukup, F.

    In this paper we present a parallel implementation of the Bowyer-Watson (BW) algorithm using the task-parallel programming model. The BW algorithm constitutes an ideal mesh refinement strategy for implementing a large class of unstructured mesh generation techniques on both sequential and parallel computers, by preventing the need for global mesh refinement. Its implementation on distributed memory multicomputes using the traditional data-parallel model has been proven very inefficient due to excessive synchronization needed among processors. In this paper we demonstrate that with the task-parallel model we can tolerate synchronization costs inherent to data-parallel methods by exploring concurrency in the processor level.more » Our preliminary performance data indicate that the task- parallel approach: (i) is almost four times faster than the existing data-parallel methods, (ii) scales linearly, and (iii) introduces minimum overheads compared to the {open_quotes}best{close_quotes} sequential implementation of the BW algorithm.« less

  5. Parallelization and automatic data distribution for nuclear reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directlymore » affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.« less

  6. Using Hadoop MapReduce for Parallel Genetic Algorithms: A Comparison of the Global, Grid and Island Models.

    PubMed

    Ferrucci, Filomena; Salza, Pasquale; Sarro, Federica

    2017-06-29

    The need to improve the scalability of Genetic Algorithms (GAs) has motivated the research on Parallel Genetic Algorithms (PGAs), and different technologies and approaches have been used. Hadoop MapReduce represents one of the most mature technologies to develop parallel algorithms. Based on the fact that parallel algorithms introduce communication overhead, the aim of the present work is to understand if, and possibly when, the parallel GAs solutions using Hadoop MapReduce show better performance than sequential versions in terms of execution time. Moreover, we are interested in understanding which PGA model can be most effective among the global, grid, and island models. We empirically assessed the performance of these three parallel models with respect to a sequential GA on a software engineering problem, evaluating the execution time and the achieved speedup. We also analysed the behaviour of the parallel models in relation to the overhead produced by the use of Hadoop MapReduce and the GAs' computational effort, which gives a more machine-independent measure of these algorithms. We exploited three problem instances to differentiate the computation load and three cluster configurations based on 2, 4, and 8 parallel nodes. Moreover, we estimated the costs of the execution of the experimentation on a potential cloud infrastructure, based on the pricing of the major commercial cloud providers. The empirical study revealed that the use of PGA based on the island model outperforms the other parallel models and the sequential GA for all the considered instances and clusters. Using 2, 4, and 8 nodes, the island model achieves an average speedup over the three datasets of 1.8, 3.4, and 7.0 times, respectively. Hadoop MapReduce has a set of different constraints that need to be considered during the design and the implementation of parallel algorithms. The overhead of data store (i.e., HDFS) accesses, communication, and latency requires solutions that reduce data store operations. For this reason, the island model is more suitable for PGAs than the global and grid model, also in terms of costs when executed on a commercial cloud provider.

  7. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  8. Parallel community climate model: Description and user`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less

  9. Electromagnetic Physics Models for Parallel Computing Architectures

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2016-10-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.

  10. Xyce Parallel Electronic Simulator : users' guide, version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, Robert John; Waters, Lon J.; Rankin, Eric Lamont

    2004-06-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator capable of simulating electrical circuits at a variety of abstraction levels. Primarily, Xyce has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability the current state-of-the-art in the following areas: {sm_bullet} Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. {sm_bullet} Improved performance for allmore » numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. {sm_bullet} Device models which are specifically tailored to meet Sandia's needs, including many radiation-aware devices. {sm_bullet} A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). {sm_bullet} Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing of computing platforms. These include serial, shared-memory and distributed-memory parallel implementation - which allows it to run efficiently on the widest possible number parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. One feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce These input formats include standard analytical models, behavioral models look-up Parallel Electronic Simulator is designed to support a variety of device model inputs. tables, and mesh-level PDE device models. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important feature of Xyce is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Ultimately, these capabilities are migrated to end users.« less

  11. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  12. An approach to enhance pnetCDF performance in environmental modeling applications

    EPA Science Inventory

    Data intensive simulations are often limited by their I/O (input/output) performance, and "novel" techniques need to be developed in order to overcome this limitation. The software package pnetCDF (parallel network Common Data Form), which works with parallel file syste...

  13. Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method

    NASA Astrophysics Data System (ADS)

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke

    2018-01-01

    Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.

  14. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  15. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  16. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN

    PubMed Central

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. PMID:25506097

  17. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN.

    PubMed

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.

  18. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  19. A Neurally Plausible Parallel Distributed Processing Model of Event-Related Potential Word Reading Data

    ERIC Educational Resources Information Center

    Laszlo, Sarah; Plaut, David C.

    2012-01-01

    The Parallel Distributed Processing (PDP) framework has significant potential for producing models of cognitive tasks that approximate how the brain performs the same tasks. To date, however, there has been relatively little contact between PDP modeling and data from cognitive neuroscience. In an attempt to advance the relationship between…

  20. High-energy physics software parallelization using database techniques

    NASA Astrophysics Data System (ADS)

    Argante, E.; van der Stok, P. D. V.; Willers, I.

    1997-02-01

    A programming model for software parallelization, called CoCa, is introduced that copes with problems caused by typical features of high-energy physics software. By basing CoCa on the database transaction paradimg, the complexity induced by the parallelization is for a large part transparent to the programmer, resulting in a higher level of abstraction than the native message passing software. CoCa is implemented on a Meiko CS-2 and on a SUN SPARCcenter 2000 parallel computer. On the CS-2, the performance is comparable with the performance of native PVM and MPI.

  1. Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach

    NASA Technical Reports Server (NTRS)

    Mak, Victor W. K.

    1986-01-01

    Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.

  2. Parallelizing Timed Petri Net simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1993-01-01

    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included.

  3. Parallel and fault-tolerant algorithms for hypercube multiprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykanat, C.

    1988-01-01

    Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less

  4. An embedded multi-core parallel model for real-time stereo imaging

    NASA Astrophysics Data System (ADS)

    He, Wenjing; Hu, Jian; Niu, Jingyu; Li, Chuanrong; Liu, Guangyu

    2018-04-01

    The real-time processing based on embedded system will enhance the application capability of stereo imaging for LiDAR and hyperspectral sensor. The task partitioning and scheduling strategies for embedded multiprocessor system starts relatively late, compared with that for PC computer. In this paper, aimed at embedded multi-core processing platform, a parallel model for stereo imaging is studied and verified. After analyzing the computing amount, throughout capacity and buffering requirements, a two-stage pipeline parallel model based on message transmission is established. This model can be applied to fast stereo imaging for airborne sensors with various characteristics. To demonstrate the feasibility and effectiveness of the parallel model, a parallel software was designed using test flight data, based on the 8-core DSP processor TMS320C6678. The results indicate that the design performed well in workload distribution and had a speed-up ratio up to 6.4.

  5. Electromagnetic physics models for parallel computing architectures

    DOE PAGES

    Amadio, G.; Ananya, A.; Apostolakis, J.; ...

    2016-11-21

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less

  6. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  7. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  8. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  9. Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)

    2000-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.

  10. Biocellion: accelerating computer simulation of multicellular biological system models.

    PubMed

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  12. Design Sketches For Optical Crossbar Switches Intended For Large-Scale Parallel Processing Applications

    NASA Astrophysics Data System (ADS)

    Hartmann, Alfred; Redfield, Steve

    1989-04-01

    This paper discusses design of large-scale (1000x 1000) optical crossbar switching networks for use in parallel processing supercom-puters. Alternative design sketches for an optical crossbar switching network are presented using free-space optical transmission with either a beam spreading/masking model or a beam steering model for internodal communications. The performances of alternative multiple access channel communications protocol-unslotted and slotted ALOHA and carrier sense multiple access (CSMA)-are compared with the performance of the classic arbitrated bus crossbar of conventional electronic parallel computing. These comparisons indicate an almost inverse relationship between ease of implementation and speed of operation. Practical issues of optical system design are addressed, and an optically addressed, composite spatial light modulator design is presented for fabrication to arbitrarily large scale. The wide range of switch architecture, communications protocol, optical systems design, device fabrication, and system performance problems presented by these design sketches poses a serious challenge to practical exploitation of highly parallel optical interconnects in advanced computer designs.

  13. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  14. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  15. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  16. A neurally plausible parallel distributed processing model of event-related potential word reading data.

    PubMed

    Laszlo, Sarah; Plaut, David C

    2012-03-01

    The Parallel Distributed Processing (PDP) framework has significant potential for producing models of cognitive tasks that approximate how the brain performs the same tasks. To date, however, there has been relatively little contact between PDP modeling and data from cognitive neuroscience. In an attempt to advance the relationship between explicit, computational models and physiological data collected during the performance of cognitive tasks, we developed a PDP model of visual word recognition which simulates key results from the ERP reading literature, while simultaneously being able to successfully perform lexical decision-a benchmark task for reading models. Simulations reveal that the model's success depends on the implementation of several neurally plausible features in its architecture which are sufficiently domain-general to be relevant to cognitive modeling more generally. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The cost of conservative synchronization in parallel discrete event simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.

  18. Performance Comparison of a Set of Periodic and Non-Periodic Tridiagonal Solvers on SP2 and Paragon Parallel Computers

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Moitra, Stuti

    1996-01-01

    Various tridiagonal solvers have been proposed in recent years for different parallel platforms. In this paper, the performance of three tridiagonal solvers, namely, the parallel partition LU algorithm, the parallel diagonal dominant algorithm, and the reduced diagonal dominant algorithm, is studied. These algorithms are designed for distributed-memory machines and are tested on an Intel Paragon and an IBM SP2 machines. Measured results are reported in terms of execution time and speedup. Analytical study are conducted for different communication topologies and for different tridiagonal systems. The measured results match the analytical results closely. In addition to address implementation issues, performance considerations such as problem sizes and models of speedup are also discussed.

  19. Vascular system modeling in parallel environment - distributed and shared memory approaches

    PubMed Central

    Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne

    2011-01-01

    The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891

  20. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  1. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  2. The R package "sperrorest" : Parallelized spatial error estimation and variable importance assessment for geospatial machine learning

    NASA Astrophysics Data System (ADS)

    Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander

    2017-04-01

    Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the possibility to perform cross-validation at the level of some grouping structure. As an example, in remote sensing of agricultural land uses, pixels from the same field contain nearly identical information and will thus be jointly placed in either the test set or the training set. Other spatial sampling resampling strategies are already available and can be extended by the user.

  3. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    PubMed

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.

  4. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    PubMed Central

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926

  5. A distributed, dynamic, parallel computational model: the role of noise in velocity storage

    PubMed Central

    Merfeld, Daniel M.

    2012-01-01

    Networks of neurons perform complex calculations using distributed, parallel computation, including dynamic “real-time” calculations required for motion control. The brain must combine sensory signals to estimate the motion of body parts using imperfect information from noisy neurons. Models and experiments suggest that the brain sometimes optimally minimizes the influence of noise, although it remains unclear when and precisely how neurons perform such optimal computations. To investigate, we created a model of velocity storage based on a relatively new technique–“particle filtering”–that is both distributed and parallel. It extends existing observer and Kalman filter models of vestibular processing by simulating the observer model many times in parallel with noise added. During simulation, the variance of the particles defining the estimator state is used to compute the particle filter gain. We applied our model to estimate one-dimensional angular velocity during yaw rotation, which yielded estimates for the velocity storage time constant, afferent noise, and perceptual noise that matched experimental data. We also found that the velocity storage time constant was Bayesian optimal by comparing the estimate of our particle filter with the estimate of the Kalman filter, which is optimal. The particle filter demonstrated a reduced velocity storage time constant when afferent noise increased, which mimics what is known about aminoglycoside ablation of semicircular canal hair cells. This model helps bridge the gap between parallel distributed neural computation and systems-level behavioral responses like the vestibuloocular response and perception. PMID:22514288

  6. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  7. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  8. Combining Phase Identification and Statistic Modeling for Automated Parallel Benchmark Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ye; Ma, Xiaosong; Liu, Qing Gary

    2015-01-01

    Parallel application benchmarks are indispensable for evaluating/optimizing HPC software and hardware. However, it is very challenging and costly to obtain high-fidelity benchmarks reflecting the scale and complexity of state-of-the-art parallel applications. Hand-extracted synthetic benchmarks are time-and labor-intensive to create. Real applications themselves, while offering most accurate performance evaluation, are expensive to compile, port, reconfigure, and often plainly inaccessible due to security or ownership concerns. This work contributes APPRIME, a novel tool for trace-based automatic parallel benchmark generation. Taking as input standard communication-I/O traces of an application's execution, it couples accurate automatic phase identification with statistical regeneration of event parameters tomore » create compact, portable, and to some degree reconfigurable parallel application benchmarks. Experiments with four NAS Parallel Benchmarks (NPB) and three real scientific simulation codes confirm the fidelity of APPRIME benchmarks. They retain the original applications' performance characteristics, in particular the relative performance across platforms.« less

  9. Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Ma, X; Singh, K

    2008-10-09

    With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less

  10. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  11. pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2014-01-01

    This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.

  12. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  13. Relation of Parallel Discrete Event Simulation algorithms with physical models

    NASA Astrophysics Data System (ADS)

    Shchur, L. N.; Shchur, L. V.

    2015-09-01

    We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.

  14. The new landscape of parallel computer architecture

    NASA Astrophysics Data System (ADS)

    Shalf, John

    2007-07-01

    The past few years has seen a sea change in computer architecture that will impact every facet of our society as every electronic device from cell phone to supercomputer will need to confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the highest performance per watt and per chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully unleashing the potential of the manycore approach to ensure future advances in sustained computational performance will require fundamental advances in computer architecture and programming models that are nothing short of reinventing computing. In this paper we examine the reasons behind the movement to exponentially increasing parallelism, and its ramifications for system design, applications and programming models.

  15. Implementation and Performance of Factorized Back projection on Low-Cost Commercial-Off-the-Shelf Hardware

    DTIC Science & Technology

    performance on a low cost, low size, weight, and power (SWAP) computer : a Raspberry Pi Model B. For a comparison of performance, a baseline implementation...improvement factor of 2-3 compared to filtered backprojection. Execution on a single Raspberry Pi is too slow for real-time imaging. However, factorized...backprojection is easily parallelized, and we include a discussion of parallel implementation across multiple Pis .

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, A.; Davis, A.; University of Wisconsin-Madison, Madison, WI 53706

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise tomore » extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)« less

  17. A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

    NASA Astrophysics Data System (ADS)

    Newman, Gregory A.

    2014-01-01

    Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

  18. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    PubMed Central

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Filho, Aly Ferreira Flores

    2014-01-01

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines. PMID:25051032

  19. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    PubMed

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  20. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  1. The fast and the slow of skilled bimanual rhythm production: parallel versus integrated timing.

    PubMed

    Krampe, R T; Kliegl, R; Mayr, U; Engbert, R; Vorberg, D

    2000-02-01

    Professional pianists performed 2 bimanual rhythms at a wide range of different tempos. The polyrhythmic task required the combination of 2 isochronous sequences (3 against 4) between the hands; in the syncopated rhythm task successive keystrokes formed intervals of identical (isochronous) durations. At slower tempos, pianists relied on integrated timing control merging successive intervals between the hands into a common reference frame. A timer-motor model is proposed based on the concepts of rate fluctuation and the distinction between target specification and timekeeper execution processes as a quantitative account of performance at slow tempos. At rapid rates expert pianists used hand-independent, parallel timing control. In alternative to a model based on a single central clock, findings support a model of flexible control structures with multiple timekeepers that can work in parallel to accommodate specific task constraints.

  2. User's guide to the Parallel Processing Extension of the Prognosis Model

    Treesearch

    Nicholas L. Crookston; Albert R. Stage

    1991-01-01

    The Parallel Processing Extension (PPE) of the Prognosis Model was designed to analyze responses of numerous stands to coordinated management and pest impacts that operate at the landscape level of forests. Vegetation-related resource supply analysis can be readily performed for a thousand or more sample stands for projections 400 years into the future. Capabilities...

  3. A Comparison of Three Programming Models for Adaptive Applications

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswa, Rupak; Kwak, Dochan (Technical Monitor)

    2000-01-01

    We study the performance and programming effort for two major classes of adaptive applications under three leading parallel programming models. We find that all three models can achieve scalable performance on the state-of-the-art multiprocessor machines. The basic parallel algorithms needed for different programming models to deliver their best performance are similar, but the implementations differ greatly, far beyond the fact of using explicit messages versus implicit loads/stores. Compared with MPI and SHMEM, CC-SAS (cache-coherent shared address space) provides substantial ease of programming at the conceptual and program orchestration level, which often leads to the performance gain. However it may also suffer from the poor spatial locality of physically distributed shared data on large number of processors. Our CC-SAS implementation of the PARMETIS partitioner itself runs faster than in the other two programming models, and generates more balanced result for our application.

  4. Variable-Complexity Multidisciplinary Optimization on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Grossman, Bernard; Mason, William H.; Watson, Layne T.; Haftka, Raphael T.

    1998-01-01

    This report covers work conducted under grant NAG1-1562 for the NASA High Performance Computing and Communications Program (HPCCP) from December 7, 1993, to December 31, 1997. The objective of the research was to develop new multidisciplinary design optimization (MDO) techniques which exploit parallel computing to reduce the computational burden of aircraft MDO. The design of the High-Speed Civil Transport (HSCT) air-craft was selected as a test case to demonstrate the utility of our MDO methods. The three major tasks of this research grant included: development of parallel multipoint approximation methods for the aerodynamic design of the HSCT, use of parallel multipoint approximation methods for structural optimization of the HSCT, mathematical and algorithmic development including support in the integration of parallel computation for items (1) and (2). These tasks have been accomplished with the development of a response surface methodology that incorporates multi-fidelity models. For the aerodynamic design we were able to optimize with up to 20 design variables using hundreds of expensive Euler analyses together with thousands of inexpensive linear theory simulations. We have thereby demonstrated the application of CFD to a large aerodynamic design problem. For the predicting structural weight we were able to combine hundreds of structural optimizations of refined finite element models with thousands of optimizations based on coarse models. Computations have been carried out on the Intel Paragon with up to 128 nodes. The parallel computation allowed us to perform combined aerodynamic-structural optimization using state of the art models of a complex aircraft configurations.

  5. On extending parallelism to serial simulators

    NASA Technical Reports Server (NTRS)

    Nicol, David; Heidelberger, Philip

    1994-01-01

    This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.

  6. Parallelization of elliptic solver for solving 1D Boussinesq model

    NASA Astrophysics Data System (ADS)

    Tarwidi, D.; Adytia, D.

    2018-03-01

    In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.

  7. Search asymmetries: parallel processing of uncertain sensory information.

    PubMed

    Vincent, Benjamin T

    2011-08-01

    What is the mechanism underlying search phenomena such as search asymmetry? Two-stage models such as Feature Integration Theory and Guided Search propose parallel pre-attentive processing followed by serial post-attentive processing. They claim search asymmetry effects are indicative of finding pairs of features, one processed in parallel, the other in serial. An alternative proposal is that a 1-stage parallel process is responsible, and search asymmetries occur when one stimulus has greater internal uncertainty associated with it than another. While the latter account is simpler, only a few studies have set out to empirically test its quantitative predictions, and many researchers still subscribe to the 2-stage account. This paper examines three separate parallel models (Bayesian optimal observer, max rule, and a heuristic decision rule). All three parallel models can account for search asymmetry effects and I conclude that either people can optimally utilise the uncertain sensory data available to them, or are able to select heuristic decision rules which approximate optimal performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis

    NASA Technical Reports Server (NTRS)

    Babcock, P.; Schor, A.; Rosch, G.

    1998-01-01

    This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.

  9. Computer-aided programming for message-passing system; Problems and a solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.Y.; Gajski, D.D.

    1989-12-01

    As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.

  10. Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources

    NASA Astrophysics Data System (ADS)

    Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.

    2015-12-01

    We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.

  11. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  12. Retargeting of existing FORTRAN program and development of parallel compilers

    NASA Technical Reports Server (NTRS)

    Agrawal, Dharma P.

    1988-01-01

    The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.

  13. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  14. Parallel simulation of tsunami inundation on a large-scale supercomputer

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the finite difference calculation, (2) communication between adjacent layers for the calculations to connect each layer, and (3) global communication to obtain the time step which satisfies the CFL condition in the whole domain. A preliminary test on the K computer showed the parallel efficiency on 1024 cores was 57% relative to 64 cores. We estimate that the parallel efficiency will be considerably improved by applying a 2-D domain decomposition instead of the present 1-D domain decomposition in future work. The present parallel tsunami model was applied to the 2011 Great Tohoku tsunami. The coarsest resolution layer covers a 758 km × 1155 km region with a 405 m grid spacing. A nesting of five layers was used with the resolution ratio of 1/3 between nested layers. The finest resolution region has 5 m resolution and covers most of the coastal region of Sendai city. To complete 2 hours of simulation time, the serial (non-parallel) computation took approximately 4 days on a workstation. To complete the same simulation on 1024 cores of the K computer, it took 45 minutes which is more than two times faster than real-time. This presentation discusses the updated parallel computational performance and the efficient use of the K computer when considering the characteristics of the tsunami inundation simulation model in relation to the characteristics and capabilities of the K computer.

  15. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  16. Implementation and analysis of a Navier-Stokes algorithm on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1988-01-01

    The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  17. Parallel distributed, reciprocal Monte Carlo radiation in coupled, large eddy combustion simulations

    NASA Astrophysics Data System (ADS)

    Hunsaker, Isaac L.

    Radiation is the dominant mode of heat transfer in high temperature combustion environments. Radiative heat transfer affects the gas and particle phases, including all the associated combustion chemistry. The radiative properties are in turn affected by the turbulent flow field. This bi-directional coupling of radiation turbulence interactions poses a major challenge in creating parallel-capable, high-fidelity combustion simulations. In this work, a new model was developed in which reciprocal monte carlo radiation was coupled with a turbulent, large-eddy simulation combustion model. A technique wherein domain patches are stitched together was implemented to allow for scalable parallelism. The combustion model runs in parallel on a decomposed domain. The radiation model runs in parallel on a recomposed domain. The recomposed domain is stored on each processor after information sharing of the decomposed domain is handled via the message passing interface. Verification and validation testing of the new radiation model were favorable. Strong scaling analyses were performed on the Ember cluster and the Titan cluster for the CPU-radiation model and GPU-radiation model, respectively. The model demonstrated strong scaling to over 1,700 and 16,000 processing cores on Ember and Titan, respectively.

  18. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  19. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  20. Parallel Distributed Processing and Lexical-Semantic Effects in Visual Word Recognition: Are a Few Stages Necessary?

    ERIC Educational Resources Information Center

    Borowsky, Ron; Besner, Derek

    2006-01-01

    D. C. Plaut and J. R. Booth presented a parallel distributed processing model that purports to simulate human lexical decision performance. This model (and D. C. Plaut, 1995) offers a single mechanism account of the pattern of factor effects on reaction time (RT) between semantic priming, word frequency, and stimulus quality without requiring a…

  1. Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less

  2. High Performance Programming Using Explicit Shared Memory Model on the Cray T3D

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The Cray T3D is the first-phase system in Cray Research Inc.'s (CRI) three-phase massively parallel processing program. In this report we describe the architecture of the T3D, as well as the CRAFT (Cray Research Adaptive Fortran) programming model, and contrast it with PVM, which is also supported on the T3D We present some performance data based on the NAS Parallel Benchmarks to illustrate both architectural and software features of the T3D.

  3. Accelerating finite-rate chemical kinetics with coprocessors: Comparing vectorization methods on GPUs, MICs, and CPUs

    NASA Astrophysics Data System (ADS)

    Stone, Christopher P.; Alferman, Andrew T.; Niemeyer, Kyle E.

    2018-05-01

    Accurate and efficient methods for solving stiff ordinary differential equations (ODEs) are a critical component of turbulent combustion simulations with finite-rate chemistry. The ODEs governing the chemical kinetics at each mesh point are decoupled by operator-splitting allowing each to be solved concurrently. An efficient ODE solver must then take into account the available thread and instruction-level parallelism of the underlying hardware, especially on many-core coprocessors, as well as the numerical efficiency. A stiff Rosenbrock and a nonstiff Runge-Kutta ODE solver are both implemented using the single instruction, multiple thread (SIMT) and single instruction, multiple data (SIMD) paradigms within OpenCL. Both methods solve multiple ODEs concurrently within the same instruction stream. The performance of these parallel implementations was measured on three chemical kinetic models of increasing size across several multicore and many-core platforms. Two separate benchmarks were conducted to clearly determine any performance advantage offered by either method. The first benchmark measured the run-time of evaluating the right-hand-side source terms in parallel and the second benchmark integrated a series of constant-pressure, homogeneous reactors using the Rosenbrock and Runge-Kutta solvers. The right-hand-side evaluations with SIMD parallelism on the host multicore Xeon CPU and many-core Xeon Phi co-processor performed approximately three times faster than the baseline multithreaded C++ code. The SIMT parallel model on the host and Phi was 13%-35% slower than the baseline while the SIMT model on the NVIDIA Kepler GPU provided approximately the same performance as the SIMD model on the Phi. The runtimes for both ODE solvers decreased significantly with the SIMD implementations on the host CPU (2.5-2.7 ×) and Xeon Phi coprocessor (4.7-4.9 ×) compared to the baseline parallel code. The SIMT implementations on the GPU ran 1.5-1.6 times faster than the baseline multithreaded CPU code; however, this was significantly slower than the SIMD versions on the host CPU or the Xeon Phi. The performance difference between the three platforms was attributed to thread divergence caused by the adaptive step-sizes within the ODE integrators. Analysis showed that the wider vector width of the GPU incurs a higher level of divergence than the narrower Sandy Bridge or Xeon Phi. The significant performance improvement provided by the SIMD parallel strategy motivates further research into more ODE solver methods that are both SIMD-friendly and computationally efficient.

  4. Rethinking key–value store for parallel I/O optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kougkas, Anthony; Eslami, Hassan; Sun, Xian-He

    2015-01-26

    Key-value stores are being widely used as the storage system for large-scale internet services and cloud storage systems. However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this study, we examine the architecture differences and performance characteristics of parallel file systems and key-value stores. We propose using key-value stores to optimize overall Input/Output (I/O) performance, especially for workloads that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata operations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application.more » We modeled the performance of these two systems using collected data from our experiments, and we provide a predictive method to identify which system offers better I/O performance given a specific workload. The results show that we can optimize the I/O performance in HPC systems by utilizing key-value stores.« less

  5. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  6. Comparison of two tension-band fixation materials and techniques in transverse patella fractures: a biomechanical study.

    PubMed

    Rabalais, R David; Burger, Evalina; Lu, Yun; Mansour, Alfred; Baratta, Richard V

    2008-02-01

    This study compared the biomechanical properties of 2 tension-band techniques with stainless steel wire and ultra high molecular weight polyethylene (UHMWPE) cable in a patella fracture model. Transverse patella fractures were simulated in 8 cadaver knees and fixated with figure-of-8 and parallel wire configurations in combination with Kirschner wires. Identical configurations were tested with UHMWPE cable. Specimens were mounted to a testing apparatus and the quadriceps was used to extend the knees from 90 degrees to 0 degrees; 4 knees were tested under monotonic loading, and 4 knees were tested under cyclic loading. Under monotonic loading, average fracture gap was 0.50 and 0.57 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.16 and 0.04 mm, respectively, in the parallel wire construct. Under cyclic loading, average fracture gap was 1.45 and 1.66 mm for steel wire and UHMWPE cable, respectively, in the figure-of-8 construct compared with 0.45 and 0.60 mm, respectively, in the parallel wire construct. A statistically significant effect of technique was found, with the parallel wire construct performing better than the figure-of-8 construct in both loading models. There was no effect of material or interaction. In this biomechanical model, parallel wires performed better than the figure-of-8 configuration in both loading regimens, and UHMWPE cable performed similarly to 18-gauge steel wire.

  7. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  8. Implementation and performance of FDPS: a framework for developing parallel particle simulation codes

    NASA Astrophysics Data System (ADS)

    Iwasawa, Masaki; Tanikawa, Ataru; Hosono, Natsuki; Nitadori, Keigo; Muranushi, Takayuki; Makino, Junichiro

    2016-08-01

    We present the basic idea, implementation, measured performance, and performance model of FDPS (Framework for Developing Particle Simulators). FDPS is an application-development framework which helps researchers to develop simulation programs using particle methods for large-scale distributed-memory parallel supercomputers. A particle-based simulation program for distributed-memory parallel computers needs to perform domain decomposition, exchange of particles which are not in the domain of each computing node, and gathering of the particle information in other nodes which are necessary for interaction calculation. Also, even if distributed-memory parallel computers are not used, in order to reduce the amount of computation, algorithms such as the Barnes-Hut tree algorithm or the Fast Multipole Method should be used in the case of long-range interactions. For short-range interactions, some methods to limit the calculation to neighbor particles are required. FDPS provides all of these functions which are necessary for efficient parallel execution of particle-based simulations as "templates," which are independent of the actual data structure of particles and the functional form of the particle-particle interaction. By using FDPS, researchers can write their programs with the amount of work necessary to write a simple, sequential and unoptimized program of O(N2) calculation cost, and yet the program, once compiled with FDPS, will run efficiently on large-scale parallel supercomputers. A simple gravitational N-body program can be written in around 120 lines. We report the actual performance of these programs and the performance model. The weak scaling performance is very good, and almost linear speed-up was obtained for up to the full system of the K computer. The minimum calculation time per timestep is in the range of 30 ms (N = 107) to 300 ms (N = 109). These are currently limited by the time for the calculation of the domain decomposition and communication necessary for the interaction calculation. We discuss how we can overcome these bottlenecks.

  9. The Parallel System for Integrating Impact Models and Sectors (pSIMS)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Kelly, David; Chryssanthacopoulos, James; Glotter, Michael; Jhunjhnuwala, Kanika; Best, Neil; Wilde, Michael; Foster, Ian

    2014-01-01

    We present a framework for massively parallel climate impact simulations: the parallel System for Integrating Impact Models and Sectors (pSIMS). This framework comprises a) tools for ingesting and converting large amounts of data to a versatile datatype based on a common geospatial grid; b) tools for translating this datatype into custom formats for site-based models; c) a scalable parallel framework for performing large ensemble simulations, using any one of a number of different impacts models, on clusters, supercomputers, distributed grids, or clouds; d) tools and data standards for reformatting outputs to common datatypes for analysis and visualization; and e) methodologies for aggregating these datatypes to arbitrary spatial scales such as administrative and environmental demarcations. By automating many time-consuming and error-prone aspects of large-scale climate impacts studies, pSIMS accelerates computational research, encourages model intercomparison, and enhances reproducibility of simulation results. We present the pSIMS design and use example assessments to demonstrate its multi-model, multi-scale, and multi-sector versatility.

  10. A Data Parallel Multizone Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1995-01-01

    We have developed a data parallel multizone compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the "chimera" approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. The design choices can be summarized as: 1. finite differences on structured grids; 2. implicit time-stepping with either distributed solves or data motion and local solves; 3. sequential stepping through multiple zones with interzone data transfer via a distributed data structure. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran (HPF). One interesting feature is the issue of turbulence modeling, where the architecture of a parallel machine makes the use of an algebraic turbulence model awkward, whereas models based on transport equations are more natural. We will present some performance figures for the code on the CM-5, and consider the issues involved in transitioning the code to HPF for portability to other parallel platforms.

  11. A parallel computational model for GATE simulations.

    PubMed

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    NASA Astrophysics Data System (ADS)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  13. cellGPU: Massively parallel simulations of dynamic vertex models

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  14. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Hu, Xiaosong; Jin, Chao; Jiang, Jiuchun; Zhang, Yanru; Yip, Tony

    2016-05-01

    With the development and popularization of electric vehicles, it is urgent and necessary to develop effective management and diagnosis technology for battery systems. In this work, we design a parallel battery model, according to equivalent circuits of parallel voltage and branch current, to study effects of imbalanced currents on parallel large-format LiFePO4/graphite battery systems. Taking a 60 Ah LiFePO4/graphite battery system manufactured by ATL (Amperex Technology Limited, China) as an example, causes of imbalanced currents in the parallel connection are analyzed using our model, and the associated effect mechanisms on long-term stability of each single battery are examined. Theoretical and experimental results show that continuously increasing imbalanced currents during cycling are mainly responsible for the capacity fade of LiFePO4/graphite parallel batteries. It is thus a good way to avoid fast performance fade of parallel battery systems by suppressing variations of branch currents.

  15. Performance of the SERI parallel-passage dehumidifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlepp, D.; Barlow, R.

    1984-09-01

    The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less

  16. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.

  17. Performance Comparison of HPF and MPI Based NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1997-01-01

    Compilers supporting High Performance Form (HPF) features first appeared in late 1994 and early 1995 from Applied Parallel Research (APR), Digital Equipment Corporation, and The Portland Group (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP2 in April of 1996. Over the past two years, these implementations have shown steady improvement in terms of both features and performance. The performance of various hardware/ programming model (HPF and MPI) combinations will be compared, based on latest NAS Parallel Benchmark results, thus providing a cross-machine and cross-model comparison. Specifically, HPF based NPB results will be compared with MPI based NPB results to provide perspective on performance currently obtainable using HPF versus MPI or versus hand-tuned implementations such as those supplied by the hardware vendors. In addition, we would also present NPB, (Version 1.0) performance results for the following systems: DEC Alpha Server 8400 5/440, Fujitsu CAPP Series (VX, VPP300, and VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz), NEC SX-4/32, SGI/CRAY T3E, and SGI Origin2000. We would also present sustained performance per dollar for Class B LU, SP and BT benchmarks.

  18. Block-Parallel Data Analysis with DIY2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Peterka, Tom

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less

  19. Highly parallel sparse Cholesky factorization

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Schreiber, Robert

    1990-01-01

    Several fine grained parallel algorithms were developed and compared to compute the Cholesky factorization of a sparse matrix. The experimental implementations are on the Connection Machine, a distributed memory SIMD machine whose programming model conceptually supplies one processor per data element. In contrast to special purpose algorithms in which the matrix structure conforms to the connection structure of the machine, the focus is on matrices with arbitrary sparsity structure. The most promising algorithm is one whose inner loop performs several dense factorizations simultaneously on a 2-D grid of processors. Virtually any massively parallel dense factorization algorithm can be used as the key subroutine. The sparse code attains execution rates comparable to those of the dense subroutine. Although at present architectural limitations prevent the dense factorization from realizing its potential efficiency, it is concluded that a regular data parallel architecture can be used efficiently to solve arbitrarily structured sparse problems. A performance model is also presented and it is used to analyze the algorithms.

  20. Predicting mining activity with parallel genetic algorithms

    USGS Publications Warehouse

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  1. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine, NASA Advanced Air Vehicles Program - Commercial Supersonic Technology Project - AeroServoElasticity

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.

  2. Solving Navier-Stokes equations on a massively parallel processor; The 1 GFLOP performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saati, A.; Biringen, S.; Farhat, C.

    This paper reports on experience in solving large-scale fluid dynamics problems on the Connection Machine model CM-2. The authors have implemented a parallel version of the MacCormack scheme for the solution of the Navier-Stokes equations. By using triad floating point operations and reducing the number of interprocessor communications, they have achieved a sustained performance rate of 1.42 GFLOPS.

  3. Parallel eigenanalysis of finite element models in a completely connected architecture

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Morel, M. R.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.

  4. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  5. A Systems Approach to Scalable Transportation Network Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S

    2006-01-01

    Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less

  6. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  7. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  8. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  9. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    NASA Astrophysics Data System (ADS)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  10. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-02-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  11. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Technical Reports Server (NTRS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-01-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  12. A fast ultrasonic simulation tool based on massively parallel implementations

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain

    2014-02-01

    This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.

  13. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    NASA Astrophysics Data System (ADS)

    Qin, Cheng-Zhi; Zhan, Lijun

    2012-06-01

    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.

  14. Parallel design of JPEG-LS encoder on graphics processing units

    NASA Astrophysics Data System (ADS)

    Duan, Hao; Fang, Yong; Huang, Bormin

    2012-01-01

    With recent technical advances in graphic processing units (GPUs), GPUs have outperformed CPUs in terms of compute capability and memory bandwidth. Many successful GPU applications to high performance computing have been reported. JPEG-LS is an ISO/IEC standard for lossless image compression which utilizes adaptive context modeling and run-length coding to improve compression ratio. However, adaptive context modeling causes data dependency among adjacent pixels and the run-length coding has to be performed in a sequential way. Hence, using JPEG-LS to compress large-volume hyperspectral image data is quite time-consuming. We implement an efficient parallel JPEG-LS encoder for lossless hyperspectral compression on a NVIDIA GPU using the computer unified device architecture (CUDA) programming technology. We use the block parallel strategy, as well as such CUDA techniques as coalesced global memory access, parallel prefix sum, and asynchronous data transfer. We also show the relation between GPU speedup and AVIRIS block size, as well as the relation between compression ratio and AVIRIS block size. When AVIRIS images are divided into blocks, each with 64×64 pixels, we gain the best GPU performance with 26.3x speedup over its original CPU code.

  15. Synergia: an accelerator modeling tool with 3-D space charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amundson, James F.; Spentzouris, P.; /Fermilab

    2004-07-01

    High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less

  16. Suppressing correlations in massively parallel simulations of lattice models

    NASA Astrophysics Data System (ADS)

    Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle

    2017-11-01

    For lattice Monte Carlo simulations parallelization is crucial to make studies of large systems and long simulation time feasible, while sequential simulations remain the gold-standard for correlation-free dynamics. Here, various domain decomposition schemes are compared, concluding with one which delivers virtually correlation-free simulations on GPUs. Extensive simulations of the octahedron model for 2 + 1 dimensional Kardar-Parisi-Zhang surface growth, which is very sensitive to correlation in the site-selection dynamics, were performed to show self-consistency of the parallel runs and agreement with the sequential algorithm. We present a GPU implementation providing a speedup of about 30 × over a parallel CPU implementation on a single socket and at least 180 × with respect to the sequential reference.

  17. Connectionist Models and Parallelism in High Level Vision.

    DTIC Science & Technology

    1985-01-01

    GRANT NUMBER(s) Jerome A. Feldman N00014-82-K-0193 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENt. PROJECT, TASK Computer Science...Connectionist Models 2.1 Background and Overviev % Computer science is just beginning to look seriously at parallel computation : it may turn out that...the chair. The program includes intermediate level networks that compute more complex joints and ones that compute parallelograms in the image. These

  18. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  19. Testing New Programming Paradigms with NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Schultz, M.; Yan, J.

    2000-01-01

    Over the past decade, high performance computing has evolved rapidly, not only in hardware architectures but also with increasing complexity of real applications. Technologies have been developing to aim at scaling up to thousands of processors on both distributed and shared memory systems. Development of parallel programs on these computers is always a challenging task. Today, writing parallel programs with message passing (e.g. MPI) is the most popular way of achieving scalability and high performance. However, writing message passing programs is difficult and error prone. Recent years new effort has been made in defining new parallel programming paradigms. The best examples are: HPF (based on data parallelism) and OpenMP (based on shared memory parallelism). Both provide simple and clear extensions to sequential programs, thus greatly simplify the tedious tasks encountered in writing message passing programs. HPF is independent of memory hierarchy, however, due to the immaturity of compiler technology its performance is still questionable. Although use of parallel compiler directives is not new, OpenMP offers a portable solution in the shared-memory domain. Another important development involves the tremendous progress in the internet and its associated technology. Although still in its infancy, Java promisses portability in a heterogeneous environment and offers possibility to "compile once and run anywhere." In light of testing these new technologies, we implemented new parallel versions of the NAS Parallel Benchmarks (NPBs) with HPF and OpenMP directives, and extended the work with Java and Java-threads. The purpose of this study is to examine the effectiveness of alternative programming paradigms. NPBs consist of five kernels and three simulated applications that mimic the computation and data movement of large scale computational fluid dynamics (CFD) applications. We started with the serial version included in NPB2.3. Optimization of memory and cache usage was applied to several benchmarks, noticeably BT and SP, resulting in better sequential performance. In order to overcome the lack of an HPF performance model and guide the development of the HPF codes, we employed an empirical performance model for several primitives found in the benchmarks. We encountered a few limitations of HPF, such as lack of supporting the "REDISTRIBUTION" directive and no easy way to handle irregular computation. The parallelization with OpenMP directives was done at the outer-most loop level to achieve the largest granularity. The performance of six HPF and OpenMP benchmarks is compared with their MPI counterparts for the Class-A problem size in the figure in next page. These results were obtained on an SGI Origin2000 (195MHz) with MIPSpro-f77 compiler 7.2.1 for OpenMP and MPI codes and PGI pghpf-2.4.3 compiler with MPI interface for HPF programs.

  20. The AIS-5000 parallel processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, L.A.; Wilson, S.S.

    1988-05-01

    The AIS-5000 is a commercially available massively parallel processor which has been designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. This architecture has superior cost/performance characteristics than two-dimensional mesh-connected systems. The design of the processing elements and their interconnections as well as the software used to program the system allow a wide variety of algorithms and applications to be implemented. In thismore » paper, the overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is presented. This model is supported by the AIS-5000 hardware and software and allows the system to be treated as a full-image-size, two-dimensional, mesh-connected parallel processor. Performance bench marks are given for certain simple and complex functions.« less

  1. Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2011-01-01

    In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less

  2. A parallel implementation of an off-lattice individual-based model of multicellular populations

    NASA Astrophysics Data System (ADS)

    Harvey, Daniel G.; Fletcher, Alexander G.; Osborne, James M.; Pitt-Francis, Joe

    2015-07-01

    As computational models of multicellular populations include ever more detailed descriptions of biophysical and biochemical processes, the computational cost of simulating such models limits their ability to generate novel scientific hypotheses and testable predictions. While developments in microchip technology continue to increase the power of individual processors, parallel computing offers an immediate increase in available processing power. To make full use of parallel computing technology, it is necessary to develop specialised algorithms. To this end, we present a parallel algorithm for a class of off-lattice individual-based models of multicellular populations. The algorithm divides the spatial domain between computing processes and comprises communication routines that ensure the model is correctly simulated on multiple processors. The parallel algorithm is shown to accurately reproduce the results of a deterministic simulation performed using a pre-existing serial implementation. We test the scaling of computation time, memory use and load balancing as more processes are used to simulate a cell population of fixed size. We find approximate linear scaling of both speed-up and memory consumption on up to 32 processor cores. Dynamic load balancing is shown to provide speed-up for non-regular spatial distributions of cells in the case of a growing population.

  3. Toward an automated parallel computing environment for geosciences

    NASA Astrophysics Data System (ADS)

    Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping

    2007-08-01

    Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.

  4. Parallel-hierarchical processing and classification of laser beam profile images based on the GPU-oriented architecture

    NASA Astrophysics Data System (ADS)

    Yarovyi, Andrii A.; Timchenko, Leonid I.; Kozhemiako, Volodymyr P.; Kokriatskaia, Nataliya I.; Hamdi, Rami R.; Savchuk, Tamara O.; Kulyk, Oleksandr O.; Surtel, Wojciech; Amirgaliyev, Yedilkhan; Kashaganova, Gulzhan

    2017-08-01

    The paper deals with a problem of insufficient productivity of existing computer means for large image processing, which do not meet modern requirements posed by resource-intensive computing tasks of laser beam profiling. The research concentrated on one of the profiling problems, namely, real-time processing of spot images of the laser beam profile. Development of a theory of parallel-hierarchic transformation allowed to produce models for high-performance parallel-hierarchical processes, as well as algorithms and software for their implementation based on the GPU-oriented architecture using GPGPU technologies. The analyzed performance of suggested computerized tools for processing and classification of laser beam profile images allows to perform real-time processing of dynamic images of various sizes.

  5. The Many Ways Data Must Flow.

    ERIC Educational Resources Information Center

    La Brecque, Mort

    1984-01-01

    To break the bottleneck inherent in today's linear computer architectures, parallel schemes (which allow computers to perform multiple tasks at one time) are being devised. Several of these schemes are described. Dataflow devices, parallel number-crunchers, programing languages, and a device based on a neurological model are among the areas…

  6. Parallel particle filters for online identification of mechanistic mathematical models of physiology from monitoring data: performance and real-time scalability in simulation scenarios.

    PubMed

    Zenker, Sven

    2010-08-01

    Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested. A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario. SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories. Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.

  7. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast.

  8. A Comparison of Parallel and Integrated Models for Implementation of Routine HIV Screening in a Large, Urban Emergency Department.

    PubMed

    Hankin, Abigail; Freiman, Heather; Copeland, Brittney; Travis, Natasha; Shah, Bijal

    2016-01-01

    This study compared two approaches for implementation of non-targeted HIV screening in the emergency department (ED): (1) designated HIV counselors screening in parallel with ED care and (2) nurse-based screening integrated into patient triage. A retrospective analysis was performed to compare parallel and integrated screening models using data from the first 12 months of each program. Data for the parallel screening model were extracted from information collected by HIV test counselors and the electronic medical record (EMR). Integrated screening model data were extracted from the EMR and supplemented by data collected by HIV social workers during patient interaction. For both programs, data included demographics, HIV test offer, test acceptance or declination, and test result. A Z-test between two proportions was performed to compare screening frequencies and results. During the first 12 months of parallel screening, approximately 120,000 visits were made to the ED, with 3,816 (3%) HIV tests administered and 65 (2%) new diagnoses of HIV infection. During the first 12 months of integrated screening, 111,738 patients were triaged in the ED, with 16,329 (15%) patients tested and 190 (1%) new diagnoses. Integrated screening resulted in an increased frequency of HIV screening compared with parallel screening (0.15 tests per ED patient visit vs. 0.03 tests per ED patient visit, p<0.001) and an increase in the absolute number of new diagnoses (190 vs. 65), representing a slight decrease in the proportion of new diagnoses (1% vs. 2%, p=0.007). Non-targeted, integrated HIV screening, with test offer and order by ED nurses during patient triage, is feasible and resulted in an increased frequency of HIV screening and a threefold increase in the absolute number of newly identified HIV-positive patients.

  9. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  10. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.

    PubMed

    Ouyang, Huei-Tau

    2017-08-01

    Accurate inundation level forecasting during typhoon invasion is crucial for organizing response actions such as the evacuation of people from areas that could potentially flood. This paper explores the ability of nonlinear autoregressive neural networks with exogenous inputs (NARX) to predict inundation levels induced by typhoons. Two types of NARX architecture were employed: series-parallel (NARX-S) and parallel (NARX-P). Based on cross-correlation analysis of rainfall and water-level data from historical typhoon records, 10 NARX models (five of each architecture type) were constructed. The forecasting ability of each model was assessed by considering coefficient of efficiency (CE), relative time shift error (RTS), and peak water-level error (PE). The results revealed that high CE performance could be achieved by employing more model input variables. Comparisons of the two types of model demonstrated that the NARX-S models outperformed the NARX-P models in terms of CE and RTS, whereas both performed exceptionally in terms of PE and without significant difference. The NARX-S and NARX-P models with the highest overall performance were identified and their predictions were compared with those of traditional ARX-based models. The NARX-S model outperformed the ARX-based models in all three indexes, whereas the NARX-P model exhibited comparable CE performance and superior RTS and PE performance.

  11. ASC-ATDM Performance Portability Requirements for 2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Harold C.; Trott, Christian Robert

    This report outlines the research, development, and support requirements for the Advanced Simulation and Computing (ASC ) Advanced Technology, Development, and Mitigation (ATDM) Performance Portability (a.k.a., Kokkos) project for 2015 - 2019 . The research and development (R&D) goal for Kokkos (v2) has been to create and demonstrate a thread - parallel programming model a nd standard C++ library - based implementation that enables performance portability across diverse manycore architectures such as multicore CPU, Intel Xeon Phi, and NVIDIA Kepler GPU. This R&D goal has been achieved for algorithms that use data parallel pat terns including parallel - for, parallelmore » - reduce, and parallel - scan. Current R&D is focusing on hierarchical parallel patterns such as a directed acyclic graph (DAG) of asynchronous tasks where each task contain s nested data parallel algorithms. This five y ear plan includes R&D required to f ully and performance portably exploit thread parallelism across current and anticipated next generation platforms (NGP). The Kokkos library is being evaluated by many projects exploring algorithm s and code design for NGP. Some production libraries and applications such as Trilinos and LAMMPS have already committed to Kokkos as their foundation for manycore parallelism an d performance portability. These five year requirements includes support required for current and antic ipated ASC projects to be effective and productive in their use of Kokkos on NGP. The greatest risk to the success of Kokkos and ASC projects relying upon Kokkos is a lack of staffing resources to support Kokkos to the degree needed by these ASC projects. This support includes up - to - date tutorials, documentation, multi - platform (hardware and software stack) testing, minor feature enhancements, thread - scalable algorithm consulting, and managing collaborative R&D.« less

  12. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    NASA Astrophysics Data System (ADS)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  13. Modeling and controller design of a 6-DOF precision positioning system

    NASA Astrophysics Data System (ADS)

    Cai, Kunhai; Tian, Yanling; Liu, Xianping; Fatikow, Sergej; Wang, Fujun; Cui, Liangyu; Zhang, Dawei; Shirinzadeh, Bijan

    2018-05-01

    A key hurdle to meet the needs of micro/nano manipulation in some complex cases is the inadequate workspace and flexibility of the operation ends. This paper presents a 6-degree of freedom (DOF) serial-parallel precision positioning system, which consists of two compact type 3-DOF parallel mechanisms. Each parallel mechanism is driven by three piezoelectric actuators (PEAs), guided by three symmetric T-shape hinges and three elliptical flexible hinges, respectively. It can extend workspace and improve flexibility of the operation ends. The proposed system can be assembled easily, which will greatly reduce the assembly errors and improve the positioning accuracy. In addition, the kinematic and dynamic model of the 6-DOF system are established, respectively. Furthermore, in order to reduce the tracking error and improve the positioning accuracy, the Discrete-time Model Predictive Controller (DMPC) is applied as an effective control method. Meanwhile, the effectiveness of the DMCP control method is verified. Finally, the tracking experiment is performed to verify the tracking performances of the 6-DOF stage.

  14. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  15. Execution models for mapping programs onto distributed memory parallel computers

    NASA Technical Reports Server (NTRS)

    Sussman, Alan

    1992-01-01

    The problem of exploiting the parallelism available in a program to efficiently employ the resources of the target machine is addressed. The problem is discussed in the context of building a mapping compiler for a distributed memory parallel machine. The paper describes using execution models to drive the process of mapping a program in the most efficient way onto a particular machine. Through analysis of the execution models for several mapping techniques for one class of programs, we show that the selection of the best technique for a particular program instance can make a significant difference in performance. On the other hand, the results of benchmarks from an implementation of a mapping compiler show that our execution models are accurate enough to select the best mapping technique for a given program.

  16. Multicore Challenges and Benefits for High Performance Scientific Computing

    DOE PAGES

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2008-01-01

    Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less

  17. Predicting Cost/Performance Trade-Offs for Whitney: A Commodity Computing Cluster

    NASA Technical Reports Server (NTRS)

    Becker, Jeffrey C.; Nitzberg, Bill; VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)

    1997-01-01

    Recent advances in low-end processor and network technology have made it possible to build a "supercomputer" out of commodity components. We develop simple models of the NAS Parallel Benchmarks version 2 (NPB 2) to explore the cost/performance trade-offs involved in building a balanced parallel computer supporting a scientific workload. We develop closed form expressions detailing the number and size of messages sent by each benchmark. Coupling these with measured single processor performance, network latency, and network bandwidth, our models predict benchmark performance to within 30%. A comparison based on total system cost reveals that current commodity technology (200 MHz Pentium Pros with 100baseT Ethernet) is well balanced for the NPBs up to a total system cost of around $1,000,000.

  18. Parallelization of sequential Gaussian, indicator and direct simulation algorithms

    NASA Astrophysics Data System (ADS)

    Nunes, Ruben; Almeida, José A.

    2010-08-01

    Improving the performance and robustness of algorithms on new high-performance parallel computing architectures is a key issue in efficiently performing 2D and 3D studies with large amount of data. In geostatistics, sequential simulation algorithms are good candidates for parallelization. When compared with other computational applications in geosciences (such as fluid flow simulators), sequential simulation software is not extremely computationally intensive, but parallelization can make it more efficient and creates alternatives for its integration in inverse modelling approaches. This paper describes the implementation and benchmarking of a parallel version of the three classic sequential simulation algorithms: direct sequential simulation (DSS), sequential indicator simulation (SIS) and sequential Gaussian simulation (SGS). For this purpose, the source used was GSLIB, but the entire code was extensively modified to take into account the parallelization approach and was also rewritten in the C programming language. The paper also explains in detail the parallelization strategy and the main modifications. Regarding the integration of secondary information, the DSS algorithm is able to perform simple kriging with local means, kriging with an external drift and collocated cokriging with both local and global correlations. SIS includes a local correction of probabilities. Finally, a brief comparison is presented of simulation results using one, two and four processors. All performance tests were carried out on 2D soil data samples. The source code is completely open source and easy to read. It should be noted that the code is only fully compatible with Microsoft Visual C and should be adapted for other systems/compilers.

  19. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  20. Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++

    NASA Technical Reports Server (NTRS)

    Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis

    1994-01-01

    Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.

  1. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    PubMed

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficient partitioning and assignment on programs for multiprocessor execution

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1993-01-01

    The general problem studied is that of segmenting or partitioning programs for distribution across a multiprocessor system. Efficient partitioning and the assignment of program elements are of great importance since the time consumed in this overhead activity may easily dominate the computation, effectively eliminating any gains made by the use of the parallelism. In this study, the partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics, developed for similar applications are examined. Finally, a model for queueing networks with finite queues is developed which may be used to analyze multiprocessor system architectures with a shared memory approach to the problem of partitioning. The properties of sequentially written programs form obstacles to large scale (at the procedure or subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the sequential development of the program, severely limit parallelism. The design of heuristic algorithms is tied to the experience gained in the parallel splitting. Parallelism obtained through the physical separation of data has seen some success, especially at the data element level. Data parallelism on a grander scale requires models that accurately reflect the effects of blocking caused by finite queues. A model for the approximation of the performance of finite queueing networks is developed. This model makes use of the decomposition approach combined with the efficiency of product form solutions.

  3. Database Reorganization in Parallel Disk Arrays with I/O Service Stealing

    NASA Technical Reports Server (NTRS)

    Zabback, Peter; Onyuksel, Ibrahim; Scheuermann, Peter; Weikum, Gerhard

    1996-01-01

    We present a model for data reorganization in parallel disk systems that is geared towards load balancing in an environment with periodic access patterns. Data reorganization is performed by disk cooling, i.e. migrating files or extents from the hottest disks to the coldest ones. We develop an approximate queueing model for determining the effective arrival rates of cooling requests and discuss its use in assessing the costs versus benefits of cooling.

  4. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies

    NASA Astrophysics Data System (ADS)

    Bolis, A.; Cantwell, C. D.; Moxey, D.; Serson, D.; Sherwin, S. J.

    2016-09-01

    A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices. The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.

  5. Light-weight Parallel Python Tools for Earth System Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.

    2015-12-01

    With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.

  6. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipman, Galen M.

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematicmore » approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.« less

  8. Performance Evaluation and Modeling Techniques for Parallel Processors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dimpsey, Robert Tod

    1992-01-01

    In practice, the performance evaluation of supercomputers is still substantially driven by singlepoint estimates of metrics (e.g., MFLOPS) obtained by running characteristic benchmarks or workloads. With the rapid increase in the use of time-shared multiprogramming in these systems, such measurements are clearly inadequate. This is because multiprogramming and system overhead, as well as other degradations in performance due to time varying characteristics of workloads, are not taken into account. In multiprogrammed environments, multiple jobs and users can dramatically increase the amount of system overhead and degrade the performance of the machine. Performance techniques, such as benchmarking, which characterize performance on a dedicated machine ignore this major component of true computer performance. Due to the complexity of analysis, there has been little work done in analyzing, modeling, and predicting the performance of applications in multiprogrammed environments. This is especially true for parallel processors, where the costs and benefits of multi-user workloads are exacerbated. While some may claim that the issue of multiprogramming is not a viable one in the supercomputer market, experience shows otherwise. Even in recent massively parallel machines, multiprogramming is a key component. It has even been claimed that a partial cause of the demise of the CM2 was the fact that it did not efficiently support time-sharing. In the same paper, Gordon Bell postulates that, multicomputers will evolve to multiprocessors in order to support efficient multiprogramming. Therefore, it is clear that parallel processors of the future will be required to offer the user a time-shared environment with reasonable response times for the applications. In this type of environment, the most important performance metric is the completion of response time of a given application. However, there are a few evaluation efforts addressing this issue.

  9. ORCA Project: Research on high-performance parallel computer programming environments. Final report, 1 Apr-31 Mar 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, L.; Notkin, D.; Adams, L.

    1990-03-31

    This task relates to research on programming massively parallel computers. Previous work on the Ensamble concept of programming was extended and investigation into nonshared memory models of parallel computation was undertaken. Previous work on the Ensamble concept defined a set of programming abstractions and was used to organize the programming task into three distinct levels; Composition of machine instruction, composition of processes, and composition of phases. It was applied to shared memory models of computations. During the present research period, these concepts were extended to nonshared memory models. During the present research period, one Ph D. thesis was completed, onemore » book chapter, and six conference proceedings were published.« less

  10. On the utility of threads for data parallel programming

    NASA Technical Reports Server (NTRS)

    Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush

    1995-01-01

    Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.

  11. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    PubMed

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  12. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  13. Object-Oriented Implementation of the NAS Parallel Benchmarks using Charm++

    NASA Technical Reports Server (NTRS)

    Krishnan, Sanjeev; Bhandarkar, Milind; Kale, Laxmikant V.

    1996-01-01

    This report describes experiences with implementing the NAS Computational Fluid Dynamics benchmarks using a parallel object-oriented language, Charm++. Our main objective in implementing the NAS CFD kernel benchmarks was to develop a code that could be used to easily experiment with different domain decomposition strategies and dynamic load balancing. We also wished to leverage the object-orientation provided by the Charm++ parallel object-oriented language, to develop reusable abstractions that would simplify the process of developing parallel applications. We first describe the Charm++ parallel programming model and the parallel object array abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Triangular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation of the methodology used.

  14. What Multilevel Parallel Programs do when you are not Watching: A Performance Analysis Case Study Comparing MPI/OpenMP, MLP, and Nested OpenMP

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    With the current trend in parallel computer architectures towards clusters of shared memory symmetric multi-processors, parallel programming techniques have evolved that support parallelism beyond a single level. When comparing the performance of applications based on different programming paradigms, it is important to differentiate between the influence of the programming model itself and other factors, such as implementation specific behavior of the operating system (OS) or architectural issues. Rewriting-a large scientific application in order to employ a new programming paradigms is usually a time consuming and error prone task. Before embarking on such an endeavor it is important to determine that there is really a gain that would not be possible with the current implementation. A detailed performance analysis is crucial to clarify these issues. The multilevel programming paradigms considered in this study are hybrid MPI/OpenMP, MLP, and nested OpenMP. The hybrid MPI/OpenMP approach is based on using MPI [7] for the coarse grained parallelization and OpenMP [9] for fine grained loop level parallelism. The MPI programming paradigm assumes a private address space for each process. Data is transferred by explicitly exchanging messages via calls to the MPI library. This model was originally designed for distributed memory architectures but is also suitable for shared memory systems. The second paradigm under consideration is MLP which was developed by Taft. The approach is similar to MPi/OpenMP, using a mix of coarse grain process level parallelization and loop level OpenMP parallelization. As it is the case with MPI, a private address space is assumed for each process. The MLP approach was developed for ccNUMA architectures and explicitly takes advantage of the availability of shared memory. A shared memory arena which is accessible by all processes is required. Communication is done by reading from and writing to the shared memory.

  15. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  16. NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ang; Song, Shuaiwen; Brugel, Eric

    To continuously comply with Moore’s Law, modern parallel machines become increasingly complex. Effectively tuning application performance for these machines therefore becomes a daunting task. Moreover, identifying performance bottlenecks at application and architecture level, as well as evaluating various optimization strategies, are becoming extremely difficult when the entanglement of numerous correlated factors is being presented. To tackle these challenges, we present a visual analytical model named “X”. It is intuitive and sufficiently flexible to track all the typical features of a parallel machine.

  18. Parallel Execution of Functional Mock-up Units in Buildings Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; New, Joshua Ryan

    2016-06-30

    A Functional Mock-up Interface (FMI) defines a standardized interface to be used in computer simulations to develop complex cyber-physical systems. FMI implementation by a software modeling tool enables the creation of a simulation model that can be interconnected, or the creation of a software library called a Functional Mock-up Unit (FMU). This report describes an FMU wrapper implementation that imports FMUs into a C++ environment and uses an Euler solver that executes FMUs in parallel using Open Multi-Processing (OpenMP). The purpose of this report is to elucidate the runtime performance of the solver when a multi-component system is imported asmore » a single FMU (for the whole system) or as multiple FMUs (for different groups of components as sub-systems). This performance comparison is conducted using two test cases: (1) a simple, multi-tank problem; and (2) a more realistic use case based on the Modelica Buildings Library. In both test cases, the performance gains are promising when each FMU consists of a large number of states and state events that are wrapped in a single FMU. Load balancing is demonstrated to be a critical factor in speeding up parallel execution of multiple FMUs.« less

  19. Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    NASA Technical Reports Server (NTRS)

    Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.

    1992-01-01

    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.

  20. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  1. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.

    PubMed

    Chen, Tianju; Zhang, Jinzhi; Wu, Jinhu

    2016-07-01

    The kinetic and energy productions of pyrolysis of a lignocellulosic biomass were investigated using a three-parallel Gaussian distribution method in this work. The pyrolysis experiment of the pine sawdust was performed using a thermogravimetric-mass spectroscopy (TG-MS) analyzer. A three-parallel Gaussian distributed activation energy model (DAEM)-reaction model was used to describe thermal decomposition behaviors of the three components, hemicellulose, cellulose and lignin. The first, second and third pseudocomponents represent the fractions of hemicellulose, cellulose and lignin, respectively. It was found that the model is capable of predicting the pyrolysis behavior of the pine sawdust. The activation energy distribution peaks for the three pseudo-components were centered at 186.8, 197.5 and 203.9kJmol(-1) for the pine sawdust, respectively. The evolution profiles of H2, CH4, CO, and CO2 were well predicted using the three-parallel Gaussian distribution model. In addition, the chemical composition of bio-oil was also obtained by pyrolysis-gas chromatography/mass spectrometry instrument (Py-GC/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  3. Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP

    DOE PAGES

    Tsugane, Keisuke; Boku, Taisuke; Murai, Hitoshi; ...

    2016-06-01

    Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code - Princeton (GTC-P), which is a three-dimensionalmore » gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid-view version using a global-view programming model to compute the field and a local-view programming model to compute the movement of particles. Finally, the performance is degraded by 20% compared with the original MPI version, but the hybrid-view version facilitates more natural data expression for static grid space data (in the global-view model) and dynamic particle data (in the local-view model), and it also increases the readability of the code for higher productivity.« less

  4. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations.

    PubMed

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-07-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

  5. Software Engineering Support of the Third Round of Scientific Grand Challenge Investigations: Earth System Modeling Software Framework Survey

    NASA Technical Reports Server (NTRS)

    Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)

    2002-01-01

    One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.

  6. A portable MPI-based parallel vector template library

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.

    1995-01-01

    This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C++ by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of C or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

  7. A Portable MPI-Based Parallel Vector Template Library

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.

    1995-01-01

    This paper discusses the design and implementation of a polymorphic collection library for distributed address-space parallel computers. The library provides a data-parallel programming model for C + + by providing three main components: a single generic collection class, generic algorithms over collections, and generic algebraic combining functions. Collection elements are the fourth component of a program written using the library and may be either of the built-in types of c or of user-defined types. Many ideas are borrowed from the Standard Template Library (STL) of C++, although a restricted programming model is proposed because of the distributed address-space memory model assumed. Whereas the STL provides standard collections and implementations of algorithms for uniprocessors, this paper advocates standardizing interfaces that may be customized for different parallel computers. Just as the STL attempts to increase programmer productivity through code reuse, a similar standard for parallel computers could provide programmers with a standard set of algorithms portable across many different architectures. The efficacy of this approach is verified by examining performance data collected from an initial implementation of the library running on an IBM SP-2 and an Intel Paragon.

  8. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  9. SKIRT: Hybrid parallelization of radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.

    2017-07-01

    We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.

  10. Parallel Stochastic discrete event simulation of calcium dynamics in neuron.

    PubMed

    Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W

    2017-09-26

    The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.

  11. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    NASA Astrophysics Data System (ADS)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  12. A scalable parallel black oil simulator on distributed memory parallel computers

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Liu, Hui; Chen, Zhangxin

    2015-11-01

    This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.

  13. Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boman, Erik G.

    This LDRD project was a campus exec fellowship to fund (in part) Donald Nguyen’s PhD research at UT-Austin. His work has focused on parallel programming models, and scheduling irregular algorithms on shared-memory systems using the Galois framework. Galois provides a simple but powerful way for users and applications to automatically obtain good parallel performance using certain supported data containers. The naïve user can write serial code, while advanced users can optimize performance by advanced features, such as specifying the scheduling policy. Galois was used to parallelize two sparse matrix reordering schemes: RCM and Sloan. Such reordering is important in high-performancemore » computing to obtain better data locality and thus reduce run times.« less

  15. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  16. Computational Issues in Damping Identification for Large Scale Problems

    NASA Technical Reports Server (NTRS)

    Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.

    1997-01-01

    Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.

  17. Parallel Evolutionary Optimization for Neuromorphic Network Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Disney, Adam; Singh, Susheela

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impactmore » the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.« less

  18. Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox

    NASA Astrophysics Data System (ADS)

    Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas

    In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.

  19. Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case Study

    DOE PAGES

    Radhakrishnan, Hari; Rouson, Damian W. I.; Morris, Karla; ...

    2015-01-01

    This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the program and study the resulting performance. Our initial studies were donemore » using the Intel Fortran compiler on a 32-core shared memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve nearly linear speedup by replacing the sequential summation with a parallel, binary tree algorithm. We also tested the Cray compiler, which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the new collective procedures proposed for Fortran 2015.« less

  20. Parallel Analysis with Unidimensional Binary Data

    ERIC Educational Resources Information Center

    Weng, Li-Jen; Cheng, Chung-Ping

    2005-01-01

    The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation…

  1. Parallelization of a Fully-Distributed Hydrologic Model using Sub-basin Partitioning

    NASA Astrophysics Data System (ADS)

    Vivoni, E. R.; Mniszewski, S.; Fasel, P.; Springer, E.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    A primary obstacle towards advances in watershed simulations has been the limited computational capacity available to most models. The growing trend of model complexity, data availability and physical representation has not been matched by adequate developments in computational efficiency. This situation has created a serious bottleneck which limits existing distributed hydrologic models to small domains and short simulations. In this study, we present novel developments in the parallelization of a fully-distributed hydrologic model. Our work is based on the TIN-based Real-time Integrated Basin Simulator (tRIBS), which provides continuous hydrologic simulation using a multiple resolution representation of complex terrain based on a triangulated irregular network (TIN). While the use of TINs reduces computational demand, the sequential version of the model is currently limited over large basins (>10,000 km2) and long simulation periods (>1 year). To address this, a parallel MPI-based version of the tRIBS model has been implemented and tested using high performance computing resources at Los Alamos National Laboratory. Our approach utilizes domain decomposition based on sub-basin partitioning of the watershed. A stream reach graph based on the channel network structure is used to guide the sub-basin partitioning. Individual sub-basins or sub-graphs of sub-basins are assigned to separate processors to carry out internal hydrologic computations (e.g. rainfall-runoff transformation). Routed streamflow from each sub-basin forms the major hydrologic data exchange along the stream reach graph. Individual sub-basins also share subsurface hydrologic fluxes across adjacent boundaries. We demonstrate how the sub-basin partitioning provides computational feasibility and efficiency for a set of test watersheds in northeastern Oklahoma. We compare the performance of the sequential and parallelized versions to highlight the efficiency gained as the number of processors increases. We also discuss how the coupled use of TINs and parallel processing can lead to feasible long-term simulations in regional watersheds while preserving basin properties at high-resolution.

  2. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey

    2014-01-01

    The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.

  3. Solving the Cauchy-Riemann equations on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    Discussed is the implementation of a single algorithm on three parallel-vector computers. The algorithm is a relaxation scheme for the solution of the Cauchy-Riemann equations; a set of coupled first order partial differential equations. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, and SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The machine architectures are briefly described. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Conclusions are presented.

  4. Superelement model based parallel algorithm for vehicle dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, O.P.; Danhof, K.J.; Kumar, R.

    1994-05-01

    This paper presents a superelement model based parallel algorithm for a planar vehicle dynamics. The vehicle model is made up of a chassis and two suspension systems each of which consists of an axle-wheel assembly and two trailing arms. In this model, the chassis is treated as a Cartesian element and each suspension system is treated as a superelement. The parameters associated with the superelements are computed using an inverse dynamics technique. Suspension shock absorbers and the tires are modeled by nonlinear springs and dampers. The Euler-Lagrange approach is used to develop the system equations of motion. This leads tomore » a system of differential and algebraic equations in which the constraints internal to superelements appear only explicitly. The above formulation is implemented on a multiprocessor machine. The numerical flow chart is divided into modules and the computation of several modules is performed in parallel to gain computational efficiency. In this implementation, the master (parent processor) creates a pool of slaves (child processors) at the beginning of the program. The slaves remain in the pool until they are needed to perform certain tasks. Upon completion of a particular task, a slave returns to the pool. This improves the overall response time of the algorithm. The formulation presented is general which makes it attractive for a general purpose code development. Speedups obtained in the different modules of the dynamic analysis computation are also presented. Results show that the superelement model based parallel algorithm can significantly reduce the vehicle dynamics simulation time. 52 refs.« less

  5. High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1975-01-01

    Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.

  6. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  7. Parallel Reconstruction Using Null Operations (PRUNO)

    PubMed Central

    Zhang, Jian; Liu, Chunlei; Moseley, Michael E.

    2011-01-01

    A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290

  8. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    DOE PAGES

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less

  9. A compositional reservoir simulator on distributed memory parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less

  10. Reliability models applicable to space telescope solar array assembly system

    NASA Technical Reports Server (NTRS)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  11. Essential issues in multiprocessor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajski, D.D.; Peir, J.K.

    1985-06-01

    During the past several years, a great number of proposals have been made with the objective to increase supercomputer performance by an order of magnitude on the basis of a utilization of new computer architectures. The present paper is concerned with a suitable classification scheme for comparing these architectures. It is pointed out that there are basically four schools of thought as to the most important factor for an enhancement of computer performance. According to one school, the development of faster circuits will make it possible to retain present architectures, except, possibly, for a mechanism providing synchronization of parallel processes.more » A second school assigns priority to the optimization and vectorization of compilers, which will detect parallelism and help users to write better parallel programs. A third school believes in the predominant importance of new parallel algorithms, while the fourth school supports new models of computation. The merits of the four approaches are critically evaluated. 50 references.« less

  12. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.

    PubMed

    Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon

    2012-01-01

    We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Implementing Shared Memory Parallelism in MCBEND

    NASA Astrophysics Data System (ADS)

    Bird, Adam; Long, David; Dobson, Geoff

    2017-09-01

    MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers's ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.

  14. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  15. FLAME: A platform for high performance computing of complex systems, applied for three case studies

    DOE PAGES

    Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...

    2011-01-01

    FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.

  16. GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Chen, Huansheng; Wu, Qizhong; Lin, Junmin; Chen, Xueshun; Xie, Xinwei; Wang, Rongrong; Tang, Xiao; Wang, Zifa

    2017-08-01

    The Global Nested Air Quality Prediction Modeling System (GNAQPMS) is the global version of the Nested Air Quality Prediction Modeling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present the porting and optimisation of GNAQPMS on a second-generation Intel Xeon Phi processor, codenamed Knights Landing (KNL). Compared with the first-generation Xeon Phi coprocessor (codenamed Knights Corner, KNC), KNL has many new hardware features such as a bootable processor, high-performance in-package memory and ISA compatibility with Intel Xeon processors. In particular, we describe the five optimisations we applied to the key modules of GNAQPMS, including the CBM-Z gas-phase chemistry, advection, convection and wet deposition modules. These optimisations work well on both the KNL 7250 processor and the Intel Xeon E5-2697 V4 processor. They include (1) updating the pure Message Passing Interface (MPI) parallel mode to the hybrid parallel mode with MPI and OpenMP in the emission, advection, convection and gas-phase chemistry modules; (2) fully employing the 512 bit wide vector processing units (VPUs) on the KNL platform; (3) reducing unnecessary memory access to improve cache efficiency; (4) reducing the thread local storage (TLS) in the CBM-Z gas-phase chemistry module to improve its OpenMP performance; and (5) changing the global communication from writing/reading interface files to MPI functions to improve the performance and the parallel scalability. These optimisations greatly improved the GNAQPMS performance. The same optimisations also work well for the Intel Xeon Broadwell processor, specifically E5-2697 v4. Compared with the baseline version of GNAQPMS, the optimised version was 3.51 × faster on KNL and 2.77 × faster on the CPU. Moreover, the optimised version ran at 26 % lower average power on KNL than on the CPU. With the combined performance and energy improvement, the KNL platform was 37.5 % more efficient on power consumption compared with the CPU platform. The optimisations also enabled much further parallel scalability on both the CPU cluster and the KNL cluster scaled to 40 CPU nodes and 30 KNL nodes, with a parallel efficiency of 70.4 and 42.2 %, respectively.

  17. GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations

    PubMed Central

    Jung, Jaewoon; Mori, Takaharu; Kobayashi, Chigusa; Matsunaga, Yasuhiro; Yoda, Takao; Feig, Michael; Sugita, Yuji

    2015-01-01

    GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310–323. doi: 10.1002/wcms.1220 PMID:26753008

  18. Parallel tempering simulation of the three-dimensional Edwards-Anderson model with compact asynchronous multispin coding on GPU

    NASA Astrophysics Data System (ADS)

    Fang, Ye; Feng, Sheng; Tam, Ka-Ming; Yun, Zhifeng; Moreno, Juana; Ramanujam, J.; Jarrell, Mark

    2014-10-01

    Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 ps per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.

  19. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.

    PubMed

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-06-15

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.

  20. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  1. Parallel-In-Time For Moving Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Manteuffel, T. A.; Southworth, B.

    2016-02-04

    With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is appliedmore » to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.« less

  2. Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem

    NASA Astrophysics Data System (ADS)

    Quan, Zhe; Wu, Lei

    2017-09-01

    This article investigates the use of parallel computing for solving the disjunctively constrained knapsack problem. The proposed parallel computing model can be viewed as a cooperative algorithm based on a multi-neighbourhood search. The cooperation system is composed of a team manager and a crowd of team members. The team members aim at applying their own search strategies to explore the solution space. The team manager collects the solutions from the members and shares the best one with them. The performance of the proposed method is evaluated on a group of benchmark data sets. The results obtained are compared to those reached by the best methods from the literature. The results show that the proposed method is able to provide the best solutions in most cases. In order to highlight the robustness of the proposed parallel computing model, a new set of large-scale instances is introduced. Encouraging results have been obtained.

  3. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  4. Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Harper, Richard

    1989-01-01

    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.

  5. MUTILS - a set of efficient modeling tools for multi-core CPUs implemented in MEX

    NASA Astrophysics Data System (ADS)

    Krotkiewski, Marcin; Dabrowski, Marcin

    2013-04-01

    The need for computational performance is common in scientific applications, and in particular in numerical simulations, where high resolution models require efficient processing of large amounts of data. Especially in the context of geological problems the need to increase the model resolution to resolve physical and geometrical complexities seems to have no limits. Alas, the performance of new generations of CPUs does not improve any longer by simply increasing clock speeds. Current industrial trends are to increase the number of computational cores. As a result, parallel implementations are required in order to fully utilize the potential of new processors, and to study more complex models. We target simulations on small to medium scale shared memory computers: laptops and desktop PCs with ~8 CPU cores and up to tens of GB of memory to high-end servers with ~50 CPU cores and hundereds of GB of memory. In this setting MATLAB is often the environment of choice for scientists that want to implement their own models with little effort. It is a useful general purpose mathematical software package, but due to its versatility some of its functionality is not as efficient as it could be. In particular, the challanges of modern multi-core architectures are not fully addressed. We have developed MILAMIN 2 - an efficient FEM modeling environment written in native MATLAB. Amongst others, MILAMIN provides functions to define model geometry, generate and convert structured and unstructured meshes (also through interfaces to external mesh generators), compute element and system matrices, apply boundary conditions, solve the system of linear equations, address non-linear and transient problems, and perform post-processing. MILAMIN strives to combine the ease of code development and the computational efficiency. Where possible, the code is optimized and/or parallelized within the MATLAB framework. Native MATLAB is augmented with the MUTILS library - a set of MEX functions that implement the computationally intensive, performance critical parts of the code, which we have identified to be bottlenecks. Here, we discuss the functionality and performance of the MUTILS library. Currently, it includes: 1. time and memory efficient assembly of sparse matrices for FEM simulations 2. parallel sparse matrix - vector product with optimizations speficic to symmetric matrices and multiple degrees of freedom per node 3. parallel point in triangle location and point in tetrahedron location for unstructured, adaptive 2D and 3D meshes (useful for 'marker in cell' type of methods) 4. parallel FEM interpolation for 2D and 3D meshes of elements of different types and orders, and for different number of degrees of freedom per node 5. a stand-alone, MEX implementation of the Conjugate Gradients iterative solver 6. interface to METIS graph partitioning and a fast implementation of RCM reordering

  6. Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale

    NASA Astrophysics Data System (ADS)

    Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao

    2017-01-01

    Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.

  7. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  8. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  9. Injector Design Tool Improvements: User's manual for FDNS V.4.5

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen

    1998-01-01

    The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.

  10. Long-range interactions and parallel scalability in molecular simulations

    NASA Astrophysics Data System (ADS)

    Patra, Michael; Hyvönen, Marja T.; Falck, Emma; Sabouri-Ghomi, Mohsen; Vattulainen, Ilpo; Karttunen, Mikko

    2007-01-01

    Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modeling of such systems. We have employed the GROMACS simulation package to perform extensive benchmarking of different commonly used electrostatic schemes on a range of computer architectures (Pentium-4, IBM Power 4, and Apple/IBM G5) for single processor and parallel performance up to 8 nodes—we have also tested the scalability on four different networks, namely Infiniband, GigaBit Ethernet, Fast Ethernet, and nearly uniform memory architecture, i.e. communication between CPUs is possible by directly reading from or writing to other CPUs' local memory. It turns out that the particle-mesh Ewald method (PME) performs surprisingly well and offers competitive performance unless parallel runs on PC hardware with older network infrastructure are needed. Lipid bilayers of sizes 128, 512 and 2048 lipid molecules were used as the test systems representing typical cases encountered in biomolecular simulations. Our results enable an accurate prediction of computational speed on most current computing systems, both for serial and parallel runs. These results should be helpful in, for example, choosing the most suitable configuration for a small departmental computer cluster.

  11. Constructing Neuronal Network Models in Massively Parallel Environments.

    PubMed

    Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.

  12. Constructing Neuronal Network Models in Massively Parallel Environments

    PubMed Central

    Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808

  13. High Performance Input/Output for Parallel Computer Systems

    NASA Technical Reports Server (NTRS)

    Ligon, W. B.

    1996-01-01

    The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.

  14. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  15. A Parallel Numerical Micromagnetic Code Using FEniCS

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Williams, W.; Mitchell, L.

    2013-12-01

    Many problems in the geosciences depend on understanding the ability of magnetic minerals to provide stable paleomagnetic recordings. Numerical micromagnetic modelling allows us to calculate the domain structures found in naturally occurring magnetic materials. However the computational cost rises exceedingly quickly with respect to the size and complexity of the geometries that we wish to model. This problem is compounded by the fact that the modern processor design no longer focuses on the speed at which calculations are performed, but rather on the number of computational units amongst which we may distribute our calculations. Consequently to better exploit modern computational resources our micromagnetic simulations must "go parallel". We present a parallel and scalable micromagnetics code written using FEniCS. FEniCS is a multinational collaboration involving several institutions (University of Cambridge, University of Chicago, The Simula Research Laboratory, etc.) that aims to provide a set of tools for writing scientific software; in particular software that employs the finite element method. The advantages of this approach are the leveraging of pre-existing projects from the world of scientific computing (PETSc, Trilinos, Metis/Parmetis, etc.) and exposing these so that researchers may pose problems in a manner closer to the mathematical language of their domain. Our code provides a scriptable interface (in Python) that allows users to not only run micromagnetic models in parallel, but also to perform pre/post processing of data.

  16. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data

    NASA Astrophysics Data System (ADS)

    Hou, Zhenlong; Huang, Danian

    2017-09-01

    In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.

  17. Performance of a parallel thermal-hydraulics code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fann, G.I.; Trent, D.S.

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scalingmore » performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.« less

  18. Novel hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization estimation method for population pharmacokinetic data analysis.

    PubMed

    Ng, C M

    2013-10-01

    The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.

  19. Measuring effectiveness of a university by a parallel network DEA model

    NASA Astrophysics Data System (ADS)

    Kashim, Rosmaini; Kasim, Maznah Mat; Rahman, Rosshairy Abd

    2017-11-01

    Universities contribute significantly to the development of human capital and socio-economic improvement of a country. Due to that, Malaysian universities carried out various initiatives to improve their performance. Most studies have used the Data Envelopment Analysis (DEA) model to measure efficiency rather than effectiveness, even though, the measurement of effectiveness is important to realize how effective a university in achieving its ultimate goals. A university system has two major functions, namely teaching and research and every function has different resources based on its emphasis. Therefore, a university is actually structured as a parallel production system with its overall effectiveness is the aggregated effectiveness of teaching and research. Hence, this paper is proposing a parallel network DEA model to measure the effectiveness of a university. This model includes internal operations of both teaching and research functions into account in computing the effectiveness of a university system. In literature, the graduate and the number of program offered are defined as the outputs, then, the employed graduates and the numbers of programs accredited from professional bodies are considered as the outcomes for measuring the teaching effectiveness. Amount of grants is regarded as the output of research, while the different quality of publications considered as the outcomes of research. A system is considered effective if only all functions are effective. This model has been tested using a hypothetical set of data consisting of 14 faculties at a public university in Malaysia. The results show that none of the faculties is relatively effective for the overall performance. Three faculties are effective in teaching and two faculties are effective in research. The potential applications of the parallel network DEA model allow the top management of a university to identify weaknesses in any functions in their universities and take rational steps for improvement.

  20. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed on JUQUEEN with processor counts on the order of 10,000. The instrumentation is used in weak and strong scaling studies with real data cases and hypothetical idealized numerical experiments for detailed profiling and tracing analysis. The profiling is not only useful in identifying wait states that are due to the MPMD execution model, but also in fine-tuning resource allocation to the component models in search of the most suitable load balancing. This is especially necessary, as with numerical experiments that cover multiple (high resolution) spatial scales, the time stepping, coupling frequencies, and communication overheads are constantly shifting, which makes it necessary to re-determine the model setup with each new experimental design.

  1. Generating Billion-Edge Scale-Free Networks in Seconds: Performance Study of a Novel GPU-based Preferential Attachment Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.; Alam, Maksudul

    A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidiamore » GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.« less

  2. PARAMO: A Parallel Predictive Modeling Platform for Healthcare Analytic Research using Electronic Health Records

    PubMed Central

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R.; Stewart, Walter F.; Malin, Bradley; Sun, Jimeng

    2014-01-01

    Objective Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: 1) cohort construction, 2) feature construction, 3) cross-validation, 4) feature selection, and 5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. Methods To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which 1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, 2) schedules the tasks in a topological ordering of the graph, and 3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. Results We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3 hours in parallel compared to 9 days if running sequentially. Conclusion This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. PMID:24370496

  3. PARAMO: a PARAllel predictive MOdeling platform for healthcare analytic research using electronic health records.

    PubMed

    Ng, Kenney; Ghoting, Amol; Steinhubl, Steven R; Stewart, Walter F; Malin, Bradley; Sun, Jimeng

    2014-04-01

    Healthcare analytics research increasingly involves the construction of predictive models for disease targets across varying patient cohorts using electronic health records (EHRs). To facilitate this process, it is critical to support a pipeline of tasks: (1) cohort construction, (2) feature construction, (3) cross-validation, (4) feature selection, and (5) classification. To develop an appropriate model, it is necessary to compare and refine models derived from a diversity of cohorts, patient-specific features, and statistical frameworks. The goal of this work is to develop and evaluate a predictive modeling platform that can be used to simplify and expedite this process for health data. To support this goal, we developed a PARAllel predictive MOdeling (PARAMO) platform which (1) constructs a dependency graph of tasks from specifications of predictive modeling pipelines, (2) schedules the tasks in a topological ordering of the graph, and (3) executes those tasks in parallel. We implemented this platform using Map-Reduce to enable independent tasks to run in parallel in a cluster computing environment. Different task scheduling preferences are also supported. We assess the performance of PARAMO on various workloads using three datasets derived from the EHR systems in place at Geisinger Health System and Vanderbilt University Medical Center and an anonymous longitudinal claims database. We demonstrate significant gains in computational efficiency against a standard approach. In particular, PARAMO can build 800 different models on a 300,000 patient data set in 3h in parallel compared to 9days if running sequentially. This work demonstrates that an efficient parallel predictive modeling platform can be developed for EHR data. This platform can facilitate large-scale modeling endeavors and speed-up the research workflow and reuse of health information. This platform is only a first step and provides the foundation for our ultimate goal of building analytic pipelines that are specialized for health data researchers. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Rapid performance modeling and parameter regression of geodynamic models

    NASA Astrophysics Data System (ADS)

    Brown, J.; Duplyakin, D.

    2016-12-01

    Geodynamic models run in a parallel environment have many parameters with complicated effects on performance and scientifically-relevant functionals. Manually choosing an efficient machine configuration and mapping out the parameter space requires a great deal of expert knowledge and time-consuming experiments. We propose an active learning technique based on Gaussion Process Regression to automatically select experiments to map out the performance landscape with respect to scientific and machine parameters. The resulting performance model is then used to select optimal experiments for improving the accuracy of a reduced order model per unit of computational cost. We present the framework and evaluate its quality and capability using popular lithospheric dynamics models.

  5. A time-parallel approach to strong-constraint four-dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Rao, Vishwas; Sandu, Adrian

    2016-05-01

    A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.

  6. Separating figure from ground with a parallel network.

    PubMed

    Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E

    1986-01-01

    The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.

  7. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  8. JETSPIN: A specific-purpose open-source software for simulations of nanofiber electrospinning

    NASA Astrophysics Data System (ADS)

    Lauricella, Marco; Pontrelli, Giuseppe; Coluzza, Ivan; Pisignano, Dario; Succi, Sauro

    2015-12-01

    We present the open-source computer program JETSPIN, specifically designed to simulate the electrospinning process of nanofibers. Its capabilities are shown with proper reference to the underlying model, as well as a description of the relevant input variables and associated test-case simulations. The various interactions included in the electrospinning model implemented in JETSPIN are discussed in detail. The code is designed to exploit different computational architectures, from single to parallel processor workstations. This paper provides an overview of JETSPIN, focusing primarily on its structure, parallel implementations, functionality, performance, and availability.

  9. Large-scale parallel genome assembler over cloud computing environment.

    PubMed

    Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong

    2017-06-01

    The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.

  10. Optics Program Modified for Multithreaded Parallel Computing

    NASA Technical Reports Server (NTRS)

    Lou, John; Bedding, Dave; Basinger, Scott

    2006-01-01

    A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on pthreads [POSIX Thread, (where "POSIX" signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.

  11. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  12. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  13. Demonstration of an optoelectronic interconnect architecture for a parallel modified signed-digit adder and subtracter

    NASA Astrophysics Data System (ADS)

    Sun, Degui; Wang, Na-Xin; He, Li-Ming; Weng, Zhao-Heng; Wang, Daheng; Chen, Ray T.

    1996-06-01

    A space-position-logic-encoding scheme is proposed and demonstrated. This encoding scheme not only makes the best use of the convenience of binary logic operation, but is also suitable for the trinary property of modified signed- digit (MSD) numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder and subtractor is built using optoelectronic switch technologies in conjunction with fiber-multistage 3D optoelectronic interconnects. Thus an effective combination of a parallel algorithm and a parallel architecture is implemented. In addition, the performance of the optoelectronic switches used in this system is experimentally studied and verified. Both the 3-bit experimental model and the experimental results of a parallel addition and a parallel subtraction are provided and discussed. Finally, the speed ratio between the MSD adder and binary adders is discussed and the advantage of the MSD in operating speed is demonstrated.

  14. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    PubMed Central

    Calcagno, Cristina; Coppo, Mario

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327

  15. Massive Exploration of Perturbed Conditions of the Blood Coagulation Cascade through GPU Parallelization

    PubMed Central

    Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo

    2014-01-01

    The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072

  16. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    PubMed

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  17. Mechanism to support generic collective communication across a variety of programming models

    DOEpatents

    Almasi, Gheorghe [Ardsley, NY; Dozsa, Gabor [Ardsley, NY; Kumar, Sameer [White Plains, NY

    2011-07-19

    A system and method for supporting collective communications on a plurality of processors that use different parallel programming paradigms, in one aspect, may comprise a schedule defining one or more tasks in a collective operation, an executor that executes the task, a multisend module to perform one or more data transfer functions associated with the tasks, and a connection manager that controls one or more connections and identifies an available connection. The multisend module uses the available connection in performing the one or more data transfer functions. A plurality of processors that use different parallel programming paradigms can use a common implementation of the schedule module, the executor module, the connection manager and the multisend module via a language adaptor specific to a parallel programming paradigm implemented on a processor.

  18. An approach to enhance pnetCDF performance in ...

    EPA Pesticide Factsheets

    Data intensive simulations are often limited by their I/O (input/output) performance, and "novel" techniques need to be developed in order to overcome this limitation. The software package pnetCDF (parallel network Common Data Form), which works with parallel file systems, was developed to address this issue by providing parallel I/O capability. This study examines the performance of an application-level data aggregation approach which performs data aggregation along either row or column dimension of MPI (Message Passing Interface) processes on a spatially decomposed domain, and then applies the pnetCDF parallel I/O paradigm. The test was done with three different domain sizes which represent small, moderately large, and large data domains, using a small-scale Community Multiscale Air Quality model (CMAQ) mock-up code. The examination includes comparing I/O performance with traditional serial I/O technique, straight application of pnetCDF, and the data aggregation along row and column dimension before applying pnetCDF. After the comparison, "optimal" I/O configurations of this application-level data aggregation approach were quantified. Data aggregation along the row dimension (pnetCDFcr) works better than along the column dimension (pnetCDFcc) although it may perform slightly worse than the straight pnetCDF method with a small number of processors. When the number of processors becomes larger, pnetCDFcr outperforms pnetCDF significantly. If the number of proces

  19. Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Rodila, D.; Bacu, V.; Gorgan, D.

    2012-04-01

    The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.

  20. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  1. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization

    PubMed Central

    Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan

    2017-01-01

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325

  2. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  3. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    PubMed

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  4. Providing a parallel and distributed capability for JMASS using SPEEDES

    NASA Astrophysics Data System (ADS)

    Valinski, Maria; Driscoll, Jonathan; McGraw, Robert M.; Meyer, Bob

    2002-07-01

    The Joint Modeling And Simulation System (JMASS) is a Tri-Service simulation environment that supports engineering and engagement-level simulations. As JMASS is expanded to support other Tri-Service domains, the current set of modeling services must be expanded for High Performance Computing (HPC) applications by adding support for advanced time-management algorithms, parallel and distributed topologies, and high speed communications. By providing support for these services, JMASS can better address modeling domains requiring parallel computationally intense calculations such clutter, vulnerability and lethality calculations, and underwater-based scenarios. A risk reduction effort implementing some HPC services for JMASS using the SPEEDES (Synchronous Parallel Environment for Emulation and Discrete Event Simulation) Simulation Framework has recently concluded. As an artifact of the JMASS-SPEEDES integration, not only can HPC functionality be brought to the JMASS program through SPEEDES, but an additional HLA-based capability can be demonstrated that further addresses interoperability issues. The JMASS-SPEEDES integration provided a means of adding HLA capability to preexisting JMASS scenarios through an implementation of the standard JMASS port communication mechanism that allows players to communicate.

  5. A queueing network model to analyze the impact of parallelization of care on patient cycle time.

    PubMed

    Jiang, Lixiang; Giachetti, Ronald E

    2008-09-01

    The total time a patient spends in an outpatient facility, called the patient cycle time, is a major contributor to overall patient satisfaction. A frequently recommended strategy to reduce the total time is to perform some activities in parallel thereby shortening patient cycle time. To analyze patient cycle time this paper extends and improves upon existing multi-class open queueing network model (MOQN) so that the patient flow in an urgent care center can be modeled. Results of the model are analyzed using data from an urgent care center contemplating greater parallelization of patient care activities. The results indicate that parallelization can reduce the cycle time for those patient classes which require more than one diagnostic and/ or treatment intervention. However, for many patient classes there would be little if any improvement, indicating the importance of tools to analyze business process reengineering rules. The paper makes contributions by implementing an approximation for fork/join queues in the network and by improving the approximation for multiple server queues in both low traffic and high traffic conditions. We demonstrate the accuracy of the MOQN results through comparisons to simulation results.

  6. An Asynchronous Many-Task Implementation of In-Situ Statistical Analysis using Legion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    2015-11-01

    In this report, we propose a framework for the design and implementation of in-situ analy- ses using an asynchronous many-task (AMT) model, using the Legion programming model together with the MiniAero mini-application as a surrogate for full-scale parallel scientific computing applications. The bulk of this work consists of converting the Learn/Derive/Assess model which we had initially developed for parallel statistical analysis using MPI [PTBM11], from a SPMD to an AMT model. In this goal, we propose an original use of the concept of Legion logical regions as a replacement for the parallel communication schemes used for the only operation ofmore » the statistics engines that require explicit communication. We then evaluate this proposed scheme in a shared memory environment, using the Legion port of MiniAero as a proxy for a full-scale scientific application, as a means to provide input data sets of variable size for the in-situ statistical analyses in an AMT context. We demonstrate in particular that the approach has merit, and warrants further investigation, in collaboration with ongoing efforts to improve the overall parallel performance of the Legion system.« less

  7. F100(3) parallel compressor computer code and user's manual

    NASA Technical Reports Server (NTRS)

    Mazzawy, R. S.; Fulkerson, D. A.; Haddad, D. E.; Clark, T. A.

    1978-01-01

    The Pratt & Whitney Aircraft multiple segment parallel compressor model has been modified to include the influence of variable compressor vane geometry on the sensitivity to circumferential flow distortion. Further, performance characteristics of the F100 (3) compression system have been incorporated into the model on a blade row basis. In this modified form, the distortion's circumferential location is referenced relative to the variable vane controlling sensors of the F100 (3) engine so that the proper solution can be obtained regardless of distortion orientation. This feature is particularly important for the analysis of inlet temperature distortion. Compatibility with fixed geometry compressor applications has been maintained in the model.

  8. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  9. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  10. Parallelization of a hydrological model using the message passing interface

    USGS Publications Warehouse

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  11. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A. (Technical Monitor); Jost, G.; Jin, H.; Labarta J.; Gimenez, J.; Caubet, J.

    2003-01-01

    Parallel programming paradigms include process level parallelism, thread level parallelization, and multilevel parallelism. This viewgraph presentation describes a detailed performance analysis of these paradigms for Shared Memory Architecture (SMA). This analysis uses the Paraver Performance Analysis System. The presentation includes diagrams of a flow of useful computations.

  12. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    PubMed Central

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442

  13. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    PubMed

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.

  14. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns

    DOE PAGES

    Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel

    2014-07-22

    The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less

  15. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  16. Multigrid methods with space–time concurrency

    DOE PAGES

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.; ...

    2017-10-06

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  17. Multigrid methods with space–time concurrency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Friedhoff, S.; Kolev, Tz. V.

    Here, we consider the comparison of multigrid methods for parabolic partial differential equations that allow space–time concurrency. With current trends in computer architectures leading towards systems with more, but not faster, processors, space–time concurrency is crucial for speeding up time-integration simulations. In contrast, traditional time-integration techniques impose serious limitations on parallel performance due to the sequential nature of the time-stepping approach, allowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms on space–time grids that allow parallelism in space and time: coarsening in space and time, semicoarsening in the spatial dimensions, and semicoarsening in the temporalmore » dimension. We develop parallel software and performance models to study the three methods at scales of up to 16K cores and introduce an extension of one of them for handling multistep time integration. We then discuss advantages and disadvantages of the different approaches and their benefit compared to traditional space-parallel algorithms with sequential time stepping on modern architectures.« less

  18. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  19. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  20. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    The implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEX/32, an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the FLEX/32 and CRAY/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.

  1. Implementation of an ADI method on parallel computers

    NASA Technical Reports Server (NTRS)

    Fatoohi, Raad A.; Grosch, Chester E.

    1987-01-01

    In this paper the implementation of an ADI method for solving the diffusion equation on three parallel/vector computers is discussed. The computers were chosen so as to encompass a variety of architectures. They are the MPP, an SIMD machine with 16-Kbit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2, an MIMD machine with four vector processors. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the Flex/32 and Cray/2 while the cyclic elimination algorithm is used to solve these systems on the MPP. The implementation of the method is discussed in relation to these architectures and measures of the performance on each machine are given. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally conclusions are presented.

  2. Matrix Factorizations at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittens, Alex; Devarakonda, Aditya; Racah, Evan

    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausibility), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to 1.6TB particle physics, 2.2TB and 16TB climate modeling and 1.1TB bioimaging data. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data parallel model. We perform scalingmore » experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance.« less

  3. Scalable problems and memory bounded speedup

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He; Ni, Lionel M.

    1992-01-01

    In this paper three models of parallel speedup are studied. They are fixed-size speedup, fixed-time speedup and memory-bounded speedup. The latter two consider the relationship between speedup and problem scalability. Two sets of speedup formulations are derived for these three models. One set considers uneven workload allocation and communication overhead and gives more accurate estimation. Another set considers a simplified case and provides a clear picture on the impact of the sequential portion of an application on the possible performance gain from parallel processing. The simplified fixed-size speedup is Amdahl's law. The simplified fixed-time speedup is Gustafson's scaled speedup. The simplified memory-bounded speedup contains both Amdahl's law and Gustafson's scaled speedup as special cases. This study leads to a better understanding of parallel processing.

  4. Evaluation of the power consumption of a high-speed parallel robot

    NASA Astrophysics Data System (ADS)

    Han, Gang; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.

  5. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  6. Application of integration algorithms in a parallel processing environment for the simulation of jet engines

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Milner, E. J.

    1982-01-01

    The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.

  7. P-HS-SFM: a parallel harmony search algorithm for the reproduction of experimental data in the continuous microscopic crowd dynamic models

    NASA Astrophysics Data System (ADS)

    Jaber, Khalid Mohammad; Alia, Osama Moh'd.; Shuaib, Mohammed Mahmod

    2018-03-01

    Finding the optimal parameters that can reproduce experimental data (such as the velocity-density relation and the specific flow rate) is a very important component of the validation and calibration of microscopic crowd dynamic models. Heavy computational demand during parameter search is a known limitation that exists in a previously developed model known as the Harmony Search-Based Social Force Model (HS-SFM). In this paper, a parallel-based mechanism is proposed to reduce the computational time and memory resource utilisation required to find these parameters. More specifically, two MATLAB-based multicore techniques (parfor and create independent jobs) using shared memory are developed by taking advantage of the multithreading capabilities of parallel computing, resulting in a new framework called the Parallel Harmony Search-Based Social Force Model (P-HS-SFM). The experimental results show that the parfor-based P-HS-SFM achieved a better computational time of about 26 h, an efficiency improvement of ? 54% and a speedup factor of 2.196 times in comparison with the HS-SFM sequential processor. The performance of the P-HS-SFM using the create independent jobs approach is also comparable to parfor with a computational time of 26.8 h, an efficiency improvement of about 30% and a speedup of 2.137 times.

  8. Scheduling for Locality in Shared-Memory Multiprocessors

    DTIC Science & Technology

    1993-05-01

    Submitted in Partial Fulfillment of the Requirements for the Degree ’)iIC Q(JALfryT INSPECTED 5 DOCTOR OF PHILOSOPHY I Accesion For Supervised by NTIS CRAM... architecture on parallel program performance, explain the implications of this trend on popular parallel programming models, and propose system software to 0...decomoosition and scheduling algorithms. I. SUIUECT TERMS IS. NUMBER OF PAGES shared-memory multiprocessors; architecture trends; loop 110 scheduling

  9. Automated Performance Prediction of Message-Passing Parallel Programs

    NASA Technical Reports Server (NTRS)

    Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)

    1995-01-01

    The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.

  10. Solution of the within-group multidimensional discrete ordinates transport equations on massively parallel architectures

    NASA Astrophysics Data System (ADS)

    Zerr, Robert Joseph

    2011-12-01

    The integral transport matrix method (ITMM) has been used as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells and between the cells and boundary surfaces. The main goals of this work were to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and performance of the developed methods for increasing number of processes. This project compares the effectiveness of the ITMM with the SI scheme parallelized with the Koch-Baker-Alcouffe (KBA) method. The primary parallel solution method involves a decomposition of the domain into smaller spatial sub-domains, each with their own transport matrices, and coupled together via interface boundary angular fluxes. Each sub-domain has its own set of ITMM operators and represents an independent transport problem. Multiple iterative parallel solution methods have investigated, including parallel block Jacobi (PBJ), parallel red/black Gauss-Seidel (PGS), and parallel GMRES (PGMRES). The fastest observed parallel solution method, PGS, was used in a weak scaling comparison with the PARTISN code. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method without acceleration/preconditioning is not competitive for any problem parameters considered. The best comparisons occur for problems that are difficult for SI DSA, namely highly scattering and optically thick. SI DSA execution time curves are generally steeper than the PGS ones. However, until further testing is performed it cannot be concluded that SI DSA does not outperform the ITMM with PGS even on several thousand or tens of thousands of processors. The PGS method does outperform SI DSA for the periodic heterogeneous layers (PHL) configuration problems. Although this demonstrates a relative strength/weakness between the two methods, the practicality of these problems is much less, further limiting instances where it would be beneficial to select ITMM over SI DSA. The results strongly indicate a need for a robust, stable, and efficient acceleration method (or preconditioner for PGMRES). The spatial multigrid (SMG) method is currently incomplete in that it does not work for all cases considered and does not effectively improve the convergence rate for all values of scattering ratio c or cell dimension h. Nevertheless, it does display the desired trend for highly scattering, optically thin problems. That is, it tends to lower the rate of growth of number of iterations with increasing number of processes, P, while not increasing the number of additional operations per iteration to the extent that the total execution time of the rapidly converging accelerated iterations exceeds that of the slower unaccelerated iterations. A predictive parallel performance model has been developed for the PBJ method. Timing tests were performed such that trend lines could be fitted to the data for the different components and used to estimate the execution times. Applied to the weak scaling results, the model notably underestimates construction time, but combined with a slight overestimation in iterative solution time, the model predicts total execution time very well for large P. It also does a decent job with the strong scaling results, closely predicting the construction time and time per iteration, especially as P increases. Although not shown to be competitive up to 1,024 processing elements with the current state of the art, the parallelized ITMM exhibits promising scaling trends. Ultimately, compared to the KBA method, the parallelized ITMM may be found to be a very attractive option for transport calculations spatially decomposed over several tens of thousands of processes. Acceleration/preconditioning of the parallelized ITMM once developed will improve the convergence rate and improve its competitiveness. (Abstract shortened by UMI.)

  11. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  12. DVS-SOFTWARE: An Effective Tool for Applying Highly Parallelized Hardware To Computational Geophysics

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Herrera, G. S.

    2015-12-01

    Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  13. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction.

    PubMed

    Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou

    2018-02-08

    The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.

  14. Simultaneous activation of parallel sensory pathways promotes a grooming sequence in Drosophila

    PubMed Central

    Hampel, Stefanie; McKellar, Claire E

    2017-01-01

    A central model that describes how behavioral sequences are produced features a neural architecture that readies different movements simultaneously, and a mechanism where prioritized suppression between the movements determines their sequential performance. We previously described a model whereby suppression drives a Drosophila grooming sequence that is induced by simultaneous activation of different sensory pathways that each elicit a distinct movement (Seeds et al., 2014). Here, we confirm this model using transgenic expression to identify and optogenetically activate sensory neurons that elicit specific grooming movements. Simultaneous activation of different sensory pathways elicits a grooming sequence that resembles the naturally induced sequence. Moreover, the sequence proceeds after the sensory excitation is terminated, indicating that a persistent trace of this excitation induces the next grooming movement once the previous one is performed. This reveals a mechanism whereby parallel sensory inputs can be integrated and stored to elicit a delayed and sequential grooming response. PMID:28887878

  15. Human Resource Scheduling in Performing a Sequence of Discrete Responses

    DTIC Science & Technology

    2009-02-28

    each is a graph comparing simulated results of each respective model with data from Experiment 3b. As described below the parameters of the model...initiated in parallel with ongoing Central operations on another. To fix model parameters we estimated the range of times to perform the sum of the...standard deviation for each parameter was set to 50% of mean value. Initial simulations found no meaningful differences between setting the standard

  16. Parallel algorithm of real-time infrared image restoration based on total variation theory

    NASA Astrophysics Data System (ADS)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  17. Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Alruwaili, Manal

    With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.

  18. GPU Accelerated Prognostics

    NASA Technical Reports Server (NTRS)

    Gorospe, George E., Jr.; Daigle, Matthew J.; Sankararaman, Shankar; Kulkarni, Chetan S.; Ng, Eley

    2017-01-01

    Prognostic methods enable operators and maintainers to predict the future performance for critical systems. However, these methods can be computationally expensive and may need to be performed each time new information about the system becomes available. In light of these computational requirements, we have investigated the application of graphics processing units (GPUs) as a computational platform for real-time prognostics. Recent advances in GPU technology have reduced cost and increased the computational capability of these highly parallel processing units, making them more attractive for the deployment of prognostic software. We present a survey of model-based prognostic algorithms with considerations for leveraging the parallel architecture of the GPU and a case study of GPU-accelerated battery prognostics with computational performance results.

  19. Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2006-01-20

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

  20. Optimizing Crawler4j using MapReduce Programming Model

    NASA Astrophysics Data System (ADS)

    Siddesh, G. M.; Suresh, Kavya; Madhuri, K. Y.; Nijagal, Madhushree; Rakshitha, B. R.; Srinivasa, K. G.

    2017-06-01

    World wide web is a decentralized system that consists of a repository of information on the basis of web pages. These web pages act as a source of information or data in the present analytics world. Web crawlers are used for extracting useful information from web pages for different purposes. Firstly, it is used in web search engines where the web pages are indexed to form a corpus of information and allows the users to query on the web pages. Secondly, it is used for web archiving where the web pages are stored for later analysis phases. Thirdly, it can be used for web mining where the web pages are monitored for copyright purposes. The amount of information processed by the web crawler needs to be improved by using the capabilities of modern parallel processing technologies. In order to solve the problem of parallelism and the throughput of crawling this work proposes to optimize the Crawler4j using the Hadoop MapReduce programming model by parallelizing the processing of large input data. Crawler4j is a web crawler that retrieves useful information about the pages that it visits. The crawler Crawler4j coupled with data and computational parallelism of Hadoop MapReduce programming model improves the throughput and accuracy of web crawling. The experimental results demonstrate that the proposed solution achieves significant improvements with respect to performance and throughput. Hence the proposed approach intends to carve out a new methodology towards optimizing web crawling by achieving significant performance gain.

  1. Parallel Discrete Molecular Dynamics Simulation With Speculation and In-Order Commitment*†

    PubMed Central

    Khan, Md. Ashfaquzzaman; Herbordt, Martin C.

    2011-01-01

    Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations. PMID:21822327

  2. Parallel Discrete Molecular Dynamics Simulation With Speculation and In-Order Commitment.

    PubMed

    Khan, Md Ashfaquzzaman; Herbordt, Martin C

    2011-07-20

    Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations.

  3. High performance cellular level agent-based simulation with FLAME for the GPU.

    PubMed

    Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela

    2010-05-01

    Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.

  4. Optimization of atmospheric transport models on HPC platforms

    NASA Astrophysics Data System (ADS)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  5. RISC Processors and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Bailey, David H.; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    In this tutorial, we will discuss top five current RISC microprocessors: The IBM Power2, which is used in the IBM RS6000/590 workstation and in the IBM SP2 parallel supercomputer, the DEC Alpha, which is in the DEC Alpha workstation and in the Cray T3D; the MIPS R8000, which is used in the SGI Power Challenge; the HP PA-RISC 7100, which is used in the HP 700 series workstations and in the Convex Exemplar; and the Cray proprietary processor, which is used in the new Cray J916. The architecture of these microprocessors will first be presented. The effective performance of these processors will then be compared, both by citing standard benchmarks and also in the context of implementing a real applications. In the process, different programming models such as data parallel (CM Fortran and HPF) and message passing (PVM and MPI) will be introduced and compared. The latest NAS Parallel Benchmark (NPB) absolute performance and performance per dollar figures will be presented. The next generation of the NP13 will also be described. The tutorial will conclude with a discussion of general trends in the field of high performance computing, including likely future developments in hardware and software technology, and the relative roles of vector supercomputers tightly coupled parallel computers, and clusters of workstations. This tutorial will provide a unique cross-machine comparison not available elsewhere.

  6. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can effectively lead to reduced current in the channel, and the results are closer to BD simulation results. Copyright © 2013 Wiley Periodicals, Inc.

  7. Corrosion Prediction with Parallel Finite Element Modeling for Coupled Hygro-Chemo Transport into Concrete under Chloride-Rich Environment

    PubMed Central

    Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping

    2017-01-01

    The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714

  8. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  9. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  10. Distributed Computing for Signal Processing: Modeling of Asynchronous Parallel Computation. Appendix G. On the Design and Modeling of Special Purpose Parallel Processing Systems.

    DTIC Science & Technology

    1985-05-01

    unit in the data base, with knowing one generic assembly language. °-’--a 139 The 5-tuple describing single operation execution time of the operations...TSi-- generate , random eventi ( ,.0-15 tieit tmls - ((floa egus ()16 274 r Ispt imet imel I at :EVE’JS- II ktime=0.0; /0 present time 0/ rrs ptime=0.0...computing machinery capable of performing these tasks within a given time constraint. Because the majority of the available computing machinery is general

  11. Coding for parallel execution of hardware-in-the-loop millimeter-wave scene generation models on multicore SIMD processor architectures

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2013-05-01

    Rendering of point scatterer based radar scenes for millimeter wave (mmW) seeker tests in real-time hardware-in-the-loop (HWIL) scene generation requires efficient algorithms and vector-friendly computer architectures for complex signal synthesis. New processor technology from Intel implements an extended 256-bit vector SIMD instruction set (AVX, AVX2) in a multi-core CPU design providing peak execution rates of hundreds of GigaFLOPS (GFLOPS) on one chip. Real world mmW scene generation code can approach peak SIMD execution rates only after careful algorithm and source code design. An effective software design will maintain high computing intensity emphasizing register-to-register SIMD arithmetic operations over data movement between CPU caches or off-chip memories. Engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) applied two basic parallel coding methods to assess new 256-bit SIMD multi-core architectures for mmW scene generation in HWIL. These include use of POSIX threads built on vector library functions and more portable, highlevel parallel code based on compiler technology (e.g. OpenMP pragmas and SIMD autovectorization). Since CPU technology is rapidly advancing toward high processor core counts and TeraFLOPS peak SIMD execution rates, it is imperative that coding methods be identified which produce efficient and maintainable parallel code. This paper describes the algorithms used in point scatterer target model rendering, the parallelization of those algorithms, and the execution performance achieved on an AVX multi-core machine using the two basic parallel coding methods. The paper concludes with estimates for scale-up performance on upcoming multi-core technology.

  12. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  13. Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics

    NASA Astrophysics Data System (ADS)

    Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María

    2014-06-01

    We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the parallel context.

  14. Accelerating the Gillespie Exact Stochastic Simulation Algorithm using hybrid parallel execution on graphics processing units.

    PubMed

    Komarov, Ivan; D'Souza, Roshan M

    2012-01-01

    The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.

  15. Optimizing agent-based transmission models for infectious diseases.

    PubMed

    Willem, Lander; Stijven, Sean; Tijskens, Engelbert; Beutels, Philippe; Hens, Niel; Broeckhove, Jan

    2015-06-02

    Infectious disease modeling and computational power have evolved such that large-scale agent-based models (ABMs) have become feasible. However, the increasing hardware complexity requires adapted software designs to achieve the full potential of current high-performance workstations. We have found large performance differences with a discrete-time ABM for close-contact disease transmission due to data locality. Sorting the population according to the social contact clusters reduced simulation time by a factor of two. Data locality and model performance can also be improved by storing person attributes separately instead of using person objects. Next, decreasing the number of operations by sorting people by health status before processing disease transmission has also a large impact on model performance. Depending of the clinical attack rate, target population and computer hardware, the introduction of the sort phase decreased the run time from 26% up to more than 70%. We have investigated the application of parallel programming techniques and found that the speedup is significant but it drops quickly with the number of cores. We observed that the effect of scheduling and workload chunk size is model specific and can make a large difference. Investment in performance optimization of ABM simulator code can lead to significant run time reductions. The key steps are straightforward: the data structure for the population and sorting people on health status before effecting disease propagation. We believe these conclusions to be valid for a wide range of infectious disease ABMs. We recommend that future studies evaluate the impact of data management, algorithmic procedures and parallelization on model performance.

  16. Development of Parallel Code for the Alaska Tsunami Forecast Model

    NASA Astrophysics Data System (ADS)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  17. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  18. A Parallel Workload Model and its Implications for Processor Allocation

    DTIC Science & Technology

    1996-11-01

    with SEV or AVG, both of which can tolerate c = 0.4 { 0.6 before their performance deteriorates signi cantly. On the other hand, Setia [10] has...Sanjeev. K Setia . The interaction between memory allocation and adaptive partitioning in message-passing multicomputers. In IPPS 󈨣 Workshop on Job...Scheduling Strategies for Parallel Processing, pages 89{99, 1995. [11] Sanjeev K. Setia and Satish K. Tripathi. An analysis of several processor

  19. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    NASA Astrophysics Data System (ADS)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  20. Achieving High Performance in Parallel Applications via Kernel-Application Interaction

    DTIC Science & Technology

    1996-04-01

    time systems include airplane autopilot or nuclear power plant control. New complex, parallel soft real-time applica- tions have been generating...to keep as many sheep on the table as possible, and the more powerful the sheep behavior-models and look-ahead, the better the results. General...fact that it provides considerable flexibility when considering the amount of processing power to allocate to a planner. In this experiment we again

  1. IPSL-CM5A2. An Earth System Model designed to run long simulations for past and future climates.

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Caubel, Arnaud; Marti, Olivier; Hourdin, Frédéric; Dufresne, Jean-Louis; Boucher, Olivier

    2017-04-01

    The IPSL-CM5A model was developed and released in 2013 "to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5)" [Dufresne et al., 2013]. Although this model also has been used for numerous paleoclimate studies, a major limitation was its computation time, which averaged 10 model-years / day on 32 cores of the Curie supercomputer (on TGCC computing center, France). Such performances were compatible with the experimental designs of intercomparison projects (e.g. CMIP, PMIP) but became limiting for modelling activities involving several multi-millenial experiments, which are typical for Quaternary or "deeptime" paleoclimate studies, in which a fully-equilibrated deep-ocean is mandatory. Here we present the Earth-System model IPSL-CM5A2. Based on IPSL-CM5A, technical developments have been performed both on separate components and on the coupling system in order to speed up the whole coupled model. These developments include the integration of hybrid parallelization MPI-OpenMP in LMDz atmospheric component, the use of a new input-ouput library to perform parallel asynchronous input/output by using computing cores as "IO servers", the use of a parallel coupling library between the ocean and the atmospheric components. Running on 304 cores, the model can now simulate 55 years per day, opening new gates towards multi-millenial simulations. Apart from obtaining better computing performances, one aim of setting up IPSL-CM5A2 was also to overcome the cold bias depicted in global surface air temperature (t2m) in IPSL-CM5A. We present the tuning strategy to overcome this bias as well as the main characteristics (including biases) of the pre-industrial climate simulated by IPSL-CM5A2. Lastly, we shortly present paleoclimate simulations run with this model, for the Holocene and for deeper timescales in the Cenozoic, for which the particular continental configuration was overcome by a new design of the ocean tripolar grid.

  2. Effects of implant angulation, impression material, and variation in arch curvature width on implant transfer model accuracy.

    PubMed

    Akalin, Zerrin Fidan; Ozkan, Yasemin Kulak; Ekerim, Ahmet

    2013-01-01

    The effects of implant angulation, impression material, and variation in width of the arch curvature on transfer models were evaluated. Three edentulous maxillary epoxy resin models were fabricated, and six internal-connection implant analogs were placed in different locations and different angulations in each model. In the first model, implants were positioned in the canine, first premolar, and first molar regions, and all analogs were positioned parallel to each other and perpendicular to the horizontal crestal plane (parallel model). In the second model, analogs were positioned in same regions (canine, first premolar, and first molar), but three of them were positioned with 10-degree buccal angulations (versus the horizontal crestal plane) (angular model). In the third model, analogs were inserted in the lateral incisor, canine, and second molar regions and parallel to each other (wide-arch model). Eighteen impressions of each model were made with each of the three materials--condensation silicone, polyvinyl siloxane, and polyether--and impressions were poured and kept at room temperature for 24 hours. They were then observed under a toolmaker's microscope, with epoxy resin models of each group used as references. Distance deformations between implants in each model in the x- and y-axes were recorded separately. Implant angulation deformations were recorded in the x-z plane. Statistical evaluations were performed with analysis of variance and the least significant difference post hoc test. Angular model measurements showed the greatest deformation values (P < .05). All impression materials showed deformation, and the polyether impression models showed statistically significantly less deformation in angular measurements (P < .05). The models with implants placed parallel to each other exhibited greater accuracy than a model with implants placed at angles to each other.

  3. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  4. Message Passing and Shared Address Space Parallelism on an SMP Cluster

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.

  5. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  6. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.

    PubMed

    Catarinucci, Luca; Tarricone, Luciano

    2009-01-01

    The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.

  7. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less

  8. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  9. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Palamuttam, R. S.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; Verma, R.; Waliser, D. E.; Lee, H.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 10 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. We have implemented a parallel data ingest capability in which the user specifies desired variables (arrays) as several time-sorted lists of URL's (i.e. using OPeNDAP model.nc?varname, or local files). The specified variables are partitioned by time/space and then each Spark node pulls its bundle of arrays into memory to begin a computation pipeline. We also investigated the performance of several N-dim. array libraries (scala breeze, java jblas & netlib-java, and ND4J). We are currently developing science codes using ND4J and studying memory behavior on the JVM. On the pyspark side, many of our science codes already use the numpy and SciPy ecosystems. The talk will cover: the architecture of SciSpark, the design of the scientific RDD (sRDD) data structure, our efforts to integrate climate science algorithms in Python and Scala, parallel ingest and partitioning of A-Train satellite observations from HDF files and model grids from netCDF files, first parallel runs to compute comparison statistics and PDF's, and first metrics quantifying parallel speedups and memory & disk usage.

  10. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    NASA Astrophysics Data System (ADS)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  11. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  12. On a model of three-dimensional bursting and its parallel implementation

    NASA Astrophysics Data System (ADS)

    Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.

    2008-04-01

    A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.

  13. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  14. A comparison of long-term parallel measurements of sunshine duration obtained with a Campbell-Stokes sunshine recorder and two automated sunshine sensors

    NASA Astrophysics Data System (ADS)

    Baumgartner, D. J.; Pötzi, W.; Freislich, H.; Strutzmann, H.; Veronig, A. M.; Foelsche, U.; Rieder, H. E.

    2017-06-01

    In recent decades, automated sensors for sunshine duration (SD) measurements have been introduced in meteorological networks, thereby replacing traditional instruments, most prominently the Campbell-Stokes (CS) sunshine recorder. Parallel records of automated and traditional SD recording systems are rare. Nevertheless, such records are important to understand the differences/similarities in SD totals obtained with different instruments and how changes in monitoring device type affect the homogeneity of SD records. This study investigates the differences/similarities in parallel SD records obtained with a CS and two automated SD sensors between 2007 and 2016 at the Kanzelhöhe Observatory, Austria. Comparing individual records of daily SD totals, we find differences of both positive and negative sign, with smallest differences between the automated sensors. The larger differences between CS-derived SD totals and those from automated sensors can be attributed (largely) to the higher sensitivity threshold of the CS instrument. Correspondingly, the closest agreement among all sensors is found during summer, the time of year when sensitivity thresholds are least critical. Furthermore, we investigate the performance of various models to create the so-called sensor-type-equivalent (STE) SD records. Our analysis shows that regression models including all available data on daily (or monthly) time scale perform better than simple three- (or four-) point regression models. Despite general good performance, none of the considered regression models (of linear or quadratic form) emerges as the "optimal" model. Although STEs prove useful for relating SD records of individual sensors on daily/monthly time scales, this does not ensure that STE (or joint) records can be used for trend analysis.

  15. Numerical study of fire whirlwind taking into account radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Miyagi, N.

    2010-06-01

    The fire whirlwind is a strong swirling flow with flame and spark, which may occur in the case of, widespread fire in the urban region by an earthquake disaster or an air raid, and a large-scale fire such as a forest fire. Fire whirlwind moves and promotes spread of fire and may extend serious damage rapidly. In this study, performing the numerical analysis of fire whirlwind with respect to scale effect, it is examined whether a relationship exists between a real phenomenon and the phenomenon in the reduction model with taking into account radiative heat transfer. Three dimensional analyses are performed to investigate the thermal and flow fields by using the analytical software FLUENT6.3. It is analyzed that those swirling flow in original scale, 1/10 scale, 1/50 scale, 1/100 scale from the original brake out to vanish. As an analytical condition, parameter calculation is repeated to get the velocity of a parallel flow which is the easiest to occur the swirling flow for each reduction model, and then scale effect is discussed by comparing the velocity of the natural convection, the velocity of the parallel flow, the center pressure of the whirlwind and the continuance time of the swirling flow. The analysis model of C-character heat source model is performed as well as the analysis in L-character model, which is one of the representative example of the fire whirlwind occurred at Tokyo in the Great Kanto Earthquake (1923). The result of the numerical analysis shows that there is a scale effect to the speed of the parallel flow to generate the swirling flow.

  16. Magnetosphere simulations with a high-performance 3D AMR MHD Code

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul

    1998-11-01

    BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.

  17. Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs

    PubMed Central

    Hernández, Moisés; Guerrero, Ginés D.; Cecilia, José M.; García, José M.; Inuggi, Alberto; Jbabdi, Saad; Behrens, Timothy E. J.; Sotiropoulos, Stamatios N.

    2013-01-01

    With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI). More specifically, we are concerned with a model-based approach for extracting tissue structural information from diffusion-weighted (DW) MRI data. DW-MRI offers, through tractography approaches, the only way to study brain structural connectivity, non-invasively and in-vivo. We parallelise the Bayesian inference framework for the ball & stick model, as it is implemented in the tractography toolbox of the popular FSL software package (University of Oxford). For our implementation, we utilise the Compute Unified Device Architecture (CUDA) programming model. We show that the parameter estimation, performed through Markov Chain Monte Carlo (MCMC), is accelerated by at least two orders of magnitude, when comparing a single GPU with the respective sequential single-core CPU version. We also illustrate similar speed-up factors (up to 120x) when comparing a multi-GPU with a multi-CPU implementation. PMID:23658616

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Richard D.; Hones, Holger E.

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. Theremore » are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.« less

  19. Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors.

    PubMed

    Feinstein, Wei P; Moreno, Juana; Jarrell, Mark; Brylinski, Michal

    2015-06-01

    Intel Xeon Phi is a new addition to the family of powerful parallel accelerators. The range of its potential applications in computationally driven research is broad; however, at present, the repository of scientific codes is still relatively limited. In this study, we describe the development and benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the prediction of ligand-binding sites in proteins. Implemented for the Intel Xeon Phi platform, the parallelization of the structure alignment portion of eFindSite using pragma-based OpenMP brings about the desired performance improvements, which scale well with the number of computing cores. Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the CPU and the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. For example, ligand-binding predictions for 501 benchmarking proteins are completed in 2.1 hours on a single Stampede node equipped with the Intel Xeon Phi card compared to 3.1 hours without the accelerator and 36.8 hours required by a serial version. In addition to the satisfactory parallel performance, porting existing scientific codes to the Intel Xeon Phi architecture is relatively straightforward with a short development time due to the support of common parallel programming models by the coprocessor. The parallel version of eFindSite is freely available to the academic community at www.brylinski.org/efindsite.

  20. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.

    PubMed

    Crown, Scott B; Antoniewicz, Maciek R

    2013-03-01

    Radioactive and stable isotopes have been applied for decades to elucidate metabolic pathways and quantify carbon flow in cellular systems using mass and isotope balancing approaches. Isotope-labeling experiments can be conducted as a single tracer experiment, or as parallel labeling experiments. In the latter case, several experiments are performed under identical conditions except for the choice of substrate labeling. In this review, we highlight robust approaches for probing metabolism and addressing metabolically related questions though parallel labeling experiments. In the first part, we provide a brief historical perspective on parallel labeling experiments, from the early metabolic studies when radioisotopes were predominant to present-day applications based on stable-isotopes. We also elaborate on important technical and theoretical advances that have facilitated the transition from radioisotopes to stable-isotopes. In the second part of the review, we focus on parallel labeling experiments for (13)C-metabolic flux analysis ((13)C-MFA). Parallel experiments offer several advantages that include: tailoring experiments to resolve specific fluxes with high precision; reducing the length of labeling experiments by introducing multiple entry-points of isotopes; validating biochemical network models; and improving the performance of (13)C-MFA in systems where the number of measurements is limited. We conclude by discussing some challenges facing the use of parallel labeling experiments for (13)C-MFA and highlight the need to address issues related to biological variability, data integration, and rational tracer selection. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Parallel Work of CO2 Ejectors Installed in a Multi-Ejector Module of Refrigeration System

    NASA Astrophysics Data System (ADS)

    Bodys, Jakub; Palacz, Michal; Haida, Michal; Smolka, Jacek; Nowak, Andrzej J.; Banasiak, Krzysztof; Hafner, Armin

    2016-09-01

    A performance analysis on of fixed ejectors installed in a multi-ejector module in a CO2 refrigeration system is presented in this study. The serial and the parallel work of four fixed-geometry units that compose the multi-ejector pack was carried out. The executed numerical simulations were performed with the use of validated Homogeneous Equilibrium Model (HEM). The computational tool ejectorPL for typical transcritical parameters at the motive nozzle were used in all the tests. A wide range of the operating conditions for supermarket applications in three different European climate zones were taken into consideration. The obtained results present the high and stable performance of all the ejectors in the multi-ejector pack.

  2. Finite Element Analysis and Biomechanical Comparison of Short Posterior Spinal Instrumentation with Divergent Bridge Construct versus Parallel Tension Band Construct for Thoracolumbar Spine Fractures

    PubMed Central

    Ouellet, Jean A.; Richards, Corey; Sardar, Zeeshan M.; Giannitsios, Demetri; Noiseux, Nicholas; Strydom, Willem S.; Reindl, Rudy; Jarzem, Peter; Arlet, Vincent; Steffen, Thomas

    2013-01-01

    The ideal treatment for unstable thoracolumbar fractures remains controversial with posterior reduction and stabilization, anterior reduction and stabilization, combined posterior and anterior reduction and stabilization, and even nonoperative management advocated. Short segment posterior osteosynthesis of these fractures has less comorbidities compared with the other operative approaches but settles into kyphosis over time. Biomechanical comparison of the divergent bridge construct versus the parallel tension band construct was performed for anteriorly destabilized T11–L1 spine segments using three different models: (1) finite element analysis (FEA), (2) a synthetic model, and (3) a human cadaveric model. Outcomes measured were construct stiffness and ultimate failure load. Our objective was to determine if the divergent pedicle screw bridge construct would provide more resistance to kyphotic deforming forces. All three modalities showed greater stiffness with the divergent bridge construct. The FEA calculated a stiffness of 21.6 N/m for the tension band construct versus 34.1 N/m for the divergent bridge construct. The synthetic model resulted in a mean stiffness of 17.3 N/m for parallel tension band versus 20.6 N/m for the divergent bridge (p = 0.03), whereas the cadaveric model had an average stiffness of 15.2 N/m in the parallel tension band compared with 18.4 N/m for the divergent bridge (p = 0.02). Ultimate failure load with the cadaveric model was found to be 622 N for the divergent bridge construct versus 419 N (p = 0.15) for the parallel tension band construct. This study confirms our clinical experience that the short posterior divergent bridge construct provides greater stiffness for the management of unstable thoracolumbar fractures. PMID:24436856

  3. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  4. Families of Graph Algorithms: SSSP Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanewala Appuhamilage, Thejaka Amila Jay; Zalewski, Marcin J.; Lumsdaine, Andrew

    2017-08-28

    Single-Source Shortest Paths (SSSP) is a well-studied graph problem. Examples of SSSP algorithms include the original Dijkstra’s algorithm and the parallel Δ-stepping and KLA-SSSP algorithms. In this paper, we use a novel Abstract Graph Machine (AGM) model to show that all these algorithms share a common logic and differ from one another by the order in which they perform work. We use the AGM model to thoroughly analyze the family of algorithms that arises from the common logic. We start with the basic algorithm without any ordering (Chaotic), and then we derive the existing and new algorithms by methodically exploringmore » semantic and spatial ordering of work. Our experimental results show that new derived algorithms show better performance than the existing distributed memory parallel algorithms, especially at higher scales.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strout, Michelle

    Programming parallel machines is fraught with difficulties: the obfuscation of algorithms due to implementation details such as communication and synchronization, the need for transparency between language constructs and performance, the difficulty of performing program analysis to enable automatic parallelization techniques, and the existence of important "dusty deck" codes. The SAIMI project developed abstractions that enable the orthogonal specification of algorithms and implementation details within the context of existing DOE applications. The main idea is to enable the injection of small programming models such as expressions involving transcendental functions, polyhedral iteration spaces with sparse constraints, and task graphs into full programsmore » through the use of pragmas. These smaller, more restricted programming models enable orthogonal specification of many implementation details such as how to map the computation on to parallel processors, how to schedule the computation, and how to allocation storage for the computation. At the same time, these small programming models enable the expression of the most computationally intense and communication heavy portions in many scientific simulations. The ability to orthogonally manipulate the implementation for such computations will significantly ease performance programming efforts and expose transformation possibilities and parameter to automated approaches such as autotuning. At Colorado State University, the SAIMI project was supported through DOE grant DE-SC3956 from April 2010 through August 2015. The SAIMI project has contributed a number of important results to programming abstractions that enable the orthogonal specification of implementation details in scientific codes. This final report summarizes the research that was funded by the SAIMI project.« less

  6. A Parallel Sliding Region Algorithm to Make Agent-Based Modeling Possible for a Large-Scale Simulation: Modeling Hepatitis C Epidemics in Canada.

    PubMed

    Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla

    2016-11-01

    Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.

  7. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  8. Benchmarking Ada tasking on tightly coupled multiprocessor architectures

    NASA Technical Reports Server (NTRS)

    Collard, Philippe; Goforth, Andre; Marquardt, Matthew

    1989-01-01

    The development of benchmarks and performance measures for parallel Ada tasking is reported with emphasis on the macroscopic behavior of the benchmark across a set of load parameters. The application chosen for the study was the NASREM model for telerobot control, relevant to many NASA missions. The results of the study demonstrate the potential of parallel Ada in accomplishing the task of developing a control system for a system such as the Flight Telerobotic Servicer using the NASREM framework.

  9. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  10. Network Model of Decreased Context Utilization in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Beversdorf, David Q.; Narayanan, Ananth; Hillier, Ashleigh; Hughes, John D.

    2007-01-01

    Individuals with autism spectrum disorders (ASD) demonstrate impaired utilization of context, which allows for superior performance on the "false memory" task. We report the application of a simplified parallel distributed processing model of context utilization to the false memory task. For individuals without ASD, experiments support a model…

  11. The cost of parallel consolidation into visual working memory.

    PubMed

    Rideaux, Reuben; Edwards, Mark

    2016-01-01

    A growing body of evidence indicates that information can be consolidated into visual working memory in parallel. Initially, it was suggested that color information could be consolidated in parallel while orientation was strictly limited to serial consolidation (Liu & Becker, 2013). However, we recently found evidence suggesting that both orientation and motion direction items can be consolidated in parallel, with different levels of accuracy (Rideaux, Apthorp, & Edwards, 2015). Here we examine whether there is a cost associated with parallel consolidation of orientation and direction information by comparing performance, in terms of precision and guess rate, on a target recall task where items are presented either sequentially or simultaneously. The results compellingly indicate that motion direction can be consolidated in parallel, but the evidence for orientation is less conclusive. Further, we find that there is a twofold cost associated with parallel consolidation of direction: Both the probability of failing to consolidate one (or both) item/s increases and the precision at which representations are encoded is reduced. Additionally, we find evidence indicating that the increased consolidation failure may be due to interference between items presented simultaneously, and is moderated by item similarity. These findings suggest that a biased competition model may explain differences in parallel consolidation between features.

  12. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  13. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  14. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-11-01

    The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.

  15. A Review of Lightweight Thread Approaches for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Adrian; Pena, Antonio J.; Seo, Sangmin

    High-level, directive-based solutions are becoming the programming models (PMs) of the multi/many-core architectures. Several solutions relying on operating system (OS) threads perfectly work with a moderate number of cores. However, exascale systems will spawn hundreds of thousands of threads in order to exploit their massive parallel architectures and thus conventional OS threads are too heavy for that purpose. Several lightweight thread (LWT) libraries have recently appeared offering lighter mechanisms to tackle massive concurrency. In order to examine the suitability of LWTs in high-level runtimes, we develop a set of microbenchmarks consisting of commonlyfound patterns in current parallel codes. Moreover, wemore » study the semantics offered by some LWT libraries in order to expose the similarities between different LWT application programming interfaces. This study reveals that a reduced set of LWT functions can be sufficient to cover the common parallel code patterns and that those LWT libraries perform better than OS threads-based solutions in cases where task and nested parallelism are becoming more popular with new architectures.« less

  16. Integrated microfluidic devices for combinatorial cell-based assays.

    PubMed

    Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong

    2009-06-01

    The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.

  17. Integrated microfluidic devices for combinatorial cell-based assays

    PubMed Central

    Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert

    2010-01-01

    The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244

  18. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  19. A simple hyperbolic model for communication in parallel processing environments

    NASA Technical Reports Server (NTRS)

    Stoica, Ion; Sultan, Florin; Keyes, David

    1994-01-01

    We introduce a model for communication costs in parallel processing environments called the 'hyperbolic model,' which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are independent of load are assumed by many existing communication models; such models are unrealistic for workstation networks. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes that initiate the sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. The parameters are evaluated in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by experiments with communication subprograms arising in scientific applications, for which a tight fit of the model predictions with actual measurements of the communication and synchronization time between end processes is demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility of the hyperbolic model with the recently proposed LogP model.

  20. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  1. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  2. A parallel reaction-transport model applied to cement hydration and microstructure development

    NASA Astrophysics Data System (ADS)

    Bullard, Jeffrey W.; Enjolras, Edith; George, William L.; Satterfield, Steven G.; Terrill, Judith E.

    2010-03-01

    A recently described stochastic reaction-transport model on three-dimensional lattices is parallelized and is used to simulate the time-dependent structural and chemical evolution in multicomponent reactive systems. The model, called HydratiCA, uses probabilistic rules to simulate the kinetics of diffusion, homogeneous reactions and heterogeneous phenomena such as solid nucleation, growth and dissolution in complex three-dimensional systems. The algorithms require information only from each lattice site and its immediate neighbors, and this localization enables the parallelized model to exhibit near-linear scaling up to several hundred processors. Although applicable to a wide range of material systems, including sedimentary rock beds, reacting colloids and biochemical systems, validation is performed here on two minerals that are commonly found in Portland cement paste, calcium hydroxide and ettringite, by comparing their simulated dissolution or precipitation rates far from equilibrium to standard rate equations, and also by comparing simulated equilibrium states to thermodynamic calculations, as a function of temperature and pH. Finally, we demonstrate how HydratiCA can be used to investigate microstructure characteristics, such as spatial correlations between different condensed phases, in more complex microstructures.

  3. A Model of In vitro Plasticity at the Parallel Fiber—Molecular Layer Interneuron Synapses

    PubMed Central

    Lennon, William; Yamazaki, Tadashi; Hecht-Nielsen, Robert

    2015-01-01

    Theoretical and computational models of the cerebellum typically focus on the role of parallel fiber (PF)—Purkinje cell (PKJ) synapses for learned behavior, but few emphasize the role of the molecular layer interneurons (MLIs)—the stellate and basket cells. A number of recent experimental results suggest the role of MLIs is more important than previous models put forth. We investigate learning at PF—MLI synapses and propose a mathematical model to describe plasticity at this synapse. We perform computer simulations with this form of learning using a spiking neuron model of the MLI and show that it reproduces six in vitro experimental results in addition to simulating four novel protocols. Further, we show how this plasticity model can predict the results of other experimental protocols that are not simulated. Finally, we hypothesize what the biological mechanisms are for changes in synaptic efficacy that embody the phenomenological model proposed here. PMID:26733856

  4. Fast in-memory elastic full-waveform inversion using consumer-grade GPUs

    NASA Astrophysics Data System (ADS)

    Sivertsen Bergslid, Tore; Birger Raknes, Espen; Arntsen, Børge

    2017-04-01

    Full-waveform inversion (FWI) is a technique to estimate subsurface properties by using the recorded waveform produced by a seismic source and applying inverse theory. This is done through an iterative optimization procedure, where each iteration requires solving the wave equation many times, then trying to minimize the difference between the modeled and the measured seismic data. Having to model many of these seismic sources per iteration means that this is a highly computationally demanding procedure, which usually involves writing a lot of data to disk. We have written code that does forward modeling and inversion entirely in memory. A typical HPC cluster has many more CPUs than GPUs. Since FWI involves modeling many seismic sources per iteration, the obvious approach is to parallelize the code on a source-by-source basis, where each core of the CPU performs one modeling, and do all modelings simultaneously. With this approach, the GPU is already at a major disadvantage in pure numbers. Fortunately, GPUs can more than make up for this hardware disadvantage by performing each modeling much faster than a CPU. Another benefit of parallelizing each individual modeling is that it lets each modeling use a lot more RAM. If one node has 128 GB of RAM and 20 CPU cores, each modeling can use only 6.4 GB RAM if one is running the node at full capacity with source-by-source parallelization on the CPU. A parallelized per-source code using GPUs can use 64 GB RAM per modeling. Whenever a modeling uses more RAM than is available and has to start using regular disk space the runtime increases dramatically, due to slow file I/O. The extremely high computational speed of the GPUs combined with the large amount of RAM available for each modeling lets us do high frequency FWI for fairly large models very quickly. For a single modeling, our GPU code outperforms the single-threaded CPU-code by a factor of about 75. Successful inversions have been run on data with frequencies up to 40 Hz for a model of 2001 by 600 grid points with 5 m grid spacing and 5000 time steps, in less than 2.5 minutes per source. In practice, using 15 nodes (30 GPUs) to model 101 sources, each iteration took approximately 9 minutes. For reference, the same inversion run with our CPU code uses two hours per iteration. This was done using only a very simple wavefield interpolation technique, saving every second timestep. Using a more sophisticated checkpointing or wavefield reconstruction method would allow us to increase this model size significantly. Our results show that ordinary gaming GPUs are a viable alternative to the expensive professional GPUs often used today, when performing large scale modeling and inversion in geophysics.

  5. Computational efficiency of parallel combinatorial OR-tree searches

    NASA Technical Reports Server (NTRS)

    Li, Guo-Jie; Wah, Benjamin W.

    1990-01-01

    The performance of parallel combinatorial OR-tree searches is analytically evaluated. This performance depends on the complexity of the problem to be solved, the error allowance function, the dominance relation, and the search strategies. The exact performance may be difficult to predict due to the nondeterminism and anomalies of parallelism. The authors derive the performance bounds of parallel OR-tree searches with respect to the best-first, depth-first, and breadth-first strategies, and verify these bounds by simulation. They show that a near-linear speedup can be achieved with respect to a large number of processors for parallel OR-tree searches. Using the bounds developed, the authors derive sufficient conditions for assuring that parallelism will not degrade performance and necessary conditions for allowing parallelism to have a speedup greater than the ratio of the numbers of processors. These bounds and conditions provide the theoretical foundation for determining the number of processors required to assure a near-linear speedup.

  6. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  7. A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan

    2010-01-01

    Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code,more » the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.« less

  8. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    PubMed

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  9. The Parallel Episodic Processing (PEP) model 2.0: A single computational model of stimulus-response binding, contingency learning, power curves, and mixing costs.

    PubMed

    Schmidt, James R; De Houwer, Jan; Rothermund, Klaus

    2016-12-01

    The current paper presents an extension of the Parallel Episodic Processing model. The model is developed for simulating behaviour in performance (i.e., speeded response time) tasks and learns to anticipate both how and when to respond based on retrieval of memories of previous trials. With one fixed parameter set, the model is shown to successfully simulate a wide range of different findings. These include: practice curves in the Stroop paradigm, contingency learning effects, learning acquisition curves, stimulus-response binding effects, mixing costs, and various findings from the attentional control domain. The results demonstrate several important points. First, the same retrieval mechanism parsimoniously explains stimulus-response binding, contingency learning, and practice effects. Second, as performance improves with practice, any effects will shrink with it. Third, a model of simple learning processes is sufficient to explain phenomena that are typically (but perhaps incorrectly) interpreted in terms of higher-order control processes. More generally, we argue that computational models with a fixed parameter set and wider breadth should be preferred over those that are restricted to a narrow set of phenomena. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Generating performance portable geoscientific simulation code with Firedrake (Invited)

    NASA Astrophysics Data System (ADS)

    Ham, D. A.; Bercea, G.; Cotter, C. J.; Kelly, P. H.; Loriant, N.; Luporini, F.; McRae, A. T.; Mitchell, L.; Rathgeber, F.

    2013-12-01

    This presentation will demonstrate how a change in simulation programming paradigm can be exploited to deliver sophisticated simulation capability which is far easier to programme than are conventional models, is capable of exploiting different emerging parallel hardware, and is tailored to the specific needs of geoscientific simulation. Geoscientific simulation represents a grand challenge computational task: many of the largest computers in the world are tasked with this field, and the requirements of resolution and complexity of scientists in this field are far from being sated. However, single thread performance has stalled, even sometimes decreased, over the last decade, and has been replaced by ever more parallel systems: both as conventional multicore CPUs and in the emerging world of accelerators. At the same time, the needs of scientists to couple ever-more complex dynamics and parametrisations into their models makes the model development task vastly more complex. The conventional approach of writing code in low level languages such as Fortran or C/C++ and then hand-coding parallelism for different platforms by adding library calls and directives forces the intermingling of the numerical code with its implementation. This results in an almost impossible set of skill requirements for developers, who must simultaneously be domain science experts, numericists, software engineers and parallelisation specialists. Even more critically, it requires code to be essentially rewritten for each emerging hardware platform. Since new platforms are emerging constantly, and since code owners do not usually control the procurement of the supercomputers on which they must run, this represents an unsustainable development load. The Firedrake system, conversely, offers the developer the opportunity to write PDE discretisations in the high-level mathematical language UFL from the FEniCS project (http://fenicsproject.org). Non-PDE model components, such as parametrisations, can be written as short C kernels operating locally on the underlying mesh, with no explicit parallelism. The executable code is then generated in C, CUDA or OpenCL and executed in parallel on the target architecture. The system also offers features of special relevance to the geosciences. In particular, the large scale separation between the vertical and horizontal directions in many geoscientific processes can be exploited to offer the flexibility of unstructured meshes in the horizontal direction, without the performance penalty usually associated with those methods.

  11. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  12. Application Characterization at Scale: Lessons learned from developing a distributed Open Community Runtime system for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landwehr, Joshua B.; Suetterlein, Joshua D.; Marquez, Andres

    2016-05-16

    Since 2012, the U.S. Department of Energy’s X-Stack program has been developing solutions including runtime systems, programming models, languages, compilers, and tools for the Exascale system software to address crucial performance and power requirements. Fine grain programming models and runtime systems show a great potential to efficiently utilize the underlying hardware. Thus, they are essential to many X-Stack efforts. An abundant amount of small tasks can better utilize the vast parallelism available on current and future machines. Moreover, finer tasks can recover faster and adapt better, due to a decrease in state and control. Nevertheless, current applications have been writtenmore » to exploit old paradigms (such as Communicating Sequential Processor and Bulk Synchronous Parallel processing). To fully utilize the advantages of these new systems, applications need to be adapted to these new paradigms. As part of the applications’ porting process, in-depth characterization studies, focused on both application characteristics and runtime features, need to take place to fully understand the application performance bottlenecks and how to resolve them. This paper presents a characterization study for a novel high performance runtime system, called the Open Community Runtime, using key HPC kernels as its vehicle. This study has the following contributions: one of the first high performance, fine grain, distributed memory runtime system implementing the OCR standard (version 0.99a); and a characterization study of key HPC kernels in terms of runtime primitives running on both intra and inter node environments. Running on a general purpose cluster, we have found up to 1635x relative speed-up for a parallel tiled Cholesky Kernels on 128 nodes with 16 cores each and a 1864x relative speed-up for a parallel tiled Smith-Waterman kernel on 128 nodes with 30 cores.« less

  13. Performance Improvements of the CYCOFOS Flow Model

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Hari; Moulitsas, Irene; Syrakos, Alexandros; Zodiatis, George; Nikolaides, Andreas; Hayes, Daniel; Georgiou, Georgios C.

    2013-04-01

    The CYCOFOS-Cyprus Coastal Ocean Forecasting and Observing System has been operational since early 2002, providing daily sea current, temperature, salinity and sea level forecasting data for the next 4 and 10 days to end-users in the Levantine Basin, necessary for operational application in marine safety, particularly concerning oil spills and floating objects predictions. CYCOFOS flow model, similar to most of the coastal and sub-regional operational hydrodynamic forecasting systems of the MONGOOS-Mediterranean Oceanographic Network for Global Ocean Observing System is based on the POM-Princeton Ocean Model. CYCOFOS is nested with the MyOcean Mediterranean regional forecasting data and with SKIRON and ECMWF for surface forcing. The increasing demand for higher and higher resolution data to meet coastal and offshore downstream applications motivated the parallelization of the CYCOFOS POM model. This development was carried out in the frame of the IPcycofos project, funded by the Cyprus Research Promotion Foundation. The parallel processing provides a viable solution to satisfy these demands without sacrificing accuracy or omitting any physical phenomena. Prior to IPcycofos project, there are been several attempts to parallelise the POM, as for example the MP-POM. The existing parallel code models rely on the use of specific outdated hardware architectures and associated software. The objective of the IPcycofos project is to produce an operational parallel version of the CYCOFOS POM code that can replicate the results of the serial version of the POM code used in CYCOFOS. The parallelization of the CYCOFOS POM model use Message Passing Interface-MPI, implemented on commodity computing clusters running open source software and not depending on any specialized vendor hardware. The parallel CYCOFOS POM code constructed in a modular fashion, allowing a fast re-locatable downscaled implementation. The MPI takes advantage of the Cartesian nature of the POM mesh, and use the built-in functionality of MPI routines to split the mesh, using a weighting scheme, along longitude and latitude among the processors. Each server processor work on the model based on domain decomposition techniques. The new parallel CYCOFOS POM code has been benchmarked against the serial POM version of CYCOFOS for speed, accuracy, and resolution and the results are more than satisfactory. With a higher resolution CYCOFOS Levantine model domain the forecasts need much less time than the serial CYCOFOS POM coarser version, both with identical accuracy.

  14. Strategies for Large Scale Implementation of a Multiscale, Multiprocess Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Duffy, C.

    2006-05-01

    Distributed models simulate hydrologic state variables in space and time while taking into account the heterogeneities in terrain, surface, subsurface properties and meteorological forcings. Computational cost and complexity associated with these model increases with its tendency to accurately simulate the large number of interacting physical processes at fine spatio-temporal resolution in a large basin. A hydrologic model run on a coarse spatial discretization of the watershed with limited number of physical processes needs lesser computational load. But this negatively affects the accuracy of model results and restricts physical realization of the problem. So it is imperative to have an integrated modeling strategy (a) which can be universally applied at various scales in order to study the tradeoffs between computational complexity (determined by spatio- temporal resolution), accuracy and predictive uncertainty in relation to various approximations of physical processes (b) which can be applied at adaptively different spatial scales in the same domain by taking into account the local heterogeneity of topography and hydrogeologic variables c) which is flexible enough to incorporate different number and approximation of process equations depending on model purpose and computational constraint. An efficient implementation of this strategy becomes all the more important for Great Salt Lake river basin which is relatively large (~89000 sq. km) and complex in terms of hydrologic and geomorphic conditions. Also the types and the time scales of hydrologic processes which are dominant in different parts of basin are different. Part of snow melt runoff generated in the Uinta Mountains infiltrates and contributes as base flow to the Great Salt Lake over a time scale of decades to centuries. The adaptive strategy helps capture the steep topographic and climatic gradient along the Wasatch front. Here we present the aforesaid modeling strategy along with an associated hydrologic modeling framework which facilitates a seamless, computationally efficient and accurate integration of the process model with the data model. The flexibility of this framework leads to implementation of multiscale, multiresolution, adaptive refinement/de-refinement and nested modeling simulations with least computational burden. However, performing these simulations and related calibration of these models over a large basin at higher spatio- temporal resolutions is computationally intensive and requires use of increasing computing power. With the advent of parallel processing architectures, high computing performance can be achieved by parallelization of existing serial integrated-hydrologic-model code. This translates to running the same model simulation on a network of large number of processors thereby reducing the time needed to obtain solution. The paper also discusses the implementation of the integrated model on parallel processors. Also will be discussed the mapping of the problem on multi-processor environment, method to incorporate coupling between hydrologic processes using interprocessor communication models, model data structure and parallel numerical algorithms to obtain high performance.

  15. Blob dynamics in TORPEX poloidal null configurations

    NASA Astrophysics Data System (ADS)

    Shanahan, B. W.; Dudson, B. D.

    2016-12-01

    3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.

  16. Massive parallelization of serial inference algorithms for a complex generalized linear model

    PubMed Central

    Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David

    2014-01-01

    Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363

  17. Parallel task processing of very large datasets

    NASA Astrophysics Data System (ADS)

    Romig, Phillip Richardson, III

    This research concerns the use of distributed computer technologies for the analysis and management of very large datasets. Improvements in sensor technology, an emphasis on global change research, and greater access to data warehouses all are increase the number of non-traditional users of remotely sensed data. We present a framework for distributed solutions to the challenges of datasets which exceed the online storage capacity of individual workstations. This framework, called parallel task processing (PTP), incorporates both the task- and data-level parallelism exemplified by many image processing operations. An implementation based on the principles of PTP, called Tricky, is also presented. Additionally, we describe the challenges and practical issues in modeling the performance of parallel task processing with large datasets. We present a mechanism for estimating the running time of each unit of work within a system and an algorithm that uses these estimates to simulate the execution environment and produce estimated runtimes. Finally, we describe and discuss experimental results which validate the design. Specifically, the system (a) is able to perform computation on datasets which exceed the capacity of any one disk, (b) provides reduction of overall computation time as a result of the task distribution even with the additional cost of data transfer and management, and (c) in the simulation mode accurately predicts the performance of the real execution environment.

  18. On program restructuring, scheduling, and communication for parallel processor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polychronopoulos, Constantine D.

    1986-08-01

    This dissertation discusses several software and hardware aspects of program execution on large-scale, high-performance parallel processor systems. The issues covered are program restructuring, partitioning, scheduling and interprocessor communication, synchronization, and hardware design issues of specialized units. All this work was performed focusing on a single goal: to maximize program speedup, or equivalently, to minimize parallel execution time. Parafrase, a Fortran restructuring compiler was used to transform programs in a parallel form and conduct experiments. Two new program restructuring techniques are presented, loop coalescing and subscript blocking. Compile-time and run-time scheduling schemes are covered extensively. Depending on the program construct, thesemore » algorithms generate optimal or near-optimal schedules. For the case of arbitrarily nested hybrid loops, two optimal scheduling algorithms for dynamic and static scheduling are presented. Simulation results are given for a new dynamic scheduling algorithm. The performance of this algorithm is compared to that of self-scheduling. Techniques for program partitioning and minimization of interprocessor communication for idealized program models and for real Fortran programs are also discussed. The close relationship between scheduling, interprocessor communication, and synchronization becomes apparent at several points in this work. Finally, the impact of various types of overhead on program speedup and experimental results are presented.« less

  19. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    PubMed

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  20. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    PubMed Central

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-01-01

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments. PMID:28961209

  1. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    NASA Technical Reports Server (NTRS)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.

  2. Simulating spin models on GPU

    NASA Astrophysics Data System (ADS)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  3. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    PubMed

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Accelerating a three-dimensional eco-hydrological cellular automaton on GPGPU with OpenCL

    NASA Astrophysics Data System (ADS)

    Senatore, Alfonso; D'Ambrosio, Donato; De Rango, Alessio; Rongo, Rocco; Spataro, William; Straface, Salvatore; Mendicino, Giuseppe

    2016-10-01

    This work presents an effective implementation of a numerical model for complete eco-hydrological Cellular Automata modeling on Graphical Processing Units (GPU) with OpenCL (Open Computing Language) for heterogeneous computation (i.e., on CPUs and/or GPUs). Different types of parallel implementations were carried out (e.g., use of fast local memory, loop unrolling, etc), showing increasing performance improvements in terms of speedup, adopting also some original optimizations strategies. Moreover, numerical analysis of results (i.e., comparison of CPU and GPU outcomes in terms of rounding errors) have proven to be satisfactory. Experiments were carried out on a workstation with two CPUs (Intel Xeon E5440 at 2.83GHz), one GPU AMD R9 280X and one GPU nVIDIA Tesla K20c. Results have been extremely positive, but further testing should be performed to assess the functionality of the adopted strategies on other complete models and their ability to fruitfully exploit parallel systems resources.

  5. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a quadratic programming based modeling method is proposed. This algorithm performs well with small amount of computing tasks. However, its efficiency decreases significantly as the subdomain number and computing node number increase. 2) To compensate performance decreasing for large scale tasks, a K-Means clustering based algorithm is introduced. Instead of dedicating to get optimized solutions, this method can get relatively good feasible solutions within acceptable time. However, it may introduce imbalance communication for nodes or node-isolated subdomains. This research shows both two algorithms have their own strength and weakness for task allocation. A combination of the two algorithms is under study to obtain a better performance. Keywords: Scheduling; Parallel Computing; Load Balance; Optimization; Cost Model

  6. Parallel high-precision orbit propagation using the modified Picard-Chebyshev method

    NASA Astrophysics Data System (ADS)

    Koblick, Darin C.

    2012-03-01

    The modified Picard-Chebyshev method, when run in parallel, is thought to be more accurate and faster than the most efficient sequential numerical integration techniques when applied to orbit propagation problems. Previous experiments have shown that the modified Picard-Chebyshev method can have up to a one order magnitude speedup over the 12th order Runge-Kutta-Nystrom method. For this study, the evaluation of the accuracy and computational time of the modified Picard-Chebyshev method, using the Java Astrodynamics Toolkit high-precision force model, is conducted to assess its runtime performance. Simulation results of the modified Picard-Chebyshev method, implemented in MATLAB and the MATLAB Parallel Computing Toolbox, are compared against the most efficient first and second order Ordinary Differential Equation (ODE) solvers. A total of six processors were used to assess the runtime performance of the modified Picard-Chebyshev method. It was found that for all orbit propagation test cases, where the gravity model was simulated to be of higher degree and order (above 225 to increase computational overhead), the modified Picard-Chebyshev method was faster, by as much as a factor of two, than the other ODE solvers which were tested.

  7. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less

  8. Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing

    NASA Technical Reports Server (NTRS)

    Fricker, David M.

    1997-01-01

    The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.

  9. Vectorized and multitasked solution of the few-group neutron diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, S.K.; Turinsky, P.J.; Shayer, Z.

    1989-03-01

    A numerical algorithm with parallelism was used to solve the two-group, multidimensional neutron diffusion equations on computers characterized by shared memory, vector pipeline, and multi-CPU architecture features. Specifically, solutions were obtained on the Cray X/MP-48, the IBM-3090 with vector facilities, and the FPS-164. The material-centered mesh finite difference method approximation and outer-inner iteration method were employed. Parallelism was introduced in the inner iterations using the cyclic line successive overrelaxation iterative method and solving in parallel across lines. The outer iterations were completed using the Chebyshev semi-iterative method that allows parallelism to be introduced in both space and energy groups. Formore » the three-dimensional model, power, soluble boron, and transient fission product feedbacks were included. Concentrating on the pressurized water reactor (PWR), the thermal-hydraulic calculation of moderator density assumed single-phase flow and a closed flow channel, allowing parallelism to be introduced in the solution across the radial plane. Using a pinwise detail, quarter-core model of a typical PWR in cycle 1, for the two-dimensional model without feedback the measured million floating point operations per second (MFLOPS)/vector speedups were 83/11.7. 18/2.2, and 2.4/5.6 on the Cray, IBM, and FPS without multitasking, respectively. Lower performance was observed with a coarser mesh, i.e., shorter vector length, due to vector pipeline start-up. For an 18 x 18 x 30 (x-y-z) three-dimensional model with feedback of the same core, MFLOPS/vector speedups of --61/6.7 and an execution time of 0.8 CPU seconds on the Cray without multitasking were measured. Finally, using two CPUs and the vector pipelines of the Cray, a multitasking efficiency of 81% was noted for the three-dimensional model.« less

  10. Parallel Nonnegative Least Squares Solvers for Model Order Reduction

    DTIC Science & Technology

    2016-03-01

    NNLS problems that arise when the Energy Conserving Sampling and Weighting hyper -reduction procedure is used when constructing a reduced-order model...ScaLAPACK and performance results are presented. nonnegative least squares, model order reduction, hyper -reduction, Energy Conserving Sampling and...optimal solution. ........................................ 20 Table 6 Reduced mesh sizes produced for each solver in the ECSW hyper -reduction step

  11. ParCAT: A Parallel Climate Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Haugen, B.; Smith, B.; Steed, C.; Ricciuto, D. M.; Thornton, P. E.; Shipman, G.

    2012-12-01

    Climate science has employed increasingly complex models and simulations to analyze the past and predict the future of our climate. The size and dimensionality of climate simulation data has been growing with the complexity of the models. This growth in data is creating a widening gap between the data being produced and the tools necessary to analyze large, high dimensional data sets. With single run data sets increasing into 10's, 100's and even 1000's of gigabytes, parallel computing tools are becoming a necessity in order to analyze and compare climate simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools that efficiently use parallel computing techniques to narrow the gap between data set size and analysis tools. ParCAT was created as a collaborative effort between climate scientists and computer scientists in order to provide efficient parallel implementations of the computing tools that are of use to climate scientists. Some of the basic functionalities included in the toolkit are the ability to compute spatio-temporal means and variances, differences between two runs and histograms of the values in a data set. ParCAT is designed to facilitate the "heavy lifting" that is required for large, multidimensional data sets. The toolkit does not focus on performing the final visualizations and presentation of results but rather, reducing large data sets to smaller, more manageable summaries. The output from ParCAT is provided in commonly used file formats (NetCDF, CSV, ASCII) to allow for simple integration with other tools. The toolkit is currently implemented as a command line utility, but will likely also provide a C library for developers interested in tighter software integration. Elements of the toolkit are already being incorporated into projects such as UV-CDAT and CMDX. There is also an effort underway to implement portions of the CCSM Land Model Diagnostics package using ParCAT in conjunction with Python and gnuplot. ParCAT is implemented in C to provide efficient file IO. The file IO operations in the toolkit use the parallel-netcdf library; this enables the code to use the parallel IO capabilities of modern HPC systems. Analysis that currently requires an estimated 12+ hours with the traditional CCSM Land Model Diagnostics Package can now be performed in as little as 30 minutes on a single desktop workstation and a few minutes for relatively small jobs completed on modern HPC systems such as ORNL's Jaguar.

  12. Parallel Grid Manipulations in Earth Science Calculations

    NASA Technical Reports Server (NTRS)

    Sawyer, W.; Lucchesi, R.; daSilva, A.; Takacs, L. L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) Data Assimilation Office (DAO) at the Goddard Space Flight Center is moving its data assimilation system to massively parallel computing platforms. This parallel implementation of GEOS DAS will be used in the DAO's normal activities, which include reanalysis of data, and operational support for flight missions. Key components of GEOS DAS, including the gridpoint-based general circulation model and a data analysis system, are currently being parallelized. The parallelization of GEOS DAS is also one of the HPCC Grand Challenge Projects. The GEOS-DAS software employs several distinct grids. Some examples are: an observation grid- an unstructured grid of points at which observed or measured physical quantities from instruments or satellites are associated- a highly-structured latitude-longitude grid of points spanning the earth at given latitude-longitude coordinates at which prognostic quantities are determined, and a computational lat-lon grid in which the pole has been moved to a different location to avoid computational instabilities. Each of these grids has a different structure and number of constituent points. In spite of that, there are numerous interactions between the grids, e.g., values on one grid must be interpolated to another, or, in other cases, grids need to be redistributed on the underlying parallel platform. The DAO has designed a parallel integrated library for grid manipulations (PILGRIM) to support the needed grid interactions with maximum efficiency. It offers a flexible interface to generate new grids, define transformations between grids and apply them. Basic communication is currently MPI, however the interfaces defined here could conceivably be implemented with other message-passing libraries, e.g., Cray SHMEM, or with shared-memory constructs. The library is written in Fortran 90. First performance results indicate that even difficult problems, such as above-mentioned pole rotation- a sparse interpolation with little data locality between the physical lat-lon grid and a pole rotated computational grid- can be solved efficiently and at the GFlop/s rates needed to solve tomorrow's high resolution earth science models. In the subsequent presentation we will discuss the design and implementation of PILGRIM as well as a number of the problems it is required to solve. Some conclusions will be drawn about the potential performance of the overall earth science models on the supercomputer platforms foreseen for these problems.

  13. Parallel computing in enterprise modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less

  14. Tuning iteration space slicing based tiled multi-core code implementing Nussinov's RNA folding.

    PubMed

    Palkowski, Marek; Bielecki, Wlodzimierz

    2018-01-15

    RNA folding is an ongoing compute-intensive task of bioinformatics. Parallelization and improving code locality for this kind of algorithms is one of the most relevant areas in computational biology. Fortunately, RNA secondary structure approaches, such as Nussinov's recurrence, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. This allows us to apply powerful polyhedral compilation techniques based on the transitive closure of dependence graphs to generate parallel tiled code implementing Nussinov's RNA folding. Such techniques are within the iteration space slicing framework - the transitive dependences are applied to the statement instances of interest to produce valid tiles. The main problem at generating parallel tiled code is defining a proper tile size and tile dimension which impact parallelism degree and code locality. To choose the best tile size and tile dimension, we first construct parallel parametric tiled code (parameters are variables defining tile size). With this purpose, we first generate two nonparametric tiled codes with different fixed tile sizes but with the same code structure and then derive a general affine model, which describes all integer factors available in expressions of those codes. Using this model and known integer factors present in the mentioned expressions (they define the left-hand side of the model), we find unknown integers in this model for each integer factor available in the same fixed tiled code position and replace in this code expressions, including integer factors, with those including parameters. Then we use this parallel parametric tiled code to implement the well-known tile size selection (TSS) technique, which allows us to discover in a given search space the best tile size and tile dimension maximizing target code performance. For a given search space, the presented approach allows us to choose the best tile size and tile dimension in parallel tiled code implementing Nussinov's RNA folding. Experimental results, received on modern Intel multi-core processors, demonstrate that this code outperforms known closely related implementations when the length of RNA strands is bigger than 2500.

  15. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    PubMed Central

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  16. pFlogger: The Parallel Fortran Logging Utility

    NASA Technical Reports Server (NTRS)

    Clune, Tom; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger)' similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  17. Proceedings: Sisal `93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J.T.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor;more » A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  18. Parallel evolutionary computation in bioinformatics applications.

    PubMed

    Pinho, Jorge; Sobral, João Luis; Rocha, Miguel

    2013-05-01

    A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Work stealing for GPU-accelerated parallel programs in a global address space framework: WORK STEALING ON GPU-ACCELERATED SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain.« less

  20. Work stealing for GPU-accelerated parallel programs in a global address space framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Humayun; Dinan, James; Krishnamoorthy, Sriram

    Task parallelism is an attractive approach to automatically load balance the computation in a parallel system and adapt to dynamism exhibited by parallel systems. Exploiting task parallelism through work stealing has been extensively studied in shared and distributed-memory contexts. In this paper, we study the design of a system that uses work stealing for dynamic load balancing of task-parallel programs executed on hybrid distributed-memory CPU-graphics processing unit (GPU) systems in a global-address space framework. We take into account the unique nature of the accelerator model employed by GPUs, the significant performance difference between GPU and CPU execution as a functionmore » of problem size, and the distinct CPU and GPU memory domains. We consider various alternatives in designing a distributed work stealing algorithm for CPU-GPU systems, while taking into account the impact of task distribution and data movement overheads. These strategies are evaluated using microbenchmarks that capture various execution configurations as well as the state-of-the-art CCSD(T) application module from the computational chemistry domain« less

  1. Comparison between four dissimilar solar panel configurations

    NASA Astrophysics Data System (ADS)

    Suleiman, K.; Ali, U. A.; Yusuf, Ibrahim; Koko, A. D.; Bala, S. I.

    2017-12-01

    Several studies on photovoltaic systems focused on how it operates and energy required in operating it. Little attention is paid on its configurations, modeling of mean time to system failure, availability, cost benefit and comparisons of parallel and series-parallel designs. In this research work, four system configurations were studied. Configuration I consists of two sub-components arranged in parallel with 24 V each, configuration II consists of four sub-components arranged logically in parallel with 12 V each, configuration III consists of four sub-components arranged in series-parallel with 8 V each, and configuration IV has six sub-components with 6 V each arranged in series-parallel. Comparative analysis was made using Chapman Kolmogorov's method. The derivation for explicit expression of mean time to system failure, steady state availability and cost benefit analysis were performed, based on the comparison. Ranking method was used to determine the optimal configuration of the systems. The results of analytical and numerical solutions of system availability and mean time to system failure were determined and it was found that configuration I is the optimal configuration.

  2. Accelerating Computation of DCM for ERP in MATLAB by External Function Calls to the GPU.

    PubMed

    Wang, Wei-Jen; Hsieh, I-Fan; Chen, Chun-Chuan

    2013-01-01

    This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average, depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may provide implementation guidance for possible future clinical applications such as online diagnosis.

  3. Accelerating Computation of DCM for ERP in MATLAB by External Function Calls to the GPU

    PubMed Central

    Wang, Wei-Jen; Hsieh, I-Fan; Chen, Chun-Chuan

    2013-01-01

    This study aims to improve the performance of Dynamic Causal Modelling for Event Related Potentials (DCM for ERP) in MATLAB by using external function calls to a graphics processing unit (GPU). DCM for ERP is an advanced method for studying neuronal effective connectivity. DCM utilizes an iterative procedure, the expectation maximization (EM) algorithm, to find the optimal parameters given a set of observations and the underlying probability model. As the EM algorithm is computationally demanding and the analysis faces possible combinatorial explosion of models to be tested, we propose a parallel computing scheme using the GPU to achieve a fast estimation of DCM for ERP. The computation of DCM for ERP is dynamically partitioned and distributed to threads for parallel processing, according to the DCM model complexity and the hardware constraints. The performance efficiency of this hardware-dependent thread arrangement strategy was evaluated using the synthetic data. The experimental data were used to validate the accuracy of the proposed computing scheme and quantify the time saving in practice. The simulation results show that the proposed scheme can accelerate the computation by a factor of 155 for the parallel part. For experimental data, the speedup factor is about 7 per model on average, depending on the model complexity and the data. This GPU-based implementation of DCM for ERP gives qualitatively the same results as the original MATLAB implementation does at the group level analysis. In conclusion, we believe that the proposed GPU-based implementation is very useful for users as a fast screen tool to select the most likely model and may provide implementation guidance for possible future clinical applications such as online diagnosis. PMID:23840507

  4. Exploring Machine Learning Techniques For Dynamic Modeling on Future Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shuaiwen; Tallent, Nathan R.; Vishnu, Abhinav

    2013-09-23

    Future exascale systems must be optimized for both power and performance at scale in order to achieve DOE’s goal of a sustained petaflop within 20 Megawatts by 2022 [1]. Massive parallelism of the future systems combined with complex memory hierarchies will form a barrier to efficient application and architecture design. These challenges are exacerbated with emerging complex architectures such as GPGPUs and Intel Xeon Phi as parallelism increases orders of magnitude and system power consumption can easily triple or quadruple. Therefore, we need techniques that can reduce the search space for optimization, isolate power-performance bottlenecks, identify root causes for software/hardwaremore » inefficiency, and effectively direct runtime scheduling.« less

  5. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  6. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  8. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    PubMed Central

    Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan

    2004-01-01

    Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335

  9. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.

    PubMed

    Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K

    2011-09-01

    We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.

  10. A path-level exact parallelization strategy for sequential simulation

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  11. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.

    PubMed

    Guo, L-X; Li, J; Zeng, H

    2009-11-01

    We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.

  12. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  13. Design of object-oriented distributed simulation classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D. (Principal Investigator)

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  14. Design of Object-Oriented Distributed Simulation Classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not been carried out.

  15. Octree-based, GPU implementation of a continuous cellular automaton for the simulation of complex, evolving surfaces

    NASA Astrophysics Data System (ADS)

    Ferrando, N.; Gosálvez, M. A.; Cerdá, J.; Gadea, R.; Sato, K.

    2011-03-01

    Presently, dynamic surface-based models are required to contain increasingly larger numbers of points and to propagate them over longer time periods. For large numbers of surface points, the octree data structure can be used as a balance between low memory occupation and relatively rapid access to the stored data. For evolution rules that depend on neighborhood states, extended simulation periods can be obtained by using simplified atomistic propagation models, such as the Cellular Automata (CA). This method, however, has an intrinsic parallel updating nature and the corresponding simulations are highly inefficient when performed on classical Central Processing Units (CPUs), which are designed for the sequential execution of tasks. In this paper, a series of guidelines is presented for the efficient adaptation of octree-based, CA simulations of complex, evolving surfaces into massively parallel computing hardware. A Graphics Processing Unit (GPU) is used as a cost-efficient example of the parallel architectures. For the actual simulations, we consider the surface propagation during anisotropic wet chemical etching of silicon as a computationally challenging process with a wide-spread use in microengineering applications. A continuous CA model that is intrinsically parallel in nature is used for the time evolution. Our study strongly indicates that parallel computations of dynamically evolving surfaces simulated using CA methods are significantly benefited by the incorporation of octrees as support data structures, substantially decreasing the overall computational time and memory usage.

  16. Parallelization of ARC3D with Computer-Aided Tools

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.

  17. Commercial absorption chiller models for evaluation of control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeppel, E.A.; Klein, S.A.; Mitchell, J.W.

    1995-08-01

    A steady-state computer simulation model of a direct fired double-effect water-lithium bromide absorption chiller in the parallel-flow configuration was developed from first principles. Unknown model parameters such as heat transfer coefficients were determined by matching the model`s calculated state points and coefficient of performance (COP) against nominal full-load operating data and COPs obtained from a manufacturer`s catalog. The model compares favorably with the manufacturer`s performance ratings for varying water circuit (chilled and cooling) temperatures at full load conditions and for chiller part-load performance. The model was used (1) to investigate the effect of varying the water circuit flow rates withmore » the chiller load and (2) to optimize chiller part-load performance with respect to the distribution and flow of the weak solution.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, E. L.; Hammett, G. W.; Stoltzfus-Dueck, T.

    Here, five-dimensional gyrokinetic continuum simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using a full- discontinuous-Galerkin approach implemented in the Gkeyll code. While various simplifications have been used for now, such as long-wavelength approximations in the gyrokinetic Poisson equation and the Hamiltonian, these simulations include the basic elements of a fusion-device scrape-off layer: localised sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath-model boundary conditions. The set of sheath-model boundary conditions used in the model allows currentsmore » to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device, a linear device featuring straight magnetic field lines, are presented.« less

  19. NRMC - A GPU code for N-Reverse Monte Carlo modeling of fluids in confined media

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, Vicente; Noya, Eva G.; Lomba, Enrique

    2017-08-01

    NRMC is a parallel code for performing N-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil, E.G. Noya, E. Lomba, J. Chem. Phys. 140 (2014) 024504]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in N-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA® CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

  20. PARALLEL PERTURBATION MODEL FOR CYCLE TO CYCLE VARIABILITY PPM4CCV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin Mohammed; Som, Sibendu

    This code consists of a Fortran 90 implementation of the parallel perturbation model to compute cyclic variability in spark ignition (SI) engines. Cycle-to-cycle variability (CCV) is known to be detrimental to SI engine operation resulting in partial burn and knock, and result in an overall reduction in the reliability of the engine. Numerical prediction of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are required to accurately capture the in-cylinder turbulent flow field, and (ii) CCV is experienced over long timescales and hence the simulations needmore » to be performed for hundreds of consecutive cycles. In the new technique, the strategy is to perform multiple parallel simulations, each of which encompasses 2-3 cycles, by effectively perturbing the simulation parameters such as the initial and boundary conditions. The PPM4CCV code is a pre-processing code and can be coupled with any engine CFD code. PPM4CCV was coupled with Converge CFD code and a 10-time speedup was demonstrated over the conventional multi-cycle LES in predicting the CCV for a motored engine. Recently, the model is also being applied to fired engines including port fuel injected (PFI) and direct injection spark ignition engines and the preliminary results are very encouraging.« less

  1. Implementing the PM Programming Language using MPI and OpenMP - a New Tool for Programming Geophysical Models on Parallel Systems

    NASA Astrophysics Data System (ADS)

    Bellerby, Tim

    2015-04-01

    PM (Parallel Models) is a new parallel programming language specifically designed for writing environmental and geophysical models. The language is intended to enable implementers to concentrate on the science behind the model rather than the details of running on parallel hardware. At the same time PM leaves the programmer in control - all parallelisation is explicit and the parallel structure of any given program may be deduced directly from the code. This paper describes a PM implementation based on the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) standards, looking at issues involved with translating the PM parallelisation model to MPI/OpenMP protocols and considering performance in terms of the competing factors of finer-grained parallelisation and increased communication overhead. In order to maximise portability, the implementation stays within the MPI 1.3 standard as much as possible, with MPI-2 MPI-IO file handling the only significant exception. Moreover, it does not assume a thread-safe implementation of MPI. PM adopts a two-tier abstract representation of parallel hardware. A PM processor is a conceptual unit capable of efficiently executing a set of language tasks, with a complete parallel system consisting of an abstract N-dimensional array of such processors. PM processors may map to single cores executing tasks using cooperative multi-tasking, to multiple cores or even to separate processing nodes, efficiently sharing tasks using algorithms such as work stealing. While tasks may move between hardware elements within a PM processor, they may not move between processors without specific programmer intervention. Tasks are assigned to processors using a nested parallelism approach, building on ideas from Reyes et al. (2009). The main program owns all available processors. When the program enters a parallel statement then either processors are divided out among the newly generated tasks (number of new tasks < number of processors) or tasks are divided out among the available processors (number of tasks > number of processors). Nested parallel statements may further subdivide the processor set owned by a given task. Tasks or processors are distributed evenly by default, but uneven distributions are possible under programmer control. It is also possible to explicitly enable child tasks to migrate within the processor set owned by their parent task, reducing load unbalancing at the potential cost of increased inter-processor message traffic. PM incorporates some programming structures from the earlier MIST language presented at a previous EGU General Assembly, while adopting a significantly different underlying parallelisation model and type system. PM code is available at www.pm-lang.org under an unrestrictive MIT license. Reference Ruymán Reyes, Antonio J. Dorta, Francisco Almeida, Francisco de Sande, 2009. Automatic Hybrid MPI+OpenMP Code Generation with llc, Recent Advances in Parallel Virtual Machine and Message Passing Interface, Lecture Notes in Computer Science Volume 5759, 185-195

  2. New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.; Jarvis, Peter A.

    2005-01-01

    The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.

  3. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  4. Centrifugal multiplexing fixed-volume dispenser on a plastic lab-on-a-disk for parallel biochemical single-end-point assays

    PubMed Central

    La, Moonwoo; Park, Sang Min; Kim, Dong Sung

    2015-01-01

    In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516

  5. Data flow modeling techniques

    NASA Technical Reports Server (NTRS)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  6. Parallelization of the Coupled Earthquake Model

    NASA Technical Reports Server (NTRS)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  7. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  8. MrBayes tgMC3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method.

    PubMed

    Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng

    2016-01-01

    MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.

  9. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald.

    PubMed

    Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2014-02-28

    In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations.

  10. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald

    PubMed Central

    Lagardère, Louis; Lipparini, Filippo; Polack, Étienne; Stamm, Benjamin; Cancès, Éric; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    In this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package which is the first implementation for a polarizable model making large scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of spme and a noticeable improvement of the memory management giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to non-optimized, sequential implementations giving new directions for polarizable molecular dynamics in periodic boundary conditions using massively parallel implementations. PMID:26512230

  11. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit

    PubMed Central

    Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R.; Smith, Jeremy C.; Kasson, Peter M.; van der Spoel, David; Hess, Berk; Lindahl, Erik

    2013-01-01

    Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23407358

  12. Auditory Working Memory Load Impairs Visual Ventral Stream Processing: Toward a Unified Model of Attentional Load

    ERIC Educational Resources Information Center

    Klemen, Jane; Buchel, Christian; Buhler, Mira; Menz, Mareike M.; Rose, Michael

    2010-01-01

    Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences…

  13. The Nanoelectric Modeling Tool (NEMO) and Its Expansion to High Performance Parallel Computing

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Bowen, C.; Boykin, T.; Oyafuso, F.; Salazar-Lazaro, C.; Stoica, A.; Cwik, T.

    1998-01-01

    Material variations on an atomic scale enable the quantum mechanical functionality of devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs).

  14. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    NASA Astrophysics Data System (ADS)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  15. Restricted access Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity andinduced-polarization data

    USGS Publications Warehouse

    Johnson, Timothy C.; Versteeg, Roelof J.; Ward, Andy; Day-Lewis, Frederick D.; Revil, André

    2010-01-01

    Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics for characterizing the electrical properties of the subsurface and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Presently, multichannel and multielectrode data collections systems can collect large data sets in relatively short periods of time. Practitioners, however, often are unable to fully utilize these large data sets and the information they contain because of standard desktop-computer processing limitations. These limitations can be addressed by utilizing the storage and processing capabilities of parallel computing environments. We have developed a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polar-ization (IP) data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We have tested the corresponding parallel code in three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, Washington, U.S.A., (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy, and (3) resistivity and IP monitoring of biostimulation at a Superfund site in Brandywine, Maryland, U.S.A. Inverse analysis of each of these data sets would be limited or impossible in a standard serial computing environment, which underscores the need for parallel high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications.

  16. jInv: A Modular and Scalable Framework for Electromagnetic Inverse Problems

    NASA Astrophysics Data System (ADS)

    Belliveau, P. T.; Haber, E.

    2016-12-01

    Inversion is a key tool in the interpretation of geophysical electromagnetic (EM) data. Three-dimensional (3D) EM inversion is very computationally expensive and practical software for inverting large 3D EM surveys must be able to take advantage of high performance computing (HPC) resources. It has traditionally been difficult to achieve those goals in a high level dynamic programming environment that allows rapid development and testing of new algorithms, which is important in a research setting. With those goals in mind, we have developed jInv, a framework for PDE constrained parameter estimation problems. jInv provides optimization and regularization routines, a framework for user defined forward problems, and interfaces to several direct and iterative solvers for sparse linear systems. The forward modeling framework provides finite volume discretizations of differential operators on rectangular tensor product meshes and tetrahedral unstructured meshes that can be used to easily construct forward modeling and sensitivity routines for forward problems described by partial differential equations. jInv is written in the emerging programming language Julia. Julia is a dynamic language targeted at the computational science community with a focus on high performance and native support for parallel programming. We have developed frequency and time-domain EM forward modeling and sensitivity routines for jInv. We will illustrate its capabilities and performance with two synthetic time-domain EM inversion examples. First, in airborne surveys, which use many sources, we achieve distributed memory parallelism by decoupling the forward and inverse meshes and performing forward modeling for each source on small, locally refined meshes. Secondly, we invert grounded source time-domain data from a gradient array style induced polarization survey using a novel time-stepping technique that allows us to compute data from different time-steps in parallel. These examples both show that it is possible to invert large scale 3D time-domain EM datasets within a modular, extensible framework written in a high-level, easy to use programming language.

  17. Maximum flow-based resilience analysis: From component to system

    PubMed Central

    Jin, Chong; Li, Ruiying; Kang, Rui

    2017-01-01

    Resilience, the ability to withstand disruptions and recover quickly, must be considered during system design because any disruption of the system may cause considerable loss, including economic and societal. This work develops analytic maximum flow-based resilience models for series and parallel systems using Zobel’s resilience measure. The two analytic models can be used to evaluate quantitatively and compare the resilience of the systems with the corresponding performance structures. For systems with identical components, the resilience of the parallel system increases with increasing number of components, while the resilience remains constant in the series system. A Monte Carlo-based simulation method is also provided to verify the correctness of our analytic resilience models and to analyze the resilience of networked systems based on that of components. A road network example is used to illustrate the analysis process, and the resilience comparison among networks with different topologies but the same components indicates that a system with redundant performance is usually more resilient than one without redundant performance. However, not all redundant capacities of components can improve the system resilience, the effectiveness of the capacity redundancy depends on where the redundant capacity is located. PMID:28545135

  18. Parallel hyperbolic PDE simulation on clusters: Cell versus GPU

    NASA Astrophysics Data System (ADS)

    Rostrup, Scott; De Sterck, Hans

    2010-12-01

    Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational performance. Two technologies that have received significant attention are IBM's Cell Processor and NVIDIA's CUDA programming model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code performance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32 Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications. Program summaryProgram title: SWsolver Catalogue identifier: AEGY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v3 No. of lines in distributed program, including test data, etc.: 59 168 No. of bytes in distributed program, including test data, etc.: 453 409 Distribution format: tar.gz Programming language: C, CUDA Computer: Parallel Computing Clusters. Individual compute nodes may consist of x86 CPU, Cell processor, or x86 CPU with attached NVIDIA GPU accelerator. Operating system: Linux Has the code been vectorised or parallelized?: Yes. Tested on 1-128 x86 CPU cores, 1-32 Cell Processors, and 1-32 NVIDIA GPUs. RAM: Tested on Problems requiring up to 4 GB per compute node. Classification: 12 External routines: MPI, CUDA, IBM Cell SDK Nature of problem: MPI-parallel simulation of Shallow Water equations using high-resolution 2D hyperbolic equation solver on regular Cartesian grids for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA. Solution method: SWsolver provides 3 implementations of a high-resolution 2D Shallow Water equation solver on regular Cartesian grids, for CPU, Cell Processor, and NVIDIA GPU. Each implementation uses MPI to divide work across a parallel computing cluster. Additional comments: Sub-program numdiff is used for the test run.

  19. Parallel performance optimizations on unstructured mesh-based simulations

    DOE PAGES

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; ...

    2015-06-01

    This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches.more » We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.« less

  20. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    PubMed Central

    Colli Franzone, Piero; Pavarino, Luca F.; Scacchi, Simone

    2018-01-01

    We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks. PMID:29674971

  1. Swarm Verification

    NASA Technical Reports Server (NTRS)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  2. Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, Sergio; Salinas, Alfonso; Morente-Molinera, Juan Antonio; Méndez, Antonio; Fornieles, Jesús; Portí, Jorge; Morente, Juan Antonio

    2013-03-01

    A parallel 3D algorithm for solving time-domain electromagnetic problems with arbitrary geometries is presented. The technique employed is the Transmission Line Modeling (TLM) method implemented in Shared Memory (SM) environments. The benchmarking performed reveals that the maximum speedup depends on the memory size of the problem as well as multiple hardware factors, like the disposition of CPUs, cache, or memory. A maximum speedup of 15 has been measured for the largest problem. In certain circumstances of low memory requirements, superlinear speedup is achieved using our algorithm. The model is employed to model the Earth-ionosphere cavity, thus enabling a study of the natural electromagnetic phenomena that occur in it. The algorithm allows complete 3D simulations of the cavity with a resolution of 10 km, within a reasonable timescale.

  3. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  4. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  5. EVALUATION OF THE HTA CORE MODEL FOR NATIONAL HEALTH TECHNOLOGY ASSESSMENT REPORTS: COMPARATIVE STUDY AND EXPERIENCES FROM EUROPEAN COUNTRIES.

    PubMed

    Kõrge, Kristina; Berndt, Nadine; Hohmann, Juergen; Romano, Florence; Hiligsmann, Mickael

    2017-01-01

    The health technology assessment (HTA) Core Model® is a tool for defining and standardizing the elements of HTA analyses within several domains for producing structured reports. This study explored the parallels between the Core Model and a national HTA report. Experiences from various European HTA agencies were also investigated to determine the Core Model's adaptability to national reports. A comparison between a national report on Genetic Counseling, produced by the Cellule d'expertise médicale Luxembourg, and the Core Model was performed to identify parallels in terms of relevant and comparable assessment elements (AEs). Semi-structured interviews with five representatives from European HTA agencies were performed to assess their user experiences with the Core Model. The comparative study revealed that 50 percent of the total number (n = 144) of AEs in the Core Model were relevant for the national report. Of these 144 AEs from the Core Model, 34 (24 percent) were covered in the national report. Some AEs were covered only partly. The interviewees emphasized flexibility in using the Core Model and stated that the most important aspects to be evaluated include characteristics of the disease and technology, clinical effectiveness, economic aspects, and safety. In the present study, the national report covered an acceptable number of AEs of the Core Model. These results need to be interpreted with caution because only one comparison was performed. The Core Model can be used in a flexible manner, applying only those elements that are relevant from the perspective of the technology assessment and specific country context.

  6. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    PubMed Central

    Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation. PMID:26681933

  7. Eigensolution of finite element problems in a completely connected parallel architecture

    NASA Technical Reports Server (NTRS)

    Akl, F.; Morel, M.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm is successfully implemented on a tightly coupled MIMD parallel processor. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts, and the dimension of the subspace on the performance of the algorithm is investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18, and 3.61 are achieved on two, four, six, and eight processors, respectively.

  8. A tool for simulating parallel branch-and-bound methods

    NASA Astrophysics Data System (ADS)

    Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail

    2016-01-01

    The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.

  9. Simulating electron wave dynamics in graphene superlattices exploiting parallel processing advantages

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel

    2018-01-01

    This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.

  10. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  11. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    PubMed

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  12. Temporal Decompostion of a Distribution System Quasi-Static Time-Series Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Hunsberger, Randolph J

    This paper documents the first phase of an investigation into reducing runtimes of complex OpenDSS models through parallelization. As the method seems promising, future work will quantify - and further mitigate - errors arising from this process. In this initial report, we demonstrate how, through the use of temporal decomposition, the run times of a complex distribution-system-level quasi-static time series simulation can be reduced roughly proportional to the level of parallelization. Using this method, the monolithic model runtime of 51 hours was reduced to a minimum of about 90 minutes. As expected, this comes at the expense of control- andmore » voltage-errors at the time-slice boundaries. All evaluations were performed using a real distribution circuit model with the addition of 50 PV systems - representing a mock complex PV impact study. We are able to reduce induced transition errors through the addition of controls initialization, though small errors persist. The time savings with parallelization are so significant that we feel additional investigation to reduce control errors is warranted.« less

  13. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods

    PubMed Central

    Lee, Anthony; Yau, Christopher; Giles, Michael B.; Doucet, Arnaud; Holmes, Christopher C.

    2011-01-01

    We present a case-study on the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Graphics cards, containing multiple Graphics Processing Units (GPUs), are self-contained parallel computational devices that can be housed in conventional desktop and laptop computers and can be thought of as prototypes of the next generation of many-core processors. For certain classes of population-based Monte Carlo algorithms they offer massively parallel simulation, with the added advantage over conventional distributed multi-core processors that they are cheap, easily accessible, easy to maintain, easy to code, dedicated local devices with low power consumption. On a canonical set of stochastic simulation examples including population-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods, we nd speedups from 35 to 500 fold over conventional single-threaded computer code. Our findings suggest that GPUs have the potential to facilitate the growth of statistical modelling into complex data rich domains through the availability of cheap and accessible many-core computation. We believe the speedup we observe should motivate wider use of parallelizable simulation methods and greater methodological attention to their design. PMID:22003276

  14. Parallel traveling-wave MRI: a feasibility study.

    PubMed

    Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-04-01

    Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.

  15. Automatic Thread-Level Parallelization in the Chombo AMR Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christen, Matthias; Keen, Noel; Ligocki, Terry

    2011-05-26

    The increasing on-chip parallelism has some substantial implications for HPC applications. Currently, hybrid programming models (typically MPI+OpenMP) are employed for mapping software to the hardware in order to leverage the hardware?s architectural features. In this paper, we present an approach that automatically introduces thread level parallelism into Chombo, a parallel adaptive mesh refinement framework for finite difference type PDE solvers. In Chombo, core algorithms are specified in the ChomboFortran, a macro language extension to F77 that is part of the Chombo framework. This domain-specific language forms an already used target language for an automatic migration of the large number ofmore » existing algorithms into a hybrid MPI+OpenMP implementation. It also provides access to the auto-tuning methodology that enables tuning certain aspects of an algorithm to hardware characteristics. Performance measurements are presented for a few of the most relevant kernels with respect to a specific application benchmark using this technique as well as benchmark results for the entire application. The kernel benchmarks show that, using auto-tuning, up to a factor of 11 in performance was gained with 4 threads with respect to the serial reference implementation.« less

  16. Manyscale Computing for Sensor Processing in Support of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.

    2014-09-01

    Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.

  17. Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

    PubMed Central

    García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297

  18. Graphics Processing Unit-Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks.

    PubMed

    García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).

  19. Dynamic Binding of Identity and Location Information: A Serial Model of Multiple Identity Tracking

    ERIC Educational Resources Information Center

    Oksama, Lauri; Hyona, Jukka

    2008-01-01

    Tracking of multiple moving objects is commonly assumed to be carried out by a fixed-capacity parallel mechanism. The present study proposes a serial model (MOMIT) to explain performance accuracy in the maintenance of multiple moving objects with distinct identities. A serial refresh mechanism is postulated, which makes recourse to continuous…

  20. MARMOT update for oxide fuel modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam

    This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UOmore » $$_2$$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.« less

Top