Theory of Dielectric Elastomers
2010-10-25
partly in the air and partly in a dielectric liquid . The applied voltage causes the liquid to rise to a height h. The height results from the...balance of the Maxwell stress and the weight of the liquid . The Maxwell stress parallel to the electrodes in the air is 2/2Eaa , where a is the...permittivity of the air. The Maxwell stress parallel to the electrodes in the liquid is 2/2Ell , where l is the permittivity of the liquid
NASA Astrophysics Data System (ADS)
Turik, A. V.; Bogatin, A. S.
2015-01-01
Experimental data on dielectric spectra of calcium copper titanate, CaCu3Ti4O12 (CCTO) family functional ceramics have been studied and analyzed. It is shown that there are both non-Debye relaxation and resonance regions in their spectra. An occurrence of a retardation of complex permittivity and a relaxation of electric modulus is established. An average relaxation frequency of the electric modulus is considerably (in some cases several orders of magnitude) larger than the retardation frequency of the permittivity. A parallel connection of the capacity and complex conductivity is used to model and interpret experimental data on a negative permittivity in the infralow frequency range. Computer simulation enables us to reveal that the hopping conductivity, characteristic for disordered heterogeneous systems, is to be taken into account to describe adequately experimental data on passing the real part of the capacity (or permittivity) through zero. We have found a critical frequency at which the parallel resonance would take place.
Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T
2012-01-21
Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.
Determination of the element-specific complex permittivity using a soft x-ray phase modulator
NASA Astrophysics Data System (ADS)
Kubota, Y.; Hirata, Y.; Miyawaki, J.; Yamamoto, S.; Akai, H.; Hobara, R.; Yamamoto, Sh.; Yamamoto, K.; Someya, T.; Takubo, K.; Yokoyama, Y.; Araki, M.; Taguchi, M.; Harada, Y.; Wadati, H.; Tsunoda, M.; Kinjo, R.; Kagamihata, A.; Seike, T.; Takeuchi, M.; Tanaka, T.; Shin, S.; Matsuda, I.
2017-12-01
We report on directly determining the complex permittivity tensor using a method combining a developed light source from a segmented cross undulator of synchrotron radiation and the magneto-optical Kerr effect. The empirical permittivity, which carries the electronic and magnetic information of a material, has element specificity and has perfect confirmation using the quantum-mechanical calculation for itinerant electrons systems. These results help in understanding the interaction of light and matter, and they provide an interesting approach to seek the best materials as optical elements, for example, in extended-ultraviolet lithographic technologies or in state-of-the-art laser technologies.
Ren, Shangjie; Dong, Feng
2016-01-01
Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández, Miguel A.; Masó, Nahum; West, Anthony R.
Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electricallymore » heterogeneous.« less
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
NASA Astrophysics Data System (ADS)
Baidillah, Marlin R.; Takei, Masahiro
2017-06-01
A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
Mostafavi, Mahkamehossadat; Diaz, Rodolfo E.
2016-01-01
To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and “cutting” into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size. PMID:27185385
Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu
2015-11-09
Graphene-dielectric multilayers consisting of alternating layers of atom-thick graphene and nanometer-scale dielectric films exhibit characteristics of hyperbolic metamaterials, in which one positive and one negative permittivity are defined for orthogonal directions. Negative permittivity for electric field polarized in the direction parallel to the conductive graphene sheets gives rise to a negative angle of refraction and low-loss transmission for the side-incidence perspective proposed in this work. The Poynting vector tracing demonstrates the switching between positive and negative refraction in the mid-infrared region by tuning the chemical potential of graphene. This adjustable dual-mode metamaterial holds promise for infrared imaging applications.
Abbasi, Fereshteh; Engheta, Nader
2014-10-20
The concept of metamaterial-inspired nanocircuits, dubbed metatronics, was introduced in [Science 317, 1698 (2007); Phys. Rev. Lett. 95, 095504 (2005)]. It was suggested how optical lumped elements (nanoelements) can be made using subwavelength plasmonic or non-plasmonic particles. As a result, the optical metatronic equivalents of a number of electronic circuits, such as frequency mixers and filters, were suggested. In this work we further expand the concept of electronic lumped element networks into optical metatronic circuits and suggest a conceptual model applicable to various metatronic passive networks. In particular, we differentiate between the series and parallel networks using epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. We employ layered structures with subwavelength thicknesses for the nanoelements as the building blocks of collections of metatronic networks. Furthermore, we explore how by choosing the non-zero constitutive parameters of the materials with specific dispersions, either Drude or Lorentzian dispersion with suitable parameters, capacitive and inductive responses can be achieved in both series and parallel networks. Next, we proceed with the one-to-one analogy between electronic circuits and optical metatronic filter layered networks and justify our analogies by comparing the frequency response of the two paradigms. Finally, we examine the material dispersion of near-zero relative permittivity as well as other physically important material considerations such as losses.
High permittivity patch radiator for single and multi-element hyperthermia applicators.
Andreuccetti, D; Bini, M; Ignesti, A; Olmi, R; Priori, S; Vanni, R
1993-07-01
This paper describes a compact, low-profile patch radiator which is the base element for efficient, small-size applicators suitable for superficial hyperthermia. The design criteria and the technological processes involved are presented. The electromagnetic characteristics of the patch element are outlined, and possible application of the radiator are discussed.
A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care.
Maji, Debnath; Suster, Michael A; Kucukal, Erdem; Gurkan, Umut A; Stavrou, Evi X; Mohseni, Pedram
2016-08-01
This paper describes the design and construct of a fully biocompatible, microfluidic, dielectric sensor targeted at monitoring human whole blood coagulation at the point-of-care (POC). The sensor assembly procedure involves using sputtered electrodes in a microfluidic channel with a physiologically relevant height of 50μm to create a three-dimensional (3D), parallel-plate, capacitive sensing area. The sensor is constructed with biocompatible materials of polymethyl methacrylate (PMMA) for the substrate and titanium nitride (TiN) for the sensing and floating electrodes. The real part of the complex relative dielectric permittivity of human whole blood is measured from 10kHz to 100MHz using an impedance analyzer and under static conditions. The temporal variation in dielectric permittivity at 1MHz for human whole blood undergoing coagulation shows a peak in permittivity at 5 minutes, which closely matches our previously established results. This sensor can pave the way for monitoring blood coagulation under physiologically relevant shear flow rates in the future.
ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis.
Maji, Debnath; Suster, Michael A; Kucukal, Erdem; Sekhon, Ujjal D S; Gupta, Anirban Sen; Gurkan, Umut A; Stavrou, Evi X; Mohseni, Pedram
2017-12-01
This paper describes the design, fabrication, and testing of a microfluidic sensor for dielectric spectroscopy of human whole blood during coagulation. The sensor, termed ClotChip, employs a three-dimensional, parallel-plate, capacitive sensing structure with a floating electrode integrated into a microfluidic channel. Interfaced with an impedance analyzer, the ClotChip measures the complex relative dielectric permittivity, ϵ r , of human whole blood in the frequency range of 40 Hz to 100 MHz. The temporal variation in the real part of the blood dielectric permittivity at 1 MHz features a time to reach a permittivity peak, , as well as a maximum change in permittivity after the peak, , as two distinct parameters of ClotChip readout. The ClotChip performance was benchmarked against rotational thromboelastometry (ROTEM) to evaluate the clinical utility of its readout parameters in capturing the clotting dynamics arising from coagulation factors and platelet activity. exhibited a very strong positive correlation ( r = 0.99, p < 0.0001) with the ROTEM clotting time parameter, whereas exhibited a strong positive correlation (r = 0.85, p < 0.001) with the ROTEM maximum clot firmness parameter. This paper demonstrates the ClotChip potential as a point-of-care platform to assess the complete hemostatic process using <10 μL of human whole blood.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Ramezani-Arani, R.
2012-11-01
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.
NASA Astrophysics Data System (ADS)
Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina
2013-03-01
Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.
Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films
NASA Astrophysics Data System (ADS)
Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.
2016-05-01
We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.
Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials
NASA Astrophysics Data System (ADS)
De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Pacreau, François; Gervais, François
2015-04-01
Samples of copper-deficient CaCu3Ti4O12 (CCTO) compared to the nominal composition, all synthesized via organic gel-assisted citrate process, show huge change of grain boundaries capacitance as deduced from a fit of an RC element model to the impedance spectroscopic data. The grain boundary capacitance is found to scale with the permittivity measured at 1 kHz weighted by the size of the grains. This result is found consistent with the internal barrier layer capacitance (IBLC) model.
Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao
2017-01-01
This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142
Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R
2017-04-14
This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.
Tse, Mei-Yan; Wei, Xianhua; Hao, Jianhua
2016-09-21
The search for colossal permittivity (CP) materials is imperative because of their potential for promising applications in the areas of device miniaturization and energy storage. High-performance CP materials require high dielectric permittivity, low dielectric loss and relatively weak dependence of frequency- and temperature. In this work, we first investigate the CP behavior of rutile TiO2 ceramics co-doped with niobium and erbium, i.e., (Er0.5Nb0.5)xTi1-xO2. Excellent dielectric properties were observed in the materials, including a CP of up to 10(4)-10(5) and a low dielectric loss (tan δ) down to 0.03, which are lower than that of the previously reported co-doped TiO2 CP materials when measured at 1 kHz. Stabilities of frequency and temperature were also accomplished via doping Er and Nb. Valence states of the elements in the material were analyzed using X-ray photoelectron spectroscopy. The Er induced secondary phases were observed using elemental mapping and energy-dispersive spectrometry. Consequently, this work may provide comprehensive guidance to develop high-performance CP materials for fully solid-state capacitor and energy storage applications.
NASA Astrophysics Data System (ADS)
Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan
2016-09-01
We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10-9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.
NASA Astrophysics Data System (ADS)
Kutemi, Titilope F.
The steady-state flow technique was employed to measure the flow rate of clean dry air through thirty core plugs (approximately 1" diameter) of the Ellenburger dolomite, drilled normal and parallel to the dominant fractures. Porosity was estimated by the method of imbibition. Electrical parameters (electrical conductivity and dielectric permittivity) were calculated from electrical resistance and capacitance measured as a function of frequency (100 Hz, 120 Hz, 1 KHz, and 10 KHz) and saturation (dry/ambient and brine saturated conditions). Another set of permeability data obtained by the method of pressure decay on similar samples was used for correlation. Anisotropies of permeability and electromagnetic parameters were established. Empirical relations between porosity (phi), permeability (k), electrical conductivity (sigma), and dielectric permittivity (epsilon) were defined via cross-plots and linear regressions. Prediction of k from sigma and epsilon was attempted; k from sigma was modeled from a combination of the Archie's relation and the Carman-Kozeny relation. Anisotropic EM responses are sensitive to saturation. Anisotropies of conductivity and permeability were observed to be controlled by the pore micro-structure. Although the rock is fractured, the fracture density appears insufficient to dominate the effects of primary structures in these samples of the Ellenburger dolomite. Model-based prediction of permeability from conductivity is generally unreliable, and is attributed to the underlying assumptions of the models, which are not consistent with the properties of the samples used for this study. Permeability was not predictable from dielectric permittivity.
Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan
2016-09-16
We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT-Fe3O4 concentration is approximately 33 vol.%. The BT-Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10(-9) S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT-Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT-Fe3O4 hybrid particles. However, the experimental results of the BT-Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT-Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry.
Zhang, Changhai; Chi, Qingguo; Dong, Jiufeng; Cui, Yang; Wang, Xuan; Liu, Lizhu; Lei, Qingquan
2016-01-01
We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT–Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematically. The composites subjected to magnetic field treatment for 30 min at 60 °C exhibited the largest dielectric permittivity (385 at 100 Hz) when the BT–Fe3O4 concentration is approximately 33 vol.%. The BT–Fe3O4 suppressed the formation of a conducting path in the composite and induced low dielectric loss (0.3) and low conductivity (4.12 × 10−9 S/cm) in the composite. Series-parallel model suggested that the enhanced dielectric permittivity of BT–Fe3O4/PVDF composites should arise from the ultrahigh permittivity of BT–Fe3O4 hybrid particles. However, the experimental results of the BT–Fe3O4/PVDF composites treated by magnetic field agree with percolation theory, which indicates that the enhanced dielectric properties of the BT–Fe3O4/PVDF composites originate from the interfacial polarization induced by the external magnetic field. This work provides a simple and effective way for preparing nanocomposites with enhanced dielectric properties for use in the electronics industry. PMID:27633958
Wang, Lucy L; Ahad, Mohammad; McEwan, Alistair; Li, Jia; Jafarpoor, Mina; Rutkove, Seward B
2011-06-01
The surface measurement of electrical impedance of muscle, incorporated as the technique of electrical impedance myography (EIM), provides a noninvasive approach for evaluating neuromuscular diseases, including amyotrophic lateral sclerosis. However, the relationship between alterations in surface impedance and the electrical properties of muscle remains uncertain. In order to investigate this further, a group of healthy adult rats, a group of rats two weeks postsciatic crush, and a group of animals six months postcrush underwent EIM of the gastrocnemius-soleus complex. The animals were then killed and the conductivity and permittivity of the extracted muscle measured. Finite-element models based on MRI data were then constructed for each group. The characteristic EIM parameter, 50 kHz phase (±standard error), obtained with surface impedance measurements was 17.3° ± 0.3° for normal animals, 13.8° ± 0.7° for acutely injured animals, and 16.1° ± 0.5° for chronically injured animals. The models predicted parallel changes with phase values of 24.3°, 18.8°, and 21.2° for the normal, acute, and chronic groups, respectively. Other multifrequency impedance parameters showed similar alterations. These results confirm that surface impedance measurements taken in conjunction with anatomical data and finite-element models may offer a noninvasive approach for assessing biophysical alterations in muscle in neuromuscular disease states.
Hassan, Sergio A
2012-08-21
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
NASA Astrophysics Data System (ADS)
Hassan, Sergio A.
2012-08-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Hassan, Sergio A.
2012-01-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098
Brink, Wyger M; Versluis, Maarten J; Peeters, Johannes M; Börnert, Peter; Webb, Andrew G
2016-12-01
To explore the effects of high permittivity dielectric pads on the transmit and receive characteristics of a 3 Tesla body coil centered at the thighs, and their implications on image uniformity in receive array applications. Transmit and receive profiles of the body coil with and without dielectric pads were simulated and measured in healthy volunteers. Parallel imaging was performed using sensitivity encoding (SENSE) with and without pads. An intensity correction filter was constructed from the measured receive profile of the body coil. Measured and simulated data show that the dielectric pads improve the transmit homogeneity of the body coil in the thighs, but decrease its receive homogeneity, which propagates into reconstruction algorithms in which the body coil is used as a reference. However, by correcting for the body coil reception profile this effect can be mitigated. Combining high permittivity dielectric pads with an appropriate body coil receive sensitivity filter improves the image uniformity substantially compared with the situation without pads. Magn Reson Med 76:1951-1956, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, Stephen P.
Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less
NASA Astrophysics Data System (ADS)
Ren, Shaokai; Chen, Zhi; Yan, Tianxiang; Han, Feifei; Kuang, Xiaojun; Fang, Liang; Liu, Laijun
2018-07-01
Transition elements Nb, Mn and Zr were selected to substitute Ti of 0.4(Ba0.8Ca0.2)TiO3 -0.6Bi(Mg0.5Ti0.5)O3 (BCT-BMT) ceramic in order to extend its operation temperature and decrease its dielectric loss for the application of high-temperature capacitors. Nb and Mn play an opposite role on the defect compensation, decreasing and increasing the concentration of oxygen vacancies, respectively. The temperature of the maximum relative permittivity, Tm, decreases from 140 °C to 90 °C for the Nb and Zr modified BCT-BMT ceramics. The permittivity (εr) peak of the former exhibits a broad and stable relative permittivity ∼600 (±5% variation) from 50 °C to 520 °C with the dielectric loss ≤0.02 from 60 °C to 440 °C (1 kHz). The modified Curie-Weiss law indicates that the doping elements result in an enhancement of diffuse phase transition. Activation energies of relaxation frequency and conduction of the samples were characterized by the impedance spectroscopy. A clear relationship between the magnitude of activation energy and the concentration of oxygen vacancies was revealed.
Vinayasree, S; Nitha, T S; Tiwary, C S; Ajayan, P M; Joy, P A; Anantharaman, M R
2018-06-29
A liquid dielectric based on a core-shell architecture having a superparamagnetic iron oxide core and a shell of silicon dioxide was synthesized. The frequency dependence of dielectric properties was evaluated for different concentrations of iron oxide. The dependence of magnetic field on the dielectric properties was also studied. Aqueous ferrofluid exhibited a giant dielectric constant of 6.4 × 10 5 at 0.1 MHz at a concentration of 0.2 vol% and the loss tangent was 3. The large rise in dielectric constant at room temperature is modelled and explained using percolation theory and Maxwell-Wagner-Sillars type polarization. The ferrofluid is presumed to consist of nanocapacitor networks which are wired in series along the lateral direction and parallel along longitudinal direction. On the application of an external magnetic field, the chain formation and its alignment results in the variation of dielectric permittivity.
NASA Astrophysics Data System (ADS)
Lossa, Geoffrey; Deblecker, Olivier; Grève, Zacharie De
2018-05-01
In this work, we highlight the influence of the material uncertainties (magnetic permeability, electric conductivity of a Mn-Zn ferrite core, and electric permittivity of wire insulation) on the RLC parameters of a wound inductor extracted from the finite element method. To that end, the finite element method is embedded in a Monte Carlo simulation. We show that considering mentioned different material properties as real random variables, leads to significant variations in the distributions of the RLC parameters.
He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan
2017-12-27
Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.
Dielectric modelling of cell division for budding and fission yeast
NASA Astrophysics Data System (ADS)
Asami, Koji; Sekine, Katsuhisa
2007-02-01
The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji
2018-04-01
We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.
Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics
NASA Astrophysics Data System (ADS)
Yan-Qing, Tan; Meng, Yan; Yong-Mei, Hao
2013-01-01
A colossal permittivity ceramic material, Ca2TiCrO6, was successfully synthesized by the conventional solid-state reaction, and was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoemission spectroscopy (XPS) and x-ray diffraction (XRD). Rietveld refinement of XRD data indicated that the material crystallized in orthorhombic structure with space group pbnm. SEM displayed Ca2TiCrO6 ceramic grains packed uniformly with the size range 5-20 µm. XPS analyses indicated that elemental chromium and titanium of the material were in mixed valence. The corresponding dielectric property was tested in the frequency range 1 kHz-1 MHz and the temperature range 213-453 K, and the ceramics exhibited a relaxation-like dielectric behaviour. Importantly, the permittivity of Ca2TiCrO6 could reach 80 000 at 298 K (100 Hz) and was maintained at 40 000 up to 398 K at 1 MHz, which could be attributed to the ion disorder and mixed valence of Cr3+/Cr6+ and Ti3+/Ti4+.
NASA Astrophysics Data System (ADS)
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-12-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research.
Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang
2016-01-01
The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research. PMID:27958347
Measurement strategy for rectangular electrical capacitance tomography sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi
2014-04-11
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less
New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke
2010-12-01
A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...
2018-04-01
Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less
1984-05-01
decrease in millimeter wave dielectric losses at low temperatures now makes it imperitive to examine the value of dn/dE from liquid nitrogen up to and...and dielectric losses, with both / decreasing at low temperatures down to 77K for the electric field parallel to the polar axis. The observed changes in...xSrxK -vNa Nb501 5 Crystals at RF and Millimeter Wave Frqutncies ................................. 30 APPENDIX 2 Low and High Frequency Dielectric
Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-07
A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.
Chemicapacitive microsensors for detection of explosives and TICs
NASA Astrophysics Data System (ADS)
Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.
2005-10-01
Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.
Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.
Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R
2009-11-09
Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupertuis, M.A.; Proctor, M.; Acklin, B.
Energy balance and reciprocity relations are studied for harmonic inhomogeneous plane waves that are incident upon a stack of continuous absorbing dielectric media that are macroscopically characterized by their electric and magnetic permittivities and their conductivities. New cross terms between parallel electric and parallel magnetic modes are identified in the fully generalized Poynting vector. The symmetry and the relations between the general Fresnel coefficients are investigated in the context of energy balance at the interface. The contributions of the so-called mixed Poynting vector are discussed in detail. In particular a new transfer matrix is introduced for energy fluxes in thin-filmmore » optics based on the Poynting and mixed Poynting vectors. Finally, the study of reciprocity relations leads to a generalization of a theorem of reversibility for conducting and dielectric media. 16 refs.« less
A combination dielectric and acoustic laboratory instrument for petrophysics
NASA Astrophysics Data System (ADS)
Josh, Matthew
2017-12-01
Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric permittivity and P-wave velocity with saturation consistent with the Gassmann-Hill prediction. Both the dielectric permittivity and P-wave velocity are faster parallel to the bedding plane than orthogonal to the bedding plane in a shale from the Cooper Basin, Australia.
NASA Astrophysics Data System (ADS)
Wang, Zhongyang; Sun, Kai; Xie, Peitao; Liu, Yao; Fan, Runhua
2017-09-01
Recently, negative parameters such as negative permittivity and negative permeability have been attracting extensive attention for their unique electromagnetic properties. Usually, negative permittivity is well achieved by plasma oscillation of free electrons in conductor-insulator composites or metamaterials, while some attention has been paid to attaining negative permittivity in ceramics to reduce dielectric loss. In this paper, negative permittivity in barium titanate and yttrium iron garnet composites are reported which was well fitted by the Lorentz model. Further, negative permittivity behavior was verified via Kramers-Kronig relations, and it revealed that the causal principle still valid for negative permittivity resulted from dielectric resonance. The interrelationships among negative permittivity, capacitive-inductive transition and ac conductivity are discussed.
Impedance-spectroscopy analysis of a LiTaO{sub 3}-type single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, D.; Reau, J.M.; Ravez, J.
1995-04-01
Low-frequency dielectric dispersion phenomena in a LiTaO{sub 3}-type single crystal have been analyzed by impedance spectroscopy in directions parallel and perpendicular to the polar c-axis (rhombohedral system). An empirical expression has been deduced for the complex permittivity {epsilon}*({omega}), {epsilon}*({omega}) = {epsilon}{infinity} + {sup {epsilon}{sub s}-{epsilon}{infinity}}/{sub 1 + (i{omega}/{omega}{sub 1}){sup m}} + {sup {sigma}{sub 0}}/{sub {epsilon}{sub 0}{omega}} [1 + (i{omega}/{omega}{sub 2}){sup n}], where the ({omega}{sub 1}, m) and ({omega}{sub 2}, n) couples characterize respectively the lattice and the charge carrier responses. This relation may be considered as a generalization of the Cole-Cole dielectric expression. Excellent agreement has been obtained in amore » wide frequency domain (1-10{sup 6} Hz) between the measured and calculated permittivities in the 500-650{degrees}C temperature range ({Tc} = 600{degrees}C). The temperature dependence of various dielectrical parameters has been determined and discussed. The relaxations are correlated to Li atom motions.« less
Probing-models for interdigitated electrode systems with ferroelectric thin films
NASA Astrophysics Data System (ADS)
Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul
2018-05-01
In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.
A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substratemore » thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.« less
Optically transparent frequency selective surfaces on flexible thin plastic substrates
NASA Astrophysics Data System (ADS)
Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir
2015-02-01
A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.; Seidensticker, K. J.; Fischer, H. H.
2015-12-01
The Permittivity Probe (SESAME-PP) on-board the Philae Lander of the ROSETTA mission was designed to constrain the complex permittivity of the first 2 m of the nucleus of comet 67P/Churyumov-Gerasimenko and to monitor its variations with time. Doing so, it is meant to provide a unique insight into the composition of the comet, and in particular, into its water content. PP-SESAME acquired data on November 13, 2015, both during Philae descent to the comet and at the surface of the nucleus. The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a transmitting dipole, and the induced electrical voltage on a receiving dipole is measured. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate both the dielectric constant and electrical conductivity of the ground. For that purpose, we have developed a method called the "capacity-influence matrix method". A replica of the instrument was recently built in LATMOS (France) in order to validate this method. In this paper, we will present the tests conducted with the replica in a controlled environment and their comparison to numerical simulations. We will also show simulations relevant to the PP-SESAME experiment on the nucleus of comet 67P/Churyumov-Gerasimenko. These simulations were run for realistic scenarios of the Philae's attitude and environment at its final landing site. We discuss their implications in terms of surface electrical and compositional properties.
Fluid and microfluidic dielectric measurement using a cavity perturbation method at microwave C-band
NASA Astrophysics Data System (ADS)
Asghari, Aref
The utilization of cavity perturbation technique in dielectric property measurement of fluid and micro-fluid is investigated in this thesis to better assist the ever-growing needs of science and technology for analysis and characterization of such materials in various applications from genetics, MEMS devices, to consumer product industry. Development of different techniques for measuring complex dielectric properties of fluid and micro-fluids at Giga (10 9)-Hz frequencies is of significant importance as their usage is increasingly coupled with infrared and microwave electromagnetic wavelengths. Conventional cavity perturbation method could provide a sensitive and convenient system for measuring fluids of low (e.g., epsilonr <10) permittivity that meets the assumptions of negligible perturbation to the electromagnetic field distribution in the cavity. Developing a methodology that uses conventional cavity perturbation method that is however suitable for a sensitive, accurate, and reliable measurement of high permittivity polar liquids at microwave C-band is the goal in the current work. Systematic studies are carried out, using de-ionic (DI) water as test specimens, to evaluate the influence of sample's container, volume, dimension, and temperature on the sensitivity and reliability of microwave dielectric measurement. The cavity perturbation measurement of DI water in a 1 mm diameter capillary tube showed well-defined temperature dependence of dielectric permittivity and loss coefficients of water. Observation of a permittivity peak in temperature range tested at 4GHz around -10 °C implies an important relaxation in low temperatures at microwave C-band, which corresponds to a critical slowing down of polarization reorientation in crystallized (icy) H2O. Numerical simulations using Finite Element Analysis (FEA) COMSOL suites were conducted to established the optimum amount of liquid water for cavity perturbation testing at microwave C-band (in perfectly conducting condition). The results showed at TE103 mode the tube D4= 4mm diameter (272 muL liquid volume capacity) provides the best measurement sensitivity in terms of resonant shift and low loss while for TE105 the 2mm 68 (muL liquid volume capacity) tube is the most promising. The experimental results yielded a shape factor of around 2 and 1 for epsilon' and epsilon", respectively. The examination of epsilon' and epsilon" interdependence using Kramers-Kronig concept showed the permittivity loss values is 4 times more dependent to the quality factor of resonant peak than permittivity. On the other hand, the dielectric permittivity dependence to resonant frequency was calculated around 2 times bigger than dielectric loss which signifies the importance of epsilon" in high loss liquid measurement by the cavity resonant perturbation method.
Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.
2014-08-12
Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.
Enhanced control of light and sound trajectories with three-dimensional gradient index lenses
NASA Astrophysics Data System (ADS)
Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.
2012-03-01
We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.
A Fourier collocation time domain method for numerically solving Maxwell's equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.
Patterned Ferroelectric Films for Tunable Microwave Devices
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.
2008-01-01
Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.
Ng, K L; Chan, H L; Choy, C L
2000-01-01
Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the pyroelectric and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their pyroelectric activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their pyroelectric activities partially cancel.
Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides
NASA Astrophysics Data System (ADS)
Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.
2017-12-01
An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.
NASA Astrophysics Data System (ADS)
Calla, O. P. N.; Mathur, Shubhra; Gadri, Kishan Lal; Jangid, Monika
2016-12-01
In the present paper, permittivity maps of equatorial lunar surface are generated using brightness temperature (TB) data obtained from Microwave Radiometer (MRM) of Chang'e-1 and physical temperature (TP) data obtained from Diviner of Lunar Reconnaissance Orbiter (LRO). Here, permittivity mapping is not carried out above 60° latitudes towards the lunar poles due to large anomaly in the physical temperature obtained from the Diviner. Microwave frequencies, which are used to generate these maps are 3 GHz, 7.8 GHz, 19.35 GHz and 37 GHz. Permittivity values are simulated using TB values at these four frequencies. Here, weighted average of physical temperature obtained from Diviner are used to compute permittivity at each microwave frequencies. Longer wavelengths of microwave signals give information of more deeper layers of the lunar surface as compared to smaller wavelength. Initially, microwave emissivity is estimated using TB values from MRM and physical temperature (TP) from Diviner. From estimated emissivity the real part of permittivity (ε), is calculated using Fresnel equations. The permittivity maps of equatorial lunar surface is generated. The simulated permittivity values are normalized with respect to density for easy comparison of simulated permittivity values with the permittivity values of Apollo samples as well as with the permittivity values of Terrestrial Analogue of Lunar Soil (TALS) JSC-1A. Lower value of dielectric constant (ε‧) indicates that the corresponding lunar surface is smooth and doesn't have rough rocky terrain. Thus a future lunar astronaut can use these data to decide proper landing site for future lunar missions. The results of this paper will serve as input to future exploration of lunar surface.
Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian
2016-01-01
We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844
Chavanne, Xavier; Frangi, Jean-Pierre
2014-08-26
This paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm distance to scan a significant volume of the medium (~1 L). It measures their admittances owing to a self-balanced impedance bridge operating at a frequency in the range of 1-20 MHz, possibly 30 MHz. Thanks to accurate design and electronic circuit theory-based modeling, the determination of the admittances takes into account all distortions due to lead and bridge electromagnetic effects inside the sensor when working at high frequencies. Calibration procedures and uncertainties are presented. The article also describes developments to make the present sensor autonomous on digital acquisition, basic data treatment and energy, as well as able to transfer stored data by a radio link. These steps in progress are prerequisites for a wireless network of sensors.
Chavanne, Xavier; Frangi, Jean-Pierre
2014-01-01
This paper describes a sensor dedicated to measuring the vertical profile of the complex permittivity and the temperature of any medium in which sensor electrodes are inserted. Potential applications are the estimate of the humidity and salinity in a porous medium, such as a soil. It consists of vertically-stacked capacitors along two conductive parallel cylinders of 5 cm in diameter and at a 10-cm distance to scan a significant volume of the medium (∼1 L). It measures their admittances owing to a self-balanced impedance bridge operating at a frequency in the range of 1–20 MHz, possibly 30 MHz. Thanks to accurate design and electronic circuit theory-based modeling, the determination of the admittances takes into account all distortions due to lead and bridge electromagnetic effects inside the sensor when working at high frequencies. Calibration procedures and uncertainties are presented. The article also describes developments to make the present sensor autonomous on digital acquisition, basic data treatment and energy, as well as able to transfer stored data by a radio link. These steps in progress are prerequisites for a wireless network of sensors. PMID:25162233
Influence of particle arrangement on the permittivity of an elastomeric composite
NASA Astrophysics Data System (ADS)
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Womack, James C; Anton, Lucian; Dziedzic, Jacek; Hasnip, Phil J; Probert, Matt I J; Skylaris, Chris-Kriton
2018-03-13
The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼10 9 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.
Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO2 single crystals.
Kawarasaki, Masaru; Tanabe, Kenji; Terasaki, Ichiro; Fujii, Yasuhiro; Taniguchi, Hiroki
2017-07-13
The development of dielectric materials with colossal permittivity is important for the miniaturization of electronic devices and fabrication of high-density energy-storage devices. The electron-pinned defect-dipoles has been recently proposed to boost the permittivity of (Nb + In) co-doped TiO 2 to 10 5 . However, the follow-up studies suggest an extrinsic contribution to the colossal permittivity from thermally excited carriers. Herein, we demonstrate a marked enhancement in the permittivity of (Nb + In) co-doped TiO 2 single crystals at sufficiently low temperatures such that the thermally excited carriers are frozen out and exert no influence on the dielectric response. The results indicate that the permittivity attains quadruple of that for pure TiO 2 . This finding suggests that the electron-pinned defect-dipoles add an extra dielectric response to that of the TiO 2 host matrix. The results offer a novel approach for the development of functional dielectric materials with large permittivity by engineering complex defects into bulk materials.
NASA Astrophysics Data System (ADS)
Sun, Feiran; Sun, Zhenguo; Chen, Qiang
2016-02-01
In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement current or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the eddy current generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the eddy current density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.
Contact-independent electrical conductance measurement
Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat
2017-01-24
Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.
NASA Astrophysics Data System (ADS)
Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang
2018-04-01
The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.
Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media
NASA Astrophysics Data System (ADS)
Sheldon, Robert T.
Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method of resonant frequency and quality factor determination from measured data is presented. Excellent agreement between calculated and measured values of sensor resonant frequency was obtained for the samples studied. Agreement between calculated and measured quality factor was good in some cases but incurred the particular challenge of accurately quantifying multiple contributions to loss from the sensor structure itself, which at times dominates the contribution due to the sample material. Two later chapters describe the development of capacitive sensors to quantify the low-frequency changes in material permittivity due to environmental aging mechanisms. One embodiment involves the application of coplanar concentric interdigital electrode sensors for the purpose of investigating polymer-matrix degradation in glass-fiber composites due to isothermal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high temperatures to induce thermal degradation and capacitive sensors were used to measure the sensor capacitance and dissipation factor, parameters that are directly proportional to the real and imaginary components of complex permittivity, respectively. It was shown that real permittivity and dissipation factor decreased with increasing aging temperature, a trend that was common to both interdigital sensor measurements and standard parallel plate electrode measurements. The second piece of work involves the development of cylindrical interdigital electrode sensors to characterize complex permittivity changes in wire insulation due to aging-related degradation. The sensor was proven effective in detecting changes in irradiated nuclear power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immersion. In all three cases, the results indicate a clear correlation of measured capacitance and dissipation factor with increased degradation.
Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio
2012-07-01
Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the two methods are essentially equivalent; i.e., they have comparable accuracies for the same number of elements. We find that ions in water--charges embedded in a high-dielectric medium--are harder to compute accurately than charges in a low-dielectric medium.
NASA Astrophysics Data System (ADS)
Ivliev, S. V.
2017-12-01
For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.
Polarizing Beam Splitter: A New Approach Based on Transformation Optics
NASA Astrophysics Data System (ADS)
Mueller, Jonhatan; Wegener, Martin
Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.
Effective cluster model of dielectric enhancement in metal-insulator composites
NASA Astrophysics Data System (ADS)
Doyle, W. T.; Jacobs, I. S.
1990-11-01
The electrical permittivity of a suspension of conducting spheres at high volume loading exhibits a large enhancement above the value predicted by the Clausius-Mossotti approximation. The permittivity enhancement is a dielectric anomaly accompanying a metallization transition that occurs when conducting particles are close packed. In disordered suspensions, close encounters can cause a permittivity enhancement at any volume loading. We attribute the permittivity enhancements typically observed in monodisperse disordered suspensions of conducting spheres to local metallized regions of high density produced by density fluctuations. We model a disordered suspension as a mixture, or mesosuspension, of isolated spheres and random close-packed spherical clusters of arbitrary size. Multipole interactions within the clusters are treated exactly. External interactions between clusters and isolated spheres are treated in the dipole approximation. Model permittivities are compared with Guillien's experimental permittivity measurements [Ann. Phys. (Paris) Ser. 11, 16, 205 (1941)] on liquid suspensions of Hg droplets in oil and with Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] on fluidized bed suspensions of ion-exchange resin beads in aqueous solution. New permittivity measurements at 10 GHz on solid suspensions of monodisperse metal spheres in polyurethane are presented and compared with the model permittivities. The effective spherical cluster model is in excellent agreement with the experiments over the entire accessible range of volume loading.
Tajparast, Mohammad; Glavinović, Mladen I
2018-06-06
Bio-membranes as capacitors store electric energy, but their permittivity is low whereas the permittivity of surrounding solution is high. To evaluate the effective capacitance of the membrane/solution system and determine the electric energy stored within the membrane and in the solution, we estimated their electric variables using Poisson-Nernst-Planck simulations. We calculated membrane and solution capacitances from stored electric energy. The effective capacitance was calculated by fitting a six-capacitance model to charges (fixed and ion) and associated potentials, because it cannot be considered as a result of membrane and solution capacitance in series. The electric energy stored within the membrane (typically much smaller than that in the solution), depends on the membrane permittivity, but also on the external electric field, surface charge density, water permittivity and ion concentration. The effect on capacitances is more specific. Solution capacitance rises with greater solution permittivity or ion concentration, but the membrane capacitance (much smaller than solution capacitance) is only influenced by its permittivity. Interestingly, the effective capacitance is independent of membrane or solution permittivity, but rises as the ion concentration increases and surface charge becomes positive. Experimental estimates of membrane capacitance are thus not necessarily a reliable index of its surface area. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Liu, Jing; Shen, Zhijian; Yan, Haixue; Reece, Michael J.; Kan, Yanmei; Wang, Peiling
2007-11-01
By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi3.25La0.75Ti3O12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 °C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d33 above the permittivity peak, Tm, show that the BLT ceramic has relaxor-like behavior.
Dielectric properties of binary mixtures of ethylene glycol monophenyl ether and methanol
NASA Astrophysics Data System (ADS)
Vaghela, K. C.; Vankar, H. P.; Trivedi, C. M.; Rana, V. A.
2017-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of ethylene glycol monophenyl ether (EGMPE), methanol (MeOH) and their binary mixtures of varying concentrations have been measured at room temperature (T=299.15 K). The investigation showed a systematic change in permittivity with change in concentration of MeOH in binary mixture system. Measured data have been used to calculate the various dielectric parameters such as E E excess static permittivity (ɛ0E), excess permittivity at optical frequency (ɛ∞E) and Bruggeman factor (fB). Determined parameters provided some information about the molecular interaction among the molecular species of the binary mixtures.
Artificial high effective permittivity medium in a SIW filled with metallic cylinders
NASA Astrophysics Data System (ADS)
Vicent, G.; Bronchalo, E.; Coves, A.; Torregrosa, G.
2018-02-01
A new topology of step-impedance band-pass filters in Substrate Integrated Waveguide (SIW) technology has been recently demonstrated in which low effective permittivity regions have been achieved by removing part of the substrate material and then shielding the perforated structure. Alternatively, in this work a new way to obtain an increased relative permittivity in the guiding region is proposed by periodically inserting metallic inclusions. This paper shows the results of a systematic study of the effective permittivity obtained in this way in a SIW in order to synthesize a higher effective permittivity, which can be used in the filter design.
Nonlinear effective permittivity of field grading composite dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang
2018-02-01
Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
NASA Astrophysics Data System (ADS)
Taniguchi, Hiroki; Ando, Kako; Terasaki, Ichiro
2017-10-01
Dielectric measurements are performed on (Nb1/2In1/2)0.02Ti0.98O2 (NITO-2.0) single crystals grown by a floating zone method to address the nature of the colossal permittivity recently reported in (Nb + In) co-doped TiO2 ceramics. The colossal permittivity of the order of 105, which is also observed in the NITO-2.0 single crystals, disappears in the lowest temperature region, indicating an extrinsic contribution from thermally excited carriers to the colossal permittivity. Even at low temperatures where the thermally excited carriers are expected to be frozen out, a high permittivity of the order of 103 remains. This finding suggests that an intrinsic contribution from electron-pinned defect dipoles boosts the dielectric permittivity of TiO2.
NASA Astrophysics Data System (ADS)
Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.
2010-01-01
We show that in the presence of free charge carriers the definition of the frequency-dependent dielectric permittivity requires additional regularization. As an example, the dielectric permittivity of the Drude model is considered and its time-dependent counterpart is derived and analyzed. The respective electric displacement cannot be represented in terms of the standard Fourier integral. The regularization procedure allowing the circumvention of these difficulties is suggested. For the purpose of comparison it is shown that the frequency-dependent dielectric permittivity of insulators satisfies all rigorous mathematical criteria. This permits us to conclude that in the presence of free charge carriers the concept of dielectric permittivity is not as well defined as for insulators and we make a link to widely discussed puzzles in the theory of thermal Casimir force which might be caused by the use of this kind of permittivities.
Vegetation dielectric characterization using an open-ended coaxial probe
NASA Astrophysics Data System (ADS)
Mavrovic, A.; Roy, A.; Royer, A.; Boone, F.; Pappas, C.; Filali, B.
2017-12-01
The detection of freeze/thaw (F/T) physical state of soil is one of the main objectives of the SMAP mission as well as one of the secondary objectives of the SMOS mission. Annual F/T cycles have substantial impacts on surface energy budgets, permafrost conditions, as well as forest water and carbon dynamics. It has been shown that spaceborne L-band passive radiometry is a promising tool to monitor F/T due to the substantial differences between the permittivity of water and ice at these frequencies. However, the decoupling of the signal between soil and vegetation components remains challenging for all microwave remote sensing applications at various spatial scales. Radiative transfer models in the microwave domain are generally poorly parameterized to consider the non-negligible contribution of vegetation. The main objective of this research is to assess the skill of a recently developed Open-Ended Coaxial Probe (OECP) to measure the complex microwave permittivity of vegetation and soils and to derive a relation between the impact of vegetation on the microwave signal and the vegetation permittivity that could serve as a validation tool for soil models especially in frozen state. Results show that the OECP is a suitable tool to infer the radial profile of the complex permittivity in L-band of trees. A clear distinction can be made between the dielectric characterization of the sapwood where the permittivity is high because of the high permittivity of water but decrease with depth, and the heartwood where the permittivity is low and relatively constant. The seasonal cycle of the F/T state of the vegetation can also be observed since it is strongly correlated with the permittivity of the wood. The permittivity of a tree over the winter season is very low and homogenous since the permittivity of ice is significantly lower than water and the sap flow is negligible. The fluctuation of the frozen and thawed permittivity for different tree species was evaluated, focusing on four widespread boreal tree species. Future work will focus on observing the effect of the tree permittivity on the vegetation emission and brightness temperature (Tb) and to upscale that information for satellite-borne passive microwave observations and global monitoring of freeze/thaw and soil moisture.
High permittivity induced by interaction between PI matrix and graphite oxide filler
NASA Astrophysics Data System (ADS)
Lai, Maobai; Kou, Siwang; Yu, Shuhui; Sun, Rong; Wong, Ching-Ping
2014-09-01
Functionalized graphite oxide was introduced to polyimide and a colossal permittivity was obtained in the derived GO/PI composites. At 1 kHz, the permittivity of the composite with 3 wt% GO loading was up to 7179. In comparison, the permittivities of rGO/PI with 3 wt% rGO loading and GO/ER with 3 wt% GO loading were only 14.41 and 26.64, respectively. By analyzing the molecular structure and chemical bonding of GO/PI composites, we proposed that interaction occurred between the GO fillers carrying functional groups and the PI matrix with a conjugate system, which accounts for the high permittivity of GO/PI composites.
Parallel CE/SE Computations via Domain Decomposition
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung
2000-01-01
This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
Parallel computation using boundary elements in solid mechanics
NASA Technical Reports Server (NTRS)
Chien, L. S.; Sun, C. T.
1990-01-01
The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.
Neves, Ana L; Leroi, Lisa; Raolison, Zo; Cochinaire, Nicolas; Letertre, Thibaut; Abdeddaïm, Redha; Enoch, Stefan; Wenger, Jerome; Berthelot, Johann; Adenot-Engelvin, Anne-Lise; Malléjac, Nicolas; Mauconduit, Franck; Vignaud, Alexandre; Sabouroux, Pierre
2018-03-01
Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO 3 /BaTiO 3 water mixtures were carried out and new permittivity maxima was reached. Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder. The permittivity dependence with pressure was investigated. Scanning electron microscopy images were performed on a few representative solutions. BaTiO 3 pressed pads of different thicknesses, permittivities, and distances to the head were compared in a 7T MRI scanner. Perovskite aqueous mixtures undergo a pressure-dependent phase transition in terms of permittivity, with increasing water content. A new relative permittivity maximum of 475 was achieved. Microscopic images revealed structural differences between phases. A B1+ improvement in the temporal lobe was obtained with thin, high permittivity BaTiO 3 head. This new preparation method allows improved pad geometry and placement, as a result of the high relative permittivity values achieved. This method has great significance for medical applications of MRI dielectric shimming, being easy to replicate and implement on a large scale. Magn Reson Med 79:1753-1765, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Sawyer, William C.
1995-01-01
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.
Sawyer, W.C.
1995-08-15
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.
New Materials Developments for Military High Power Electronics and Capacitors
2009-04-27
parameters, permittivity and breakdown field strength, and can be given by equation 1. (1) Where U - energy density (J/ cm3), ε - relative material... permittivity εo - permittivity of free space (8.85418782 × 10-12 m-3 kg-1 s4 A2) Emax (V/µm) - maximum field strength before material breakdown... Permittivity can be described as the ability of the material to polar- ize in response to an electric field through separation of ions, twist- ing permanent
Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures
NASA Astrophysics Data System (ADS)
Yu, Zi-De; Chen, Xiao-Ming
2018-03-01
BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.
Electrical Conduction of Ba(Ti0.99Fe0.01)O3- δ Ceramic at High Temperatures
NASA Astrophysics Data System (ADS)
Yu, Zi-De; Chen, Xiao-Ming
2018-07-01
BaTiO3 and Ba(Ti0.99Fe0.01)O3- δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3- δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3- δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3- δ , the electrical modulus curve versus frequency displayed two peaks.
Analysis and design of ferroelectric-based smart antenna structures
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth; Washington, Gregory N.
2009-03-01
Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Lawes, Gavin; Nadgorny, Boris
2014-08-01
We observe the large enhancement in the dielectric permittivity near the percolation threshold in a composite nanoparticle system consisting of metallic RuO2 grains embedded into CaCu3Ti4O12 (CCTO) matrix and annealed at 1100 °C. To understand the nature of the dielectric response, we prepared CCTO by using standard solid state and sol-gel processes, with the relative permittivity found to be on the order of 103-104 at 10 kHz. For RuO2/CCTO composites, an increase in the real part of the dielectric permittivity by approximately an order of magnitude is observed in the vicinity of the percolation threshold, with moderate losses at room temperature. The critical exponent of dielectric permittivity and conductivity of these composites are lower than universal value (0.8-1). In these composite systems, both Maxwell-Wagner and percolation effects have been found responsible for the enhancement of dielectric permittivity.
NASA Astrophysics Data System (ADS)
Reshetnyak, V. Yu.; Pinkevych, I. P.; Evans, D. R.
2018-06-01
We develop a theoretical model to describe two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch helix oriented parallel to the cell substrates (so-called uniformly lying helix configuration). Weak and strong light beams incident on the hybrid cell interfere and induce a periodic space-charge field in the photorefractive substrate of the cell, which penetrates into the cholesteric liquid crystal (LC). Due to the flexoelectro-optic effect an interaction of the photorefractive field with the LC flexopolarization causes the spatially periodic modulation of the helix axis in the plane parallel to the cell substrates. Coupling of a weak signal beam with a strong pump beam at the LC permittivity grating, induced by the periodically tilted helix axis, leads to the energy gain of the weak signal beam. Dependence of the signal beam gain coefficient on the parameters of the short-pitch cholesteric LC is studied.
Charge transportation and permittivity in electron beam irradiated polymethyl methacrylate
NASA Astrophysics Data System (ADS)
Zheng, Feihu; Zhang, Yewen; Xia, Junfeng; Xiao, Chun; An, Zhenlian
2009-09-01
The charging phenomenon in the insulating dielectrics often occurs in the radiative environments such as in the outer space and in the nuclear reactor. Both surface charging and bulk charging have various influences on the dielectric properties. Understanding electrical properties of e-beam irradiated dielectrics is of great significance in order to maintain the stability and reliability of the related operating system. In this work, the effect of electron beam irradiation on the permittivity of polymethyl methacrylate (PMMA) samples was investigated. It was found that the variance of permittivity in e-beam irradiated PMMA is mainly determined by two factors. One is the porosity of the material. The irradiating process could increase the porosity of PMMA due to the escape of the small molecule (e.g., CO, CO2, and CH4) produced during material degradation caused by e-beam irradiation. The enhanced higher porosity corresponds to lower permittivity. The distribution of the implanted charge is the other factor that influences the permittivity. When the distribution of electric field generated by the accumulating charge is asymmetric for the middle thickness of the sample, the PMMA sample with polar groups would be subjected to extra polarization by the field, which could lead to the increase in permittivity. Combining with the model of Wakino et al. [J. Am. Ceram. Soc. 76, 2588 (1993)] on permittivity of mixture materials, the Clausius-Mosotti equation was utilized to analyze the variation in permittivity in the e-beam irradiated PMMA samples.
Modeling of dielectric properties of aqueous salt solutions with an equation of state.
Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M; Thomsen, Kaj
2013-09-12
The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. Wertheim's association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion-solvent association. Finally, we compare the Debye-Hückel Helmholtz energy obtained using an empirical model with the new physical model and show that the empirical models may introduce unphysical behavior in the equation of state.
NASA Astrophysics Data System (ADS)
Muljarov, E. A.; Weiss, T.
2018-05-01
The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.
Colossal permittivity materials: Doping for superior dielectrics
NASA Astrophysics Data System (ADS)
Homes, Christopher C.; Vogt, Thomas
2013-09-01
The search for materials with colossal permittivity for use in capacitors has been met with limited success. A newly discovered co-doped titanium oxide material has an extremely high permittivity and negligible dielectric losses, and is likely to enable further scaling in electronic and energy-storage devices.
Soil permittivity response to bulk electrical conductivity for selected soil water sensors
USDA-ARS?s Scientific Manuscript database
Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...
NASA Astrophysics Data System (ADS)
Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji
2017-11-01
This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm-3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg-Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2018-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of the Benzaldehyde (BZ), Methanol (MeOH) and their binary mixtures were measured in the temperature range from 293.15 K to 323.15 K (in the interval of 10 K). From the ɛ0 and ɛ∞ other parameters such as effective Kirkwood correlation factor (geff), corrective Kirkwood correction factor (gf), Bruggman factor (fB), excess permittivity (ɛ0E ) and permittivity at optical frequency (ɛ∞E ) were evaluated.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Wu, Qin; Hu, Jianbing; Xu, Zhichao; Peng, Cheng; Xia, Zexu
2018-03-01
Interface induced polarization has a significant impact on permittivity of 0–3 type polymer composites with Si based semi-conducting fillers. Polarity of Si based filler, polarity of polymer matrix and grain size of filler are closely connected with induced polarization and permittivity of composites. However, unlike 2–2 type composites, the real permittivity of Si based fillers in 0–3 type composites could be not directly measured. Therefore, achieving the theoretical permittivity of fillers in 0–3 composites through effective medium approximation (EMA) models should be very necessary. In this work, the real permittivity results of Si based semi-conducting fillers in ten different 0–3 polymer composite systems were calculated by linear fitting of simplified EMA models, based on particularity of reported parameters in those composites. The results further confirmed the proposed interface induced polarization. The results further verified significant influences of filler polarity, polymer polarity and filler size on induced polarization and permittivity of composites as well. High self-consistency was gained between present modelling and prior measuring. This work might offer a facile and effective route to achieve the difficultly measured dielectric performances of discrete filler phase in some special polymer based composite systems.
NASA Astrophysics Data System (ADS)
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
NASA Astrophysics Data System (ADS)
Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao
2005-12-01
The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.
Farace, P; Pontalti, R; Cristoforetti, L; Antolini, R; Scarpa, M
1997-11-01
This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning.
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
Measuring the complex permittivity of thin grain samples by the free-space transmission technique
USDA-ARS?s Scientific Manuscript database
In this paper, a numerical method for solving a higherorder model that relates the measured transmission coefficient to the permittivity of a material is used to determine the permittivity of thin grain samples. A method for resolving the phase ambiguity of the transmission coefficient is presented....
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.
2016-01-01
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270
Dielectric Relaxation Study of Multiferroic BiFe0.95(Ni0.5Ti0.5)0.05O3
NASA Astrophysics Data System (ADS)
Abdelkafi, Z.; Khasskhoussi, G.; Abdelmoula, N.
2018-03-01
The doping of BiFeO3 (BFO) with 5% of Ni and Ti to form the composition BiFe0.95(Ni0.5Ti0.5)0.05O3 (BFNT05) was prepared via a solid state reaction technique. X-ray diffraction (XRD) shows that the prepared ceramic has a pure-phase perovskite structure with rhombohedral symmetry. Thermal evolution of the permittivity reveals a large value of permittivity accompanied by a strong dispersion. This evolution indicates a dielectric anomaly at around 520 K near the Néel temperature ( T N), which supports a strong magneto-dielectric coupling. The dielectric dispersion in BFNT05 was studied by the measurement of the permittivity over a wide frequency range from 20 Hz to 1 MHz at different temperatures 300-700 K. The experimental dielectric data was described by the Cole-Cole relaxation equation modified by introducing the conductivity. Modified impedance and modulus expressions were used successfully as tools to separate the contribution from grains and grain boundaries of BFNT05. The calculated bulk grain conductivity indicated an anomalous behavior near the temperature related to the antiferro-paramagnetic phase transition of the corresponding BFNT05 ceramic. In contrast, this ceramic exhibited a predominant grain boundaries behavior at the studied temperature and frequency range. In this case, they were the elements responsible for dielectric dispersion, and also they played an important role in the improvement of the dielectric behavior of this ceramic. The ac conductivity study confirmed the modified impedance and modulus expressions.
Dielectric Relaxation Study of Multiferroic BiFe0.95(Ni0.5Ti0.5)0.05O3
NASA Astrophysics Data System (ADS)
Abdelkafi, Z.; Khasskhoussi, G.; Abdelmoula, N.
2017-12-01
The doping of BiFeO3 (BFO) with 5% of Ni and Ti to form the composition BiFe0.95(Ni0.5Ti0.5)0.05O3 (BFNT05) was prepared via a solid state reaction technique. X-ray diffraction (XRD) shows that the prepared ceramic has a pure-phase perovskite structure with rhombohedral symmetry. Thermal evolution of the permittivity reveals a large value of permittivity accompanied by a strong dispersion. This evolution indicates a dielectric anomaly at around 520 K near the Néel temperature (T N), which supports a strong magneto-dielectric coupling. The dielectric dispersion in BFNT05 was studied by the measurement of the permittivity over a wide frequency range from 20 Hz to 1 MHz at different temperatures 300-700 K. The experimental dielectric data was described by the Cole-Cole relaxation equation modified by introducing the conductivity. Modified impedance and modulus expressions were used successfully as tools to separate the contribution from grains and grain boundaries of BFNT05. The calculated bulk grain conductivity indicated an anomalous behavior near the temperature related to the antiferro-paramagnetic phase transition of the corresponding BFNT05 ceramic. In contrast, this ceramic exhibited a predominant grain boundaries behavior at the studied temperature and frequency range. In this case, they were the elements responsible for dielectric dispersion, and also they played an important role in the improvement of the dielectric behavior of this ceramic. The ac conductivity study confirmed the modified impedance and modulus expressions.
Optical performance and metallic absorption in nanoplasmonic systems.
Arnold, Matthew D; Blaber, Martin G
2009-03-02
Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges.
Giant Permittivity in Epitaxial Ferroelectric Heterostructures
NASA Astrophysics Data System (ADS)
Erbil, A.; Kim, Y.; Gerhardt, R. A.
1996-08-01
A giant permittivity associated with the motion of domain walls is reported in epitaxial hetero- structures having alternating layers of ferroelectric and nonferroelectric oxides. At low frequencies, permittivities as high as 420 000 are found. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field correlated with the dc bias-field dependence of ac permittivities. We interpret the observations as a result of the motion of a pinned domain wall lattice at low electric fields and sliding-mode motion at high electric fields.
NASA Technical Reports Server (NTRS)
Richard, Mark A.
1993-01-01
The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.
USSR Report, Physics and Mathematics.
1987-01-14
polarization distribution in these crystals at a temperature above the 70°C phase transition point corresponding to maximum dielectric permittivity ...are derived theoretically and matched with experimental data. The theory is based on the relation between complex dielectric permittivity and...Kramers-Heisenberg relation for polarizability. Both real and imaginary parts of dielectric permittivity are evaluated, assuming a valence band fully
Origin of colossal permittivity in BaTiO3 via broadband dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Han, Hyuksu; Voisin, Christophe; Guillemet-Fritsch, Sophie; Dufour, Pascal; Tenailleau, Christophe; Turner, Christopher; Nino, Juan C.
2013-01-01
Barium titanate (BT) ceramics with Ba/Ti ratios of 0.95 and 1.00 were synthesized using spark plasma sintering (SPS) technique. Dielectric spectroscopy (frequency range from 40 Hz to 1 MHz and temperature range from 300 K to 30 K) was performed on those ceramics (SPS BT). SPS BT showed extremely high permittivity up to ˜105, which can be referred to as colossal permittivity, with relatively low dielectric loss of ˜0.05. Data analyses following Debye relaxation and universal dielectric response models indicate that the origin of colossal permittivity in BT ceramics is the result of a hopping polaron within semiconducting grains in combination with interfacial polarization at the insulating grain boundary. Furthermore, the contributions of each polarization mechanism to the colossal permittivity in SPS BT, such as a hopping polarization, internal barrier layer capacitance effect, and electrode effect, were estimated.
NASA Astrophysics Data System (ADS)
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-02-01
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics.
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-02-13
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO 3 ), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO 3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd 3+ in Ba 2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO 3 -based ceramics.
Sun, Qiaomei; Gu, Qilin; Zhu, Kongjun; Jin, Rongying; Liu, Jinsong; Wang, Jing; Qiu, Jinhao
2017-01-01
Dielectric materials with high permittivity are strongly demanded for various technological applications. While polarization inherently exists in ferroelectric barium titanate (BaTiO3), its high permittivity can only be achieved by chemical and/or structural modification. Here, we report the room-temperature colossal permittivity (~760,000) obtained in xNd: BaTiO3 (x = 0.5 mol%) ceramics derived from the counterpart nanoparticles followed by conventional pressureless sintering process. Through the systematic analysis of chemical composition, crystalline structure and defect chemistry, the substitution mechanism involving the occupation of Nd3+ in Ba2+ -site associated with the generation of Ba vacancies and oxygen vacancies for charge compensation has been firstly demonstrated. The present study serves as a precedent and fundamental step toward further improvement of the permittivity of BaTiO3-based ceramics. PMID:28205559
Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity.
Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama
2017-03-07
A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer-Emmett-Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance.
Characterizing Adsorption Performance of Granular Activated Carbon with Permittivity
Yang, Yang; Shi, Chao; Zhang, Yi; Ye, Jinghua; Zhu, Huacheng; Huang, Kama
2017-01-01
A number of studies have achieved the consensus that microwave thermal technology can regenerate the granular activated carbon (GAC) more efficiently and energy-conservatively than other technologies. In particular, in the microwave heating industry, permittivity is a crucial parameter. This paper developed two equivalent models to establish the relationship between effective complex permittivity and pore volume of the GAC. It is generally based on Maxwell-Garnett approximation (MGA) theory. With two different assumptions in the model, two quantificational expressions were derived, respectively. Permittivity measurements and Brunauer–Emmett–Teller (BET) testing had been introduced in the experiments. Results confirmed the two expressions, which were extremely similar. Theoretical and experimental graphs were matched. This paper set up a bridge which links effective complex permittivity and pore volume of the GAC. Furthermore, it provides a potential and convenient method for the rapid assisted characterization of the GAC in its adsorption performance. PMID:28772628
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Piezoelectric Resonance Enhanced Microwave And Optoelectronic Interactive Devices
2013-05-01
0080 glass complex permittivity measured by NECVP method near 4.01GHz (TE103) and 5.19 (TE105) GHz...144 Table A.4 Corning 0080 glass complex permittivity measured by post resonant technique ...... 144 Table A.5...144 Table A.6 Complex permittivity of Pyrex glass rod measured by NECVP method near 4.01GHz (TE103) and 5.19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ci, Penghong; Liu, Guoxi; Dong, Shuxiang, E-mail: sxdong@pku.edu.cn
We report a strain-mediated electric field manipulation of permittivity in BaTiO{sub 3} (barium titanate, BT) ceramic by a Pb(Zr,Ti)O{sub 3} (PZT) bimorph. This BT/PZT heterostructure exhibited a relatively large permittivity tunability of BT up to ±10% in a wide frequency range under an electric field of ±4 kV/cm applied to the PZT bimorph. The permittivity tunability is attributed to the strain in BT produced by the PZT bimorph. Calculations of the relationship between permittivity and applied electric field were developed, and corresponded well with measurements. The BT/PZT heterostructure has potential for applications in broadband field tunable smart electronic devices.
An anisotropic lens for transitioning plane waves between media of different permittivities
NASA Astrophysics Data System (ADS)
Stone, Alexander P.; Baum, Carl E.
1988-11-01
A particularly simple geometry is considered in which an inhomogeneous and anisotropic lens is specified for the transition of plane waves between media of different permittivities. The permittivities of the regions outside of the lens can be constant, but the permittivity of the lens region depends on position. Results are presented for a plane wave in the second medium propagating normally to the assumed plane boundary of that medium. The results for the case of normal incidence are then generalized to the case of nonnormal incidence. The conditions of transit time conservation and impedance matching are related to the Brewster angle.
Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity
NASA Astrophysics Data System (ADS)
Chen, Hsieh; Panagiotopoulos, Athanassios Z.
2018-01-01
We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.
NASA Astrophysics Data System (ADS)
Maslov, S. A.; Bobrov, V. B.; Kirillin, A. V.; Trigger, S. A.
2018-01-01
Using the linear response theory, the transverse dielectric permittivity of a homogeneous and isotropic system of charged particles is considered. In the ideal gas approximation for the polarization function, an explicit analytical expression for the transverse permittivity of a degenerate electron plasma, which takes into account electron spin, is found. This result describes both the Landau diamagnetism and Pauli paramagnetism in electron plasma. The influence of the electron intrinsic magnetic moment on the spatial and frequency dispersion of the transverse dielectric permittivity of degenerate electron plasma is numerically studied, that is crucial for determining the optical characteristics of plasma.
Ito, Takahiro; Anzai, Daisuke; Jianqing Wang
2014-01-01
This paper proposes a novel joint time of arrival (TOA)/received signal strength indicator (RSSI)-based wireless capsule endoscope (WCE) location tracking method without prior knowledge of biological human tissues. Generally, TOA-based localization can achieve much higher localization accuracy than other radio frequency-based localization techniques, whereas wireless signals transmitted from a WCE pass through various kinds of human body tissues, as a result, the propagation velocity inside a human body should be different from one in free space. Because the variation of propagation velocity is mainly affected by the relative permittivity of human body tissues, instead of pre-measurement for the relative permittivity in advance, we simultaneously estimate not only the WCE location but also the relative permittivity information. For this purpose, this paper first derives the relative permittivity estimation model with measured RSSI information. Then, we pay attention to a particle filter algorithm with the TOA-based localization and the RSSI-based relative permittivity estimation. Our computer simulation results demonstrates that the proposed tracking methods with the particle filter can accomplish an excellent localization accuracy of around 2 mm without prior information of the relative permittivity of the human body tissues.
Discontinuous Galerkin Finite Element Method for Parabolic Problems
NASA Technical Reports Server (NTRS)
Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.
2004-01-01
In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.
Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling
NASA Astrophysics Data System (ADS)
Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei
2017-07-01
Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.
NASA Astrophysics Data System (ADS)
Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.
2008-04-01
We report electronic structure of the grains and grain boundaries (GBs) of the high permittivity (κ˜104) ceramic CuO from scanning tunneling spectroscopy (STS) studies. The p-type semiconducting character of the CuO grains and insulating behavior of the corresponding GBs, observed from STS studies, have been explained. This type of electrically inhomogeneous microstructure leads to the formation of barrier layer capacitance elements in CuO and, hence, provides an explanation of the colossal-κ response exhibited by CuO.
Origin of the colossal dielectric permittivity and magnetocapacitance in LuFe2O4
NASA Astrophysics Data System (ADS)
Ren, P.; Yang, Z.; Zhu, W. G.; Huan, C. H. A.; Wang, L.
2011-04-01
We report the detailed study on the colossal dielectric constant and magnetocapacitance of LuFe2O4. The experimental results indicate that the large dielectric constant of LuFe2O4 is originated from two sources, (1) Maxwell Wagner-type contributions of depletion layers at grain boundaries and the interfaces between sample and contacts, (2) AC response of the constant phase element in the bulk. A detailed equivalent circuit analysis indicates that the conductivity variation can be responsible for the observed "magnetocapacitance."
Near-Field Resonance Microwave Tomography and Holography
NASA Astrophysics Data System (ADS)
Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.
2018-02-01
We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.
Fabrication of Organic Radar Absorbing Materials: A Report on the TIF Project
2005-05-01
thickness, permittivity and permeability. The ability to measure the permittivity and permeability is an essential requirement for designing an optimised...absorber. And good optimisations codes are required in order to achieve the best possible absorber designs . In this report, the results from a...through measurement of their conductivity and permittivity at microwave frequencies. Methods were then developed for optimising the design of
Chirality-induced negative refraction in magnetized plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.
2013-09-15
Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing themore » external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.« less
Graphene nanoplatelet composite 'paper' as an electrostatic actuator.
Yu, Zeyang; Drzal, Lawrence T
2018-08-03
Graphene nanoplatelets (GnP) can be made into a thin 'paper' through vacuum filtration of GnP suspension. Electrodes were fabricated from the compressed GnP paper and then by coating the surface with epoxy. The electrostatic actuator was constructed from two parallel-aligned composite papers fixed at the anode and a cathode connected to ground. The two composite papers would then separate when a voltage was applied. The GnP paper was also modified to increase surface area by introducing porosity or adding ∼10 wt% C750 (GnP with diameter less than 1 μm); or changing the relative permittivity by adding barium titanate particles; or combining these two effects by adding CNCs. Overall the output work could be significantly improved to over 400%.
Eigensolution of finite element problems in a completely connected parallel architecture
NASA Technical Reports Server (NTRS)
Akl, F.; Morel, M.
1989-01-01
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm is successfully implemented on a tightly coupled MIMD parallel processor. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts, and the dimension of the subspace on the performance of the algorithm is investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18, and 3.61 are achieved on two, four, six, and eight processors, respectively.
Giustino, Feliciano; Umari, Paolo; Pasquarello, Alfredo
2003-12-31
Using a density-functional approach, we study the dielectric permittivity across interfaces at the atomic scale. Focusing on the static and high-frequency permittivities of SiO2 films on silicon, for oxide thicknesses from 12 A down to the atomic scale, we find a departure from bulk values in accord with experiment. A classical three-layer model accounts for the calculated permittivities and is supported by the microscopic polarization profile across the interface. The local screening varies on length scales corresponding to first-neighbor distances, indicating that the dielectric transition is governed by the chemical grading. Silicon-induced gap states are shown to play a minor role.
Dielectric response of high permittivity polymer ceramic composite with low loss tangent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subodh, G.; 1.Physikalisches Institut, Universitat Stuttgart, Pfaffenwaldring 57, Stuttgart 70550; Deepu, V.
2009-08-10
The present communication investigates the dielectric response of the Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramics loaded high density polyethylene and epoxy resin. Sr{sub 9}Ce{sub 2}Ti{sub 12}O{sub 36} ceramic filled polyethylene and epoxy composites were prepared using hot blending and mechanical mixing, respectively. 40 vol % ceramic loaded polyethylene has relative permittivity of 12.1 and loss tangent of 0.004 at 8 GHz, whereas the corresponding composite using epoxy as matrix has permittivity and loss tangent of 14.1 and 0.022, respectively. The effective medium theory fits relatively well for the observed permittivity of these composites.
Permeability measurement and control for epoxy composites
NASA Astrophysics Data System (ADS)
Chang, Tsun-Hsu; Tsai, Cheng-Hung; Wong, Wei-Syuan; Chen, Yen-Ren; Chao, Hsien-Wen
2017-08-01
The coupling of the electric and magnetic fields leads to a strong interplay in materials' permittivity and permeability. Here, we proposed a specially designed cavity, called the mu cavity. The mu cavity, consisting of a mushroom structure inside a cylindrical resonator, is exclusively sensitive to permeability, but not to permittivity. It decouples materials' electromagnetic properties and allows an accurate measurement of the permeability. With the help of an epsilon cavity, these two cavities jointly determine the complex permeability and permittivity of the materials at microwave frequencies. Homemade epoxy-based composite materials were prepared and tested. Measurement and manipulation of the permeability and permittivity of the epoxy composites will be shown. The results will be compared with the effective medium theories.
Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity
NASA Astrophysics Data System (ADS)
Yang, Yang; Zhu, Ben-Peng; Lu, Zhi-Hong; Wang, Zi-Yu; Fei, Chun-Long; Yin, Di; Xiong, Rui; Shi, Jing; Chi, Qing-Guo; Lei, Qing-Quan
2013-01-01
This work reports the high dielectric permittivity of polyimide (PI) embedded with CaCu3Ti4O12 (CCTO) nanoparticles. The dielectric behavior has been investigated over a frequency of 100 Hz-1 MHz. High dielectric permittivity (ɛ = 171) and low dielectric loss (tan δ = 0.45) at 100 Hz have been observed near the percolation threshold. The experimental results fit well with the Percolation theory. We suggest that the high dielectric permittivity originates from the large interface area and the remarkable Maxwell-Wagner-Sillars effect at percolation in which nomadic charge carriers are blocked at internal interfaces between CCTO nanoparticles and the polyimide matrix.
Kiley, Erin M; Yakovlev, Vadim V; Ishizaki, Kotaro; Vaucher, Sebastien
2012-01-01
Microwave thermal processing of metal powders has recently been a topic of a substantial interest; however, experimental data on the physical properties of mixtures involving metal particles are often unavailable. In this paper, we perform a systematic analysis of classical and contemporary models of complex permittivity of mixtures and discuss the use of these models for determining effective permittivity of dielectric matrices with metal inclusions. Results from various mixture and core-shell mixture models are compared to experimental data for a titanium/stearic acid mixture and a boron nitride/graphite mixture (both obtained through the original measurements), and for a tungsten/Teflon mixture (from literature). We find that for certain experiments, the average error in determining the effective complex permittivity using Lichtenecker's, Maxwell Garnett's, Bruggeman's, Buchelnikov's, and Ignatenko's models is about 10%. This suggests that, for multiphysics computer models describing the processing of metal powder in the full temperature range, input data on effective complex permittivity obtained from direct measurement has, up to now, no substitute.
Gongadze, E.; van Rienen, U.; Kralj-Iglič, V.; Iglič, A.
2012-01-01
Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface, i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken into account. The Langevin-Poisson-Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like ions is described and compared to a more general Langevin-Bikerman (LB) model of spatial variation of permittivity for finite-sized ions. The Bikerman model and the Poisson-Boltzmann model are derived as limiting cases. It is shown that near the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking into account the cavity field. PMID:22263808
Mimicking Celestial Mechanics in Metamaterials
2009-09-01
permittivities and permeabilities and could be related to light dynamics in curved space through the invariance of Maxwell’s equations under coordinate...transformations brings the equivalence between curved spacetime and local optical response through spatially dependent permeability and permittivity tensors...with local permeability and permittivity tensors given as µij = εij = δij h1h2h3 hi √g00 where hi= √gii are the Lame coefficients of the transformation
Left Handed Materials Based on Magnetic Nanocomposites
2006-10-18
theory that unifies DNMs and SNMs as a function of two flmdamental material parameters: quality factors for permittivity (Qe=e’/e") and permeability (Qu...simultaneously negative effective permeability/uff and permittivity Seff to form LHM or only single negative parameter (SNM) to form negative indexed...developed a theory that unifies DNMs and SNMs as a function of two fundamental material parameters: quality factors for permittivity (Q, = -’/ 6") and
2003-09-01
4 3. Purpose 4 4. Description of Test Equipment 4 4.1 Damaskos Model 3000T Liquid/Powder Cell Permittivity...Permeability System ..........4 4.2 HP8510 Network Analyzer/ Damaskos System Overview..............................................5 5. Soil Sample Site...Permittivity and conductivity values were measured from 100 to 3000 MHz. The soil samples were packed as tight as possible into the Damaskos
NASA Astrophysics Data System (ADS)
Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang
2015-07-01
The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
NASA Astrophysics Data System (ADS)
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
NASA Astrophysics Data System (ADS)
Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Peng, Cheng; He, Renqi
2018-01-01
Induced polarization at interface has been confirmed to have significant impact on the dielectric properties of 2-2 series composites bearing Si-based semi-conductor sheet and polymer layer. By compositing, the significantly elevated high permittivity in Si-based semi-conductor sheet should be responsible for the obtained high permittivity in composites. In that case, interface interaction could include two aspects namely a strong electrostatic force from high polarity polymeric layer and a newborn high polarity induced in Si-based ceramic sheet. In this work, this class of interface induced polarization was successfully extended into another 2-2 series composite system made up of ultra-high polarity ceramic sheet and high polarity polymer layer. By compositing, the greatly improved high permittivity in high polarity polymer layer was confirmed to strongly contribute to the high permittivity achieved in composites. In this case, interface interaction should consist of a rather large electrostatic force from ultra-high polarity ceramic sheet with ionic crystal structure and an enhanced high polarity induced in polymer layer based on a large polarizability of high polarity covalent dipoles in polymer. The dielectric and conductive properties of four designed 2-2 series composites and their components have been detailedly investigated. Increasing of polymer inborn polarity would lead to a significant elevating of polymer overall polarity in composite. Decline of inherent polarities in two components would result in a mild improving of polymer total polarity in composite. Introducing of non-polarity polymeric layer would give rise to a hardly unaltered polymer overall polarity in composite. The best 2-2 composite could possess a permittivity of ˜463 at 100 Hz 25.7 times of the original permittivity of polymer in it. This work might offer a facile route for achieving the promising composite dielectrics by constructing the 2-2 series samples from two high polarity components.
Pearsall, Frederick A; Lombardi, Julien; O'Brien, Stephen
2017-11-22
Frequency stable, high permittivity nanocomposite capacitors produced under mild processing conditions offer an attractive replacement to MLCCs derived from conventional ceramic firing. Here, 0-3 nanocomposites were prepared using gel-collection derived barium titanate nanocrystals, suspended in a poly(furfuryl alcohol) matrix, resulting in a stable, high effective permittivity, low loss dielectric. The nanocrystals are produced at 60 °C, emerging as fully crystallized cubic BTO, 8 nm, paraelectric with a highly functional surface that enables both suspension and chemical reaction in organic solvents. The nanocrystals were suspended in furfuryl alcohol inside a uniquely prepared mold, in which volume fraction of nanocrystal filler (ν f ) could be varied. Polymerization of the matrix in situ at 70-90 °C resulted in a nanocomposite with a higher than anticipated effective permittivity (up to 50, with ν f only 0.41, 0.5-2000 kHz), exceptional stability as a function of frequency, and very favorable dissipation factors (tan δ < 0.01, ν f < 0.41; tan δ < 0.05, ν f < 0.5). The increased permittivity is attributed to the covalent attachment of the poly(furfuryl alcohol) matrix to the surface of the nanocrystals, homogenizing the particle-matrix interface, limiting undercoordinated surface sites and reducing void space. XPS and FTIR confirmed strong interfacial interaction between matrix and nanocrystal surface. Effective medium approximations were used to compare this with similar nanocomposite systems. It was found that the high effective permittivity could not be attributed to the combination of two components alone, rather the creation of a hybrid nanocomposite possessing its own dielectric behavior. A nondispersive medium was selected to focus on the frequency dependent permittivity of the 8 nm barium titanate nanocrystals. Experimental corroboration with known theory is evident until a specific volume fraction (ν f ≈ 0.3) where, due to a sharp increase in the effective permittivity, approximations fail to adequately describe the nanocomposite medium.
Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).
Parallel eigenanalysis of finite element models in a completely connected architecture
NASA Technical Reports Server (NTRS)
Akl, F. A.; Morel, M. R.
1989-01-01
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.
Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography
NASA Technical Reports Server (NTRS)
Xu, Feng; Deshpande, Manohar
2012-01-01
Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.
Parallel and Serial Grouping of Image Elements in Visual Perception
ERIC Educational Resources Information Center
Houtkamp, Roos; Roelfsema, Pieter R.
2010-01-01
The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…
Comparison of Rising Resonator Relative Permittivity Measurements to Ground Penetrating Radar Data
2014-04-01
permittivity of the soil and the target is critical in determining the strength of the reflection from the target. In this paper, a microstrip ring resonator...is used to measure the relative permittivity of the soil and various target fill materials. For this measurement technique, a microstrip ring... antennas of varying frequencies to take measurements of the two port transmission coefficient. This coefficient is measured from the input feedline to
Comparison of Ring Resonator Relative Permittivity Measurements to Ground Penetrating Radar Data
2014-04-01
permittivity of the soil and the target is critical in determining the strength of the reflection from the target. In this paper, a microstrip ring resonator...is used to measure the relative permittivity of the soil and various target fill materials. For this measurement technique, a microstrip ring... antennas of varying frequencies to take measurements of the two port transmission coefficient. This coefficient is measured from the input feedline to
Adaptive implicit-explicit and parallel element-by-element iteration schemes
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Liou, J.; Nguyen, T.; Poole, S.
1989-01-01
Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration schemes are presented for the finite element solution of large-scale problems in computational mechanics and physics. The AIE approach is based on the dynamic arrangement of the elements into differently treated groups. The GEBE procedure, which is a way of rewriting the EBE formulation to make its parallel processing potential and implementation more clear, is based on the static arrangement of the elements into groups with no inter-element coupling within each group. Various numerical tests performed demonstrate the savings in the CPU time and memory.
NASA Astrophysics Data System (ADS)
Boivin, A.; Hickson, D.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.
2016-12-01
When considering radar observations of airless bodies containing regolith, the radar backscattering coefficient is dependent on both the complex permittivity and the thickness of the regolith. The complex permittivity is typically normalized by the permittivity of free space (ɛ0) and reported as the relative permittivity (ɛr = ɛr' + iɛr'', where ɛr' is the dielectric constant and ɛr'' is the loss factor). Given the backscattering coefficient and the dielectric properties of the regolith, it should be possible to determine regolith thickness. This problem has long been considered for the Moon and many measurements of either real or complex permittivity have been made on both Apollo samples and regolith analogues. Measurements thus far have either only been done at a lower frequency range (< 1GHz) than both S Band and X Band radar or did not systematically explore the relationship between complex permittivity and the mineral content. Measurements of geological materials at higher frequencies are, for example, useful for Arecibo S Band (2.38 GHz) as well as Mini-RF X Band (7.14 GHz) Lunar observations, future RIMFAX GPR data from Mars 2020 (150 MHz - 1.2 GHz), and other future radar data at higher frequencies. Systematically exploring the relationship between complex permittivity of regolith and its mineralogical content is particularly relevant for missions to asteroids, such as the OSIRIS-REx mission to (101955) Bennu, where the composition of soil is as of yet unknown. For Lunar materials the presence of the mineral ilmenite (FeTiO3), which contains equal portions FeO and TiO2, is thought to be the dominant factor to control the loss tangent (tanδ, the ratio of ɛr'' to ɛr'). As a starting point into our investigation of the effects of mineralogy on these properties, we present results of dielectric permittivity measurements using a coaxial transmission line in vacuum, which aim to determine the effects of various amounts of ilmenite on the loss tangent of powdered materials. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs and are then placed in a vacuum chamber. Measurements are then made using a sweep of frequencies from 300 kHz to 8.5 GHz. Preliminary results show that ilmenite significantly influences signal attenuation, especially at high concentrations.
Internal homogenization: effective permittivity of a coated sphere.
Chettiar, Uday K; Engheta, Nader
2012-10-08
The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.
Microwave Dielectric Properties of Alfalfa Leaves From 0.3 to 18 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokhansanj, Shahabaddine; Shrestha, Bijay; Wood, H.C.
2011-01-01
Dielectric properties (i.e., permittivity) are essential in designing, simulating, and modeling microwave applications. The permittivity of stacked leaves of alfalfa (Medicago sativa) were measured with a network analyzer and a coaxial probe, and the effect of moisture content (MC: 12% 73% wet basis), frequency (300 MHz to 18 GHz), bound water (Cole Cole dispersion equation), temperature ( 15 C and 30 C), leaf-orientation, and pressure (0 11 kPa) were investigated. The measured permittivity increased with MC. A critical moisture level (CML) of 23% was reported, below which the permittivity decreased with increasing frequency at 22 C. Above CML and upmore » to 5 GHz, the dielectric constants followed the Cole Cole dispersion, and the dielectric loss factors consisted of ionic and bound water losses. Above 5 GHz, the behavior of the dielectric constant was similar to that of free water, and the polar losses became dominant. Above 0 C, the measured permittivity followed a trend similar to that of free saline water and was characterized by the Debye equation. Below 0 C, it was dominated by nonfreezing bound and unfrozen supercooled moistures. The relaxation parameters and the optimum pressure (9 kPa) for the leaf measurements were determined. The effects of variations among the samples, and their orientations had negligible effects on the measured permittivity.« less
Applications of Parallel Computation in Micro-Mechanics and Finite Element Method
NASA Technical Reports Server (NTRS)
Tan, Hui-Qian
1996-01-01
This project discusses the application of parallel computations related with respect to material analyses. Briefly speaking, we analyze some kind of material by elements computations. We call an element a cell here. A cell is divided into a number of subelements called subcells and all subcells in a cell have the identical structure. The detailed structure will be given later in this paper. It is obvious that the problem is "well-structured". SIMD machine would be a better choice. In this paper we try to look into the potentials of SIMD machine in dealing with finite element computation by developing appropriate algorithms on MasPar, a SIMD parallel machine. In section 2, the architecture of MasPar will be discussed. A brief review of the parallel programming language MPL also is given in that section. In section 3, some general parallel algorithms which might be useful to the project will be proposed. And, combining with the algorithms, some features of MPL will be discussed in more detail. In section 4, the computational structure of cell/subcell model will be given. The idea of designing the parallel algorithm for the model will be demonstrated. Finally in section 5, a summary will be given.
Song, Yongli; Wang, Xianjie; Sui, Yu; ...
2016-02-12
Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-01-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187
NASA Astrophysics Data System (ADS)
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-12
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
Wavelength-dependent excess permittivity as indicator of kerosene in diesel oil.
Kanyathare, Boniphace; Peiponen, Kai-Erik
2018-04-20
Adulteration of diesel oil by kerosene is a serious problem because of air pollution resulting from car exhaust gases. The objective of this study was to develop a relatively simple optical measurement and data analysis method to screen low-adulterated diesel oils. For this purpose, we introduce the utilization of refractive index measurement with a refractometer, scanning of visible-near-infrared transmittance, transmittance data inversion using the singly subtractive Kramers-Kronig relation, and exploitation of so-called wavelength-dependent relative excess permittivity. It is shown for three different diesel oil grades, adulterated with kerosene, that the excess permittivity is a powerful measure for screening fake diesel oils. The excess relative permittivity of such binary mixtures also reveals hidden spectral fingerprints that are neither visible in dispersion data alone nor in spectral transmittance measurements alone. We believe that the excess permittivity data are useful in the case of screening adulteration of diesel oil by kerosene and can further be explored for practical sensing solutions, e.g., in quality inspection of diesel oils in refineries.
Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites
NASA Astrophysics Data System (ADS)
Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi
2017-11-01
Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.
NASA Astrophysics Data System (ADS)
Shoeb, Mohd; Mobin, Mohammad; Naqvi, Alim H.
2018-05-01
In the 21st century evolution of microelectronics industries, consumptions of integrated circuits (IC's) increases, so the demand of miniscule permittivity (MP) material with minimum loss factor arises in the electronics industries. Graphene embedded ZnO Nanoparticle (Gr/ZnO NCs) is synthesized and studied their dielectric properties In the studied frequency range 75 kHz to 7 MHz. In the sample Gr/ZnO NCs dielectric permittivity decrease gradually from 7.2 to 6.7 as the frequency increases, whereas dielectric permittivity of ZnO NPs shows also diminishing behavior in the range 75 to 20 as the frequency increases. In the Gr/ZnO NCs, Maxwell-Wagner polarization model explains strong interfacial polarization to presence of functionalization group and lattice defects on graphene sheet.
Effect of a magnetic field on the permittivity of 80%La0.7Sr0.3MnO3/20%GeO2 composite
NASA Astrophysics Data System (ADS)
Kabirov, Yu. V.; Gavrilyachenko, V. G.; Bogatin, A. S.; Sitalo, E. I.; Yatsenko, V. K.
2018-01-01
The dielectric properties of a magnetoresistive conducting two-phase 80%La0.7Sr0.3MnO3/20%GeO2 (wt %) composite have been studied near the percolation threshold in magnetic fields from 0 to 15 kOe at frequencies of the measurement field from 5 kHz to 1 MHz. The samples have inductive impedances; i.e., their permittivities can be considered negative due to a high conductivity in this frequency range. The permittivity increases in magnitude in magnetic field, and the values of the magnetodielectric coefficient reach 23% at room temperature. The reasons for the effect of magnetic field on the dielectric permittivity of samples are discussed.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-02-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80
NASA Technical Reports Server (NTRS)
Kamat, Manohar P.; Watson, Brian C.
1992-01-01
The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.
NASA Astrophysics Data System (ADS)
Wharmby, Andrew William
Existing fractional calculus models having a non-empirical basis used to describe constitutive relationships between stress and strain in viscoelastic materials are modified to employ all orders of fractional derivatives between zero and one. Parallels between viscoelastic and dielectric theory are drawn so that these modified fractional calculus based models for viscoelastic materials may be used to describe relationships between electric flux density and electric field intensity in dielectric materials. The resulting fractional calculus based dielectric relaxation model is tested using existing complex permittivity data in the radio-frequency bandwidth of a wide variety of homogeneous materials. The consequences that the application of this newly developed fractional calculus based dielectric relaxation model has on Maxwell's equations are also examined through the effects of dielectric dissipation and dispersion.
NASA Astrophysics Data System (ADS)
Maier, S.; Moussa, C.; Berthebaud, D.; Gascoin, F.; Maignan, A.
2018-05-01
We report on coupled changes in the dielectric permittivity and the magnetic susceptibility in the insulating antiferromagnet Ba2FeSbSe5. The real part of the dielectric permittivity (ɛ') and the thermal conductivity (κ) shows pronounced anomalies at the Néel temperature (TN). Our findings show that there is a weak coupling between electric dipoles and magnetic spins, which is mediated by spin-lattice coupling possibly through exchange striction effects.
Measurement of the complex permittivity of low loss polymer powders in the millimeter-wave range.
Kapilevich, Boris; Litvak, Boris; Wainstein, Vladimir; Moshe, Danny
2007-01-01
An improved measurement method of complex permittivity of low loss polymer powders is suggested. The measurements are done in the mm-wave range using a quasi optical resonator. The 2-D corrugated mode exciter is employed to improve suppression of undesirable higher modes. The model used for reconstructing complex permittivity takes into account ohm losses of metal mesh coupling that provide better accuracy of the reconstructing procedure. An example illustrating this method is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yefeng; Gong, Honghong; Xie, Yunchuan
Interface polarization and interface zone have been widely utilized to account for the abnormally improved dielectric properties of composites although their formation is rather vague and their influence has never been directly measured. In this work, micro α-SiC was designed as the filler particles incorporated into poly(vinylidenefluoride-co-chlorotrifluoroethylene) with internal double bonds (P(VDF-CTFE-DB)) to construct polymer micro composites through solution casting method. The dielectric constant of the composites is found to be increasing linearly as SiC content increases at lower content and the highest value is obtained as 83 at 100 Hz, which is unusually higher than both pristine polymer (13@100 Hz) andmore » SiC filler (17@100 Hz). By studying the dielectric properties of a bilayer model composite, the real dielectric permittivity of SiC sheet and P(VDF-CTFE-DB) layer has been directly measured to be significantly enhanced than their original value. The induced polarity between high polar PVDF units in polymer matrix and the electron-hole dipoles in α-SiC is responsible for the elevated dielectric properties of both components, which could address the failure of binary series and parallel models in predicting the dielectric permittivity of 0-3 composites as well. The strong dependence of induced polarity on the volume content, thickness, and polar nature of both components strongly suggests establishing promising high induced polarity between polymer matrix and fillers may provide an alternative strategy for fabricating high-k composites.« less
Rajnak, Michal; Dolnik, Bystrik; Kurimsky, Juraj; Cimbala, Roman; Kopcansky, Peter; Timko, Milan
2017-01-07
In the present paper, we provide low-frequency dielectric spectra for a thin layer of a nanofluid based on transformer oil and iron oxide nanoparticles stabilized by oleic acid. The complex dielectric permittivity measured in the frequency range from 1 mHz to 200 kHz shows an obvious electrode polarization effect and a Debye-like dielectric relaxation process. Both effects stem from the presence of space charge in the oil due to impurity ions, and in the nanofluid represented predominantly by a residual surfactant and uncompensated particle surface charge. It is shown that the spectra, which were measured in the temperature range from 298 K to 358 K, can be well represented by a fitting function consisted of one Havriliak-Negami term and the Jonscher's power law. In the investigated magnetic nanofluid layer, we found that the onset of the electrode polarization is suppressed to lower frequencies by the application of an external magnetic field (300 mT). This phenomenon is explained by a slowed-down migration of the space charge due to the Lorentz force and by a hindering effect of the formed magnetic nanoparticle aggregates. Surprisingly, a moderate decrease in the whole permittivity spectrum was observed for both parallel and perpendicular orientations of the electric and magnetic fields. This is in contradiction with the usual magnetodielectric anisotropy effect. Based on our qualitative analysis, we discuss potential reasons accountable for the observed effect.
Dielectric properties and the monoclinictriclinic inversion in albite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, P.; Duba, A.; Piwinskii, A.J.
1976-12-01
Dielectric properties (epsilon', real part of complex permittivity; epsilon'', imaginary part of complex permittivity; tan delta, loss tangent = epsilon''/epsilon') of single crystal Amelia albite have been measured parallel to the b-axis under controlled oxygen fugacity near the QFM buffer in the temperature range 1000 to 1373/sup 0/K at frequencies (..nu..) of 0.2 to 10 kHz. Plots of epsilon' and epsilon'' as a function of temperature exhibit minima which depend on time and ..nu.. in this albite. In addition, plots of tan delta as a function of temperature develop maxima which are also time-dependent. When epsilon', epsilon'', and tan deltamore » were investigated between 1220 and 1320/sup 0/K as a function of time, a break in these dielectric parameters with temperature was found. Epsilon' and epsilon'' increased with time above this break, while they decreased with time below the break. Values of loss tangent were also non-linear functions of temperature. Epsilon' and epsilon'' minima, tan delta maxima, and the temperature break in these dielectric properties were found to converge at approximately 1283/sup 0/K as time increases. Assuming that the epsilon' and epsilon'' increase and the tan delta decrease are the result of increasing disorder in this albite, these experimental data suggest that 1283 +- 20/sup 0/K is the temperature of the monoclinic-triclinic transition in this albite. This agrees well with electrical conductivity results which indicate 1253 +- 30/sup 0/K.« less
Odelstad, Elias; Raman, Sujith; Rydberg, Anders
2014-01-01
The objective of this paper was to test and evaluate an experimental procedure for providing data on the complex permittivity of different cell lines in the 2–50-GHz range at room temperature, for the purpose of future dosimetric studies. The complex permittivity measurements were performed on cells suspended in culture medium using an open-ended coaxial probe. Maxwell’s mixture equation then allows the calculation of the permittivity profiles of the cells from the difference in permittivity between the cell suspensions and pure culture medium. The open-ended coaxial probe turned out to be very sensitive to disturbances affecting the measurements, resulting in poor precision. Permittivity differences were not large in relation to the spread of the measurements and repeated measurements were performed to improve statistics. The 95% confidence intervals were computed for the arithmetic means of the measured permittivity differences in order to test the statistical significance. The results showed that for bone cells at the lowest tested concentration (33 500/ml), there were significance in the real part of the permittivity at frequencies above 30 GHz, and no significance in the imaginary part. For the second lowest concentration (67 000/ml) there was no significance at all. For a medium concentration of bone cells (135 000/ml) there was no significance in the real part, but there was significance in the imaginary part at frequencies below about 25 GHz. The cell suspension with a concentration of 1 350 000/ml had significance in the real part for both high (above 30 GHz) and low (below 15 GHz) frequencies. The imaginary part showed significance for frequencies below 25 GHz. In the case of an osteosarcoma cell line with a concentration of 2 700 000/ml, only the imaginary part showed significance, and only for frequencies below 15 GHz. For muscle cells at a concentration of 743 450/ml, there was only significance in the imaginary part for frequencies below 5 GHz. The experimental data indicated that the complex permittivity of the culture medium may be used for modeling of cell suspensions. PMID:27170886
Peiponen, Kai-Erik
2018-01-01
Adulteration of fuels is a major problem, especially in developing and third world countries. One such case is the adulteration of diesel oil by kerosene. This problem contributes to air pollution, which leads to other far-reaching adverse effects, such as climate change. The objective of this study was to develop a relatively easy measurement method based on an inexpensive, handheld Abbe refractometer for the detection of adulteration and estimation of the ascending order of the amount of kerosene present in adulterated samples in field conditions. We achieved this by increasing the volume of pure diesel sample in the adulterated diesel oil, and measuring the trend of refractive index change, and next, exploiting the true and ideal permittivities of the binary mixture. The permittivity can be obtained with the aid of the measured refractive index of a liquid. Due to the molecular interactions, the true and ideal permittivities of diesel–kerosene binary liquid mixture have a mismatch which can be used to screen for adulterated diesel oils. The difference between the true and the ideal permittivity is the so-called excess permittivity. We first investigated a training set of diesel oils in laboratory in Finland, using the accurate table model Abbe refractometer and depicting the behavior of the excess permittivity of the mixture of diesel oil and kerosene. Then, we measured same samples in the laboratory using a handheld refractometer. Finally, preliminary field measurements using the handheld device were performed in Tanzania to assess the accuracy and possibility of applying the suggested method in field conditions. We herein show that it is not only possible to detect even relatively low adulteration levels of diesel in kerosene—namely, 5%, 10%, and 15%—but also it is possible to monitor the ascending order of adulteration for different adulterated diesel samples. We propose that the method of increasing the volume of an unknown (suspected) diesel oil sample by adding a known authentic diesel sample and monitoring excess permittivity is useful for the screening of adulterated diesel oil in field measurement conditions. PMID:29758004
Kanyathare, Boniphace; Peiponen, Kai-Erik
2018-05-14
Adulteration of fuels is a major problem, especially in developing and third world countries. One such case is the adulteration of diesel oil by kerosene. This problem contributes to air pollution, which leads to other far-reaching adverse effects, such as climate change. The objective of this study was to develop a relatively easy measurement method based on an inexpensive, handheld Abbe refractometer for the detection of adulteration and estimation of the ascending order of the amount of kerosene present in adulterated samples in field conditions. We achieved this by increasing the volume of pure diesel sample in the adulterated diesel oil, and measuring the trend of refractive index change, and next, exploiting the true and ideal permittivities of the binary mixture. The permittivity can be obtained with the aid of the measured refractive index of a liquid. Due to the molecular interactions, the true and ideal permittivities of diesel⁻kerosene binary liquid mixture have a mismatch which can be used to screen for adulterated diesel oils. The difference between the true and the ideal permittivity is the so-called excess permittivity. We first investigated a training set of diesel oils in laboratory in Finland, using the accurate table model Abbe refractometer and depicting the behavior of the excess permittivity of the mixture of diesel oil and kerosene. Then, we measured same samples in the laboratory using a handheld refractometer. Finally, preliminary field measurements using the handheld device were performed in Tanzania to assess the accuracy and possibility of applying the suggested method in field conditions. We herein show that it is not only possible to detect even relatively low adulteration levels of diesel in kerosene-namely, 5%, 10%, and 15%-but also it is possible to monitor the ascending order of adulteration for different adulterated diesel samples. We propose that the method of increasing the volume of an unknown (suspected) diesel oil sample by adding a known authentic diesel sample and monitoring excess permittivity is useful for the screening of adulterated diesel oil in field measurement conditions.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
NASA Technical Reports Server (NTRS)
Dagum, Leonardo
1989-01-01
The data parallel implementation of a particle simulation for hypersonic rarefied flow described by Dagum associates a single parallel data element with each particle in the simulation. The simulated space is divided into discrete regions called cells containing a variable and constantly changing number of particles. The implementation requires a global sort of the parallel data elements so as to arrange them in an order that allows immediate access to the information associated with cells in the simulation. Described here is a very fast algorithm for performing the necessary ranking of the parallel data elements. The performance of the new algorithm is compared with that of the microcoded instruction for ranking on the Connection Machine.
Advances in SAW gas sensors based on the condensate-adsorption effect.
Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang
2011-01-01
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
Experimental characterization of PZT fibers using IDE electrodes
NASA Astrophysics Data System (ADS)
Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida
2016-04-01
Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo
2013-09-15
A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can effectively lead to reduced current in the channel, and the results are closer to BD simulation results. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite
NASA Astrophysics Data System (ADS)
Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong
2014-10-01
Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.
Temperature and size-dependent Hamaker constants for metal nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, K.; Pinchuk, P.
2016-08-01
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
Temperature and size-dependent Hamaker constants for metal nanoparticles.
Jiang, K; Pinchuk, P
2016-08-26
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
The observation of negative permittivity in stripe and bubble phases
NASA Astrophysics Data System (ADS)
Smet, Jurgen
The physics of itinerant two-dimensional electrons is by and large governed by repulsive Coulomb forces. However, cases exist where the interplay of attractive and repulsive interaction components may instigate spontaneous symmetry lowering and clustering of charges in geometric patterns such as bubbles and stripes, provided these interactions act on different length scales. The existence of these phases in higher Landau levels has so far been concluded from transport behavior. Here, we report surface acoustic wave experiments. They probe the permittivity at small wave vector. This technique offers true directionality, whereas in transport the current distribution is complex and strongly affected by the inhomogeneous density pattern. Outside the charge density wave regime, the measured permittivity is always positive. However, negative permittivity is observed in the bubble phase irrespective of the propagation direction. For the stripe phase the permittivity takes on both positive as well as negative values depending on the propagation direction. This confirms the stripe phase to be a strongly anisotropic medium. The observation of negative permittivity is considered an immediate consequence of the exchange related attractive interaction. It makes charge clustering favorable in higher Landau levels where the repulsive direct Coulomb interaction acts on a longer length scale and is responsible for a negative compressibility of the electronic system. This work has been carried out with B. Friess, K. von Klitzing (MPI-FKF), Y. Peng, F. von Oppen (FU Berlin), B. Rosenow (Uni Leipzig) and V. Umansky (Weizmann Institute of Science).
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
Eigensolution of finite element problems in a completely connected parallel architecture
NASA Technical Reports Server (NTRS)
Akl, Fred A.; Morel, Michael R.
1989-01-01
A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively.
An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.
Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3)xTi1-xO2.
Dong, Wen; Chen, Dehong; Hu, Wanbiao; Frankcombe, Terry J; Chen, Hua; Zhou, Chao; Fu, Zhenxiao; Wei, Xiaoyong; Xu, Zhuo; Liu, Zhifu; Li, Yongxiang; Liu, Yun
2017-08-30
This work investigates the synthesis, chemical composition, defect structures and associated dielectric properties of (Mg 2+ , Ta 5+ ) co-doped rutile TiO 2 polycrystalline ceramics with nominal compositions of (Mg 2+ 1/3 Ta 5+ 2/3 ) x Ti 1-x O 2 . Colossal permittivity (>7000) with a low dielectric loss (e.g. 0.002 at 1 kHz) across a broad frequency/temperature range can be achieved at x = 0.5% after careful optimization of process conditions. Both experimental and theoretical evidence indicates such a colossal permittivity and low dielectric loss intrinsically originate from the intragrain polarization that links to the electron-pinned [Formula: see text] defect clusters with a specific configuration, different from the defect cluster form previously reported in tri-/pent-valent ion co-doped rutile TiO 2 . This work extends the research on colossal permittivity and defect formation to bi-/penta-valent ion co-doped rutile TiO 2 and elucidates a likely defect cluster model for this system. We therefore believe these results will benefit further development of colossal permittivity materials and advance the understanding of defect chemistry in solids.
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
NASA Astrophysics Data System (ADS)
Muller, Wayne; Scheuermann, Alexander
2016-04-01
Measuring the electrical permittivity of civil engineering materials is important for a range of ground penetrating radar (GPR) and pavement moisture measurement applications. Compacted unbound granular (UBG) pavement materials present a number of preparation and measurement challenges using conventional characterisation techniques. As an alternative to these methods, a modified free-space (MFS) characterisation approach has previously been investigated. This paper describes recent work to optimise and validate the MFS technique. The research included finite difference time domain (FDTD) modelling to better understand the nature of wave propagation within material samples and the test apparatus. This research led to improvements in the test approach and optimisation of sample sizes. The influence of antenna spacing and sample thickness on the permittivity results was investigated by a series of experiments separating antennas and measuring samples of nylon and water. Permittivity measurements of samples of nylon and water approximately 100 mm and 170 mm thick were also compared, showing consistent results. These measurements also agreed well with surface probe measurements of the nylon sample and literature values for water. The results indicate permittivity estimates of acceptable accuracy can be obtained using the proposed approach, apparatus and sample sizes.
NASA Astrophysics Data System (ADS)
Das, S.; Ghosh, A.
2016-05-01
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.
The possibility of giant dielectric materials for multilayer ceramic capacitors.
Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke
2013-02-11
There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO 3 with SiO 2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the isolated surface structure is the sole cause of expressions of giant dielectric permittivity.
Reconstruction Of The Permittivity Profile Of A Stratified Dielectric Layer
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Ferwerda, H. A.; Yevick, D.
1985-03-01
A numerical procedure is given for the reconstruction of the permittivity profile of a dielectric slab on a perfect conductor. Profiles not supporting guided modes are reconstructed from the complex reflection amplitude for TE-polarized, monochromatic plane waves incident from different directions using the Marchenko theory. The contribution of guided modes is incorporated in the reconstruction procedure through the Gelfand-Levitan equations. An advantage of our approach is that a unique solution for the permittivity profile is obtained without the use of complicated regularization techniques. Some illustrative numerical examples are presented.
NASA Astrophysics Data System (ADS)
Kessouri, P.; Buvat, S.; Tabbagh, A.
2012-12-01
Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.
Anomalous permittivity in fine-grain barium titanate
NASA Astrophysics Data System (ADS)
Ostrander, Steven Paul
Fine-grain barium titanate capacitors exhibit anomalously large permittivity. It is often observed that these materials will double or quadruple the room temperature permittivity of a coarse-grain counterpart. However, aside from a general consensus on this permittivity enhancement, the properties of the fine-grain material are poorly understood. This thesis examines the effect of grain size on dielectric properties of a self-consistent set of high density undoped barium titanate capacitors. This set included samples with grain sizes ranging from submicron to ˜20 microns, and with densities generally above 95% of the theoretical. A single batch of well characterized powder was milled, dry-pressed then isostatically-pressed. Compacts were fast-fired, but sintering temperature alone was used to control the grain size. With this approach, the extrinsic influences are minimized within the set of samples, but more importantly, they are normalized between samples. That is, with a single batch of powder and with identical green processing, uniform impurity concentration is expected. The fine-grain capacitors exhibited a room temperature permittivity of ˜5500 and dielectric losses of ˜2%. The Curie-temperature decreased by {˜}5sp°C from that of the coarse-grain material, and the two ferroelectric-ferroelectric phase transition temperatures increased by {˜}10sp°C. The grain size induced permittivity enhancement was only active in the tetragonal and orthorhombic phases. Strong dielectric anomalies were observed in samples with grain size as small as {˜}0.4\\ mum. It is suggested that the strong first-order character observed in the present data is related to control of microstructure and stoichiometry. Grain size effects on conductivity losses, ferroelectric losses, ferroelectric dispersion, Maxwell-Wagner dispersion, and dielectric aging of permittivity and loss were observed. For the fine-grain material, these observations suggest the suppression of domain wall motion below the Curie transition, and the suppression of conductivity above the Curie transition.
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
Colossal permittivity and the polarization mechanism of (Mg, Mn) co-doped LaGaO3 ceramics
NASA Astrophysics Data System (ADS)
Luo, Tingting; Liu, Zhifu; Zhang, Faqiang; Li, Yongxiang
2018-03-01
Mg and Mn co-doped LaGa0.7-xMgxMn0.3O3 (x = 0, 0.05, 0.10, 0.15) ceramics were prepared by a solid-state reaction method. The electrical properties of the LaGa0.7-xMgxMn0.3O3 ceramics were studied in detail by dielectric spectra, impedance spectra, and I-V characteristic analysis. Colossal permittivity up to 104 could be obtained across the frequency range up to 104 Hz. The impedance analysis of the co-doped LaGaO3 ceramics indicated that the Mott's variable range hopping (VRH) polarization should be the main origin of colossal permittivity. Mg and Mn co-doping suppressed the formation of Mn3+ and enhanced the VRH polarization, resulting in increased permittivity. Partial localization of electrons by Mg reduced the long-range electron hopping and led to the decrease in dielectric loss.
Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.
Renoud, Raphaël; Borderon, Caroline; Gundel, Hartmut W
2011-09-01
In this study, the real and imaginary parts of the complex permittivity of lead zirconate titanate ferroelectric thin films are studied in the frequency range of 100 Hz to 100 MHz. The permittivity is well fitted by the Cole-Cole model. The variation of the relaxation time with the temperature is described by the Arrhenius law and an activation energy of 0.38 eV is found. Because of its nonlinear character, the dielectric response of the ferroelectric sample depends on the amplitude of the applied ac electric field. The permittivity is composed of three different contributions: the first is due to intrinsic lattice, the second is due to domain wall vibrations, and the third is due to domain wall jumps between pinning centers. This last contribution depends on the electric field, so it is important to control the field amplitude to obtain the desired values of permittivity and tunability.
Electrophysical properties of water and ice under isentropic compression to megabar pressures
NASA Astrophysics Data System (ADS)
Belov, S. I.; Boriskov, G. V.; Bykov, A. I.; Dolotenko, M. I.; Egorov, N. I.; Korshunov, A. S.; Kudasov, Yu. B.; Makarov, I. V.; Selemir, V. D.; Filippov, A. V.
2017-02-01
The relative permittivity and specific conductivity of water and ice are measured under isentropic compression to pressures above 300 GPa. Compression is initiated by a pulse of an ultrahigh magnetic field generated by an MK-1 magnetocumulative generator. The sample is placed in a coaxial compression chamber with an initial volume of about 40 cm3. The complex relative permittivity was measured by a fast-response reflectometer at a frequency of about 50 MHz. At the compression of water, its relative permittivity increases to ɛ = 350 at a pressure of 8 GPa, then drops sharply to ɛ = 140, and further decreases smoothly. It is shown that measurements of the relative permittivity under isentropic compression make it possible to determine interfaces between ordered and disordered phases of water and ice, as well as to reveal features associated with a change in the activation energy of defects.
Luo, Wei; Lanagan, Michael T; Sica, Christopher T; Ryu, Yeunchul; Oh, Sukhoon; Ketterman, Matthew; Yang, Qing X; Collins, Christopher M
2013-07-01
Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder. Copyright © 2012 Wiley Periodicals, Inc.
Hasar, U C
2009-05-01
A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.
Effect of interphase permittivity on the electric field distribution of epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Pradeep, Lavanya; Nelson, Avinash; Preetha, P.
2018-05-01
Epoxy plays a vital role in high voltage insulation system due to its superior electrical and thermal properties. Literature reports the enhancement in these properties by the addition of nanofillers to epoxy and this enhancement is attributed to the effect of interphase. Characterization of polymer nanocomposites proves the importance of interphase formed between the polymer and nanoparticle in the composite. It was observed that the permittivity of the interphase is having a significant effect on the properties of these materials. In this work, a three dimensional Epoxy nanocomposite with 0.5 vol%, 1 vol% of alumina particles are modeled using unit cell approach in COMSOL Multiphysics. Simulation is done using several existing interphase permittivity models and field distribution is observed. Results shows the noticeable influence of interphase permittivity on the electric field distribution. A good correlation of electric field distribution with the AC breakdown strength is observed.
Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.
Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C
2016-01-01
We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
NASA Astrophysics Data System (ADS)
Barr, Amy C.; Stillman, David E.
2011-03-01
Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.
Large-aperture Tunable Plasma Meta-material to Interact with Electromagnetic Waves
NASA Astrophysics Data System (ADS)
Corke, Thomas; Matlis, Eric
2016-11-01
The formation of spatially periodic arrangements of glow discharge plasma resulting from charge instabilities were investigated as a tuneable plasma meta-material. The plasma was formed between two 2-D parallel dielectric covered electrodes: one consisting of an Indium-Tin-Oxide coated glass sheet, and the other consisting of a glass-covered circular electrode. The dielectric covered electrodes were separated by a gap that formed a 2-D channel. The gap spacing was adjustable. The electrodes were powered by a variable amplitude AC generator. The parallel electrode arrangement was placed in a variable pressure vacuum chamber. Various combinations of gap spacing, pressure and voltage resulted in the formation of spatially periodic arrangements (lattice) of glow discharge plasma. The lattice spacing perfectly followed 2-D packing theory, and was fully adjustable through the three governing parameters. Lattice arrangements were designed to interact with electromagnetic (EM) waves in the frequency range between 10GHz-80GHz. Its feasibility was investigate through an EM wave simulation that we adapted to allow for plasma permittivity. The results showed a clear suppression of the EM wave amplitude through the plasma gratings. Supported by AFOSR.
Boverman, Gregory; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J; Kao, Tzu-Jen; Amm, Bruce C; Wang, Xin; Davenport, David M; Chong, David H; Sahni, Rakesh; Ashe, Jeffrey M
2017-04-01
In electrical impedance tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate dataset, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface. We have, therefore, developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, the generalized singular value decomposition, and a dual-mesh finite-element-based framework to reconstruct images in real time. We are also able to efficiently compute the linearized reconstruction for a wide range of regularization parameters and to compute both the generalized cross-validation parameter as well as the L-curve, objective approaches to determining the optimal regularization parameter, in a similarly efficient manner. Results are shown using data from a normal subject and from a clinical intensive care unit patient, both acquired with the GE GENESIS prototype EIT system, demonstrating significantly reduced boundary artifacts due to electrode drift and motion artifact.
NASA Astrophysics Data System (ADS)
Demontoux, François; Bircher, Simone; Ruffié, Gilles; Bonnaudiin, Fabrice; Wigneron, Jean-Pierre; Kerr, Yann
2017-04-01
Microwave remote sensing and non-destructive analysis are a powerful way to provide properties estimation of materials. Numerous applications using microwave frequency behavior of materials (remote sensing above land surfaces, non-destructive analysis…) are strongly dependent on the material's permittivity (i.e. dielectric properties). This permittivity depends on numerous parameters such as moisture, texture, temperature, frequency or bulk density. Permittivity measurements are generally carried out in the laboratory. Additionally, dielectric mixing models allow, over a restricted range of conditions, the assessment of a material's permittivity. in-situ measurements are more difficult to obtain. Some in situ measurement probes based on permittivity properties of soil exist (e.g. Time Domain Reflectometers and Transmissometers, capacitance and impedance sensors). They are dedicated to the acquisition of soil moisture data based on permittivity (mainly the real part) estimations over a range of frequencies from around 50 MHz to 1 or 2 GHz. Other Dielectric Assessment Kits exist but they are expensive and they are rather dedicated to laboratory measurements. Furthermore, the user can't address specific issues related to particular materials (e.g. organic soils) or specific measurement conditions (in situ long time records). At the IMS Laboratory we develop probes for in situ soil permittivity measurements (real and imaginary parts) in the 0.5 - 6 GHz frequency range. They are based on the end effect phenomenon of a coaxial waveguide and so are called end effect probes in this paper. The probes can be connected to a portable Vector Network Analyzer (VNA, ANRITSU MS2026A) for the S11 coefficient measurements needed to compute permittivity. It is connected to a PC to record data using an USB connection. This measurement set-up is already used for in situ measurement of soil properties in the framework of the European Space Agency's (ESA) SMOS space mission. However, it should be useful to install many probes on the same site to obtain permittivity measurements over a large area. To reach this goal, the probes should communicate with each other to send data to a record device. Furthermore, it is needed to record measurements over a long time period (many months) to study the in-situ dielectric soil property variations according to changing weather conditions and seasonal trends. The goal of the research work presented is to develop a dielectric sensor system based on end effect probes able to communicate the data using wireless technology. It must be stand-alone from an electric and data recording point of view so it must integrate a VNA circuit instead of the ANRITSU VNA used for the moment. The LoRa wireless technology has been selected because of its low electric consumption and the large distance between equipment available. LoRaWAN™ is a Low Power Wide Area Network specification intended for wireless battery operated devices. The LoRaWAN data rates range from 0.3 kbps to 50 kbps which is sufficient for our probes' data exchanges. We will present the work done to perform the VNA and the LoRa communication board as well as the work done to improve the probes and the permittivity computation algorithm.
Smith, M.P.; Donoghue, P.C.J.; Repetski, J.E.
2005-01-01
A clear distinction may be drawn between the perpendicular architecture of the feeding apparatus of ozarkodinid, prioniodontid and prioniodinid conodonts, in which the P elements are situated at a high angle to the M and S elements, and the parallel architecture of panderodontid and other coniform apparatuses, where two suites of coniform elements lie parallel to each other and oppose across the midline. The quest for homologies between the two architectures has been fraught with difficulty, at least in part because of the paucity of natural assemblages of coniform taxa. A diagenetically fused apparatus of Cordylodns lindstroini elements is here described which is made up of one rounded and two compressed element morphotypes. One of the compressed elements is bowed and asymmetrical and the other is unbowed and more symmetrical. These compressed elements are considered to be homologous with those of panderodontid apparatuses and would have lain at the caudal end of the parallel arrays, with the more symmetrical morphotypes located rostrally to the asymmetrical ones. The bowed and unbowed compressed elements of Cordylodns thus correspond, respectively, to the pt and pf positions of panderodontid apparatuses. In addition, the presence of symmetry transition within the rounded elements of Cordylodns, but not the compressed morphotypes, enables correlation of these with the S and M element locations of ozarkodinid apparatuses. By extension, the compressed elements must be homologues of the P elements. Specifically, the asymmetrical pt morphotype is homologous with the P1 of ozarkodinids and the more symmetrical and rostral pf morphotype is homologous with the P2 position. However, because of uncertainties over the nature of topological transformation of the rostral element array (the "rounded" or "costate" suites), it is not possible to recognize specific homologies between these elements and the M and S elements of ozarkodinids. Morphologic differentiation of P from M and S element suites thus preceded the topological transformation from parallel to perpendicular apparatus architectures.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
NASA Astrophysics Data System (ADS)
Mount, Gregory J.; Comas, Xavier
2014-10-01
Subsurface water flow in South Florida is largely controlled by the heterogeneous nature of the karst limestone in the Biscayne aquifer and its upper formation, the Miami Limestone. These heterogeneities are amplified by dissolution structures that induce changes in the aquifer's material and physical properties (i.e., porosity and dielectric permittivity) and create preferential flow paths. Understanding such patterns are critical for the development of realistic groundwater flow models, particularly in the Everglades, where restoration of hydrological conditions is intended. In this work, we used noninvasive ground penetrating radar (GPR) to estimate the spatial variability in porosity and the dielectric permittivity of the solid phase of the limestone at centimeter-scale resolution to evaluate the potential for field-based GPR studies. A laboratory setup that included high-frequency GPR measurements under completely unsaturated and saturated conditions was used to estimate changes in electromagnetic wave velocity through Miami Limestone samples. The Complex Refractive Index Model was used to derive estimates of porosity and dielectric permittivity of the solid phase of the limestone. Porosity estimates of the samples ranged between 45.2 and 66.0% and showed good correspondence with estimates of porosity using analytical and digital image techniques. Solid dielectric permittivity values ranged between 7.0 and 13.0. This study shows the ability of GPR to image the spatial variability of porosity and dielectric permittivity in the Miami Limestone and shows potential for expanding these results to larger scales and other karst aquifers.
The AIS-5000 parallel processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, L.A.; Wilson, S.S.
1988-05-01
The AIS-5000 is a commercially available massively parallel processor which has been designed to operate in an industrial environment. It has fine-grained parallelism with up to 1024 processing elements arranged in a single-instruction multiple-data (SIMD) architecture. The processing elements are arranged in a one-dimensional chain that, for computer vision applications, can be as wide as the image itself. This architecture has superior cost/performance characteristics than two-dimensional mesh-connected systems. The design of the processing elements and their interconnections as well as the software used to program the system allow a wide variety of algorithms and applications to be implemented. In thismore » paper, the overall architecture of the system is described. Various components of the system are discussed, including details of the processing elements, data I/O pathways and parallel memory organization. A virtual two-dimensional model for programming image-based algorithms for the system is presented. This model is supported by the AIS-5000 hardware and software and allows the system to be treated as a full-image-size, two-dimensional, mesh-connected parallel processor. Performance bench marks are given for certain simple and complex functions.« less
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
Nemesis I: Parallel Enhancements to ExodusII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennigan, Gary L.; John, Matthew S.; Shadid, John N.
2006-03-28
NEMESIS I is an enhancement to the EXODUS II finite element database model used to store and retrieve data for unstructured parallel finite element analyses. NEMESIS I adds data structures which facilitate the partitioning of a scalar (standard serial) EXODUS II file onto parallel disk systems found on many parallel computers. Since the NEMESIS I application programming interface (APl)can be used to append information to an existing EXODUS II files can be used on files which contain NEMESIS I information. The NEMESIS I information is written and read via C or C++ callable functions which compromise the NEMESIS I API.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
Massively parallel processor computer
NASA Technical Reports Server (NTRS)
Fung, L. W. (Inventor)
1983-01-01
An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.
NASA Technical Reports Server (NTRS)
Voellmer, George
1992-01-01
Compliant element for robot wrist accepts small displacements in one direction only (to first approximation). Three such elements combined to obtain translational compliance along three orthogonal directions, without rotational compliance along any of them. Element is double-blade flexure joint in which two sheets of spring steel attached between opposing blocks, forming rectangle. Blocks moved parallel to each other in one direction only. Sheets act as double cantilever beams deforming in S-shape, keeping blocks parallel.
Improvement of antenna decoupling in radar systems
NASA Astrophysics Data System (ADS)
Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban
2015-02-01
In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.
Illusion optics: Optically transforming the nature and the location of electromagnetic emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz, E-mail: shah-nawaz.burokur@u-psud.fr
Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication ofmore » the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.« less
NASA Astrophysics Data System (ADS)
Pukhov, Konstantin K.
2017-12-01
Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.
Dielectric relaxation in AgI doped silver selenomolybdate glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Shaw, A.; Ghosh, A.
2016-05-01
We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Liu, Hui; Jiang, Binhao
A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki
2013-12-23
The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.
NASA Astrophysics Data System (ADS)
Zivkovic, I.; Murk, A.
2012-06-01
In this paper, we examine carbonyl iron composites in silicone rubber and epoxy matrices. Transmission measurements were performed at W (70 to 110 GHz) and Ka (26 to 40 GHz) bands and effective permittivity and permeability of composites with 10% volume fraction of carbonyl iron powder (CIP) were extracted at these frequencies. To extract permittivity and permeability of carbonyl iron powder in W and Ka bands, we use Looyenga formula. We extract permittivity and permeability of CIP from both silicone rubber and epoxy based composites and good agreement is achieved.
Adjusting Permittivity by Blending Varying Ratios of SWNTs
NASA Technical Reports Server (NTRS)
Tour, James M.; Stephenson, Jason J.; Higginbotham, Amanda
2012-01-01
A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction.
NASA Astrophysics Data System (ADS)
Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team
2013-03-01
Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.
Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing
2016-01-01
A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study. PMID:27121618
NASA Astrophysics Data System (ADS)
Ren, Qianci
2018-04-01
Full waveform inversion (FWI) of ground penetrating radar (GPR) is a promising technique to quantitatively evaluate the permittivity and conductivity of near subsurface. However, these two parameters are simultaneously inverted in the GPR FWI, increasing the difficulty to obtain accurate inversion results for both parameters. In this study, I present a structural constrained GPR FWI procedure to jointly invert the two parameters, aiming to force a structural relationship between permittivity and conductivity in the process of model reconstruction. The structural constraint is enforced by a cross-gradient function. In this procedure, the permittivity and conductivity models are inverted alternately at each iteration and updated with hierarchical frequency components in the frequency domain. The joint inverse problem is solved by the truncated Newton method which considering the effect of Hessian operator and using the approximated solution of Newton equation to be the perturbation model in the updating process. The joint inversion procedure is tested by three synthetic examples. The results show that jointly inverting permittivity and conductivity in GPR FWI effectively increases the structural similarities between the two parameters, corrects the structures of parameter models, and significantly improves the accuracy of conductivity model, resulting in a better inversion result than the individual inversion.
Vectorial finite elements for solving the radiative transfer equation
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.
2018-06-01
The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A. A.; Hamelin, M.; Ciarletti, V.; Caujolle-Bert, S.; Schmidt, W.; Grard, R.
2014-12-01
Within Philae, the lander of the Rosetta spacecraft, the Permittivity Probe (PP) experiment as part of the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME) package was designed to measure the low frequency (Hz-kHz) electrical properties of the close subsurface of the nucleus.At frequencies below 10 kHz, the electrical signature of the matter is especially sensitive to the presence of water ice and its temperature. PP-SESAME will thus allow to determine the water ice content in the near-surface and to monitor its diurnal and orbital variations thus providing essential insight on the activity and evolution of the cometary nucleus.The PP-SESAME instrument is derived from the quadrupole array technique. A sinusoidal electrical current is sent into the ground through a first dipole, and the induced electrical voltage is measured with a second dipole. The complex permittivity of the material is inferred from the mutual impedance derived from the measurements. In practice, the influence of both the electronic circuit of the instrument and the conducting elements in its close environment must be accounted for in order to best estimate the dielectric constant and electric conductivity of the ground. To do this we have developed a method called the "capacity-influence matrix method".A replica of the instrument was recently built in LATMOS (France) and was tested in the frame of a field campaign in the giant ice cave system of Dachstein, Austria. In the caves, the ground is covered with a thick layer of ice, which temperature is rather constant throughout the year. This measurement campaign allowed us to test the "capacity influence matrix method" in a natural icy environment.The first measurements of the PP-SESAME/Philae experiment should be available in mid-November. In this paper we will present the "capacity-influence matrix method", the measurements and results from the Austrian field campaign and the preliminary analysis of the PP-SESAME/Philae data.
Error estimation and adaptive mesh refinement for parallel analysis of shell structures
NASA Technical Reports Server (NTRS)
Keating, Scott C.; Felippa, Carlos A.; Park, K. C.
1994-01-01
The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.
Analysis of Coaxial Soil Cell in Reflection and Transmission
Pelletier, Mathew G.; Viera, Joseph A.; Schwartz, Robert C.; Evett, Steven R.; Lascano, Robert J.; McMichael, Robert L.
2011-01-01
Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. In these bound water materials, the errors in the traditional time-domain-reflectometer, “TDR”, exceed the range of the full span of the material’s permittivity that is being measured. Thus, there is a critical need to re-examine the TDR system and identify where the errors are to direct future research. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometery as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines the theoretical basis behind the coaxial probe, from which the modern TDR probe originated from, to provide a basis on which to perform absolute permittivity measurements. The research reveals currently utilized formulations in accepted techniques for permittivity measurements which violate the underlying assumptions inherent in the basic models due to the TDR acting as an antenna by radiating energy off the end of the probe, rather than returning it back to the source as is the current assumption. To remove the effects of radiation from the experimental results obtain herein, this research utilized custom designed coaxial probes of various diameters and probe lengths by which to test the coaxial cell measurement technique for accuracy in determination of absolute permittivity. In doing so, the research reveals that the basic models available in the literature all omitted a key correction factor that is hypothesized by this research as being most likely due to fringe capacitance. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective extra length provided by the fringe capacitance which is then used to correct the experimental results such that experimental measurements utilizing differing coaxial cell diameters and probe lengths, upon correction with the Poisson model derived correction factor, all produce the same results thereby lending support for the use of an augmented measurement technique, described herein, for measurement of absolute permittivity, as opposed to the traditional TDR measurement of apparent permittivity. PMID:22163757
A framework for grand scale parallelization of the combined finite discrete element method in 2d
NASA Astrophysics Data System (ADS)
Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.
2014-09-01
Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.
Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin
2017-10-30
The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
Zhao, Xiao-gang; Liu, Peng; Song, Yue-Chan; Zhang, An-ping; Chen, Xiao-ming; Zhou, Jian-ping
2015-09-21
(In1/2Nb1/2)TiO2 (IN-T) ceramics were prepared via a solid-state reaction route. X-ray diffraction (XRD) and Raman spectroscopy were used for the structural and compositional characterization of the synthesized compounds. The results indicated that the sintered ceramics have a single phase of rutile TiO2. Dielectric spectroscopy (frequency range from 20 Hz to 1 MHz and temperature range from 10 K to 270 K) was performed on these ceramics. The IN-T ceramics showed extremely high permittivities of up to ∼10(3), which can be referred to as colossal permittivity, with relatively low dielectric losses of ∼0.05. Most importantly, detailed impedance data analyses of IN-T demonstrated that electron-pinned defect-dipoles, interfacial polarization and polaron hopping polarization contribute to the colossal permittivity at high temperatures (270 K); however, only the complexes (pinned electron) and polaron hopping polarization are active at low temperatures (below 180 K), which is consistent with UDR analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yongli; Wang, Xianjie; Sui, Yu
Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capsoni, D.; CNR-IENI, Sezione di Pavia, viale Taramelli 16, 27100 Pavia; Bini, M.
2004-12-01
The dopant role on the electric and dielectric properties of the perovskite-type CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90{epsilon}r180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07eV is obtained at roommore » temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements.« less
Dervos, Constantine T.; Paraskevas, Christos D.; Skafidas, Panayotis D.; Vassiliou, Panayota
2005-01-01
This work investigates the use of a specially designed cylindrical metal cell, in order to obtain complex permittivity and tanδ data of highly insulating High Voltage (HV) transformer oil samples. The data are obtained at a wide range of frequencies and operation temperatures to demonstrate the polarization phenomena and the thermally stimulated effects. Such complex permittivity measurements may be utilized as a criterion for the service life prediction of oil field electrical equipment (OFEE). Therefore, by one set of measurements on a small oil volume, data may be provided on the impending termination, or continuation of the transformer oil service life. The oil incorporating cell, attached to the appropriate measuring units, could be described as a complex permittivity sensor. In this work, the acquired dielectric data from a great number of operating distribution network power transformers were correlated to corresponding physicochemical ones to demonstrate the future potential employment of the proposed measuring technique.
Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor.
Wang, Peng-Yuan; Jin, Tao; Meng, Fan-Yi; Lyu, Yue-Long; Erni, Daniel; Wu, Qun; Zhu, Lei
2018-04-30
This paper introduces the concept of electromagnetically induced transparency (EIT) into the permittivity extraction of an anisotropic material-nematic liquid crystal (NLC). A novel two-step strategy is presented to extract the complex permittivity of the NLC at the THz band, which evaluates the relative permittivity tensor from the resonant frequencies and then determines the loss tangent from the quality factor Q of the EIT sensor. The proposed method features high accuracy due to the sharp resonance of the EIT sensor and also high robustness to the thickness of the NLC layer because only amplitude rather than phase information of the transmission coefficients is required. The NLC filled EIT sensor shows a sensitivity of 56.8 μm/RIU (the resonance wavelength shift over the refractive index change unit (RIU)) and Figure of Merit (FoM) of 6.92. The uncertainty of the proposed technique in the relative permittivity and loss tangent is 3% and 8.2%, respectively.
Dielectric properties of lava flows west of Ascraeus Mons, Mars
Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.
2009-01-01
The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.
Fast, Massively Parallel Data Processors
NASA Technical Reports Server (NTRS)
Heaton, Robert A.; Blevins, Donald W.; Davis, ED
1994-01-01
Proposed fast, massively parallel data processor contains 8x16 array of processing elements with efficient interconnection scheme and options for flexible local control. Processing elements communicate with each other on "X" interconnection grid with external memory via high-capacity input/output bus. This approach to conditional operation nearly doubles speed of various arithmetic operations.
SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.; Watson, Brian C.
1992-11-01
The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.
3-D modeling of ductile tearing using finite elements: Computational aspects and techniques
NASA Astrophysics Data System (ADS)
Gullerud, Arne Stewart
This research focuses on the development and application of computational tools to perform large-scale, 3-D modeling of ductile tearing in engineering components under quasi-static to mild loading rates. Two standard models for ductile tearing---the computational cell methodology and crack growth controlled by the crack tip opening angle (CTOA)---are described and their 3-D implementations are explored. For the computational cell methodology, quantification of the effects of several numerical issues---computational load step size, procedures for force release after cell deletion, and the porosity for cell deletion---enables construction of computational algorithms to remove the dependence of predicted crack growth on these issues. This work also describes two extensions of the CTOA approach into 3-D: a general 3-D method and a constant front technique. Analyses compare the characteristics of the extensions, and a validation study explores the ability of the constant front extension to predict crack growth in thin aluminum test specimens over a range of specimen geometries, absolutes sizes, and levels of out-of-plane constraint. To provide a computational framework suitable for the solution of these problems, this work also describes the parallel implementation of a nonlinear, implicit finite element code. The implementation employs an explicit message-passing approach using the MPI standard to maintain portability, a domain decomposition of element data to provide parallel execution, and a master-worker organization of the computational processes to enhance future extensibility. A linear preconditioned conjugate gradient (LPCG) solver serves as the core of the solution process. The parallel LPCG solver utilizes an element-by-element (EBE) structure of the computations to permit a dual-level decomposition of the element data: domain decomposition of the mesh provides efficient coarse-grain parallel execution, while decomposition of the domains into blocks of similar elements (same type, constitutive model, etc.) provides fine-grain parallel computation on each processor. A major focus of the LPCG solver is a new implementation of the Hughes-Winget element-by-element (HW) preconditioner. The implementation employs a weighted dependency graph combined with a new coloring algorithm to provide load-balanced scheduling for the preconditioner and overlapped communication/computation. This approach enables efficient parallel application of the HW preconditioner for arbitrary unstructured meshes.
NASA Astrophysics Data System (ADS)
Boivin, A.; Hickson, D. C.; Cunje, A.; Tsai, C. A.; Ghent, R. R.; Daly, M. G.
2017-12-01
In preparation for the OSIRIS-REx sample return mission, ground based radar data have been used to help characterize the carbonaceous asteroid (101955) Bennu as well as to produce a 3-D shape model. Radar data have also been used to derive the near-surface bulk density of the asteroid, a key engineering factor for sample acquisition and return. The relationship between radar albedo and bulk density of the nearsurface depends on the relative permittivity of the material, in this case regolith. The relative permittivity is complex such that ɛ r = ɛ r' + i ɛ r'', where ɛ r' is the dielectric constant and ɛ r'' is the loss factor. Laboratory permittivity measurements have been made in the past on a myriad of samples including Earth materials, lunar Apollo and analog samples, Mars soil analog samples, some meteorites, and cometary analog samples in support of the Rosetta mission. These measurements have been made in different frequency bands and in various conditions; however, no measurements to date have systematically explored the effect of changes in mineralogy on the complex permittivity, and particularly the loss tangent (tanδ , the ratio of ɛ r'' to ɛ r'). The loss tangent controls the absorption of the signal by the material. Continuing our investigation of the effects of mineralogy on these properties, we will present for the first time results of complex permittivity measurements of the UCF/DSI-CI-2 CI asteroid regolith simulant produced by Deep Space Industries Inc. The simulant is mineralogically similar to the CI meteorite Orgueil. CI meteorites are the most spectrally similar meteorites to (101955) Bennu. Since the simulant has been provided to us un-mixed, several sub-samples will be created containing different amounts of carbon, thus allowing us to systematically investigate the effects of carbon content on the permittivity. In order to remove moisture from our samples, powders are baked at 250°C for 48hrs prior to being loaded into a coaxial transmission line and measured under vacuum. Measurements are made using a sweep of frequencies from 300 KHz to 8.5 GHz.
Gain assisted nanocomposite multilayers with near zero permittivity modulus at visible frequencies
NASA Astrophysics Data System (ADS)
Rizza, Carlo; Di Falco, Andrea; Ciattoni, Alessandro
2011-11-01
We have fabricated a nano-laminate by alternating metal and gain medium layers, the gain dielectric consisting of a polymer incorporating optically pumped dye molecules. From standard reflection-transmission experiments, we show that, at a visible wavelength, both the real and the imaginary parts of the permittivity ɛ∥ attain very small values and we measure, at λ = 604 nm, |ɛ∥|=0.04 which is 21.5% smaller than its value in the absence of optical pumping. Our investigation thus proves that a medium with a permittivity with very small modulus, a key condition promising efficient subwavelength optical steering, can be actually synthesized.
Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis
2010-01-01
Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.
2014-03-24
Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.
Material-independent modes for electromagnetic scattering
NASA Astrophysics Data System (ADS)
Forestiere, Carlo; Miano, Giovanni
2016-11-01
In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.
Normal Incidence for Graded Index Surfaces
NASA Technical Reports Server (NTRS)
Khankhoje, Uday K.; Van Zyl, Jakob
2011-01-01
A plane wave is incident normally from vacuum (eta(sub 0) = 1) onto a smooth surface. The substrate has three layers; the top most layer has thickness d(sub 1) and permittivity epsilon(sub 1). The corresponding numbers for the next layer are d(sub 2); epsilon(sub 2), while the third layer which is semi-in nite has index eta(sub 3). The Hallikainen model [1] is used to relate volumetric soil moisture to the permittivity. Here, we consider the relation for the real part of the permittivity for a typical loam soil: acute epsilon(mv) = 2.8571 + 3.9678 x mv + 118:85 x mv(sup 2).
USDA-ARS?s Scientific Manuscript database
A planar transmission-line configuration for rapid, nondestructive, wideband permittivity measurements of liquid and semisolid materials at microwave frequencies is described. The transmission-line propagation constant of the proposed configuration is determined with the multiline technique from sca...
Contribution of nanointerfaces to colossal permittivity of doped Ba(Ti,Sn)O3 ceramics
NASA Astrophysics Data System (ADS)
V'yunov, Oleg; Reshytko, Borys; Belous, Anatolii; Kovalenko, Leonid
2018-03-01
The microstructure, crystal chemical parameters and electrical-physical properties of samples of barium titanate-based dielectric and semiconductor ceramics were investigated in a wide frequency range. The contributions of different nanointerfaces to the permittivity of samples under investigation have been determined.
An object-oriented approach to nested data parallelism
NASA Technical Reports Server (NTRS)
Sheffler, Thomas J.; Chatterjee, Siddhartha
1994-01-01
This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.
Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T.; Hueting, R. J. E.
2015-12-14
Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with thismore » trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.« less
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Parallel and series FED microstrip array with high efficiency and low cross polarization
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1995-01-01
A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.
USDA-ARS?s Scientific Manuscript database
Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
36 CFR Appendix D to Part 1191 - Technical
Code of Federal Regulations, 2014 CFR
2014-07-01
... inch (13 mm) high shall be ramped, and shall comply with 405 or 406. 304Turning Space 304.1General... ground space allows a parallel approach to an element and the side reach is unobstructed, the high side....2Obstructed High Reach. Where a clear floor or ground space allows a parallel approach to an element and the...
Effecting a broadcast with an allreduce operation on a parallel computer
Almasi, Gheorghe; Archer, Charles J.; Ratterman, Joseph D.; Smith, Brian E.
2010-11-02
A parallel computer comprises a plurality of compute nodes organized into at least one operational group for collective parallel operations. Each compute node is assigned a unique rank and is coupled for data communications through a global combining network. One compute node is assigned to be a logical root. A send buffer and a receive buffer is configured. Each element of a contribution of the logical root in the send buffer is contributed. One or more zeros corresponding to a size of the element are injected. An allreduce operation with a bitwise OR using the element and the injected zeros is performed. And the result for the allreduce operation is determined and stored in each receive buffer.
Superconducting FCL using a combined inducted magnetic field trigger and shunt coil
Tekletsadik, Kasegn D.
2007-10-16
A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.
Parallel Algorithms for Groebner-Basis Reduction
1987-09-25
22209 ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) * PARALLEL ALGORITHMS FOR GROEBNER -BASIS REDUCTION 12. PERSONAL...All other editions are obsolete. Productivity Engineering in the UNIXt Environment p Parallel Algorithms for Groebner -Basis Reduction Technical Report
Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D
2009-01-01
Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz–8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies. PMID:19491436
Alabastri, Alessandro; Tuccio, Salvatore; Giugni, Andrea; Toma, Andrea; Liberale, Carlo; Das, Gobind; De Angelis, Francesco; Di Fabrizio, Enzo; Zaccaria, Remo Proietti
2013-01-01
In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. PMID:28788366
NASA Astrophysics Data System (ADS)
Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.
2017-12-01
A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.
Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites
NASA Astrophysics Data System (ADS)
Bowen, C. R.; Gittings, J.; Turner, I. G.; Baxter, F.; Chaudhuri, J. B.
2006-09-01
This letter describes the relationships between the composition and the dielectric and piezoelectric properties of hydroxyapatite-barium titanate composites for polarized bone substitutes. The ac conductivity and permittivity were characterized from 0.1Hzto1MHz, along with measurements of the d33 piezoelectric charge coefficient. The addition of BaTiO3 led to an increase in permittivity and ac conductivity of the material. The increase in both properties was attributed to the presence of the high permittivity ferroelectric phase. The d33 and g33 coefficients decreased rapidly as hydroxyapatite was introduced into BaTiO3 material. Composites below 80% by volume of BaTiO3 exhibited no net piezoelectric effect.
Direct 2-D reconstructions of conductivity and permittivity from EIT data on a human chest.
Herrera, Claudia N L; Vallejo, Miguel F M; Mueller, Jennifer L; Lima, Raul G
2015-01-01
A novel direct D-bar reconstruction algorithm is presented for reconstructing a complex conductivity distribution from 2-D EIT data. The method is applied to simulated data and archival human chest data. Permittivity reconstructions with the aforementioned method and conductivity reconstructions with the previously existing nonlinear D-bar method for real-valued conductivities depicting ventilation and perfusion in the human chest are presented. This constitutes the first fully nonlinear D-bar reconstructions of human chest data and the first D-bar permittivity reconstructions of experimental data. The results of the human chest data reconstructions are compared on a circular domain versus a chest-shaped domain.
Coherent perfect absorber and laser modes in purely imaginary metamaterials
NASA Astrophysics Data System (ADS)
Fu, Yangyang; Cao, Yanyan; Cummer, Steven A.; Xu, Yadong; Chen, Huanyang
2017-10-01
Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mechanism for realizing both coherent perfect absorber (CPA) and laser modes. Moreover, the general conditions for obtaining CPA and laser modes, including obtaining them simultaneously, are revealed by analyzing the wave scattering properties of a slab made of purely imaginary metamaterials (PIMs). Specifically, in a PIM slab with a subunity effective refractive index, the CPA mode can be simplified as a perfect absorption mode and the incident wave from one side could be perfectly absorbed.
Study on photonic angular momentum states in coaxial magneto-optical waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mu; Wu, Li-Ting; Guo, Tian-Jing
2014-10-21
By rigorously solving Maxwell's equations, we develop a full-wave electromagnetic theory for the study of photonic angular momentum states (PAMSs) in coaxial magneto-optical (MO) waveguides. Paying attention to a metal-MO-metal coaxial configuration, we show that the dispersion curves of the originally degenerated PAMSs experience a splitting, which are determined by the off-diagonal permittivity tensor element of the MO medium. We emphasize that this broken degeneracy in dispersion relation is accompanied by modified distributions of field component and transverse energy flux. A qualitative analysis about the connection between the split dispersion behavior and the field distribution is provided. Potential applications aremore » discussed.« less
Use of microstrip patch antennas in grain permittivity measurement
El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.
2003-01-01
In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.
USDA-ARS?s Scientific Manuscript database
A novel open-ended half-mode substrate integrated waveguide (HMSIW) sensor with ground flange for measuring complex permittivity of liquids, semisolids, and granular and particulate materials is presented. The open-ended HMSIW is designed and fabricated on FR4 substrate. The ground flange was custo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jégou, C.; Maroutian, T.; Pillard, V.
We describe a vector network analyzer-based method to study the electromagnetic properties of nanoscale dielectrics at microwave frequencies (1 MHz–40 GHz). The complex permittivity spectrum of a given dielectric can be determined by placing it in a capacitor accessed on its both electrodes by coplanar waveguides. However, inherent propagation delays along the signal paths together with frequency-dependent effective surface of the capacitor at microwave frequencies can lead to significant distortion in the measured permittivity, which in turn can give rise to artificial frequency variations of the complex permittivity. We detail a fully analytical rigorous correction sequence with neither recourse tomore » extrinsic loss mechanisms nor to arbitrary parasitic signal paths. We illustrate our method on 3 emblematic dielectrics: ferroelectric morphotropic lead zirconate titanate, its paraelectric pyrochlore counterpart, and strontium titanate. Permittivity spectra taken at various points along the hysteresis loop help shedding light onto the nature of the different dielectric energy loss mechanisms. Thanks to the analytical character of our method, we can discuss routes to extend it to higher frequencies and we can identify unambiguously the sources of potential artifacts.« less
Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy
NASA Astrophysics Data System (ADS)
Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo
2018-05-01
A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.
NASA Astrophysics Data System (ADS)
Liu, Kai; Sun, Yalong; Zheng, Fengang; Tse, Mei-Yan; Sun, Qingbo; Liu, Yun; Hao, Jianhua
2018-06-01
In this work, we propose a route to realize high-performance colossal permittivity (CP) by creating multilayer structures of insulator/semiconductor/insulator. To prove the new concept, we made heavily reduced rutile TiO2 via annealing route in Ar/H2 atmosphere. Dielectric studies show that the maximum dielectric permittivity ( 3.0 × 104) of our prepared samples is about 100 times higher than that ( 300) of conventional TiO2. The minimum dielectric loss is 0.03 (at 104-105 Hz). Furthermore, CP is almost independent of the frequency (100-106 Hz) and the temperature (20-350 K). We suggest that the colossal permittivity is attributed to the high carrier concentration of the inner TiO2 semiconductor, while the low dielectric loss is due to the presentation of the insulator layer on the surface of TiO2. The method proposed here can be expanded to other material systems, such as semiconductor Si sandwiched by top and bottom insulator layers of Ga2O3.
Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy.
Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo
2018-05-18
A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.
Dynamic load balancing of applications
Wheat, Stephen R.
1997-01-01
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.
NASA Technical Reports Server (NTRS)
Keppenne, Christian L.; Rienecker, Michele M.; Koblinsky, Chester (Technical Monitor)
2001-01-01
A multivariate ensemble Kalman filter (MvEnKF) implemented on a massively parallel computer architecture has been implemented for the Poseidon ocean circulation model and tested with a Pacific Basin model configuration. There are about two million prognostic state-vector variables. Parallelism for the data assimilation step is achieved by regionalization of the background-error covariances that are calculated from the phase-space distribution of the ensemble. Each processing element (PE) collects elements of a matrix measurement functional from nearby PEs. To avoid the introduction of spurious long-range covariances associated with finite ensemble sizes, the background-error covariances are given compact support by means of a Hadamard (element by element) product with a three-dimensional canonical correlation function. The methodology and the MvEnKF configuration are discussed. It is shown that the regionalization of the background covariances; has a negligible impact on the quality of the analyses. The parallel algorithm is very efficient for large numbers of observations but does not scale well beyond 100 PEs at the current model resolution. On a platform with distributed memory, memory rather than speed is the limiting factor.
Parallel and serial grouping of image elements in visual perception.
Houtkamp, Roos; Roelfsema, Pieter R
2010-12-01
The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some situations, but we demonstrate that there are also situations where Gestalt grouping becomes serial. We observe substantial time delays when image elements have to be grouped indirectly through a chain of local groupings. We call this chaining process incremental grouping and demonstrate that it can occur for only a single object at a time. We suggest that incremental grouping requires the gradual spread of object-based attention so that eventually all the object's parts become grouped explicitly by an attentional labeling process. Our findings inspire a new incremental grouping theory that relates the parallel, local grouping process to feedforward processing and the serial, incremental grouping process to recurrent processing in the visual cortex.
Developing parallel GeoFEST(P) using the PYRAMID AMR library
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Tisdale, Robert E.
2004-01-01
The PYRAMID parallel unstructured adaptive mesh refinement (AMR) library has been coupled with the GeoFEST geophysical finite element simulation tool to support parallel active tectonics simulations. Specifically, we have demonstrated modeling of coseismic and postseismic surface displacement due to a simulated Earthquake for the Landers system of interacting faults in Southern California. The new software demonstrated a 25-times resolution improvement and a 4-times reduction in time to solution over the sequential baseline milestone case. Simulations on workstations using a few tens of thousands of stress displacement finite elements can now be expanded to multiple millions of elements with greater than 98% scaled efficiency on various parallel platforms over many hundreds of processors. Our most recent work has demonstrated that we can dynamically adapt the computational grid as stress grows on a fault. In this paper, we will describe the major issues and challenges associated with coupling these two programs to create GeoFEST(P). Performance and visualization results will also be described.
NASA Astrophysics Data System (ADS)
Gamaly, E. G.; Rode, A. V.
2018-03-01
Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.
2014-12-01
One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.
Geometrical Description in Binary Composites and Spectral Density Representation
Tuncer, Enis
2010-01-01
In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ=(εe-εm)(εi-εm)-1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell-shaped distributions, with coinciding peak locations but different heights. It is speculated that the coincidence in the peak locations is an absolute illustration of the self-similar fractal nature of the mixture topology (structure) created with the LLL expression. Consequently, the spectra are not altered significantly with increased filler concentration level—they exhibit a self-similar spectral density function for different concentration levels. Last but not least, the estimated percolation strengths also confirm the fractal nature of the systems characterized by the LLL mixture expression. It is concluded that the LLL expression is suitable for complex composite systems that have hierarchical order in their structure. These observations confirm the finding in the literature.
Cosmochemical implications of CONSERT permittivity characterization of 67P/C-G
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A.; Hérique, Alain; Kofman, Wlodek; Beck, Pierre; Bonal, Lydie; Buttarazzi, Ilaria; Heggy, Essam; Lasue, Jeremie; Quirico, Eric; Zine, Sonia
2016-10-01
Unique information about the internal structure of the nucleus of comet 67P/C-G was provided by the CONSERT bistatic radar on-board Rosetta and Philae [1]. Analysis of the propagation of its signal throughout the small lobe indicated that the real part of the permittivity at 90 MHz is of (1.27±0.05). The first interpretation of this value using dielectric properties of mixtures of dust and ices (H2O, CO2), led to the conclusion that the comet porosity ranges between 75-85%. In addition, the dust/ice ratio was found to range between 0.4-2.6 and the permittivity of dust (including 30% of porosity) was determined to be lower than 2.9.The dust permittivity estimate is now reduced by taking into account the updated values of nucleus density and of dust/ice ratio, in order of providing further insights into the nature of the constituents of comet 67P/C-G [2]. We adopt a systematic approach: i) determination of the dust permittivity as a function of the ice (I) to dust (D) and vacuum (V) volume fraction; ii) comparison with the permittivity of meteoritic, mineral and organic materials from literature and laboratory measurements; iii) test of several composition models of the nucleus, corresponding to cosmochemical end members of 67P/C-G. For each of these models the location in the ternary I/D/V diagram is calculated based on available dielectric measurements, and confronted to the locus of 67P/C-G. The number of compliant models is small and the cosmochemical implications of each are discussed [2]. An important fraction of carbonaceous material is required in the dust in order to match CONSERT permittivity observations, establishing that comets represent a massive carbon reservoir.Support from Centre National d'Études Spatiales (CNES, France) for this work, based on observations with CONSERT on board Rosetta, is acknowledged. The CONSERT instrument was designed, built and operated by IPAG, LATMOS and MPS and was financially supported by CNES, CNRS, UJF/UGA, DLR and MPS. Rosetta is an ESA mission with contributions from its member states and NASA.[1] Kofman et al., Science, 349, 6247, aaa0639, 2015. [2] Herique et al., MNRAS, submitted, 2016.
NASA Technical Reports Server (NTRS)
Wang, Yu (Inventor)
2006-01-01
A miniature, ultra-high resolution, and color scanning microscope using microchannel and solid-state technology that does not require focus adjustment. One embodiment includes a source of collimated radiant energy for illuminating a sample, a plurality of narrow angle filters comprising a microchannel structure to permit the passage of only unscattered radiant energy through the microchannels with some portion of the radiant energy entering the microchannels from the sample, a solid-state sensor array attached to the microchannel structure, the microchannels being aligned with an element of the solid-state sensor array, that portion of the radiant energy entering the microchannels parallel to the microchannel walls travels to the sensor element generating an electrical signal from which an image is reconstructed by an external device, and a moving element for movement of the microchannel structure relative to the sample. Discloses a method for scanning samples whereby the sensor array elements trace parallel paths that are arbitrarily close to the parallel paths traced by other elements of the array.
Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration
NASA Astrophysics Data System (ADS)
Zhang, Y.; Key, K.; Ovall, J.; Holst, M.
2014-12-01
We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.
Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen
2013-06-01
The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loewe, H.; Picard, G.; Sandells, M. J.; Mätzler, C.; Kontu, A.; Dumont, M.; Maslanka, W.; Morin, S.; Essery, R.; Lemmetyinen, J.; Wiesmann, A.; Floury, N.; Kern, M.
2016-12-01
Forward modeling of snow-microwave interactions is widely used to interpret microwave remote sensing data from active and passive sensors. Though different models are yet available for that purpose, a joint effort has been undertaken in the past two years within the ESA Project "Microstructural origin of electromagnetic signatures in microwave remote sensing of snow". The new Snow Microwave Radiative Transfer (SMRT) model primarily facilitates a flexible treatment of snow microstructure as seen by X-ray tomography and seeks to unite respective advantages of existing models. In its main setting, SMRT considers radiation transfer in a plane-parallel snowpack consisting of homogeneous layers with a layer microstructure represented by an autocorrelation function. The electromagnetic model, which underlies permittivity, absorption and scattering calculations within a layer, is based on the improved Born approximation. The resulting vector-radiative transfer equation in the snowpack is solved using spectral decomposition of the discrete ordinates discretization. SMRT is implemented in Python and employs an object-oriented, modular design which intends to i) provide an intuitive and fail-safe API for basic users ii) enable efficient community developments for extensions (e.g. for improvements of sub-models for microstructure, permittivity, soil or interface reflectivity) from advanced users and iii) encapsulate the numerical core which is maintained by the developers. For cross-validation and inter-model comparison, SMRT implements various ingredients of existing models as selectable options (e.g. Rayleigh or DMRT-QCA phase functions) and shallow wrappers to invoke legacy model code directly (MEMLS, DMRT-QMS, HUT). In this paper we give an overview of the model components and show examples and results from different validation schemes.
Efficient parallel resolution of the simplified transport equations in mixed-dual formulation
NASA Astrophysics Data System (ADS)
Barrault, M.; Lathuilière, B.; Ramet, P.; Roman, J.
2011-03-01
A reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine modelizations are difficult to treat for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time. A first implementation of a Lagrangian based domain decomposition method brings to a poor parallel efficiency because of an increase in the power iterations [1]. In order to obtain a high parallel efficiency, we improve the parallelization scheme by changing the location of the loop over the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical scheme (mesh, finite element order). However, it can be significantly optimized for the matching grid case. The good behavior of the new parallelization scheme is demonstrated for the matching grid case on several hundreds of nodes for computations based on a pin-by-pin discretization.
Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.
Shubitidze, Fridon; Osterberg, Ulf
2007-04-01
A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Kothakonda, Manish; Elupula, Ravinder; Chrisey, Douglas B.
This paper reports on synthesis of polycrystalline complex perovskite CaCu3Ti4O12 (as CCTO) ceramic powders prepared by a sol-gel auto combustion method at different sintering temperatures and sintering times, respectively. The effect of sintering time on the structure, morphology, dielectric and electrical properties of CCTO ceramics is investigated. Tuning the electrical properties via different sintering times is demonstrated for ceramic samples. X-ray diffraction (XRD) studies confirm perovskite-like structure at room temperature. Abnormal grain growth is observed for ceramic samples. Giant dielectric permittivity was realized for CCTO ceramics. High dielectric permittivity was attributed to the internal barrier layer capacitance (IBLC) model associated with the Maxwell-Wagner (MW) polarization mechanism.
Influence of the local structure in phase-change materials on their dielectric permittivity.
Shportko, Kostiantyn V; Venger, Eugen F
2015-01-01
Ge-Sb-Te alloys, which belong to the phase-change materials, are promising materials for data storage and display and data visualization applications due to their unique properties. This includes a remarkable difference of their electrical and optical properties in the amorphous and crystalline state. Pronounced change of optical properties for Ge-Sb-Te alloys is linked to the different bonding types and different atomic arrangements in amorphous and crystalline states. The dielectric function of phase-change materials has been investigated in the far infrared (FIR) range. Phonons have been detected by FTIR spectroscopy. Difference of the dispersion of the dielectric permittivity of amorphous and crystalline samples is caused by different structures in different states which contribute to the dielectric permittivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Huixu; Li, Zhigang; Stan, Liliana
Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure pat- terning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4–1.4 μm, and the measurements under angled incidence within 400–800more » nm prove that the absorber is angle-insensitive and polarization- independent.« less
Au-Ag-Cu nano-alloys: tailoring of permittivity
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-04-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.
Dielectric properties of binary mixtures of methyl iso butyl ketone and amino silicone oil
NASA Astrophysics Data System (ADS)
Shah, K. N.; Rana, V. A.; Trivedi, C. M.; Vankar, H. P.
2017-05-01
Dielectric permittivity ɛ*(ω) = ɛ' - jɛ″ of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. Relative complex permittivity spectra in the frequency range 100 Hz to 2 MHz, of the mixture solutions of varying concentrations is reported. Determined values of the permittivity at optical frequency of all the samples are also reported. The dielectric parameters are used to gain information about the effect of concentration variation of components of the mixtures on the dielectric properties. It also provides the information about electrode polarization phenomena taking place under the low frequency A.C. electric field.
Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model.
Mazzurana, M; Sandrini, L; Vaccari, A; Malacarne, C; Cristoforetti, L; Pontalti, R
2004-01-01
Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non-segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity--even in the same tissue--reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested using finite-difference time-domain algorithm and the results of the total body and layer-averaged specific absorption rate are reported.
Negative permittivity chamber inside a stack of silver nanorings
NASA Astrophysics Data System (ADS)
Chen, Sheng Chung; Shiu Chau, Jr.
2010-05-01
The interactions of silver nanorings with polarized optical wave are numerically studied. If the resonant conditions are tuned, the polarization of incident field, inside the nanoring hole, will be reversed by the single silver nanoring due to the surface plasmon resonance, thus, the nanoring hole becomes a region of which permittivity is negative. Put two identical silver nanorings closely, there are two nodes happened between nanorings. It indicates that there is a very steep gradient of electric field and quasi-standing waves exist between nanorings. If many silver nanorings are lined up, the holes of the nanorings will form a negative permittivity chamber. The more close to the center of the chamber, the more ideal the polarization is reversed.
Dynamic load balancing of applications
Wheat, S.R.
1997-05-13
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.
Microstrip Antennas with Broadband Integrated Phase Shifting
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)
2001-01-01
The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.
Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong
2012-09-24
We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Internal viscoelastic loading in cat papillary muscle.
Chiu, Y L; Ballou, E W; Ford, L E
1982-01-01
The passive mechanical properties of myocardium were defined by measuring force responses to rapid length ramps applied to unstimulated cat papillary muscles. The immediate force changes following these ramps recovered partially to their initial value, suggesting a series combination of viscous element and spring. Because the stretched muscle can bear force at rest, the viscous element must be in parallel with an additional spring. The instantaneous extension-force curves measured at different lengths were nonlinear, and could be made to superimpose by a simple horizontal shift. This finding suggests that the same spring was being measured at each length, and that this spring was in series with both the viscous element and its parallel spring (Voigt configuration), so that the parallel spring is held nearly rigid by the viscous element during rapid steps. The series spring in the passive muscle could account for most of the series elastic recoil in the active muscle, suggesting that the same spring is in series with both the contractile elements and the viscous element. It is postulated that the viscous element might be coupled to the contractile elements by a compliance, so that the load imposed on the contractile elements by the passive structures is viscoelastic rather than purely viscous. Such a viscoelastic load would give the muscle a length-independent, early diastolic restoring force. The possibility is discussed that the length-independent restoring force would allow some of the energy liberated during active shortening to be stored and released during relaxation. Images FIGURE 7 FIGURE 8 PMID:7171707
Parallel fast multipole boundary element method applied to computational homogenization
NASA Astrophysics Data System (ADS)
Ptaszny, Jacek
2018-01-01
In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.
NASA Astrophysics Data System (ADS)
Taravati, Sajjad
2018-06-01
This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.
Compact pulse forming line using barium titanate ceramic material
NASA Astrophysics Data System (ADS)
Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.
2011-11-01
Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.
NASA Astrophysics Data System (ADS)
Gupta, Sumit; Loh, Kenneth J.
2017-04-01
The main objective of this research is to develop a noncontact and noninvasive method for monitoring infections at the interface of human tissue and osseointegrated prostheses. The technique used here is centered on the theory of a noncontact permittivity imaging technique known as electrical capacitance tomography (ECT). This work is divided into two main parts. First, an ECT electrical permittivity reconstruction software and hardware system was developed. Second, a carbon nanotube-polyaniline nanocomposite thin film was designed and fabricated such that its electrical permittivity is sensitive to pH stimuli. The dielectric properties of this thin film were characterized as it was exposed to different pH buffer solutions. It is envisioned that osseointegrated implants can be pre-coated with the pH-sensitive nanocomposite prior to implant. When infection occurs and alters the local pH of tissue at the human-prosthesis interface, the dielectric property of the film would change accordingly. Then, ECT can interrogate the cross-section of the human limb and reconstruct its permittivity distribution, revealing localized changes in permittivity due to infection. To validate this concept, a prosthesis phantom was coated with the nanocomposite pH sensor and then immersed in different pH buffer solutions. ECT was conducted, and the results showed that the magnitude and location of subsurface, localized, pH changes could be detected. In general, noncontact tomography coupled with stimuliresponsive thin films could pave way for new modalities of noninvasive human body imaging, in particular, for patients with osseointegrated implants and prostheses.
Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard
2006-09-01
The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.
Study on the Microwave Permittivity of Single-Walled Carbon Nanotube
ERIC Educational Resources Information Center
Liu, Xiaolai; Zhao, Donglin
2009-01-01
In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…
NASA Technical Reports Server (NTRS)
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
Nonlinear dynamics in low permittivity media: the impact of losses.
Vincenti, M A; de Ceglia, D; Scalora, M
2013-12-02
Slabs of materials with near-zero permittivity display enhanced nonlinear processes. We show that field enhancement due to the continuity of the longitudinal component of the displacement field drastically enhances harmonic generation. We investigate the impact of losses with and without bulk nonlinearities and demonstrate that in the latter scenario surface, magnetic and quadrupolar nonlinear sources cannot always be ignored.
Resonant dielectric metamaterials
Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B
2014-12-02
A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.
Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon
Gao, Jinghui; Wang, Yan; Liu, Yongbin; Hu, Xinghao; Ke, Xiaoqin; Zhong, Lisheng; He, Yuting; Ren, Xiaobing
2017-01-01
Although dielectric energy-storing devices are frequently used in high voltage level, the fast growing on the portable and wearable electronics have been increasing the demand on the energy-storing devices at finite electric field strength. This paper proposes an approach on enhancing energy density under low electric field through compositionally inducing tricriticality in Ba(Ti,Sn)O3 ferroelectric material system with enlarged dielectric response. The optimal dielectric permittivity at tricritical point can reach to εr = 5.4 × 104, and the associated energy density goes to around 30 mJ/cm3 at the electric field of 10 kV/cm, which exceeds most of the selected ferroelectric materials at the same field strength. The microstructure nature for such a tricritical behavior shows polarization inhomogeneity in nanometeric scale, which indicates a large polarizability under external electric field. Further phenomenological Landau modeling suggests that large dielectric permittivity and energy density can be ascribed to the vanishing of energy barrier for polarization altering caused by tricriticality. Our results may shed light on developing energy-storing dielectrics with large permittivity and energy density at low electric field. PMID:28098249
Tissue dielectric measurement using an interstitial dipole antenna.
Wang, Peng; Brace, Christopher L
2012-01-01
The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. © 2011 IEEE
Tissue Dielectric Measurement Using an Interstitial Dipole Antenna
Wang, Peng; Brace, Christopher L.
2012-01-01
The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna’s input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5–20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole–Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. PMID:21914566
NASA Astrophysics Data System (ADS)
Adohi, B. J. P.; Brosseau, C.; Laur, V.; Haidar, B.
2017-01-01
We report on the field-dependent polarization of graphene (GE) filled poly[vinylidene fluoride-co-trifluoroethylene] P(VDF-TrFE) nanostructures fabricated by mechanical melt mixing. This study shows an increase in effective permittivity of these nanomaterials on increasing the GE loading in a manner that is consistent with standard mixing law. Detailed characterization of the unsaturated ferroelectric hysteresis, as well as the butterfly shape of the effective permittivity versus electric bias, of the samples are presented. For GE content set to 9.1 wt. % in the samples containing 50/50 wt. % (VDF/TrFE), the maximum polarization increases by 260% with respect to that of the neat polymer matrix. With a higher VDF content, 73 wt. %, the coercive field remains constant over the range of GE content explored. Additionally, our results highlight the strong impact of the GE loading and temperature on the butterfly shape in permittivity-field loops of these nanocomposites. The experimental findings are consistent with theoretical predictions of the modified Johnson's model [Narayanan et al., Appl. Phys. Lett. 100, 022907 (2012)]. Our findings can open avenues for interplay between conductive nanofillers and ferroelectricity in soft nanomaterials with controlled phase transitions.
Hydration and temperature interdependence of protein picosecond dynamics.
Lipps, Ferdinand; Levy, Seth; Markelz, A G
2012-05-14
We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies <1 THz. The temperature dependence of the real part of the permittivity is not consistent with the relaxational response of the bound water, and may reflect the low frequency protein structural vibrations slaved to the solvent excitations. The hydration necessary to observe the dynamical transition is found to be frequency dependent, with a critical hydration of 0.19 h for frequencies >1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network. This journal is © the Owner Societies 2012
Transient Finite Element Computations on a Variable Transputer System
NASA Technical Reports Server (NTRS)
Smolinski, Patrick J.; Lapczyk, Ireneusz
1993-01-01
A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.
Sierra Structural Dynamics User's Notes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munday, Lynn Brendon; Day, David M.; Bunting, Gregory
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.
Electrochemical cell has internal resistive heater element
NASA Technical Reports Server (NTRS)
Colston, E. F.; Ford, F. E.; Hennigan, T. J.
1968-01-01
External source supplies power to electrochemical cells containing internal resistive heater element. Each cell plate is individually contained in its own Pellon bag, enabling the heater element to be arranged in a continuous, parallel circuit.
NASA Technical Reports Server (NTRS)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
Au-Ag-Cu nano-alloys: tailoring of permittivity
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-01-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459
Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.
2016-04-01
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.
Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).
Calculating Permittivity and Dielectric Loss Frequency Spectra for Aqueous Electrolyte Solutions
NASA Astrophysics Data System (ADS)
Odinaev, S.; Makhmadbegov, R. S.
2018-01-01
Analytic expressions for dielectric permittivity factor ɛ1(ω) and dielectric dissipation factor ɛ2(ω) of electrolyte solutions are obtained, based on the ratio between complex factors of dielectric permittivity and specific conductivity. The range of frequency dispersion of dynamic factors ɛ1(ω) and ɛ2(ω) for aqueous solutions of LiCl, NaCl, KCl, and CsCl is considered. Numerical calculations are performed for friction coefficients β a and β b ; relaxation times τ a , τ b , and τ ab ; and factors ɛ1(ω) and ɛ2(ω) in a wide range of variation for ρ; concentration c; temperature T; and frequencies ω. The resulting theoretically calculated ɛ1(ω) and ɛ2(ω) values and the Cole-Cole diagram are in quantitative agreement with experimental data.
Dielectric relaxation of selenium-tellurium mixed former glasses
NASA Astrophysics Data System (ADS)
Palui, A.; Ghosh, A.
2017-05-01
We report the study of dielectric properties of mixed network former glasses of composition 0.3Ag2O-0.7(xSeO2-(1-x)TeO2); x=0, 0.1, 0.3, 0.4, 0.5 and 0.6 in a wide frequency 10 Hz - 2 MHz and temperature range 223 K - 403 K. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been analyzed using the Cole-Cole function. The inverse temperature dependence of relaxation time obtained from real part of dielectric permittivity data follows the Arrhenius relation. The activation energy shows mixed glass former effect with variation of mixed former ratio. A non-zero value of shape parameters is observed and it is almost independent of temperature and composition.
Dielectric coagulometry: a new approach to estimate venous thrombosis risk.
Hayashi, Yoshihito; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji; Kaibara, Makoto; Uchimura, Isao
2010-12-01
We present dielectric coagulometry as a new technique to estimate the risk of venous thrombosis by measuring the permittivity change associated with the blood coagulation process. The method was first tested for a simple system of animal erythrocytes suspended in fibrinogen solution, where the coagulation rate was controlled by changing the amount of thrombin added to the suspension. Second, the method was applied to a more realistic system of human whole blood, and the inherent coagulation process was monitored without artificial acceleration by a coagulation initiator. The time dependence of the permittivity at a frequency around 1 MHz showed a distinct peak at a time that corresponds to the clotting time. Our theoretical modeling revealed that the evolution of heterogeneity and the sedimentation in the system cause the peak of the permittivity.
High precision slotted cavity measurement of a novel ceramic state polymer electrolyte
NASA Astrophysics Data System (ADS)
Quan, Wei; NurulAfsar, Mohammed
2018-01-01
Thin film materials are already used in a variety of microwave and higher frequency applications such as electrically tunable microwave devices, integrated circuits like MMICs, radomes, and radar absorbing coating. The determination of the dielectric properties of these films is thus of significant importance. The measurement of complex dielectric permittivity of thin films is very difficult at microwave, millimeter, and THz frequencies because both the amplitude change and phase shift are not large enough to evaluate the real part of the dielectric permittivity. A specially designed transverse slotted cavity for X-band microwave measurement has been designed and constructed to employ with a vector network analyzer to evaluate the real part of dielectric permittivity of thin films accurately and conveniently. Commercially available polymer thin films are measured to validate the methods.
Multibus-based parallel processor for simulation
NASA Technical Reports Server (NTRS)
Ogrady, E. P.; Wang, C.-H.
1983-01-01
A Multibus-based parallel processor simulation system is described. The system is intended to serve as a vehicle for gaining hands-on experience, testing system and application software, and evaluating parallel processor performance during development of a larger system based on the horizontal/vertical-bus interprocessor communication mechanism. The prototype system consists of up to seven Intel iSBC 86/12A single-board computers which serve as processing elements, a multiple transmission controller (MTC) designed to support system operation, and an Intel Model 225 Microcomputer Development System which serves as the user interface and input/output processor. All components are interconnected by a Multibus/IEEE 796 bus. An important characteristic of the system is that it provides a mechanism for a processing element to broadcast data to other selected processing elements. This parallel transfer capability is provided through the design of the MTC and a minor modification to the iSBC 86/12A board. The operation of the MTC, the basic hardware-level operation of the system, and pertinent details about the iSBC 86/12A and the Multibus are described.
The parallel-sequential field subtraction techniques for nonlinear ultrasonic imaging
NASA Astrophysics Data System (ADS)
Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.
2018-04-01
Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage and have sensitivity to particularly closed defects. This study utilizes two modes of focusing: parallel, in which the elements are fired together with a delay law, and sequential, in which elements are fired independently. In the parallel focusing, a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded; with elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images formed from the coherent component of the field and use this to characterize nonlinearity of closed fatigue cracks. In particular we monitor the reduction in amplitude at the fundamental frequency at each focal point and use this metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g., back wall or large scatters) and allow damage to be detected at an early stage.
Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.
Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature
NASA Astrophysics Data System (ADS)
Mori, K.; Takeuchi, H.; Narita, F.
2018-03-01
The energy harvesting characteristics of piezoelectric/copper (BaTiO3/Cu) laminates rising from sharp temperature changes were investigated both numerically and experimentally. First, a phase field simulation was performed to determine the temperature-dependent piezoelectric coefficient and permittivity values. Then, the output voltages of the BaTiO3/Cu laminates were calculated for variations from room temperature to either a cryogenic temperature (77 K) or a higher temperature (333 K) using a 3D finite element simulation with the properties calculated from the phase field simulation. Finally, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured for the same temperature changes and were compared to the simulation results.
Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method
NASA Astrophysics Data System (ADS)
Ampilogov, Dmitrii; Leble, Sergey
2016-07-01
We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.
Electrically tunable negative refraction in core/shell-structured nanorod fluids.
Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng
2014-10-21
We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized.
Metasurface polarization splitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less
Metasurface polarization splitter
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; ...
2017-02-20
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less
Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS
NASA Astrophysics Data System (ADS)
Hinz, E. A.; Kohn, M. J.
2009-12-01
Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates, consistent with a double-medium diffusion model in which microdomains with slow diffusivities are bounded by fast-diffusing pathways.
Simulation of the halite dielectric spectrum in the infrared region
NASA Astrophysics Data System (ADS)
Aryomin, I. E.
2013-07-01
In this paper, we consider the practical efficiency of an simulation of a real frequency characteristic of complex permittivity of a NaCl halite crystal observed in the frequency range of establishment of elastic ionic polarization processes. In computational experiments, use was made of a cybernetic equation of permittivity, as well as the classical, corpuscular, and originally modified models of the considered physical phenomena.
NASA Workshop on Computational Structural Mechanics 1987, part 1
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Topics in Computational Structural Mechanics (CSM) are reviewed. CSM parallel structural methods, a transputer finite element solver, architectures for multiprocessor computers, and parallel eigenvalue extraction are among the topics discussed.
High-permittivity thin dielectric padding improves fresh blood imaging of femoral arteries at 3 T.
Lindley, Marc D; Kim, Daniel; Morrell, Glen; Heilbrun, Marta E; Storey, Pippa; Hanrahan, Christopher J; Lee, Vivian S
2015-02-01
Fresh blood imaging (FBI) is a useful noncontrast magnetic resonance angiographic (MRA) method for the assessment of peripheral arterial disease, particularly for imaging patients with poor renal function. Compared with 1.5 T, 3 T enables higher signal-to-noise ratio and/or spatiotemporal resolution in FBI. Indeed, previous studies have reported successful FBI of the calf station at 3 T. However, FBI of the thigh station at 3 T has been reported to suffer from signal void in the common femoral artery of 1 thigh only because of the radial symmetry in transmit radiofrequency field (B1+) variation. We sought to increase the signal of femoral artery in FBI at 3 T using high-permittivity dielectric padding. We performed FBI and B1+ mapping of the thigh station at 3 T in 13 human subjects to compare the following 3 dielectric padding settings: no padding, commercially available thick (approximately 5 cm) dielectric padding, and high-permittivity thin (approximately 2 cm) dielectric padding. We characterized the radial symmetry in B1+ variation as well as its impact on the FBI signal at baseline and how dielectric padding improves B1+ and FBI. We evaluated the quality of 3 FBI MRA acquisitions using quantitative (ie, contrast-to-noise ratio of femoral arteries) and qualitative (ie, conspicuity of femoral arteries) analyses. With the subjects positioned on the magnetic resonance table in feet-first, supine orientation, the radial symmetry in B1+ variation attenuates the signal in the right common femoral artery. The signal void can be improved partially with commercial padding and improved further with high-permittivity padding. Averaging the results over the 13 subjects, the mean B1+, contrast-to-noise ratio, and conspicuity scores for the right common femoral artery were significantly higher with high-permittivity padding than with commercial padding and baseline (P < 0.001). Our study shows that high-permittivity dielectric padding can be used to increase the signal of femoral artery in FBI at 3 T.
Eves, E Eugene; Murphy, Ethan K; Yakovlev, Vadim V
2007-01-01
The paper discusses characteristics of a new modeling-based technique for determining dielectric properties of materials. Complex permittivity is found with an optimization algorithm designed to match complex S-parameters obtained from measurements and from 3D FDTD simulation. The method is developed on a two-port (waveguide-type) fixture and deals with complex reflection and transmission characteristics at the frequency of interest. A computational part is constructed as an inverse-RBF-network-based procedure that reconstructs dielectric constant and the loss factor of the sample from the FDTD modeling data sets and the measured reflection and transmission coefficients. As such, it is applicable to samples and cavities of arbitrary configurations provided that the geometry of the experimental setup is adequately represented by the FDTD model. The practical implementation of the method considered in this paper is a section of a WR975 waveguide containing a sample of a liquid in a cylindrical cutout of a rectangular Teflon cup. The method is run in two stages and employs two databases--first, built for a sparse grid on the complex permittivity plane, in order to locate a domain with an anticipated solution and, second, made as a denser grid covering the determined domain, for finding an exact location of the complex permittivity point. Numerical tests demonstrate that the computational part of the method is highly accurate even when the modeling data is represented by relatively small data sets. When working with reflection and transmission coefficients measured in an actual experimental fixture and reconstructing a low dielectric constant and the loss factor the technique may be less accurate. It is shown that the employed neural network is capable of finding complex permittivity of the sample when experimental data on the reflection and transmission coefficients are numerically dispersive (noise-contaminated). A special modeling test is proposed for validating the results; it confirms that the values of complex permittivity for several liquids (including salt water acetone and three types of alcohol) at 915 MHz are reconstructed with satisfactory accuracy.
Solid State Mini-RPV Color Imaging System
1975-09-12
completed in the design and construction phase . Con- siderations are now in progress for conducting field tests of the equipment against "real world...Simplified Parallel Injection Configuration 2-21 CID Parallel Injection Configuration 2-23 Element Rate Timing 2-25 Horizontal Input and Phase Line...Timing 2-26 Line Reset /Injection Timing 2-27 Line Rate Timing (Start of Readout) 2-28 Driver A4 Block Diagram 2-31 Element Scan Time Base
Parallel machine architecture for production rule systems
Allen, Jr., John D.; Butler, Philip L.
1989-01-01
A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.
Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox
NASA Astrophysics Data System (ADS)
Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas
In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.
A comparison of parallel and diverging screw angles in the stability of locked plate constructs.
Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K
2011-09-01
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... Mississippi Department of Environmental Quality (MDEQ), on July 13, 2012, for parallel processing. This... of Contents I. What is parallel processing? II. Background III. What elements are required under... Executive Order Reviews I. What is parallel processing? Consistent with EPA regulations found at 40 CFR Part...
Design of a massively parallel computer using bit serial processing elements
NASA Technical Reports Server (NTRS)
Aburdene, Maurice F.; Khouri, Kamal S.; Piatt, Jason E.; Zheng, Jianqing
1995-01-01
A 1-bit serial processor designed for a parallel computer architecture is described. This processor is used to develop a massively parallel computational engine, with a single instruction-multiple data (SIMD) architecture. The computer is simulated and tested to verify its operation and to measure its performance for further development.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
Merlin, Roberto
2009-01-01
Homogeneous composites, or metamaterials, made of dielectric or metallic particles are known to show magnetic properties that contradict arguments by Landau and Lifshitz [Landau LD, Lifshitz EM (1960) Electrodynamics of Continuous Media (Pergamon, Oxford, UK), p 251], indicating that the magnetization and, thus, the permeability, loses its meaning at relatively low frequencies. Here, we show that these arguments do not apply to composites made of substances with ImεS ≫ λ/ℓ or ReεS ∼ λ/ℓ (εS and ℓ are the complex permittivity and the characteristic length of the particles, and λ ≫ ℓ is the vacuum wavelength). Our general analysis is supported by studies of split rings, one of the most common constituents of electromagnetic metamaterials, and spherical inclusions. An analytical solution is given to the problem of scattering by a small and thin split ring of arbitrary permittivity. Results reveal a close relationship between εS and the dynamic magnetic properties of metamaterials. For |εS | ≪ λ/a (a is the ring cross-sectional radius), the composites exhibit very weak magnetic activity, consistent with the Landau–Lifshitz argument and similar to that of molecular crystals. In contrast, large values of the permittivity lead to strong diamagnetic or paramagnetic behavior characterized by susceptibilities whose magnitude is significantly larger than that of natural substances. We compiled from the literature a list of materials that show high permittivity at wavelengths in the range 0.3–3000 μm. Calculations for a system of spherical inclusions made of these materials, using the magnetic counterpart to Lorentz–Lorenz formula, uncover large magnetic effects the strength of which diminishes with decreasing wavelength. PMID:19188589
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng
2018-02-01
A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.
Revil, A
2013-01-01
A model combining low-frequency complex conductivity and high-frequency permittivity is developed in the frequency range from 1 mHz to 1 GHz. The low-frequency conductivity depends on pore water and surface conductivities. Surface conductivity is controlled by the electrical diffuse layer, the outer component of the electrical double layer coating the surface of the minerals. The frequency dependence of the effective quadrature conductivity shows three domains. Below a critical frequency fp, which depends on the dynamic pore throat size Λ, the quadrature conductivity is frequency dependent. Between fp and a second critical frequency fd, the quadrature conductivity is generally well described by a plateau when clay minerals are present in the material. Clay-free porous materials with a narrow grain size distribution are described by a Cole-Cole model. The characteristic frequency fd controls the transition between double layer polarization and the effect of the high-frequency permittivity of the material. The Maxwell-Wagner polarization is found to be relatively negligible. For a broad range of frequencies below 1 MHz, the effective permittivity exhibits a strong dependence with the cation exchange capacity and the specific surface area. At high frequency, above the critical frequency fd, the effective permittivity reaches a high-frequency asymptotic limit that is controlled by the two Archie's exponents m and n like the low-frequency electrical conductivity. The unified model is compared with various data sets from the literature and is able to explain fairly well a broad number of observations with a very small number of textural and electrochemical parameters. It could be therefore used to interpret induced polarization, induction-based electromagnetic methods, and ground penetrating radar data to characterize the vadose zone. PMID:23576823
Subcritical-Water Extraction of Organics from Solid Matrices
NASA Technical Reports Server (NTRS)
Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles
2009-01-01
An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.
Jones, Ryan J. R.; Shinde, Aniketa; Guevarra, Dan; ...
2015-01-05
There are many energy technologies require electrochemical stability or preactivation of functional materials. Due to the long experiment duration required for either electrochemical preactivation or evaluation of operational stability, parallel screening is required to enable high throughput experimentation. We found that imposing operational electrochemical conditions to a library of materials in parallel creates several opportunities for experimental artifacts. We discuss the electrochemical engineering principles and operational parameters that mitigate artifacts int he parallel electrochemical treatment system. We also demonstrate the effects of resistive losses within the planar working electrode through a combination of finite element modeling and illustrative experiments. Operationmore » of the parallel-plate, membrane-separated electrochemical treatment system is demonstrated by exposing a composition library of mixed metal oxides to oxygen evolution conditions in 1M sulfuric acid for 2h. This application is particularly important because the electrolysis and photoelectrolysis of water are promising future energy technologies inhibited by the lack of highly active, acid-stable catalysts containing only earth abundant elements.« less
Parallel VLSI architecture emulation and the organization of APSA/MPP
NASA Technical Reports Server (NTRS)
Odonnell, John T.
1987-01-01
The Applicative Programming System Architecture (APSA) combines an applicative language interpreter with a novel parallel computer architecture that is well suited for Very Large Scale Integration (VLSI) implementation. The Massively Parallel Processor (MPP) can simulate VLSI circuits by allocating one processing element in its square array to an area on a square VLSI chip. As long as there are not too many long data paths, the MPP can simulate a VLSI clock cycle very rapidly. The APSA circuit contains a binary tree with a few long paths and many short ones. A skewed H-tree layout allows every processing element to simulate a leaf cell and up to four tree nodes, with no loss in parallelism. Emulation of a key APSA algorithm on the MPP resulted in performance 16,000 times faster than a Vax. This speed will make it possible for the APSA language interpreter to run fast enough to support research in parallel list processing algorithms.
Parallel iterative solution for h and p approximations of the shallow water equations
Barragy, E.J.; Walters, R.A.
1998-01-01
A p finite element scheme and parallel iterative solver are introduced for a modified form of the shallow water equations. The governing equations are the three-dimensional shallow water equations. After a harmonic decomposition in time and rearrangement, the resulting equations are a complex Helmholz problem for surface elevation, and a complex momentum equation for the horizontal velocity. Both equations are nonlinear and the resulting system is solved using the Picard iteration combined with a preconditioned biconjugate gradient (PBCG) method for the linearized subproblems. A subdomain-based parallel preconditioner is developed which uses incomplete LU factorization with thresholding (ILUT) methods within subdomains, overlapping ILUT factorizations for subdomain boundaries and under-relaxed iteration for the resulting block system. The method builds on techniques successfully applied to linear elements by introducing ordering and condensation techniques to handle uniform p refinement. The combined methods show good performance for a range of p (element order), h (element size), and N (number of processors). Performance and scalability results are presented for a field scale problem where up to 512 processors are used. ?? 1998 Elsevier Science Ltd. All rights reserved.
Effect of surface morphology on drag and roughness sublayer in flows over regular roughness elements
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharathram
2014-11-01
The effects of systematically varied roughness morphology on bulk drag and on the spatial structure of turbulent boundary layers are examined by performing a series of wind tunnel experiments. In this study, rough surfaces consisting of regularly and uniformly distributed LEGO™ bricks are employed. Twelve different patterns are adopted in order to methodically examine the individual effects of frontal solidity (λF, frontal area of the roughness elements per unit wall-parallel area) and plan solidity (λP, plan area of roughness elements per unit wall-parallel area), on both the bulk drag and the turbulence structure. A floating element friction balance based on Krogstad & Efros (2010) was designed and manufactured to measure the drag generated by the different surfaces. In parallel, high resolution planar and stereoscopic Particle Image Velocimetry (PIV) was applied to investigate the flow features. This talk will focus on the effects of each solidity parameter on the bulk drag and attempt to relate the observed trends to the flow structures in the roughness sublayer. Currently at City University London.
Slices: A Scalable Partitioner for Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, H. Q.; Ferraro, R. D.
1995-01-01
A parallel partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The element based partitioner can handle mixtures of different element types. All algorithms adopted in the partitioner are scalable, including a communication template for unpredictable incoming messages, as shown in actual timing measurements.
Dynamical properties of epitaxial ferroelectric superlattices
NASA Astrophysics Data System (ADS)
Kim, Y.; Gerhardt, R. A.; Erbil, A.
1997-04-01
The dynamical properties of epitaxial ferroelectric heterostructures have been investigated by studying the dielectric behavior under external electric field. A phenomenon with a giant permittivity was observed. At low frequencies, real permittivities as high as 420 000 have been measured. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field, correlating with the dc bias-field dependence of ac permittivities. We model these observations as a result of the motion of pinned domain-wall lattices, having sliding-mode motion at high electric fields. The good agreement between the experimental and theoretical results suggests that the deposited interdigitated electrode pattern plays a crucial role in controlling domain-wall dynamics. The pinning of the domain wall comes from a nucleation barrier to the creation of new domain walls.
[Experimental research and analysis on dielectric properties of blood in anemia mice].
Shen, Ben; Liang, Quiyan; Gao, Weiqi; You, Chu; Hong, Mengqi; Ma, Qing
2013-12-01
The conductivity and permittivity of blood in mice were measured by the AC electrical impedance method at frequency range of 0.1-100MHz, and then the changes of the Cole-Cole parameters of dielectric spectra of blood from phenylhydrazine-induced anemia mice were observed by numerical calculation and curve fitting residual analysis of the Cole-Cole equation. The results showed that hematocrit (Hct) of the mice with phenylhydrazine injection was significantly reduced; the permittivity(epsilon) spectroscopy of blood moved to the low insulating region and its permittivity decreased; conductivity (kappa) spectrum curve of blood moved to the high conductivity zone and conductivity increased; the 2nd characteristic frequency was lower than that in the normal group. There was phenylhydrazine dose dependent in the changes of the Cole-Cole parameters of dielectric spectra of blood.
NASA Astrophysics Data System (ADS)
Cochard, Charlotte; Guennou, Mael; Spielmann, Thiemo; van Hoof, Niels; Halpin, Alexei; Granzow, Torsten
2018-04-01
Optical damage limits the application range of congruent LiNbO3. This problem is commonly overcome by adding optical-damage-resistant cations. Here, the influence of doping with optical-damage-resistant Mg and Zn on the ionic and piezoelectric contributions to the dielectric permittivity is investigated in a broad frequency range (1 mHz-2 THz). It is shown that the two dopants have radically different influences on the variation of ionic permittivity with doping, in spite of their similarities with respect to the crystallographic structure. Raman spectroscopy reveals that the difference in permittivity can be traced to the effect of Mg and Zn doping on the susceptibility of the phonon modes. Both observations point to differences in the defect incorporation mechanisms.
Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid
NASA Astrophysics Data System (ADS)
Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.
2010-01-01
The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.
Precise measurement of dielectric anisotropy in ice Ih at 39 GHz
NASA Astrophysics Data System (ADS)
Matsuoka, Takeshi; Fujita, Shuji; Morishima, Shigenori; Mae, Shinji
1997-03-01
The dielectric permittivities parallel and perpendicular to the c axis (optic axis) of ice Ih were measured using an open resonator at 39 GHz in the temperature range 194-262 K. The dielectric anisotropy in ice at microwave frequencies is important for understanding remote sensing data in polar regions, obtained by ice radar and satellite-born microwave radar and radiometer. The measured samples were natural single-crystal ice collected from Mendenhall Glacier, Alaska. A very precise measurement was achieved by detecting two resonant peaks, one from the ordinary component and the other from the extraordinary component, simultaneously, from one sample. The real part of dielectric anisotropy, Δɛ'=ɛ∥c'-ɛ⊥c', at 39 GHz was 0.0339±0.0007 (1.07%±0.02%) at 252 K and slightly depended on temperature. Reference measurements at 1 MHz using parallel plate electrodes were also carried out. The measured dielectric anisotropy at microwave frequencies agrees very well with the value at 1 MHz. The absolute values of ɛ∥c' and ɛ⊥c' at 39 GHz were, respectively, smaller than those at 1 MHz and the difference was about 0.044 at 252 K. The results suggest that a small dispersion exists between GHz and MHz frequencies, but there is no frequency dependence in the value of anisotropy.
NASA Technical Reports Server (NTRS)
Afsar, Mohammed Nurul; Chi, Hua; Li, Xiaohui
1990-01-01
Complex refractive index and dielectric permittivity studies of presently used Space Shuttle tile materials at millimeter wavelengths reveal these tiles to exhibit similar absorption characteristics to those of fused silica materials. This absorption is mainly related to the water content in the specimen. A strong birefringence is observed at least in one of these fibrous refractory composite materials.
Transparent conducting oxides and production thereof
Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J
2014-05-27
Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.
Transparent conducting oxides and production thereof
Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.
2014-06-10
Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.
The Influence of Magnetic Field on Electrokinetic Potential of Colloidal Particles
NASA Astrophysics Data System (ADS)
Koshoridze, S. I.; Levin, Yu. K.
2018-06-01
The influence of a magnetic field on the electrokinetic potential of colloidal particles in a water flow oversaturated with deposited salts is reported. For the first time, the ionic hydration and dielectric permittivity of water in the double electrical layer are taken into consideration. It is demonstrated that the magnetic field influence is increased with the decreasing dielectric permittivity of water but is decreased due to ionic hydration.
Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Huang, Guisheng; Liu, Gaofeng; Yan, Xiao; Zhou, Huanfu
(1‑x)LiCuNb3O9-xBi(Mg0.5Zr0.5)O3 ceramics ((1‑x)LCN-xBMZ) with 0≤x≤0.08 were synthesized by a solid-state reaction method. The phase structure of (1‑x)LCN-xBMZ ceramics was characterized by X-ray diffraction (XRD), which revealed that the ceramics were distorted cubic perovskite structures. Apparent giant permittivity of 1.98×104-1.05×105 at 100kHz over the measured temperature range (25∘C-250∘C) was observed in the sintered (1‑x)LCN-xBMZ (0≤x≤0.08) ceramics. Especially for the sample of x=0.04, the temperature stability of permittivity was markedly increased (Δɛ/ɛ100∘C≤±15%), and high relative permittivity (>8.3×104) were obtained over a wide temperature range from 100∘C to 250∘C at 100kHz, which indicates that this ceramic is a promising dielectric material for elevated temperature dielectrics. The giant dielectric property of (1‑x)LCN-xBMZ ceramics are profoundly concerned with the Maxwell-Wagner effect.
Parallel algorithms for computation of the manipulator inertia matrix
NASA Technical Reports Server (NTRS)
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
Parallelism Effects and Verb Activation: The Sustained Reactivation Hypothesis
ERIC Educational Resources Information Center
Callahan, Sarah M.; Shapiro, Lewis P.; Love, Tracy
2010-01-01
This study investigated the processes underlying parallelism by evaluating the activation of a parallel element (i.e., a verb) throughout "and"-coordinated sentences. Four points were tested: (1) approximately 1,600ms after the verb in the first conjunct (PP1), (2) immediately following the conjunction (PP2), (3) approximately 1,100ms after the…
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.
1989-01-01
The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.
Electrical conductivity and dielectric behavior in sodium zinc divanadates
NASA Astrophysics Data System (ADS)
Sallemi, F.; Louati, B.; Guidara, K.
2014-11-01
The Na2ZnV2O7 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, Raman and impedance spectroscopy. The ac electrical conductivity and dielectric properties have been investigated in the frequency and temperature range of 200 Hz-1 MHz and 513 K-729 K, respectively. The direct current conductivity process is thermally activated. The frequency dependence of the conductivity is interpreted using the power law. The close values of activation energies obtained from the analysis of hopping frequency and dc conductivity implies that the transport is due to Na+ cation displacement parallel to (0 0 1) plane located between ZnO4 and VO4 tetrahedra. The evolution of the complex permittivity as a function of angular frequency was investigated. Several important parameters such as charge carrier concentration, ionic mobility and diffusion coefficient were determined. Thermodynamic parameters such as the free energy of activation ∆F, the enthalpy ∆H, and the change in entropy ∆S have been calculated.
Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying
2011-02-01
Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.
Microwave transmission measurements through a magnetic photonic crystal
NASA Astrophysics Data System (ADS)
Radwan, Mohamed Zein; Dewar, Graeme
We have measured the 12 - 18 GHz microwave transmission through, and the reflection from, a nickel zinc ferrite penetrated by a wire lattice. The metamaterial efficiently transmitted microwaves under conditions for which the index of refraction was negative. The wires, 0.29 mm in diameter, were threaded through Teflon tubes and centered in holes 1.7 mm in diameter drilled through the ferrite. The holes formed a square array with a lattice constant of 3.0 mm. A ferrite sample containing the wire array filled a length of 3.0 cm inside standard WR-62 waveguide and a static magnetic field between 0.042 and 13.0 kOe was applied parallel to the wires. We measured the transmission relative to an open waveguide and the reflection relative to a reflective metal plate across the waveguide face. We observed transmission modes at combinations of magnetic field and microwave frequency for which both the permeability of the ferrite and permittivity of the wire array were negative.
A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity.
Hamzah, Hayder; Abduljabar, Ali; Lees, Jonathan; Porch, Adrian
2018-03-19
A miniaturized 2.4 GHz re-entrant cavity has been designed, manufactured and tested as a sensor for microfluidic compositional analysis. It has been fully evaluated experimentally with water and common solvents, namely methanol, ethanol, and chloroform, with excellent agreement with the expected behaviour predicted by the Debye model. The sensor's performance has also been assessed for analysis of segmented flow using water and oil. The samples' interaction with the electric field in the gap region has been maximized by aligning the sample tube parallel to the electric field in this region, and the small width of the gap (typically 1 mm) result in a highly localised complex permittivity measurement. The re-entrant cavity has simple mechanical geometry, small size, high quality factor, and due to the high concentration of electric field in the gap region, a very small mode volume. These factors combine to result in a highly sensitive, compact sensor for both pure liquids and liquid mixtures in capillary or microfluidic environments.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
Parallel traveling-wave MRI: a feasibility study.
Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2012-04-01
Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.
Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements
NASA Astrophysics Data System (ADS)
Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.
2000-11-01
In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.
On nonlinear finite element analysis in single-, multi- and parallel-processors
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R.; Islam, M.; Salama, M.
1982-01-01
Numerical solution of nonlinear equilibrium problems of structures by means of Newton-Raphson type iterations is reviewed. Each step of the iteration is shown to correspond to the solution of a linear problem, therefore the feasibility of the finite element method for nonlinear analysis is established. Organization and flow of data for various types of digital computers, such as single-processor/single-level memory, single-processor/two-level-memory, vector-processor/two-level-memory, and parallel-processors, with and without sub-structuring (i.e. partitioning) are given. The effect of the relative costs of computation, memory and data transfer on substructuring is shown. The idea of assigning comparable size substructures to parallel processors is exploited. Under Cholesky type factorization schemes, the efficiency of parallel processing is shown to decrease due to the occasional shared data, just as that due to the shared facilities.
Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.
Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C
2012-10-01
Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Generalizing the TRAPRG and TRAPAX finite elements
NASA Technical Reports Server (NTRS)
Hurwitz, M. M.
1983-01-01
The NASTRAN TRAPRG and TRAPAX finite elements are very restrictive as to shape and grid point numbering. The elements must be trapezoidal with two sides parallel to the radial axis. In addition, the ordering of the grid points on the element connection card must follow strict rules. The paper describes the generalization of these elements so that these restrictions no longer apply.
New Ultra-Low Permittivity Composites for Use in Ceramic Packaging of Ga:As Integrated Circuits
1986-08-11
200 400 600 800 1000 SOAK TEMPERATURE (-C) Figure 8. Effect of leaching and heat treatment on relative permittivity of porous vycor glass. measured by...thermal treatment in strength, shrinkage and dielectric properties. 22 - The feasibility of tape casting calcium aluminate cement into thin substrates...materials. (3) Vibro-compaction and calandering of cements containing microspheres. (4) Heat treatment of the polymer-containing materials. 23 V
Use of microstrip patch antennas in grain and pulverized materials permittivity measurement
El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.
2003-01-01
A free-space microwave system developed for the measurement of the relative complex permittivity of granular materials and of pulverized materials was reported. The system consists of a transmitting antenna and a receiving antenna separated by a space filled by the sample to be characterized and a network analyzer for transmission measurement. The receiving antenna was mounted on a movable plate, which gives the flexibility of having different sample thicknesses.
DIFFERENTIAL FAULT SENSING CIRCUIT
Roberts, J.H.
1961-09-01
A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.
2010-05-01
connections near the hub end, and containing up to 0.48 million degrees of freedom. The models are analyzed for scala - bility and timing for hover and...Parallel and Scalable Rotor Dynamic Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...will enable the modeling of critical couplings that occur in hingeless and bearingless hubs with advanced flex structures. Second , it will enable the
Electromechanical Materials for Cryogenic Use
NASA Technical Reports Server (NTRS)
Leidinger, Peter; Pilgrim, Steven M.
1996-01-01
Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.
Space charge effects on the dielectric response of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang
2017-08-01
Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.
Measurement Of Multiphase Flow Water Fraction And Water-cut
NASA Astrophysics Data System (ADS)
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
NASA Astrophysics Data System (ADS)
Wu, Fan; Zeng, Qiao; Xia, Yilu; Sun, Mengxiao; Xie, Aming
2018-05-01
Reduced graphene oxide (RGO) has been prepared through the thermal reduction method with different annealing temperatures to explore the effects of temperature on the permittivity and electromagnetic attenuation performance. The real and imaginary parts of permittivity increase along with the decrease in the oxygen functional group and the increase in the filler loading ratio. A composite only loaded with 1 wt. % of RGO can possess an effective electromagnetic absorption bandwidth of 7.60 GHz, when graphene oxide was reduced under 300 °C for 2 h. With the annealing temperature increased to 700 °C and the well reduced RGO loaded 7 wt. % in the composite, the electromagnetic interference shielding efficiency can get higher than 35 dB from 2 to 18 GHz. This study shows that controlling the oxygen functional groups on the RGO surface can also obtain an ideal electromagnetic attenuation performance without any other decorated nanomaterials.
Analytic description of microcylindrical cavity for surface plasmon polariton
NASA Astrophysics Data System (ADS)
Tekkozyan, Vahan; Babajanyan, Arsen; Nerkararyan, Khachatur
2013-09-01
We consider the formation of the surface plasmon polariton (SPP) mode in the microcylinder cavity. Developed theoretical model allows to analytically calculate the closed-form expressions for the mode field distributions, resonant frequency, as well as the radiation and dissipative parts of quality factor of the structure in a broad wavelength range. For the conditions when a radius of a metallic cylinder is in order of SPP's wavelength, the highest value of Q-factor is achieved in infrared region of the spectrum where the absolute value of the real part of dielectric permittivity of the metal is much more than both the imaginary part of dielectric permittivity of the metal and the dielectric permittivity of surrounding media. Also, the radiation losses decrease with increasing of radius of cylinder. The obtained results give opportunity to find optimal conditions for having efficient emission in microcylinder cavity and it can serve as practical guidelines to design SPP microcavity for stimulated emission.
NASA Astrophysics Data System (ADS)
Thu'o'ng, Nguyen Hoai; Sidorkin, A. S.; Milovidova, S. D.
2018-03-01
The dispersion of dielectric permittivity in nanocrystalline cellulose-triglycine sulfate composites is studied in the range of frequencies from 10-3 to 106 Hz, at temperatures varying from room temperature to the temperature of phase transition in this composite (54°C), in weak electric fields (1 V cm-1). Two behaviors for the dielectric dispersion are identified in the studied frequency range: at ultralow frequencies (10-3-10 Hz), the dispersion is due to Maxwell-Wagner polarization, while at higher frequencies (10-106 Hz), the dispersion is due to the movement of domain walls in the embedded triglycine sulfate crystallites. An additional peak in the temperature-dependent profiles of dielectric permittivity is detected at lower temperatures in freshly prepared samples of the considered composite; we associate it with the presence of residual water in these samples.
Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun
2015-01-01
The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999
Liu, Tian; Wood, Weston; Zhong, Wei-Hong
2011-12-01
We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω)=ɛ'-jɛ″ of the binary mixture of 2-chloroaniline(2-CA) and methanol (MeOH) were measured using precision LCR meter in the frequency range of 10 KHz to 2 MHz The measurements were carried out at eight different temperatures and five different concentrations of 2-CA and MeOH. The loss tangent peaks were observed in the studied frequency range for all the binary mixtures. From the loss tangent peaks electrode polarization relaxation time were evaluated. In the plot of real part of complex permittivity against frequency, at different temperatures for 2-CA (54.54%) + MeOH (45.45%) and 2-CA (27.27%) + MeOH (72.72%)and 100% MeOH systems permittivity inversion effect was observed.
Permittivity and conductivity parameter estimations using full waveform inversion
NASA Astrophysics Data System (ADS)
Serrano, Jheyston O.; Ramirez, Ana B.; Abreo, Sergio A.; Sadler, Brian M.
2018-04-01
Full waveform inversion of Ground Penetrating Radar (GPR) data is a promising strategy to estimate quantitative characteristics of the subsurface such as permittivity and conductivity. In this paper, we propose a methodology that uses Full Waveform Inversion (FWI) in time domain of 2D GPR data to obtain highly resolved images of the permittivity and conductivity parameters of the subsurface. FWI is an iterative method that requires a cost function to measure the misfit between observed and modeled data, a wave propagator to compute the modeled data and an initial velocity model that is updated at each iteration until an acceptable decrease of the cost function is reached. The use of FWI with GPR are expensive computationally because it is based on the computation of the electromagnetic full wave propagation. Also, the commercially available acquisition systems use only one transmitter and one receiver antenna at zero offset, requiring a large number of shots to scan a single line.
Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.
Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid
2014-01-01
Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.
Metasurface polarization splitter
Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I.; Briggs, Dayrl P.; Moitra, Parikshit; Krishnamurthy, Srini
2017-01-01
Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220002
Tailorable Dielectric Material with Complex Permittivity Characteristics
NASA Technical Reports Server (NTRS)
Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Elliott, Holly A (Inventor); Delozier, Donavon Mark (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Dudley, Kenneth L. (Inventor)
2014-01-01
A dielectric material includes a network of nanosubstrates, such as but not limited to nanotubes, nanosheets, or other nanomaterials or nanostructures, a polymer base material or matrix, and nanoparticles constructed at least partially of an elemental metal. The network has a predetermined nanosubstrate loading percentage by weight with respect to a total weight of the dielectric material, and a preferential or predetermined longitudinal alignment with respect to an orientation of an incident electrical field. A method of forming the dielectric material includes depositing the metal-based nanoparticles onto the nanosubstrates and subsequently mixing these with a polymer matrix. Once mixed, alignment can be achieved by melt extrusion or a similar mechanical shearing process. Alignment of the nanosubstrate may be in horizontal or vertical direction with respect to the orientation of an incident electrical field.
Investigation of wall-bounded turbulence over sparsely distributed roughness
NASA Astrophysics Data System (ADS)
Placidi, Marco; Ganapathisubramani, Bharath
2011-11-01
The effects of sparsely distributed roughness elements on the structure of a turbulent boundary layer are examined by performing a series of Particle Image Velocimetry (PIV) experiments in a wind tunnel. From the literature, the best way to characterise a rough wall, especially one where the density of roughness elements is sparse, is unclear. In this study, rough surfaces consisting of sparsely and uniformly distributed LEGO® blocks are used. Five different patterns are adopted in order to examine the effects of frontal solidity (λf, frontal area of the roughness elements per unit wall-parallel area), plan solidity (λp, plan area of roughness elements per unit wall-parallel area) and the geometry of the roughness element (square and cylindrical elements), on the turbulence structure. The Karman number, Reτ , has been matched, at the value of approximately 2300, in order to compare across the different cases. In the talk, we will present detailed analysis of mean and rms velocity profiles, Reynolds stresses and quadrant decomposition.
Parallel 3D Finite Element Numerical Modelling of DC Electron Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudencio, E.; Candel, A.; Ge, L.
2008-02-04
In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
NASA Technical Reports Server (NTRS)
Sharma, Naveen
1992-01-01
In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.
Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder
NASA Astrophysics Data System (ADS)
Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.
2014-12-01
SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and Apu, Amazonian layered plateaus). From this analysis, the south polar cap could be covered by a thin frozen carbon dioxide coating. The perennial south polar cap is probably made of frozen carbon dioxide ca. 8 meters thick.
Study of the low-frequency dispersion of permittivity and resistivity in tight rocks
NASA Astrophysics Data System (ADS)
Liu, Hongqi; Jie, Tian; Li, Bo; Youming, Deng; Chunning, Qiu
2017-08-01
The road to understanding the frequency dispersion (relaxation) of permittivity and resistivity in tight rocks remains relatively uncharted. Our team from Da'anzhai Group, Jurassic formation, Sichuan Basin carried out practical research to explore this phenomenon. The research was conducted under laboratory conditions for a selection of low frequencies, with ranges between 0.1 Hz to 1 kHz. Our research has shown that, although both the permittivity and resistivity decrease as the frequency increases, the two individual metrics display different behaviours when compared with each other. While the degree of resistivity variation is minimal, to the point that it is redundant, the permittivity, on the other hand, demonstrates something that is scientifically noteworthy. Permittivity has a distinctive dispersion degree across the entire sample of frequencies and the difference between the minimum and maximum frequencies is several orders of magnitude. An additional, and unexpected, learning from our research is that the level of frequency dispersion increases as the water saturation and concentration increases. In this paper, a collection of equations has been formulated to describe this relationship. These equations particularly shed light on the areas of rock porosity and saturation. They also show that the degree of frequency dispersion of permittivity or resistivity can be used as a function of water saturation and concentration. Two new variables are introduced here, DR and DC, to demonstrate the relaxation law quantitatively. In our practical research, we have characterised the relationship between the saturation and concentration with dielectric relaxation, using three different concentrations of DR and DC and five different saturations of NaCl solution. In difference to conventional Archie's multiple experimental parameters, we have established a new formula to derive the saturation from Rp and Cp, or from DR and DC directly. Two important frequencies were also further investigated for Cp dispersion: first is the critical frequency, which marks the dispersion speed change from steep phase to steady phase, and second is the zero-frequency, which marks the dispersion when it approaches zero. All tight rocks were measured under the same conditions, with the results displaying the same pattern of variations. The results have led us to believe that Cp's frequency dispersion at low-frequencies provides a new methodology to characterise tight rocks.
Radio frequency (RF) microwave components and subsystems using loaded ridge waveguide
Kang, Yoon W.
2013-08-20
A waveguide having a non-conductive material with a high permeability (.mu., .mu..sub.r for relative permeability) and/or a high permittivity (.di-elect cons., .di-elect cons..sub.r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by .varies..mu. ##EQU00001## The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-01-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713
NASA Astrophysics Data System (ADS)
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-06
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
An instrument for measuring the complex permittivity of the Martian top soil
NASA Technical Reports Server (NTRS)
Grard, R.
1988-01-01
This permittivity measuring instrument measures the resistivity rho and the relative dielectric constant epsilon sub r of the Martian top soil along the path of a rover. This aim is achieved by measuring the real and imaginary parts of the complex permittivity epsilon = epsilon sub r - j epsilon sub i where epsilon sub i = omega epsilon sub o rho/1; epsilon sub 1 is the permittivity of vacuum and omega is a variable angular working frequency. The experimental technique consists in evaluating the mutual, or transfer, impedance of a quadrupolar probe, i.e., in quantifying the influence of the Martian ground on the electrical coupling of two Hertz dipoles. The horizontal and vertical spatial resolutions are of the order of the length and separation of the dipoles, typically 1 to 2 metres. The four-electrode method for measuring the ground resistivity on earth was first applied by Wenner and Schlumberger, but the proposed investigation bears closer resemblance to a similar instrument developed for ground surveying at shallow depth, in connection with archaelogical and pedological research. A quadrupolar probe will provide essential information about the electric properties of the Martian ground and will contribute usefully to the identification of the soil structure and composition in association with other experimental equipment (camera, infra-red detector, gamma and X-ray spectrometers, chemical analyzers, ground temperature probes).
NASA Astrophysics Data System (ADS)
Miao, Ludi; Xin, Yan; Zhu, Huiwen; Xu, Hong; Luo, Sijun; Talbayev, Diyar; Stanislavchuk, T. N.; Sirenko, A. A.; Mao, Zhiqiang
2014-03-01
Materials with colossal permittivity (CP) at room temperature hold tremendous promise in modern microelectronics as well as high-energy-density storage applications. Despite several proposed mechanisms that lead torecent discoveries of a series of new CP materials such as Nb, In co-doped TiO2 and CaCu3Ti4O12 ceramics, it is imperative to find other approaches which can further guide the search for new CP materials. In this talk, we will demonstrate a new mechanism for CP: the breaking of mirror reflection symmetry of lattice can cause CP. This mechanism was revealed in a new layered iridate Ba7Ir3O13+x (BIO) thin film we recently discovered. Structural characterization of BIO films show that its mirror reflection symmetry is broken along b-axis, but preserved along a- and c-axes. Dielectric property measurements of BIO films at room temperature show a CP (103-10<4) along the in-plane direction, but a much smaller permittivity (10- 20) along the c-axis, in the 102- 106 Hz frequency range. Such unusually large anisotropy in permittivity testifies to the significant role of the structural in-plane mirror reflection symmetry breaking in inducing CP. This work is supported by DOD-ARO under Grant No. W911NF0910530.
Schmidt, Rita; Webb, Andrew
2016-01-01
Electrical Properties Tomography (EPT) using MRI is a technique that has been developed to provide a new contrast mechanism for in vivo imaging. Currently the most common method relies on the solution of the homogeneous Helmholtz equation, which has limitations in accurate estimation at tissue interfaces. A new method proposed in this work combines a Maxwell's integral equation representation of the problem, and the use of high permittivity materials (HPM) to control the RF field, in order to reconstruct the electrical properties image. The magnetic field is represented by an integral equation considering each point as a contrast source. This equation can be solved in an inverse method. In this study we use a reference simulation or scout scan of a uniform phantom to provide an initial estimate for the inverse solution, which allows the estimation of the complex permittivity within a single iteration. Incorporating two setups with and without the HPM improves the reconstructed result, especially with respect to the very low electric field in the center of the sample. Electromagnetic simulations of the brain were performed at 3T to generate the B1(+) field maps and reconstruct the electric properties images. The standard deviations of the relative permittivity and conductivity were within 14% and 18%, respectively for a volume consisting of white matter, gray matter and cerebellum. Copyright © 2015 Elsevier Inc. All rights reserved.
A Dynamic Finite Element Method for Simulating the Physics of Faults Systems
NASA Astrophysics Data System (ADS)
Saez, E.; Mora, P.; Gross, L.; Weatherley, D.
2004-12-01
We introduce a dynamic Finite Element method using a novel high level scripting language to describe the physical equations, boundary conditions and time integration scheme. The library we use is the parallel Finley library: a finite element kernel library, designed for solving large-scale problems. It is incorporated as a differential equation solver into a more general library called escript, based on the scripting language Python. This library has been developed to facilitate the rapid development of 3D parallel codes, and is optimised for the Australian Computational Earth Systems Simulator Major National Research Facility (ACcESS MNRF) supercomputer, a 208 processor SGI Altix with a peak performance of 1.1 TFlops. Using the scripting approach we obtain a parallel FE code able to take advantage of the computational efficiency of the Altix 3700. We consider faults as material discontinuities (the displacement, velocity, and acceleration fields are discontinuous at the fault), with elastic behavior. The stress continuity at the fault is achieved naturally through the expression of the fault interactions in the weak formulation. The elasticity problem is solved explicitly in time, using the Saint Verlat scheme. Finally, we specify a suitable frictional constitutive relation and numerical scheme to simulate fault behaviour. Our model is based on previous work on modelling fault friction and multi-fault systems using lattice solid-like models. We adapt the 2D model for simulating the dynamics of parallel fault systems described to the Finite-Element method. The approach uses a frictional relation along faults that is slip and slip-rate dependent, and the numerical integration approach introduced by Mora and Place in the lattice solid model. In order to illustrate the new Finite Element model, single and multi-fault simulation examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, Roger L.
The Revised Eolus Grid Library (REGL) is a mesh-tracking library that was developed for use with the MCNP6TM computer code so that (radiation) particles can track on an unstructured mesh. The unstructured mesh is a finite element representation of any geometric solid model created with a state-of-the-art CAE/CAD tool. The mesh-tracking library is written using modern Fortran and programming standards; the library is Fortran 2003 compliant. The library was created with a defined application programmer interface (API) so that it could easily integrate with other particle tracking/transport codes. The library does not handle parallel processing via the message passing interfacemore » (mpi), but has been used successfully where the host code handles the mpi calls. The library is thread-safe and supports the OpenMP paradigm. As a library, all features are available through the API and overall a tight coupling between it and the host code is required. Features of the library are summarized with the following list: Can accommodate first and second order 4, 5, and 6-sided polyhedra; any combination of element types may appear in a single geometry model; parts may not contain tetrahedra mixed with other element types; pentahedra and hexahedra can be together in the same part; robust handling of overlaps and gaps; tracks element-to-element to produce path length results at the element level; finds element numbers for a given mesh location; finds intersection points on element faces for the particle tracks; produce a data file for post processing results analysis; reads Abaqus .inp input (ASCII) files to obtain information for the global mesh-model; supports parallel input processing via mpi; and support parallel particle transport by both mpi and OpenMP.« less
Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
Bunting, Gregory; Prakash, Arun; Walsh, Timothy; ...
2018-01-26
Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less
Parallel Ellipsoidal Perfectly Matched Layers for Acoustic Helmholtz Problems on Exterior Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunting, Gregory; Prakash, Arun; Walsh, Timothy
Exterior acoustic problems occur in a wide range of applications, making the finite element analysis of such problems a common practice in the engineering community. Various methods for truncating infinite exterior domains have been developed, including absorbing boundary conditions, infinite elements, and more recently, perfectly matched layers (PML). PML are gaining popularity due to their generality, ease of implementation, and effectiveness as an absorbing boundary condition. PML formulations have been developed in Cartesian, cylindrical, and spherical geometries, but not ellipsoidal. In addition, the parallel solution of PML formulations with iterative solvers for the solution of the Helmholtz equation, and howmore » this compares with more traditional strategies such as infinite elements, has not been adequately investigated. In this study, we present a parallel, ellipsoidal PML formulation for acoustic Helmholtz problems. To faciliate the meshing process, the ellipsoidal PML layer is generated with an on-the-fly mesh extrusion. Though the complex stretching is defined along ellipsoidal contours, we modify the Jacobian to include an additional mapping back to Cartesian coordinates in the weak formulation of the finite element equations. This allows the equations to be solved in Cartesian coordinates, which is more compatible with existing finite element software, but without the necessity of dealing with corners in the PML formulation. Herein we also compare the conditioning and performance of the PML Helmholtz problem with infinite element approach that is based on high order basis functions. On a set of representative exterior acoustic examples, we show that high order infinite element basis functions lead to an increasing number of Helmholtz solver iterations, whereas for PML the number of iterations remains constant for the same level of accuracy. Finally, this provides an additional advantage of PML over the infinite element approach.« less
student, he developed a parallel spectral finite element method for treating the interaction of large mechanics of fluids, structures, and their interaction|Spectral finite-element methods for time-dependent
Programming Probabilistic Structural Analysis for Parallel Processing Computer
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Chamis, Christos C.; Murthy, Pappu L. N.
1991-01-01
The ultimate goal of this research program is to make Probabilistic Structural Analysis (PSA) computationally efficient and hence practical for the design environment by achieving large scale parallelism. The paper identifies the multiple levels of parallelism in PSA, identifies methodologies for exploiting this parallelism, describes the development of a parallel stochastic finite element code, and presents results of two example applications. It is demonstrated that speeds within five percent of those theoretically possible can be achieved. A special-purpose numerical technique, the stochastic preconditioned conjugate gradient method, is also presented and demonstrated to be extremely efficient for certain classes of PSA problems.
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
NASA Astrophysics Data System (ADS)
Brouet, Yann; Levasseur-Regourd, Anny-Chantal; Encrenaz, Pierre; Sabouroux, Pierre; Heggy, Essam; Kofman, Wlodek; Thomas, Nick
2015-04-01
The Rosetta mission has successfully rendezvous comet 67P/Churyumov-Gerasimenko (hereafter 67P) last year and landed Philae module on its nucleus on 12 November it 2014. Among instruments onboard Rosetta, MIRO [1], composed of two radiometers, with receivers at 190 GHz and 563 GHz (center-band), is dedicated to the measurements of the subsurface and surface brightness temperatures. These values depend on the complex relative permittivity (hereafter permittivity) with ɛ' and ɛ'' the real and imaginary parts. The permittivity of the material depends on frequency, bulk density/porosity, composition and temperature [2]. Considering the very low bulk density of 67P nucleus (about 450 kg.m-3 [3]) and the suspected presence of a dust mantle in many areas of the nucleus [4], investigations on the permittivity of porous granular samples are needed to support the interpretation of MIRO data, as well as of other microwave experiments onboard Rosetta, e.g. CONSERT [5], a bistatic penetrating radar working at 90 MHz. We have developed a programme of permittivity measurements on porous granular samples over a frequency range from 50 MHz to 190 GHz under laboratory conditions (e.g. [6] and [7]). We present new results obtained on JSC-1A lunar soil simulant and ashes from Etna. The samples were split into several sub-samples with different size ranges covering a few to 500 μm. Bulk densities of the sub-samples were carefully measured and found to be in the 800-1400 kg.m-3 range. Sub-samples were also dried and volumetric moisture content was found to be below 0.6%. From 50 MHz to 6 GHz and at 190 GHz, the permittivity has been determined, respectively with a coaxial cell and with a quasi-optical bench mounted in transmission, both connected to a vector network analyzer. The results demonstrate the dispersive behaviours of ɛ' between 50 MHz and 190 GHz. Values of ɛ' remain within the 3.9-2.6 range for all sub-samples. At CONSERT frequency, ɛ'' is within the 0.01-0.09 range for all sub-samples. The single-relaxation Debye model fits relatively well the global behaviour of ɛ' over the frequency range, thus validating the experimental setups and measurements obtained. Furthermore, results confirm that ɛ' decreases quasi-linearly with the decreasing bulk density at any frequency, as expected by the mixing formulae. Taking into account possible temperature variations within 67P nucleus [8] and the linear decrease of the permittivity with the temperature, as measured by [9] on JSC-1A sample, these results indicate that, on the near-surface of 67P covered by a free-ice dust mantle at the frequencies of MIRO and CONSERT, ɛ' is likely to be in the 1.1-1.8 range and ɛ'' is likely to be below 0.05. [1]Gulkis et al. (2007) SSR, 128, 561. [2]Ulaby. and Long D. (2014) Univ. Michigan Press. [3]Sierks et al. (2015), in prep. [4]Thomas et al. (2015), in prep. [5]Kofman et al. (2007) SSR, 128, 413. [6]Brouet (2013), PhD Thesis, Univ. P. & M. Curie. [7]Brouet et al. (2014) PSS, 103, 143. [8]De Sanctis et al. (2005), A&A, 444, 605. [9]Calla & Rathore (2012), ASR, 50, 1607
Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars
Carter, L.M.; Campbell, B.A.; Watters, T.R.; Phillips, R.J.; Putzig, N.E.; Safaeinili, A.; Plaut, J.J.; Okubo, C.H.; Egan, A.F.; Seu, R.; Biccari, D.; Orosei, R.
2009-01-01
The SHARAD (shallow radar) sounding radar on the Mars Reconnaissance Orbiter detects subsurface reflections in the eastern and western parts of the Medusae Fossae Formation (MFF). The radar waves penetrate up to 580 m of the MFF and detect clear subsurface interfaces in two locations: west MFF between 150 and 155?? E and east MFF between 209 and 213?? E. Analysis of SHARAD radargrams suggests that the real part of the permittivity is ???3.0, which falls within the range of permittivity values inferred from MARSIS data for thicker parts of the MFF. The SHARAD data cannot uniquely determine the composition of the MFF material, but the low permittivity implies that the upper few hundred meters of the MFF material has a high porosity. One possibility is that the MFF is comprised of low-density welded or interlocked pyroclastic deposits that are capable of sustaining the steep-sided yardangs and ridges seen in imagery. The SHARAD surface echo power across the MFF is low relative to typical martian plains, and completely disappears in parts of the east MFF that correspond to the radar-dark Stealth region. These areas are extremely rough at centimeter to meter scales, and the lack of echo power is most likely due to a combination of surface roughness and a low near-surface permittivity that reduces the echo strength from any locally flat regions. There is also no radar evidence for internal layering in any of the SHARAD data for the MFF, despite the fact that tens-of-meters scale layering is apparent in infrared and visible wavelength images of nearby areas. These interfaces may not be detected in SHARAD data if their permittivity contrasts are low, or if the layers are discontinuous. The lack of closely spaced internal radar reflectors suggests that the MFF is not an equatorial analog to the current martian polar deposits, which show clear evidence of multiple internal layers in SHARAD data. ?? 2008 Elsevier Inc.
Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar
2008-12-01
Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Vera, N. C.; GMMC
2013-05-01
In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.
A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
Anomalous thermal hysteresis in dielectric permittivity of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Wang, C. C.; Zhang, L. W.
2008-03-01
We herein report an anomalous thermal hysteresis in dielectric permittivity in CaCu3Ti4O12. The anomalous behavior was well explained in terms of the low-temperature Maxwell-Wagner relaxation induced by frozen carriers. A multirelaxation mechanism, i.e., the coupling of the dipole relaxation to the frozen carrier-induced and blocked carrier-induced Maxwell-Wagner relaxations in the low-temperature and high-temperature regions, respectively, is proposed to be the origin of the colossal dielectric constant.
Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.
Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł
2016-12-01
The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.
Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids
NASA Astrophysics Data System (ADS)
Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł
2016-08-01
The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.
Bounds on quantum confinement effects in metal nanoparticles
NASA Astrophysics Data System (ADS)
Blackman, G. Neal; Genov, Dentcho A.
2018-03-01
Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.
Numerical Analysis of Permittivity with Loss in Isotropic Binary Composites
1992-06-01
even) 8080 Sqvi = 1/4 of squate whose edges are: Lszi*Lszi 8090 Bilv = the number of nodes between bilayers z={l,2 3,4 5,6 8100 INTEGER Lyri,Swi,Ovri...610 1 COMmon Memory 620 COM /Info/ INTEGER Dsrc,Kond,Ptrn,Knj, Spcs ,Meth,Back,Sgj,Svr,Fln$[80J,Msd$[60],COMPL...Periodic or wrap around 780 ! Ptrn = Pixel fill pattern choice 790 ! Knj = permittivity conjugation, 0=none l=alternating 2=averaged 800 1 Spcs = number
Microwave techniques for measuring complex permittivity and permeability of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillon, P.
1995-08-01
Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.
NASA Astrophysics Data System (ADS)
Hudge, Pravin G.; Lokhande, Milind P.; Kumbharkhane, Ashok C.
2012-09-01
Complex permittivity spectra of aqueous solutions of monosaccharide ( d-glucose) and disaccharides ( d-sucrose) in the frequency range from 10 MHz to 30 GHz at various concentrations and temperatures have been determined using time domain reflectometry technique. The complex dielectric permittivity spectrum of d-glucose and d-sucrose in water shows Cole-Davidson type behaviour. Dielectric constant (ɛ0) and relaxation time (τ), Kirkwood correlation factor, activation enthalpy and entropy parameters have been determined.
NASA Astrophysics Data System (ADS)
Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.
2017-01-01
In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.
Photonic spectra of a Bragg microresonator with a ferroelectric resonator layer
NASA Astrophysics Data System (ADS)
Fedorova, Irina V.; Eliseeva, Svetlana V.; Sementsov, Dmitrij I.
2018-05-01
Transmission spectra of a photonic crystal resonator structure have been obtained where the Bragg dielectric mirrors contain a finite number of periods with an inverted order of layers and the resonator layer is made of a ferroelectric with a permittivity many times exceeding the permittivity of the layers in Bragg mirrors. Almost a complete transmission suppression was detected not only in the photonic band gap (except for a narrow region of the defect mode), but also outside the forbidden band.
Conformational analysis of some 4‧-substituted 2-(phenylselanyl)- 2-(methoxy)- acetophenones
NASA Astrophysics Data System (ADS)
Traesel, Henrique J.; Olivato, Paulo R.; Valença, J.; Rodrigues, Daniel N. S.; Zukerman-Schpector, Julio; Colle, Maurizio Dal
2018-04-01
A conformational study of some 4‧-substituited 2-(phenylselanyl)-2-(methoxy)-acetophenones (OMe 1, H 2, and Cl 3) was performed using IR carbonyl stretching band analysis supported by NBO and PCM calculations at the B3LYP/6-31 + G (d,p) level for 1-3 and using X-ray diffraction for 1 and 2. The computational results indicated the existence of three stable conformers for the series (c2, c3, and c1 in order of decreasing stability), whose relative abundance changes with solvent permittivity. The experimental trend observed for the components of the triplet carbonyl band in all solvents matches well with computational results and thus allows for their assignment to distinct conformers. The relative population of the c1 conformer increases in more polar solvents, becoming the most stable conformer in the highest permittivity solvent, acetonitrile, as indicated by IR spectra and PCM calculations. These findings are related to the quasi parallel geometry assumed by the Cδ+ = Oδ- and Cδ+-Oδ- dipoles, which favour stronger solvation. NBO analysis shows that the sum of the energies (ΣE) of the relevant orbital interactions stabilizes the c3 conformer of 1-3 slightly, likely due to the minor contribution of the LPO5→σ*C3sbnd Se10 interaction. However, only the c1 conformer is significantly destabilized by the Oδ-(1)CO … Oδ-(5)OMe short contact electrostatic repulsion, which is also responsible for its highest νCO frequency. In addition, the LPO5→ σ*C2sbnd C3 orbital interaction accounts for the lowest νCO frequency of c3 conformer. X-ray single crystal analysis of compounds 1 and 2 indicates that in the solid state they assume the least stable c1 conformation found in the gas phase. Molecules of these compounds are stabilized in the crystal through a series of Csbnd H⋯O and Csbnd H … π intermolecular interactions.
Chatterjee, Siddhartha [Yorktown Heights, NY; Gunnels, John A [Brewster, NY
2011-11-08
A method and structure of distributing elements of an array of data in a computer memory to a specific processor of a multi-dimensional mesh of parallel processors includes designating a distribution of elements of at least a portion of the array to be executed by specific processors in the multi-dimensional mesh of parallel processors. The pattern of the designating includes a cyclical repetitive pattern of the parallel processor mesh, as modified to have a skew in at least one dimension so that both a row of data in the array and a column of data in the array map to respective contiguous groupings of the processors such that a dimension of the contiguous groupings is greater than one.
Exploiting parallel computing with limited program changes using a network of microcomputers
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.; Sobieszczanski-Sobieski, J.
1985-01-01
Network computing and multiprocessor computers are two discernible trends in parallel processing. The computational behavior of an iterative distributed process in which some subtasks are completed later than others because of an imbalance in computational requirements is of significant interest. The effects of asynchronus processing was studied. A small existing program was converted to perform finite element analysis by distributing substructure analysis over a network of four Apple IIe microcomputers connected to a shared disk, simulating a parallel computer. The substructure analysis uses an iterative, fully stressed, structural resizing procedure. A framework of beams divided into three substructures is used as the finite element model. The effects of asynchronous processing on the convergence of the design variables are determined by not resizing particular substructures on various iterations.
A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains
NASA Astrophysics Data System (ADS)
Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.
2018-02-01
A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.
Computer architecture evaluation for structural dynamics computations: Project summary
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1989-01-01
The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.
Efficient partitioning and assignment on programs for multiprocessor execution
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1993-01-01
The general problem studied is that of segmenting or partitioning programs for distribution across a multiprocessor system. Efficient partitioning and the assignment of program elements are of great importance since the time consumed in this overhead activity may easily dominate the computation, effectively eliminating any gains made by the use of the parallelism. In this study, the partitioning of sequentially structured programs (written in FORTRAN) is evaluated. Heuristics, developed for similar applications are examined. Finally, a model for queueing networks with finite queues is developed which may be used to analyze multiprocessor system architectures with a shared memory approach to the problem of partitioning. The properties of sequentially written programs form obstacles to large scale (at the procedure or subroutine level) parallelization. Data dependencies of even the minutest nature, reflecting the sequential development of the program, severely limit parallelism. The design of heuristic algorithms is tied to the experience gained in the parallel splitting. Parallelism obtained through the physical separation of data has seen some success, especially at the data element level. Data parallelism on a grander scale requires models that accurately reflect the effects of blocking caused by finite queues. A model for the approximation of the performance of finite queueing networks is developed. This model makes use of the decomposition approach combined with the efficiency of product form solutions.
A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array
Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo
2014-01-01
The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011
Enhancement of polar phase and conductivity relaxation in PIL-modified GO/PVDF composites
NASA Astrophysics Data System (ADS)
Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng
2018-02-01
To investigate the effect of graphene oxide (GO) modified by polymerized ionic liquid (PIL) on the crystallization and dielectric relaxation of poly(vinylidene fluoride) (PVDF), a series of PVDF composites have been prepared using the solution casting method. The ion-dipole interaction between PIL and >CF2 and the π-dipole interaction between GO and >CF2 can induce synergistically the polar phase, and the π-ion interaction between GO and PIL can strengthen the induction effect of the polar phase and decrease the degree of crystallization of PVDF. The electric modulus and conductivity relaxation are employed to analyze the experimental complex dielectric permittivity. In the frequency spectra of complex permittivity of PVDF composites, space charge polarization and conductivity lead to a large value of dielectric permittivity. The temperature dependence of relaxation time of conductivity relaxation accords with the Arrhenius equation. A low degree of crystallization, more ion concentration, and polar phase in PVDF/PIL/GO enhance the movement of the polymer chain segment and charge carriers.
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Dongxiao; Qian, Zhenhai
2018-05-01
An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.
Numerical band structure calculations of plasma metamaterials
NASA Astrophysics Data System (ADS)
Pederson, Dylan; Kourtzanidis, Konstantinos; Raja, Laxminarayan
2015-09-01
Metamaterials (MM) are materials engineered to display negative macroscopic permittivity and permeability. These materials allow for designed control over electromagnetic energy flow, especially at frequencies where natural materials do not interact. Plasmas have recently found application in MM as a negative permittivity component. The permittivity of a plasma depends on its electron density, which can be controlled by an applied field. This means that plasmas can be used in MM to actively control the transmission or reflection of incident waves. This work focuses on a plasma MM geometry in which microplasmas are generated in perforations in a metal plate. We characterizethis material by its band structure, which describes its interaction with incident waves. The plasma-EM interactions are obtained by coupling Maxwell's equations to a simplified plasma momentum equation. A plasma density profile is prescribed, and its effect on the band structure is investigated. The band structure calculations are typically done for static structures, whereas our current density responds to the incident waves. The resulting band structures are compared with experimental results.
NASA Astrophysics Data System (ADS)
Song, Yongli; Wang, Xianjie; Zhang, Xingquan; Qi, Xudong; Liu, Zhiguo; Zhang, Lingli; Zhang, Yu; Wang, Yang; Sui, Yu; Song, Bo
2016-10-01
The exploration of colossal dielectric permittivity (CP) materials with low dielectric loss in a wide range of frequencies/temperatures continues to attract considerable interest. In this paper, we report CP in (Al + Nb) co-doped rutile SnO2 ceramics with a low dielectric loss at room temperature. Al0.02Nb0.05Sn0.93O2 and Al0.03Nb0.05Sn0.92O2 ceramics exhibit high relative dielectric permittivities (above 103) and low dielectric losses (0.015 < tan δ < 0.1) in a wide range of frequencies and at temperatures from 140 to 400 K. Al doping can effectively modulate the dielectric behavior by increasing the grain and grain boundary resistances. The large differences in the resistance and conductive activation energy of the grains and grain boundaries suggest that the CP in co-doped SnO2 ceramics can be attributed to the internal barrier layer capacitor effect.
Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1-xTixO3 single crystal
NASA Astrophysics Data System (ADS)
Tu, C.-S.; Tseng, C.-T.; Chien, R. R.; Schmidt, V. Hugo; Hsieh, C.-M.
2008-09-01
This work is a study of phase transformation in (001)-cut Pb(Fe1/2Nb1/2)1-xTixO3 (x =48%) single crystals by means of dielectric permittivity, domain structure, and in situ x-ray diffraction. A first-order T(TNT)-C(TNT) phase transition was observed at the Curie temperature TC≅518 K upon zero-field heating. T, TNT, and C are tetragonal, tetragonal nanotwin, and cubic phases, respectively. T(TNT) and C(TNT) indicate that minor TNT domains reside in the T and C matrices. Nanotwins, which can cause broad diffraction peak, remain above TC≅518 K and give an average microscopic cubic symmetry in the polarizing microscopy. Colossal dielectric permittivity (>104) was observed above room temperature with strong frequency dispersion. This study suggests that nanotwins can play an important role in relaxor ferroelectric crystals while phase transition takes place. The Fe ion is a potential candidate as a B-site dopant for enhancing dielectric permittivity.
Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan
2013-01-01
The dielectric nanosize dependence of BaTiO₃ powders was investigated by the slurry method, where two series of BaTiO₃ slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε(h)) of the slurries was extracted from the dielectric spectra. The ε(h) of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε(h) of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε(h) to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO₃ powders with 50 nm particle size.
Electromagnetic Wave Transmittance Control using Anisotropic Plasma Lattice
NASA Astrophysics Data System (ADS)
Matlis, Eric; Corke, Thomas; Hoffman, Anthony
2017-11-01
Experiments of transmission through a lattice array of plasma columns have shown an absorption band close to the plasma frequency at 14 GHz. The beam was oriented at a 35° incident angle to the planar plasma cell. These experiments were designed to determine if the observed absorption was the result of the isotropic plasma medium or that of an anisotropic metamaterial. Transmission of the microwave energy was not consistent with an isotropic material in which absorption would monotonically increase below the plasma frequency. The experimental results are supported by an anisotropic model which was developed for the plasma permittivity using an effective medium approximation. The plasma columns were modeled as uniform rods with permittivity described by a Drude model while the components of the permittivity tensor was calculated using the Maxwell-Garnett effective medium theory. Electron densities of n = 4 x1012 cm-3 were assumed which is consistent with prior experimental measurements. This model confirms the existence of non-zero imaginary wave vector k in a narrow region centered about 14 GHz.
NASA Astrophysics Data System (ADS)
Gao, L.; Wang, X.; Chen, Y.; Chi, Q. G.; Lei, Q. Q.
2015-08-01
We report a novel low-density polyethylene (LDPE) composite filled with nickel-coated CaCu3Ti4O12 ceramic (denoted as CCTO@Ni), prepared by a melt mixing technique, and its prominent dielectric characteristics. The effects of magnetic field treatment on the dielectric properties of CCTO@Ni/LDPE composite films with a low filler concentration of 10 vol.% were investigated. Our results show that the dielectric permittivity, loss tangent, and conductivity of the LDPE composite films initially improved and then decreased with increasing treatment time under the applied magnetic field. Magnetic field treatment for 60 min led to an ultra-high dielectric permittivity value of 1.57 × 104, four orders of magnitude higher than that of the pure LDPE material. Our results indicate that the magnetic treatment may have induced a percolation effect and enhanced the interfacial polarization of the CCTO@Ni/LDPE composite, resulting in the observed changes in its dielectric properties.
NASA Astrophysics Data System (ADS)
Feng, Yue; Yu, Zejie; Han, Yanhui
2018-01-01
In conventional gap-closing electret-biased electrostatic energy harvesting (EEEH) schemes, electrets with a very low ratio of electret thickness to permittivity are in great demand to allow the attainment of high power output. However, in practice, pursuing such a low ratio introduces unwanted burdens on the electret stability and therefore the reliability of the EEEH devices. In this paper, we propose a dielectric-oscillator-based electrostatic EH (DEEH) scheme as an alternative approach to harvesting electret-biased electrostatic energy. This approach permits the fabrication of an electret-free closed EH circuit. The DEEH architecture directly collects the electrical energy exclusively through the oscillating dielectric body and thus completely circumvents the restrictions imposed by the electret parameters (thickness and permittivity) on power generation. Significantly, without considering the electret thickness and permittivity, both theoretical analysis and experiments have verified the effectiveness of this DEEH strategy, and a high figure of merit (on the order of 10-8 mW cm-2 V-2 Hz-1) was achieved for low-frequency movements.
Shariati, Farshid Pajoum; Heran, Marc; Sarrafzadeh, Mohammad Hossein; Mehrnia, Mohammad Reza; Sarzana, Gabriele; Ghommidh, Charles; Grasmick, Alain
2013-07-01
The application of permittivity and oxygen uptake rate (OUR) as biological process control parameters in a wastewater treatment system was evaluated. Experiments were carried out in a novel airlift oxidation ditch membrane bioreactor under different organic loading rates (OLR). Permittivity as representative of activated sludge viability was measured by a capacitive on-line sensor. OUR was also measured as a representative for respirometric activity. Results showed that the biomass concentration increases with OLR and all biomass related measurements and simulators such as MLSS, permittivity, OUR, ASM1 and ASM3 almost follow the same increasing trends. The viability of biomass decreased when the OLR was reduced from 5 to 4 kg COD m(-3)d(-1). During decreasing of OLR, biomass related parameters generally decreased but not in a similar manner. Also, protein concentration in the system during OLR decreasing changed inversely with the activated sludge viability. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
BalčiÅ«nas, Sergejus; Ivanov, Maksim; Grigalaitis, Robertas; Banys, Juras; Amorín, Harvey; Castro, Alicia; Algueró, Miguel
2018-05-01
The broadband dielectric properties of high sensitivity piezoelectric 0.36BiScO3-0.64PbTiO3 ceramics with average grain sizes from 1.6 μm down to 26 nm were investigated in the 100-500 K temperature range. The grain size dependence of the dielectric permittivity was analysed within the effective medium approximation. It was found that the generalised core-shell (or brick wall) model correctly explains the size dependence down to the nanoscale. For the first time, the grain bulk and boundary properties were obtained without making any assumptions of values of the parameters or simplifications. Two contributions to dielectric permittivity of the grain bulk are described. The first is the size-independent one, which follows the Curie-Weiss law. The second one is shown to plausibly follow the Kittel's law. This seems to suggest the unexpected persistence of mobile ferroelectric domains at the nanoscale (26 nm grains). Alternative explanations are discussed.
Properties of barium strontium titanate at millimeter wave frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Nurul; Free, Charles
2015-04-24
The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less
Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics
Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.
2016-01-01
Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123
Dielectric properties of biological tissues in which cells are connected by communicating junctions
NASA Astrophysics Data System (ADS)
Asami, Koji
2007-06-01
The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.
NASA Astrophysics Data System (ADS)
Gassmöller, Rene; Bangerth, Wolfgang
2016-04-01
Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a modern advection-field approach, and demonstrate under which conditions which method is more efficient. We implemented the presented methods in ASPECT (aspect.dealii.org), a freely available open-source community code for geodynamic simulations. The structure of the particle code is highly modular, and segregated from the PDE solver, and can thus be easily transferred to other programs, or adapted for various application cases.
Locally Enhanced Image Quality with Tunable Hybrid Metasurfaces
NASA Astrophysics Data System (ADS)
Shchelokova, Alena V.; Slobozhanyuk, Alexey P.; Melchakova, Irina V.; Glybovski, Stanislav B.; Webb, Andrew G.; Kivshar, Yuri S.; Belov, Pavel A.
2018-01-01
Metasurfaces represent a new paradigm in artificial subwavelength structures due to their potential to overcome many challenges typically associated with bulk metamaterials. The ability to make very thin structures and change their properties dynamically makes metasurfaces an exceptional meta-optics platform for engineering advanced electromagnetic and photonic metadevices. Here, we suggest and demonstrate experimentally a tunable metasurface capable of enhancing significantly the local image quality in magnetic resonance imaging. We present a design of the hybrid metasurface based on electromagnetically coupled dielectric and metallic elements. We demonstrate how to tailor the spectral characteristics of the metasurface eigenmodes by changing dynamically the effective permittivity of the structure. By maximizing a coupling between metasurface eigenmodes and transmitted and received fields in the magnetic resonance imaging (MRI) system, we enhance the device sensitivity that results in a substantial improvement of the image quality.
Maxwell-Wagner relaxation in electrical imaging.
Korjenevsky, A V
2005-04-01
The electric field tomography (EFT) method exploits interaction of high-frequency electric field with an inhomogeneous conductive medium without contact with the electrodes. The interaction is accompanied by a high-frequency redistribution of free charges inside the medium and leads to small and regular phase shifts of the field in the area surrounding an object. Such a kind of phenomenon is referred to as the Maxwell-Wagner relaxation. Measuring the perturbations of the field using the set of electrodes placed around the object enables us to reconstruct the internal structure of the medium, generally the spatial distribution of a nonlinear combination of permittivity and resistivity. In the case of biomedical applications the result of measurements is determined mainly by the resistivity of the tissues. Three-dimensional simulation based on the finite element method has demonstrated the feasibility of the technique.
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
Frequency scanning capaciflector for capacitively determining the material properties
NASA Technical Reports Server (NTRS)
Campbell, Charles E. (Inventor)
1996-01-01
A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.
Electromagnetic beam diffraction by a finite lamellar structure: an aperiodic coupled-wave method.
Guizal, Brahim; Barchiesi, Dominique; Felbacq, Didier
2003-12-01
We have developed a new formulation of the coupled-wave method (CWM) to handle aperiodic lamellar structures, and it will be referred to as the aperiodic coupled-wave method (ACWM). The space is still divided into three regions, but the fields are written by use of their Fourier integrals instead of the Fourier series. In the modulated region the relative permittivity is represented by its Fourier transform, and then a set of integro-differential equations is derived. Discretizing the last system leads to a set of ordinary differential equations that is reduced to an eigenvalue problem, as is usually done in the CWM. To assess the method, we compare our results with three independent formalisms: the Rayleigh perturbation method for small samples, the volume integral method, and the finite-element method.
Slots in dielectric image line as mode launchers and circuit elements
NASA Astrophysics Data System (ADS)
Solbach, K.
1981-01-01
A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values
Bi-directional evolutionary optimization for photonic band gap structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au
2015-12-01
Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less
All-dielectric perforated metamaterials with toroidal dipolar response (Conference Presentation)
NASA Astrophysics Data System (ADS)
Stenishchev, Ivan; Basharin, Alexey A.
2017-05-01
We present metamaterials based on dielectric slab with perforated identical cylindrical clusters with perforated holes, which allow to support the toroidal dipolar response due to Mie-resonances in each hole. Note that proposed metamaterial is technologically simple for fabrication in optical frequency range. Metamaterial can be fabricated by several methods. For instance, we may apply the molecular beam epitaxy method for deposition of Si or GaAs layers, which have permittivity close to 16. Next step, nanometer/micrometer holes are perforated by focused ion beam method or laser cutting method. Fundamental difference of proposed metamaterial is technological fabrication process. Classically all- dielectric optical metamaterials consist of nano-spheres or nano-discs, which are complicated for fabrication, while our idea and suggested metamaterials are promising prototype of various optical/THz all-dielectic devices as sensor, nano-antennas elements for nanophotonics.
NASA Astrophysics Data System (ADS)
De Geeter, N.; Crevecoeur, G.; Dupré, L.; Van Hecke, W.; Leemans, A.
2012-04-01
Accurate simulations on detailed realistic head models are necessary to gain a better understanding of the response to transcranial magnetic stimulation (TMS). Hitherto, head models with simplified geometries and constant isotropic material properties are often used, whereas some biological tissues have anisotropic characteristics which vary naturally with frequency. Moreover, most computational methods do not take the tissue permittivity into account. Therefore, we calculate the electromagnetic behaviour due to TMS in a head model with realistic geometry and where realistic dispersive anisotropic tissue properties are incorporated, based on T1-weighted and diffusion-weighted magnetic resonance images. This paper studies the impact of tissue anisotropy, permittivity and frequency dependence, using the anisotropic independent impedance method. The results show that anisotropy yields differences up to 32% and 19% of the maximum induced currents and electric field, respectively. Neglecting the permittivity values leads to a decrease of about 72% and 24% of the maximum currents and field, respectively. Implementing the dispersive effects of biological tissues results in a difference of 6% of the maximum currents. The cerebral voxels show limited sensitivity of the induced electric field to changes in conductivity and permittivity, whereas the field varies approximately linearly with frequency. These findings illustrate the importance of including each of the above parameters in the model and confirm the need for accuracy in the applied patient-specific method, which can be used in computer-assisted TMS.
Helium atmospheric pressure plasma jets touching dielectric and metal surfaces
NASA Astrophysics Data System (ADS)
Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.
2015-07-01
Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.
A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.
1999-01-01
The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.
NASA Technical Reports Server (NTRS)
Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)
1990-01-01
Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.
Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram
2018-05-01
This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
Treytl, William J.; Slemmons, Arthur J.; Andeen, Gerry B.
1979-01-01
A heliostat apparatus includes a frame which is rotatable about an axis which is parallel to the aperture plane of an elongate receiver. A plurality of flat flexible mirror elements are mounted to the frame between several parallel, uniformly spaced resilient beams which are pivotally connected at their ends to the frame. Channels are mounted to the sides of the beams for supporting the edges of the mirror elements. Each of the beams has a longitudinally varying configuration designed to bow into predetermined, generally circular curvatures of varying radii when the center of the beam is deflected relative to the pivotally connected ends of the beams. All of the parallel resilient beams are simultaneously deflected by a cam shaft assembly extending through openings in the centers of the beams, whereby the mirror elements together form an upwardly concave, cylindrical reflecting surface. The heliostat is rotated about its axis to track the apparent diurnal movement of the sun, while the reflecting surface is substantially simultaneously bowed into a cylindrical trough having a radius adapted to focus incident light at the plane of the receiver aperture.
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Nark, Douglas M.; Nguyen, Duc T.; Tungkahotara, Siroj
2006-01-01
A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear or cubic Hermite polynomial basis functions and isoparametric elements are included. However, the key feature of the method is a domain decomposition procedure that is based upon the inter-mixing of an iterative and a direct solve strategy for solving the discrete finite element equations. This procedure is optimized to take full advantage of sparsity and exploit the increased memory and parallel processing capability of modern computer architectures. Example computations are presented for the Langley Flow Impedance Test facility and a rectangular mapping of a full scale, generic aero-engine nacelle. The accuracy and parallel performance of this new solver are tested on both model problems using a supercomputer that contains hundreds of central processing units. Results show that the method gives extremely accurate attenuation predictions, achieves super-linear speedup over hundreds of CPUs, and solves upward of 25 million complex equations in a quarter of an hour.
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Owen, Jeffrey E.
1988-01-01
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.
Measurement of the curvature of a surface using parallel light beams
Chason, Eric H.; Floro, Jerrold A.; Seager, Carleton H.; Sinclair, Michael B.
1999-01-01
Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.
Measurement of the curvature of a surface using parallel light beams
Chason, E.H.; Floro, J.A.; Seager, C.H.; Sinclair, M.B.
1999-06-15
Apparatus is disclosed for measuring curvature of a surface wherein a beam of collimated light is passed through a means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90[degree] about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90[degree] relative to the line onto which the single set of parallel beams from the first etalon would have fallen. 5 figs.