Sample records for parallel plate avalanche

  1. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  2. Assessing the importance of terrain parameters on glide avalanche release

    NASA Astrophysics Data System (ADS)

    Peitzsch, E.; Hendrikx, J.; Fagre, D. B.

    2013-12-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  3. Assessing the importance of terrain parameters on glide avalanche release

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.

  4. Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Bebi, Peter; Feistl, Thomas; Buser, Othmar; Caviezel, Andrin

    2018-03-01

    We study how short duration powder avalanche blasts can break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees, both in bending and root-plate overturning. Dynamic magnification factors for bending and overturning failures should therefore be considered when back-calculating avalanche impact pressures.

  5. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  6. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    NASA Astrophysics Data System (ADS)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  7. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, R.

    1995-07-18

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse. 8 figs.

  8. Lumped transmission line avalanche pulser

    DOEpatents

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  9. Fundamentals of undervoltage breakdown through the Townsend mechanism

    NASA Astrophysics Data System (ADS)

    Cooley, James E.

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain, DC discharge gap are experimentally and theoretically explored. The phenomenon is relevant to fundamental understanding of breakdown physics, to switching applications such as triggered spark gaps and discharge initiation in pulsed-plasma thrusters, and to gas-avalanche particle counters. A dimensionless theoretical description of the phenomenon is formulated and solved numerically. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low avalanche-ionization gain, when an electron undergoes fewer than approximately 10 ionizing collisions during one gap transit. It is also found that fewer injected electrons are required as the gain due to electron-impact ionization (alpha process) is increased, or as the sensitivity of the alpha process to electric field is enhanced by decreasing the reduced electric field (electric field divided by pressure, E/p). A predicted insensitivity to ion mobility implies that breakdown is determined during the first electron avalanche when space charge distortion is greatest. A dimensionless, theoretical study of the development of this avalanche reveals a critical value of the reduced electric field to be the value at the Paschen curve minimum divided by 1.6. Below this value, the net result of the electric field distortion is to increase ionization for subsequent avalanches, making undervoltage breakdown possible. Above this value, ionization for subsequent avalanches will be suppressed and undervoltage breakdown is not possible. Using an experimental apparatus in which ultraviolet laser pulses are directed onto a photo-emissive cathode of a parallel-plate discharge gap, it is found that undervoltage breakdown can occur through a Townsend-like mechanism through the buildup of successively larger avalanche generations. The minimum number of injected electrons required to achieve breakdown is measured in argon at pd values of 3-10 Torr-m. The required electron pulse magnitude was found to scale inversely with pressure and voltage in this parameter range. When higher-power infrared laser pulses were used to heat the cathode surface, a faster, streamer-like breakdown mechanism was occasionally observed. As an example application, an investigation into the requirements for initiating discharges in Gas-fed Pulsed Plasma Thrusters (GFPPTs) is conducted. Theoretical investigations based on order-of-magnitude characterizations of previous GFPPT designs reveal that high-conductivity arc discharges are required for critically-damped matching of circuit components, and that relatively fast streamer breakdown is preferable to minimize delay between triggering and current sheet formation. The faster breakdown mechanism observed in the experiments demonstrates that such a discharge process can occur. However, in the parameter space occupied by most thrusters, achieving the phenomenon by way of a space charge distortion caused purely by an electron pulse should not be possible. Either a transient change in the distribution of gas density, through ablation or desorption, or a thruster design that occupies a different parameter space, such as one that uses higher mass bits, higher voltages, or smaller electrode spacing, is required for undervoltage breakdown to occur.

  10. Measurements of energy dependence of average number of prompt neutrons from neutron-induced fission of 242Pu from 0.5 to 10 Mev

    NASA Astrophysics Data System (ADS)

    Khokhlov, Yurii A.; Ivanin, Igor A.; In'kov, Valerii I.; Danilin, Lev D.

    1998-10-01

    The results of energy dependence measurements of the average number of prompt neutrons from neutrons-induced fission of 242Pu from 0.5 to 10 MeV are presented. The measurements were carried out with neutrons beam from uranium target of electron linac of Russian Federal Nuclear Center using time-of-flight technique on 28.5 m flight-path. The neutrons from fission were detected by a liquid scintillator detector loaded with gadolinium, events of fission—by parallel plate avalanche detector for fission fragments. Least squares fitting results give ν¯p(En)=(2.881±0.033)+(0.141±0.003)ṡEn. The work is executed on ISTC project # 471-97.

  11. Geologic map of the Hogback Mountain quadrangle, Lewis and Clark and Meagher Counties, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.

    2003-01-01

    The geologic map of the Hogback Mountain quadrangle, scale 1:24,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Hogback Mountain area, rocks ranging in age from Middle Proterozoic through Cretaceous are strongly folded within and under thrust plates of equivalent rocks. Continental rocks of successive thrust plates have been telescoped eastward over a buttress of the stable continent. Erosional remnants of Oligocene andesitic basalt lie on highest surfaces eroded across the strongly deformed older rocks; younger erosion has dissected the terrain deeply, producing Late Tertiary and Quaternary deposits of alluvium, colluvium, and local landslide debris in the valleys and canyons. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part of the quadrangle at the lowest structural level, rocks of the Upper Mississippian Big Snowy Group, including the Kibbey Formation and the undivided Otter and Heath Formations, the overlying Pennsylvanian Amsden and undivided Quadrant and Phosphoria Formations, the Ellis Group, and the Kootenai Formation, are folded and broken by thrust faults. The next higher structural level, the Avalanche Butte thrust plate, exposes strongly folded and, in places, attenuated strata of Cambrian (Flathead Sandstone, Wolsey Shale, Meagher Limestone, and undivided Pilgrim Formation and Park Shale), Devonian (Maywood Formation, Jefferson Formation, and most of the Three Forks Formation), and Mississippian (uppermost part of the Three Forks Formation and Lodgepole and Mission Canyon Limestones) ages. The overlying Hogback Mountain thrust plate contains strongly folded rocks ranging in age from the Middle Proterozoic Greyson Formation to the Upper and Lower Mississippian Mission Canyon Limestone and Cretaceous diorite sills. The highest structural level, the Moors Mountain thrust plate, contains the Middle Proterozoic Greyson and Newland Formations and discontinuous Upper Proterozoic diabase sills. Rocks are complexly folded and faulted across the quadrangle. At the lowest level in the northeastern part of the quadrangle, Upper Mississippian and younger strata are folded along northwest-trending axes and broken by thrust faults that at outcrop level displace the same rocks. The central core of the quadrangle is formed by the Avalanche Butte thrust plate, which contains recumbently folded and thrust faulted Paleozoic rocks. A succession of four tight recumbent folds within the plate have axial traces that trend northwest and north-northwest, and that are both arched and downfolded along east- and northeast-trending axes. Carbonate rocks of the Mission Canyon and Lodgepole Limestones in the upper part of the Avalanche Butte thrust plate exposed in the canyon of Trout Creek are folded and attenuated in stacked east-directed recumbent folds that developed as a succession of folded duplex thrust slices. The exposed remnant of the next higher structural level, the Hogback Mountain thrust plate, contains northeast- and east-trending folds that are inverted on the upper overturned limb of a younger northwest-trending recumbent fold. The Hogback Mountain thrust fault is itself folded and, in its northernmost exposures, is overturned to dip west beneath the overlying Moors Mountain thrust plate. During post-middle Tertiary deformation, the Hogback Mountain thrust fault moved as a normal fault, down on the east. The structurally highest Moors Mountain thrust plate rests on the Avalanche Butte thrust plate in the southwestern part of the quadrangle and across both the Avalanche Butte and Hogback Mountain thrust plates along the northwest edge of the quadrangle. In the central eastern part of the map area, the edge of a large klippen of the Moors Mounta

  12. On the localization properties of an RPWELL gas-avalanche detector

    NASA Astrophysics Data System (ADS)

    Moleri, L.; Bhattacharya, P.; Coimbra, A. E. C.; Breskin, A.; Bressler, S.

    2017-10-01

    A study of the localization properties of a single-element Resistive Plate WELL (RPWELL) detector is presented. The detector comprises of a single-sided THick Gaseous Electron Multiplier (THGEM) coupled to a segmented readout anode through a doped silicate-glass plate of 1010 Ωṡcm bulk resistivity. Operated in ambient \

  13. Performance of the improved larger acceptance spectrometer: VAMOS++

    NASA Astrophysics Data System (ADS)

    Rejmund, M.; Lecornu, B.; Navin, A.; Schmitt, C.; Damoy, S.; Delaune, O.; Enguerrand, J. M.; Fremont, G.; Gangnant, P.; Gaudefroy, L.; Jacquot, B.; Pancin, J.; Pullanhiotan, S.; Spitaels, C.

    2011-08-01

    Measurements and ion optic calculations showed that the large momentum acceptance of the VAMOS spectrometer at GANIL could be further increased from ˜11% to ˜30% by suitably enlarging the dimensions of the detectors used at the focal plane. Such a new detection system built for the focal plane of VAMOS is described. It consists of larger area detectors (1000 mm×150 mm) namely, a Multi-Wire Parallel Plate Avalanche Counter (MWPPAC), two drift chambers, a segmented ionization chamber and an array of Si detectors. Compared to the earlier existing system (VAMOS), we show that the new system (VAMOS++) has a dispersion-independent momentum acceptance. Additionally, a start detector (MWPPAC) has been introduced near the target to further improve the mass resolution to ˜1/220. The performance of the VAMOS++ spectrometer is demonstrated using measurements of residues formed in the collisions of 129Xe at 967 MeV on 197Au.

  14. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  15. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The total prompt γ-ray energy distributions were measured for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV-100 keV, and the spontaneous fission of 252Cf using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total prompt γ-ray energy vs multiplicity using a simulated DANCE response matrix. A summary of this work is presented with the emphasis on the comparison of total prompt fission γ-ray energy between our results and previous ones. The mean values of the total prompt γ-ray energy ⟨Eγ,tot⟩, determined from the unfolded distributions, are ˜20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied.

  16. Mobility of large rock avalanches: evidence from Valles Marineris, Mars

    USGS Publications Warehouse

    McEwen, A.S.

    1989-01-01

    Measurements of H/L (height of drop/length of runout) vs. volume for landslides in Valles Marineris on Mars show a trend of decreasing H/L with increasing volume. This trend, which is linear on a log-log plot, is parallel to but lies above the trend for terrestrial dry rock avalanches. This result and estimates of 104 to 105 Pa yield strength suggest that the landslides were not water saturated, as suggested by previous workers. The offset between the H/L vs. volume trends shows that a typical Martian avalanche must be nearly two orders of magnitude more voluminous than a typical terrestrial avalance in order to achieve the same mobility. This offset might be explained by the effects of gravity on flows with high yield strengths. These results should prove useful to future efforts to resolve the controversy over the mechanics of long-runout avalanches. -Author

  17. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  18. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  19. Extracting functionally feedforward networks from a population of spiking neurons

    PubMed Central

    Vincent, Kathleen; Tauskela, Joseph S.; Thivierge, Jean-Philippe

    2012-01-01

    Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits. PMID:23091458

  20. Extracting functionally feedforward networks from a population of spiking neurons.

    PubMed

    Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe

    2012-01-01

    Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits.

  1. Simulation of Tip-Sample Interaction in the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    Good, Brian S.; Banerjea, Amitava

    1994-01-01

    Recent simulations of the interaction between planar surfaces and model Atomic Force Microscope (AFM) tips have suggested that there are conditions under which the tip may become unstable and 'avalanche' toward the sample surface. Here we investigate via computer simulation the stability of a variety of model AFM tip configurations with respect to the avalanche transition for a number of fcc metals. We perform Monte-Carlo simulations at room temperature using the Equivalent Crystal Theory (ECT) of Smith and Banerjea. Results are compared with recent experimental results as well as with our earlier work on the avalanche of parallel planar surfaces. Our results on a model single-atom tip are in excellent agreement with recent experiments on tunneling through mechanically-controlled break junctions.

  2. Investigating glide snow avalanche release using seismic monitoring in combination with time-lapse photography

    NASA Astrophysics Data System (ADS)

    van Herwijnen, Alec; Failletaz, Jerome; Berhod, Nicole; Mitterer, Christoph

    2013-04-01

    Glide avalanches occur when the entire snowpack glides over the ground until an avalanche releases. These avalanches are difficult to forecast since the gliding process can take place over a few hours up to several weeks or months. The presence of liquid water at the interface between the snow cover and the ground surface is of primary importance as it reduces frictional support. Glide avalanches are often preceded by the opening of a tensile crack in the snow cover, called a glide crack. Past research has shown that glide crack opening accelerates prior to avalanche release. During the winter of 2012-2013, we monitored glide crack expansion using time-lapse photography in combination with a seismic sensor and two heat flux sensors on a slope with well documented glide avalanche activity in the Eastern Swiss Alps above Davos, Switzerland. To track changes in glide rates, the number of dark pixels in an area around the glide crack is counted in each image. Using this technique, we observed an increase in glide rates prior to avalanche release. Since the field site is located very close to the town of Davos, the seismic data was very noisy. Nevertheless, the accelerated snow gliding observed in the time-lapse images coincided with increased seismic activity. Overall, these results show that a combination of time-lapse photography with seismic monitoring could provide valuable insight into glide avalanche release. Recordings of the heat flux plates show that the energy input from the soil is fairly small and constant throughout the observed period. The results suggest that ground heat flux is a minor contributor to the water production at the snow-soil interface. Instead, the presence of water at the base of the snowpack is probably due to a strong hydraulic pressure gradient at the snow-soil interface.

  3. Parallel Plate System for Collecting Data Used to Determine Viscosity

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C. (Inventor); Kaukler, William (Inventor)

    2013-01-01

    A parallel-plate system collects data used to determine viscosity. A first plate is coupled to a translator so that the first plate can be moved along a first direction. A second plate has a pendulum device coupled thereto such that the second plate is suspended above and parallel to the first plate. The pendulum device constrains movement of the second plate to a second direction that is aligned with the first direction and is substantially parallel thereto. A force measuring device is coupled to the second plate for measuring force along the second direction caused by movement of the second plate.

  4. New generation of Cherenkov counters

    NASA Astrophysics Data System (ADS)

    Giomataris, Y.; Charpak, G.; Peskov, V.; Sauli, F.

    1992-12-01

    Experimental results with a parallel plate avalanche chamber (PPAC) having a CsI photocathode and pad array readout are reported. High gains in excess of 10 5 have been obtained with He gas at atmospheric pressure and traces of CH 4 or CF 4 quencher. Such light gas mixtures extend the transparency for the Cherenkov light to the extreme UV region and allow detector operation with very low sensitivity to the ionization produced by minimum ionizing particles. A hadron blind detector (HBD) is discussed which exploits the broad photon energy bandwidth (≈ 10 eV) and the high Cherenkov threshold ( pπ = 15 GeV). This fast detector, since it has a good spatial resolution, can be used at the future Large Hadron Collider (LHC) or the Superconductivity Super Collider (SSC) either as an efficient electron tagger, rejecting hadrons faking electrons in the calorimeter, or as a pretracker giving fast electron and high-energy muon signature and momentum estimation. Other potential applications in the domain of Cherenkov light detection are also discussed.

  5. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Jaffke, P.; Wu, C. Y.

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  6. Interface fluctuations during rapid drainage

    NASA Astrophysics Data System (ADS)

    Ayaz, Monem; Toussaint, Renaud; Schäfer, Gerhard; Jørgen Måløy, Knut; Moura, Marcel

    2017-04-01

    We experimentally study the interface dynamics of an immiscible fluid as it invades a monolayer of saturated porous medium through rapid drainage. The seemingly stable and continuous motion of the interface at macroscale, involves numerous abrupt pore-scale jumps and local reconfigurations of the interface. By computing the velocity fluctuations along the invasion front from sequences of images captured at high frame rate, we are able to study both the local and global behavior. The latter displays an intermittent behavior with power-law distributed avalanches in size and duration. As the system is drained potential surface energy is stored at the interface up to a given threshold in pressure. The energy released generates elastic waves at the confining plate, which we detect using piezoelectric type acoustic sensors. By detecting pore-scale events emanating from the depinning of the interface, we look to develop techniques for localizing the displacement front. To assess the quality of these techniques, optical monitoring is done in parallel using a high speed camera.

  7. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  8. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  9. First Results on High-spin States in ^179Au

    NASA Astrophysics Data System (ADS)

    Mueller, W. F.; Bingham, C. R.; Reviol, W.; Riedinger, L. L.; Smith, B. H.; Wauters, J.; Ahmad, I.; Amro, H. A.; Blumenthal, D. J.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Henderson, D. J.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Nisius, D. T.; Seweryniak, D.; Ma, W. C.

    1996-05-01

    High-spin states in ^179Au were studied for the first time in two experiments at the Argonne uc(atlas) facility. The ^144Sm(^40Ar,p4n)^179Au reaction at 207 MeV was used for the first experiment and ^124Te(^58Ni,p2n)^179Au at 255 MeV in the second. The setup in the first experiment consisted of the Fragment Mass Analyzer (uc(fma)) plus Parallel Plate Avalanche Counter (uc(ppac)) system and 10 Compton-suppressed Ge detectors (CSG's). From this run, several transitions from the yrast bands were established. The latter experiment utilized the uc(fma) + uc(ppac) system in conjunction with the uc(aye-ball) array of 19 Ge detectors (eight >70% efficient CSG's, nine 25% efficient CSG's, and two LEPS; one with Compton suppression) and a double sided silicon strip detector (uc(dssd).) The results from these experiments, including a level scheme, will be presented and discussed.

  10. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE PAGES

    Chyzh, A.; Jaffke, P.; Wu, C. Y.; ...

    2018-06-07

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  11. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  12. Gamma-insensitive optical sensor

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.

  13. Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states.

    PubMed

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  14. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo

    2015-09-01

    Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.

  15. Rate and Gain Limitations of MSGC's and MGC's Combined with GEM and other Preamplification Structures

    NASA Technical Reports Server (NTRS)

    Fonte, P.; Peskov, V.; Ramsey, B. D.

    1998-01-01

    We have studied the rate and gain limits of diamond-coated Microstrip Gas Counters (MSGC's) and Micro-Gap Counters (MGC's) when combined with various preamplification structures: Gas Electron Multiplier (GEM), Parallel-Plate Avalanche Chamber (PPAC) or a MICROMEGAS-type structure. Measurements were done both with X rays and alpha particles with various detector geometries and in different gas mixtures at pressures from 0.05 to 10 atm. The results obtained varied significantly with detector design, gas mixture and pressure, but some general features can be identified. We found that in all cases, bare MSGC'S, MGC'S, PPAC's and MICROMEGAS, the maximum achievable gain drops with rate. The addition of preamplification structures significantly increases the gain of MSGC's and MGC'S, but this gain is still rate dependent. There would seem to be a general rate-dependent effect governing the usable gain of all these detectors. We speculate on possible mechanisms for this effect, and identify a safe, spark-free, operation zone for each system (detector + preamplification structure) in the rate-gain coordinate plane.

  16. Measurement of the Am 242 m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  17. A comparison between orthogonal and parallel plating methods for distal humerus fractures: a prospective randomized trial.

    PubMed

    Lee, Sang Ki; Kim, Kap Jung; Park, Kyung Hoon; Choy, Won Sik

    2014-10-01

    With the continuing improvements in implants for distal humerus fractures, it is expected that newer types of plates, which are anatomically precontoured, thinner and less irritating to soft tissue, would have comparable outcomes when used in a clinical study. The purpose of this study was to compare the clinical and radiographic outcomes in patients with distal humerus fractures who were treated with orthogonal and parallel plating methods using precontoured distal humerus plates. Sixty-seven patients with a mean age of 55.4 years (range 22-90 years) were included in this prospective study. The subjects were randomly assigned to receive 1 of 2 treatments: orthogonal or parallel plating. The following results were assessed: operating time, time to fracture union, presence of a step or gap at the articular margin, varus-valgus angulation, functional recovery, and complications. No intergroup differences were observed based on radiological and clinical results between the groups. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes, mean operation time, union time, or complication rates. There were no cases of fracture nonunion in either group; heterotrophic ossification was found 3 patients in orthogonal plating group and 2 patients in parallel plating group. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes or complication rates. However, orthogonal plating method may be preferred in cases of coronal shear fractures, where posterior to anterior fixation may provide additional stability to the intraarticular fractures. Additionally, parallel plating method may be the preferred technique used for fractures that occur at the most distal end of the humerus.

  18. Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    PubMed Central

    Priesemann, Viola; Wibral, Michael; Valderrama, Mario; Pröpper, Robert; Le Van Quyen, Michel; Geisel, Theo; Triesch, Jochen; Nikolić, Danko; Munk, Matthias H. J.

    2014-01-01

    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. PMID:25009473

  19. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  20. Fully Integrated Linear Single Photon Avalanche Diode (SPAD) Array with Parallel Readout Circuit in a Standard 180 nm CMOS Process

    NASA Astrophysics Data System (ADS)

    Isaak, S.; Bull, S.; Pitter, M. C.; Harrison, Ian.

    2011-05-01

    This paper reports on the development of a SPAD device and its subsequent use in an actively quenched single photon counting imaging system, and was fabricated in a UMC 0.18 μm CMOS process. A low-doped p- guard ring (t-well layer) encircling the active area to prevent the premature reverse breakdown. The array is a 16×1 parallel output SPAD array, which comprises of an active quenched SPAD circuit in each pixel with the current value being set by an external resistor RRef = 300 kΩ. The SPAD I-V response, ID was found to slowly increase until VBD was reached at excess bias voltage, Ve = 11.03 V, and then rapidly increase due to avalanche multiplication. Digital circuitry to control the SPAD array and perform the necessary data processing was designed in VHDL and implemented on a FPGA chip. At room temperature, the dark count was found to be approximately 13 KHz for most of the 16 SPAD pixels and the dead time was estimated to be 40 ns.

  1. Biomechanical comparison of orthogonal versus parallel double plating systems in intraarticular distal humerus fractures.

    PubMed

    Atalar, Ata C; Tunalı, Onur; Erşen, Ali; Kapıcıoğlu, Mehmet; Sağlam, Yavuz; Demirhan, Mehmet S

    2017-01-01

    In intraarticular distal humerus fractures, internal fixation with double plates is the gold standard treatment. However the optimal plate configuration is not clear in the literature. The aim of this study was to compare the biomechanical stability of the parallel and the orthogonal anatomical locking plating systems in intraarticular distal humerus fractures in artificial humerus models. Intraarticular distal humerus fracture (AO13-C2) with 5 mm metaphyseal defect was created in sixteen artificial humeral models. Models were fixed with either orthogonal or parallel plating systems with locking screws (Acumed elbow plating systems). Both systems were tested for their stiffness with loads in axial compression, varus, valgus, anterior and posterior bending. Then plastic deformation after cyclic loading in posterior bending and load to failure in posterior bending were tested. The failure mechanisms of all the samples were observed. Stiffness values in every direction were not significantly different among the orthogonal and the parallel plating groups. There was no statistical difference between the two groups in plastic deformation values (0.31 mm-0.29 mm) and load to failure tests in posterior bending (372.4 N-379.7 N). In the orthogonal plating system most of the failures occurred due to the proximal shaft fracture, whereas in the parallel plating system failure occurred due to the shift of the most distal screw in proximal fragment. Our study showed that both plating systems had similar biomechanical stabilities when anatomic plates with distal locking screws were used in intraarticular distal humerus fractures in artificial humerus models. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  2. Measuring Light-ion Production and Fission Cross Sections Normalised to H(n,p) Scattering at the Upcoming NFS Facility

    NASA Astrophysics Data System (ADS)

    Jansson, K.; Gustavsson, C.; Pomp, S.; Prokofiev, A. V.; Scian, G.; Tarrío, D.

    2014-05-01

    The Medley detector setup is planned to be moved to and used at the new neutron facility NFS where measurements of light-ion production and fission cross-sections are planned at 1-40 MeV. Medley has eight detector telescopes providing ΔE-ΔE-E data, each consisting of two silicon detectors and a CsI(Tl) detector at the back. The telescope setup can be rotated and arranged to cover any angle. Medley has previously been used in many measurements at The Svedberg Laboratory (TSL) in Uppsala mainly with a quasi-mono-energetic neutron beam at 96 and 175 MeV. To be able to do measurements at NFS, which will have a white neutron beam, Medley needs to detect the reaction products with a high timing resolution providing the ToF of the primary neutron. In this paper we discuss the design of the Medley upgrade along with simulations of the setup. We explore the use of Parallel Plate Avalanche Counters (PPACs) which work very well for detecting fission fragments but require more consideration for detecting deeply penetrating particles.

  3. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less

  4. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  5. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  6. Resistance of a plate in parallel flow at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Janour, Zbynek

    1951-01-01

    The present paper gives the results of measurements of the resistance of a plate placed parallel to the flow in the range of Reynolds numbers from 10 to 2300; in this range the resistance deviates from the formula of Blasius. The lower limit of validity of the Blasius formula is determined and also the increase in resistance at the edges parallel to the flow in the case of a plate of finite width.

  7. Intercondylar humerus fracture- parallel plating and its results.

    PubMed

    Kumar, Sanjiv; Singh, Sudhir; Kumar, Dharmender; Kumar, Neeraj; Verma, Reetu

    2015-01-01

    Intercondylar fracture of humerus is one of the commonest fractures of young adult and counts for about 30% of all elbow fractures. The treatment of these fractures continues to present challenges despite advances in internal fixation. Although orthogonal plating use to provid adequate functional results in these fractures, parallel plating is said to be mechanically more stable construct thus allowing early mobilization and better range of motion. AIM of the study is to assess the clinical as well functional results of these fractures treated with parallel plating. Prospective study in a tertiary care hospital. A total of 23 fresh patients of intercondylar fracture of humerus from Jan 2013 to May 2014 were included in the study and were treated with parallel plating. These patients were followed at 3, 6, 12, 24 weeks and at 1year of follow up and assessed in terms of time for union, range of motion, MAYO score, DASH score and complication rate. At final follow up Mayo score was 96.32±04.96 from 5.00±01.26 and DASH SCORE was 31.42±2.04 which dropped from 150±05.34, Range of motion improved from 21.38±05.70 to 116.1±07.92 with 100% union rate and complications less than 19%. Parallel plating for intercondylar fracture of humerus is excellent method of fixation and results are similar to those treated with orthogonal plating.

  8. Omni-directional railguns

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  9. [Meta analysis of parallel versus perpendicular double plating for distal humerus fracture of type C in adults].

    PubMed

    Li, B B; Lin, F; Cai, L H; Chen, Y; Lin, Z J

    2017-08-01

    Objective: To evaluate the effects of parallel versus perpendicular double plating for distal humerus fracture of type C. Methods: A standardized comprehensive literature search was performed by PubMed, Embase, Cochrane library, CMB, CNKI and Medline datebase.Randomized controlled studies on comparison between parallel versus perpendicular double plating for distal humerus fracture of type C before December 2015 were enrolled in the study.All date were analyzed by the RevMan 5.2 software. Results: Six studies, including 284 patients, met the inclusion criteria.There were 155 patients in perpendicular double plating group, 129 patients in parallel double plating group.The results of Meta-analysis indicated that there were statistically significant difference between the two groups in complications ( OR =2.59, 95% CI : 1.03 to 6.53, P =0.04). There was no significant difference between the two groups in surgical duration ( MD =-1.84, 95% CI : -9.06 to 5.39, P =0.62), bone union time ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Mayo Elbow Performance Score ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Range of Motions ( MD =-0.92, 95% CI : -4.65 to 2.81, P =0.63) and the rate of excellent and good results ( OR =0.64, 95% CI : 0.27 to 1.52, P =0.31). Conclusion: Both perpendicular and parallel double plating are effective in distal humerus fracture of type C, parallel double plating has less complications.

  10. Avalanche photodiode based time-of-flight mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.

    2015-08-15

    This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less

  11. Cooled particle accelerator target

    DOEpatents

    Degtiarenko, Pavel V.

    2005-06-14

    A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.

  12. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  13. Omni-directional railguns

    DOEpatents

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  14. Integrated electronics for time-resolved array of single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-12-01

    The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

  15. CORRIGENDUM: Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes Dielectric dispersion of BaxSr1 - xTiO3 thin film with parallel-plate and coplanar interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.

    2010-03-01

    Figures 1, 2 and 5 of this paper are reprinted from the authors' previous paper, Zhang X-Y, Wang P, Sheng S, Xu F and Ong C K 2008 Ferroelectric BaxSr1 - xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications J. Appl. Phys. 104 124110, copyright 2008, with permission from the American Institute of Physics.

  16. Unsteady stokes flow of dusty fluid between two parallel plates through porous medium in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Sasikala, R.; Govindarajan, A.; Gayathri, R.

    2018-04-01

    This paper focus on the result of dust particle between two parallel plates through porous medium in the presence of magnetic field with constant suction in the upper plate and constant injection in the lower plate. The partial differential equations governing the flow are solved by similarity transformation. The velocity of the fluid and the dust particle decreases when there is an increase in the Hartmann number.

  17. Mantle flow through a tear in the Nazca slab inferred from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh

    2017-07-01

    A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.

  18. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  19. [Morphology determination of ionization region in multi-needle-to-plate negative corona discharge].

    PubMed

    Su, Peng-Hao; Zhu, Yi-Min; Chen, Hai-Feng

    2007-11-01

    Based on the former work on the current-voltage characteristics of a multi-needle-to-plate negative corona discharge at atmospheric pressure, the present work uses the method of OES (optical emission spectrum) for measuring N2 emission spectrum, and the morphology determination of the ionization region has been investigated. According to the distribution of N2 second positive band's intensity I(SPB), the highest of all bands, the outline of the ionization region was drawn fairly accurately. The relationship between I(SPB) and discharge current I can be obtained through the volume integral of the I(SPB). The experimental results show that the size of the ionization region enhances with the rise of the applied voltage U, and the electron avalanche begins at about 1 mm off the tips of needle electrode and multiplies only in the range of several millimeters, indicating that, the range of the ionization region is at the magnitude of mm. The electron avalanche along the axis of the needle develops farther than that along the radial direction of needle, and the shape of the ionization region looks like a bullet. The integral of I(SPB) is second-order linear to I, with a very second order coefficient, meaning that the main excited substance is N2. Energetic electrons mainly exist in ionization region while ions are the main charged particles to form discharge current in the transfer region.

  20. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  1. Parallel-plate heat pipe apparatus having a shaped wick structure

    DOEpatents

    Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.

    2004-12-07

    A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.

  2. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  3. Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps.

    PubMed

    Su, Xiaoshi; Norris, Andrew N

    2016-06-01

    Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed.

  4. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  5. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  6. Performance optimization of detector electronics for millimeter laser ranging

    NASA Technical Reports Server (NTRS)

    Cova, Sergio; Lacaita, A.; Ripamonti, Giancarlo

    1993-01-01

    The front-end electronic circuitry plays a fundamental role in determining the performance actually obtained from ultrafast and highly sensitive photodetectors. We deal here with electronic problems met working with microchannel plate photomultipliers (MCP-PMTs) and single photon avalanche diodes (SPADs) for detecting single optical photons and measuring their arrival time with picosecond resolution. The performance of available fast circuits is critically analyzed. Criteria for selecting the most suitable electronics are derived and solutions for exploiting the detector performance are presented and discussed.

  7. The Large Hadron Collider (LHC): The Energy Frontier

    NASA Astrophysics Data System (ADS)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  8. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    PubMed Central

    2017-01-01

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040

  9. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    PubMed

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  10. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  11. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  12. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  13. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  14. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    PubMed

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  15. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    NASA Astrophysics Data System (ADS)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  16. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  17. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.

    PubMed

    Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M

    2012-12-03

    We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.

  18. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  19. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.

    PubMed

    Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K

    2011-09-01

    We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.

  20. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  1. FUEL ASSEMBLY FOR A NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-29

    A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.

  2. Electrically-induced stresses and deflection in multiple plates

    NASA Astrophysics Data System (ADS)

    Hu, Jih-Perng; Tichler, P. R.

    1992-04-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  3. Ultrasonically-assisted Thermal Stir Welding System

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.

  4. A 780 × 800 μm2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization

    NASA Astrophysics Data System (ADS)

    Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo

    2014-02-01

    This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.

  5. Multi-LED parallel transmission for long distance underwater VLC system with one SPAD receiver

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Hong-Yi; Zhu, Yi-Jun; Wang, Tao; Ji, Ya-Wei

    2018-03-01

    In this paper, a multiple light emitting diode (LED) chips parallel transmission (Multi-LED-PT) scheme for underwater visible light communication system with one photon-counting single photon avalanche diode (SPAD) receiver is proposed. As the lamp always consists of multi-LED chips, the data rate could be improved when we drive these multi-LED chips parallel by using the interleaver-division-multiplexing technique. For each chip, the on-off-keying modulation is used to reduce the influence of clipping. Then a serial successive interference cancellation detection algorithm based on ideal Poisson photon-counting channel by the SPAD is proposed. Finally, compared to the SPAD-based direct current-biased optical orthogonal frequency division multiplexing system, the proposed Multi-LED-PT system could improve the error-rate performance and anti-nonlinearity performance significantly under the effects of absorption, scattering and weak turbulence-induced channel fading together.

  6. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  7. A mode-matching analysis of dielectric-filled resonant cavities coupled to terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M

    2012-09-10

    We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.

  8. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  9. WET EFFLUENT PARALLEL PLATE DIFFUSION DENUDER COUPLED CAPILLARY ION CHROMATOGRAPH FOR THE DETERMINATION OF ATMOSPHERIC TRACE GASES. (R825344)

    EPA Science Inventory

    We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...

  10. An efficient and cost-effective microchannel plate detector for slow neutron radiography

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.

    2018-05-01

    A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.

  11. Numerical modeling of debris avalanches at Nevado de Toluca (Mexico): implications for hazard evaluation and mapping

    NASA Astrophysics Data System (ADS)

    Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.

    2007-05-01

    The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations solved by a parallel and adaptive mesh, that can concentrate computing power in region of special interest. First of all, simulations of known past events, were compared with the geological data validating the effectiveness of the method. Afterwards, numerous simulations have been executed varying input parameters as friction angles, starting point and initial volume, in order to obtain a global perspective over the possible expected debris avalanche scenarios. The input parameters were selected considering the geological, structural and topographic factors controlling instability of the volcanic cone, especially in case of renewed eruptive activity. The interoperability between TITAN2D and GIS softwares permitted to draw a semi-quantitative hazard map by crossing simulation outputs with the distribution of deposits generated by past episodes of instability, mapped during the field work.

  12. Electrically-induced stresses and deflection in multiple plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jih-Perng; Tichler, P.R.

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less

  13. Methods of localization of Lamb wave sources on thin plates

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2015-04-01

    Signal localization techniques are ubiquitous in both industry and academic communities. We propose a new localization method on plates which is based on energy amplitude attenuation and inverted source amplitude comparison. This inversion is tested on synthetic data using Lamb wave propagation direct model and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers (1-26 kHz frequency range)). We compare the performance of the technique to the classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. Furthermore, we measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, geometry, Signal to Noise Ratio, and we show that this very versatile technique works better than classical ones over the sampling rates 100kHz - 1MHz. Experimental phase consists of a glass plate having dimensions of 80cmx40cm with a thickness of 1cm. Generated signals due to a wooden hammer hit or a steel ball hit are captured by sensors placed on the plate on different locations with the mentioned sensors. Numerical simulations are done using dispersive far field approximation of plate waves. Signals are generated using a hertzian loading over the plate. Using imaginary sources outside the plate boundaries the effect of reflections is also included. This proposed method, can be modified to be implemented on 3d environments, monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  14. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at E n,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of themore » cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the E n,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at E n ≈ 1 keV and are approximately 2σ away from the previous measurement at E n ≈ 20 keV.« less

  15. CHICO2, a two-dimensional pixelated parallel-plate avalanche counter

    DOE PAGES

    Wu, C. Y.; Cline, D.; Hayes, A.; ...

    2016-01-27

    CHICO 2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and Φ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO 2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm 2208Pb target at the sub-barrier energy, CHICO 2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ andmore » 2.47° in Φ. This achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm 2). The combined angular resolution of GRETINA/CHICO 2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO 2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.« less

  16. All-Optical Two-Dimensional Serial-to-Parallel Pulse Converter Using an Organic Film with Femtosecond Optical Response

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Wada, Osamu; Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun

    2001-04-01

    In this study, we introduce a new concept of all-optical two-dimensional serial-to-parallel pulse converters. Femtosecond optical pulses can be understood as thin plates of light traveling in space. When a femtosecond signal-pulse train and a single gate pulse were fed onto a material with a finite incident angle, each signal-pulse plate met the gate-pulse plate at different locations in the material due to the time-of-flight effect. Meeting points can be made two-dimensional by adding a partial time delay to the gate pulse. By placing a nonlinear optical material at an appropriate position, two-dimensional serial-to-parallel conversion of a signal-pulse train can be achieved with a single gate pulse. We demonstrated the detection of parallel outputs from a 1-Tb/s optical-pulse train through the use of a BaB2O4 crystal. We also succeeded in demonstrating 1-Tb/s serial-to-parallel operation through the use of a novel organic nonlinear optical material, squarylium-dye J-aggregate film, which exhibits ultrafast recovery of bleached absorption.

  17. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    NASA Technical Reports Server (NTRS)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  18. High precision refractometry based on Fresnel diffraction from phase plates.

    PubMed

    Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow

    2012-05-01

    When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.

  19. Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.

    2007-04-01

    In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique

  20. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  1. Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.

    PubMed

    McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel

    2015-10-19

    We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.

  2. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  3. Recent improvements of the JET lithium beam diagnostica)

    NASA Astrophysics Data System (ADS)

    Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors

    2012-10-01

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  4. Three-Point Gear/Lead Screw Positioning

    NASA Technical Reports Server (NTRS)

    Calco, Frank S.

    1993-01-01

    Triple-ganged-lead-screw positioning mechanism drives movable plate toward or away from fixed plate and keeps plates parallel to each other. Designed for use in tuning microwave resonant cavity. Other potential applications include adjustable bed plates and cantilever tail stocks in machine tools, adjustable platforms for optical equipment, and lifting platforms.

  5. Characterizing wet slab and glide slab avalanche occurrence along the Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2010-01-01

    Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.

  6. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  7. Clinico-radiological Outcome Analysis of Parallel Plating with Perpendicular Plating in Distal Humeral Intra-articular Fractures: Prospective Randomised Study

    PubMed Central

    Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar

    2017-01-01

    Introduction The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. Aim To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. Materials and Methods A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. Results In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Conclusion Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques. PMID:28384948

  8. Clinico-radiological Outcome Analysis of Parallel Plating with Perpendicular Plating in Distal Humeral Intra-articular Fractures: Prospective Randomised Study.

    PubMed

    Govindasamy, Ramachandran; Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar

    2017-02-01

    The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques.

  9. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    PubMed

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  10. The buckling response of symmetrically laminated composite plates having a trapezoidal planform area. M.S. Thesis Interim Report No. 98, Aug. 1990 - May 1994

    NASA Technical Reports Server (NTRS)

    Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.

    1994-01-01

    The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the analytical results regarding the buckling load and the prebuckling plate stiffness. However, the experimental results show that for some cases the analysis underpredicts the number of halfwaves in the buckled mode shape. In the context of the definitions of taper ratio and aspect ratio used in this study, it is concluded that the buckling load always increases as taper ratio increases for a given aspect ratio for plates having simply supported boundary conditions on the parallel ends. There are combinations of plate geometry and ply stackling sequences, however, that reverse this trend for plates having clamped boundary conditions on the parallel ends such that an increase in the taper ratio causes a decrease in the buckling load. The clamped boundary conditions on the parallel ends of the plate are shown to increase the buckling load compared to simply supported boundary conditions. Also, anisotropy (the D16 and D26 terms) is shown to decrease the buckling load and skew the buckled mode shape for both the simply supported and clamped boundary conditions.

  11. Design and Calibration of a X-Ray Millibeam

    DTIC Science & Technology

    2005-12-01

    developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The

  12. The restoring force on a dielectric in a parallel plate capacitor

    NASA Astrophysics Data System (ADS)

    Staunton, L. P.

    2014-09-01

    We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.

  13. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  14. Performance of timing resistive plate chambers with relativistic neutrons from 300 to 1500 MeV

    NASA Astrophysics Data System (ADS)

    Blanco, A.; Adamczewski-Musch, J.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Machado, J.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-02-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic neutrons produced from a deuteron beam of varying energy (300 to 1500 AMeV) in experiment S406 at GSI, Darmstad, Germany. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Measurements of the time of flight jitter of neutrons, in the mentioned energy range, point to a contribution of the resistive plate chamber in the order of 150 ps, independent of the neutron energy.

  15. Characterizing the nature and variability of avalanche hazard in western Canada

    NASA Astrophysics Data System (ADS)

    Shandro, Bret; Haegeli, Pascal

    2018-04-01

    The snow and avalanche climate types maritime, continental and transitional are well established and have been used extensively to characterize the general nature of avalanche hazard at a location, study inter-seasonal and large-scale spatial variabilities and provide context for the design of avalanche safety operations. While researchers and practitioners have an experience-based understanding of the avalanche hazard associated with the three climate types, no studies have described the hazard character of an avalanche climate in detail. Since the 2009/2010 winter, the consistent use of Statham et al. (2017) conceptual model of avalanche hazard in public avalanche bulletins in Canada has created a new quantitative record of avalanche hazard that offers novel opportunities for addressing this knowledge gap. We identified typical daily avalanche hazard situations using self-organizing maps (SOMs) and then calculated seasonal prevalence values of these situations. This approach produces a concise characterization that is conducive to statistical analyses, but still provides a comprehensive picture that is informative for avalanche risk management due to its link to avalanche problem types. Hazard situation prevalence values for individual seasons, elevations bands and forecast regions provide unprecedented insight into the inter-seasonal and spatial variability of avalanche hazard in western Canada.

  16. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  17. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.

  18. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    PubMed

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  19. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  20. Finite Element Analysis of Magnetoelastic Plate Problems.

    DTIC Science & Technology

    1981-08-01

    deformation and in the incremental large deformation analysis, respectively. The classical Kirchhoff assumption of the undeformable normal to the midsurface is...current density , is constant across the thickness of the plate and is parallel to the midsurface of the plate; (2) the normal component of the

  1. Using GIS and Google Earth for the creation of the Going-to-the-Sun Road Avalanche Atlas, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark

    2010-01-01

    Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.

  2. Slope failures in Northern Vermont, USA

    USGS Publications Warehouse

    Lee, F.T.; Odum, J.K.; Lee, J.D.

    1997-01-01

    Rockfalls and debris avalanches from steep hillslopes in northern Vermont are a continuing hazard for motorists, mountain climbers, and hikers. Huge blocks of massive schist and gneiss can reach the valley floor intact, whereas others may trigger debris avalanches on their downward travel. Block movement is facilitated by major joints both parallel and perpendicular to the glacially over-steepened valley walls. The slope failures occur most frequently in early spring, accompanying freeze/thaw cycles, and in the summer, following heavy rains. The study reported here began in August 1986 and ended in June 1989. Manual and automated measurements of temperature and displacement were made at two locations on opposing valley walls. Both cyclic-reversible and permanent displacements occurred during the 13-month monitoring period. The measurements indicate that freeze/thaw mechanisms produce small irreversible incremental movements, averaging 0.53 mm/yr, that displace massive blocks and produce rockfalls. The initial freeze/thaw weakening of the rock mass also makes slopes more susceptible to attrition by water, and heavy rains have triggered rockfalls and consequent debris flows and avalanches. Temperature changes on the rock surface produced time-dependent cyclic displacements of the rock blocks that were not instantaneous but lagged behind the temperature changes. Statistical analyses of the data were used to produce models of cyclic time-dependent rock block behavior. Predictions based solely on temperature changes gave poor results. A model using time and temperature and incorporating the lag effect predicts block displacement more accurately.

  3. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  4. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  5. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    NASA Astrophysics Data System (ADS)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.

    2013-10-01

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  6. Two-dimensional numerical simulation of a Stirling engine heat exchanger

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.

    1989-01-01

    The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.

  7. Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

    NASA Astrophysics Data System (ADS)

    Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory

    2017-10-01

    The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

  8. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  9. Quaternary gravitational morpho-genesis of Central Apennines (Italy): Insights from the Mt. Genzana case history

    NASA Astrophysics Data System (ADS)

    Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.

    2013-10-01

    This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.

  10. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  11. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    NASA Technical Reports Server (NTRS)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  12. Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall

    NASA Astrophysics Data System (ADS)

    Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru

    2018-07-01

    We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.

  13. Automated identification of potential snow avalanche release areas based on digital elevation models

    NASA Astrophysics Data System (ADS)

    Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani

    2013-05-01

    The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  14. Geiger mode avalanche photodiodes for microarray systems

    NASA Astrophysics Data System (ADS)

    Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan

    2002-06-01

    New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.

  15. Avalanche Accidents Causing Fatalities: Are They Any Different in the Summer?

    PubMed

    Pasquier, Mathieu; Hugli, Olivier; Kottmann, Alexandre; Techel, Frank

    2017-03-01

    Pasquier, Mathieu, Olivier Hugli, Alexandre Kottmann, and Frank Techel. Avalanche accidents causing fatalities: are they any different in the summer? High Alt Med Biol. 18:67-72, 2017. This retrospective study investigated the epidemiology of summer avalanche accidents that occurred in Switzerland and caused at least one fatality between 1984 and 2014. Summer avalanche accidents were defined as those that occurred between June 1st and October 31st. Summer avalanches caused 21 (4%) of the 482 avalanches with at least one fatality occurring during the study period, and 40 (6%) of the 655 fatalities. The number of completely buried victims per avalanche and the proportion of complete burials among trapped people were lower in summer than in winter. Nevertheless, the mean number of fatalities per avalanche was higher in summer than in winter: 1.9 ± 1.2 (standard deviation; range 1-6) versus 1.3 ± 0.9 (range 1-7; p < 0.001). Trauma was the presumed cause of death in 94% (33 of 35) in summer avalanche accidents. Sixty-five percent of fully buried were found due to visual clues at the snow surface. Fatal summer avalanche accidents caused a higher mean number of fatalities per avalanche than winter avalanches, and those deaths resulted mostly from trauma. Rescue teams should anticipate managing polytrauma for victims in summer avalanche accidents rather than hypothermia or asphyxia; they should be trained in prehospital trauma life support and equipped accordingly to ensure efficient patient care.

  16. Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel

    1994-01-01

    This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.

  17. Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems

    NASA Technical Reports Server (NTRS)

    Chen, Hsin-Chu; He, Ai-Fang

    1993-01-01

    The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.

  18. Analysis of the longitudinal space charge impedance of a round uniform beam inside parallel plates and rectangular chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Li, Y.

    2015-02-03

    This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.

  19. Exploratory Experiments in the Tribological Behavior of Engineering Surfaces with Nano-Coating Using a Tribo-Rheometer

    DTIC Science & Technology

    2008-05-30

    Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel . Tribo. Lett., 19(2):119-125, 2005. D-2 ...with a stainless steel parallel plate configuration as shown in figure 1. Due to the radial variation of the local shear stress T in the parallel...using a force transducer that is mounted below the surface. B-1 Exploded View Stainless Steel Plate Lower Fixture Microscale View Figure 1:

  20. A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed

    2017-04-01

    This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.

  1. On the Internal Structure of Mobile Barchan Sand Dunes due to Granular Processes

    NASA Astrophysics Data System (ADS)

    Vriend, N. M.; Arran, M.; Louge, M. Y.; Hay, A. G.; Valance, A.

    2017-12-01

    In this work, we visualize the internal structure of mobile barchan desert dunes at the avalanche scale. We reveal an intriguing history of dune building using a novel combination of local sand sampling and advanced geophysical techniques resulting in high resolution measurements of individual avalanche events. Due to progressive rebuilding, granular avalanching, erosional and depositional processes, these marching barchan dunes are reworked every few years and a characteristic zebra-pattern (figure 1a), orientated parallel to the slipface at the angle of repose, appears at regular intervals. We present scientific data on the structure obtained from several mobile barchan dunes of different sizes during recent desert field campaigns (2014, 2015, 2017) in a mobile barchan dune field in Qatar (25.01°N, 51.34°E in the AlWakrah municipality). The site has been equipped with a weather station and has been regularly visited by a multidisciplinary research team in recent years (e.g. [1]). By applying high-frequency (1200 MHz) ground penetrating radar (GPR) transects across the midline (figure 1b) we map the continuous evolution of this cross-bedding at high resolution deep within the dune. The GPR reveals a slope reduction of the slipface near the base of the dune; evidence of irregular wind reversals; and the presence of a harder aeolian cap around the crest and extending to the brink. The data is supplemented with granulometry from layers stabilized by dyed water injection and uncovered by excavating vertical walls perpendicular to old buried avalanches. We attribute visible differences in water penetration between adjacent layers to fine particle segregation processes in granular avalanches. This work was made possible by the support of NPRP grant 6-059-2-023 from the Qatar National Research Fund to MYL and AGH, and a Royal Society Dorothy Hodgkin Research Fellowship to NMV. We thank Jean-Luc Métayer for performing detailed particle size distribution measurements. References: [1] Louge, M. Y., A. Valance, A. Ould el-Moctar, J. Xu, A. G. Hay, and R. Richer, Temperature and humidity within a mobile barchan sand dune, implications for microbial survival, J. Geophys. Res. 118, doi:10.1002/2013JF002839 (2013).

  2. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied basal layer, and a thicker and stronger overriding layer.

  3. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  4. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  5. Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010

    NASA Astrophysics Data System (ADS)

    Naaim, Mohamed

    2017-04-01

    Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.

  6. Performance-related test for asphalt emulsions.

    DOT National Transportation Integrated Search

    2004-10-01

    Yield stress was investigated as a potential quality control parameter for asphalt emulsions. Viscometric data were determined using the concentric cylinder, parallel plate, and cone and plate geometries with rotational rheometers. We also investigat...

  7. Collimator of multiple plates with axially aligned identical random arrays of apertures

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Underwood, J. H. (Inventor)

    1973-01-01

    A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.

  8. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Steiniger, M.; Klingler, Ch.; Rhyner, J.; Ammann, W. J.

    2004-04-01

    After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc.) in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  9. Evaluation and operationalization of a novel forest detrainment modeling approach for computational snow avalanche simulation

    NASA Astrophysics Data System (ADS)

    Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.

    2013-12-01

    Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure-based runout indicator in an avalanche path dependent coordinate system. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown coverage, vertical structure and surface roughness, e.g. values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulation will improve current applications for avalanche simulation tools in mountain forest and natural hazard management considerably. Furthermore, we show that an objective and standardized evaluation of two-dimensional simulation results is essential for a successful evaluation and further calibration of avalanche models in general.

  10. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.

  11. Experimental Avalanches in a Rotating Drum

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; O'Hern, Corey; Shattuck, Mark

    We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.

  12. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  13. High resolution tree-ring based spatial reconstructions of snow avalanche activity in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.

    2006-01-01

    Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.

  14. The role of initial coherence and path materials in the dynamics of three rock avalanche case histories

    USGS Publications Warehouse

    Aaron, Jordan; McDougall, Scott; Moore, Jeffrey R.; Coe, Jeffrey A.; Hungr, Oldrich

    2017-01-01

    BackgroundRock avalanches are flow-like landslides that can travel at extremely rapid velocities and impact surprisingly large areas. The mechanisms that lead to the unexpected mobility of these flows are unknown and debated. Mechanisms proposed in the literature can be broadly classified into those that rely on intrinsic characteristics of the rock avalanche material, and those that rely on extrinsic factors such as path material. In this work a calibration-based numerical model is used to back-analyze three rock avalanche case histories. The results of these back-analyses are then used to infer factors that govern rock avalanche motionResultsOur study has revealed two key insights that must be considered when analyzing rock avalanches. Results from two of the case histories demonstrate the importance of accounting for the initially coherent phase of rock avalanche motion. Additionally, the back-analyzed basal resistance parameters, as well as the best-fit rheology, are different for each case history. This suggests that the governing mechanisms controlling rock avalanche motion are unlikely to be intrinsic. The back-analyzed strength parameters correspond well to those that would be expected by considering the path material that the rock avalanches overran.ConclusionOur results show that accurate simulation of rock avalanche motion must account for the initially coherent phase of movement, and that the mechanisms governing rock avalanche motion are unlikely to be intrinsic to the failed material. Interaction of rock avalanche debris with path materials is the likely mechanism that governs the motion of many rock avalanches.

  15. Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.

    PubMed

    Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M

    2010-04-26

    We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).

  16. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  17. Evaluation of resolution and periodic errors of a flatbed scanner used for digitizing spectroscopic photographic plates

    PubMed Central

    Wyatt, Madison; Nave, Gillian

    2017-01-01

    We evaluated the use of a commercial flatbed scanner for digitizing photographic plates used for spectroscopy. The scanner has a bed size of 420 mm by 310 mm and a pixel size of about 0.0106 mm. Our tests show that the closest line pairs that can be resolved with the scanner are 0.024 mm apart, only slightly larger than the Nyquist resolution of 0.021 mm expected by the 0.0106 mm pixel size. We measured periodic errors in the scanner using both a calibrated length scale and a photographic plate. We find no noticeable periodic errors in the direction parallel to the linear detector in the scanner, but errors with an amplitude of 0.03 mm to 0.05 mm in the direction perpendicular to the detector. We conclude that large periodic errors in measurements of spectroscopic plates using flatbed scanners can be eliminated by scanning the plates with the dispersion direction parallel to the linear detector by placing the plate along the short side of the scanner. PMID:28463262

  18. Three-dimensional analytical solution for the instability of a parallel array of mutually attracting identical simply supported piezoelectric microplates

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xu

    2017-12-01

    Three-dimensional analytical solutions are derived for the structural instability of a parallel array of mutually attracting identical simply supported orthotropic piezoelectric rectangular microplates by means of a linear perturbation analysis. The two surfaces of each plate can be either insulating or conducting. By considering the fact that the shear stresses and the normal electric displacement (or electric potential) are zero on the two surfaces of each plate, a 2 × 2 transfer matrix for a plate can be obtained directly from the 8 × 8 fundamental piezoelectricity matrix without resolving the original Stroh eigenrelation. The critical interaction coefficient can be determined by solving the resulting generalized eigenvalue problem for the piezoelectric plate array. Also considered in our analysis is the in-plane uniform edge compression acting on the four sides of each piezoelectric plate. Our results indicate that the stabilizing influence of the piezoelectric effect on the structural instability is unignorable; the edge compression always plays a destabilizing role in the structural instability of the plate array with interactions.

  19. A new web-based system to improve the monitoring of snow avalanche hazard in France

    NASA Astrophysics Data System (ADS)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  20. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  1. Empirical prediction for travel distance of channelized rock avalanches in the Wenchuan earthquake area

    NASA Astrophysics Data System (ADS)

    Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile

    2017-06-01

    Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.

  2. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  3. Measuring neuronal avalanches in disordered systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Tragtenberg, M. H. R.

    2018-04-01

    Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.

  4. Numerical run-out modelling used for reassessment of existing permanent avalanche paths in the Krkonose Mts., Czechia

    NASA Astrophysics Data System (ADS)

    Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri

    2015-04-01

    Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.

  5. Parallel-plate transmission line type of EMP simulators: Systematic review and recommendations

    NASA Astrophysics Data System (ADS)

    Giri, D. V.; Liu, T. K.; Tesche, F. M.; King, R. W. P.

    1980-05-01

    This report presents various aspects of the two-parallel-plate transmission line type of EMP simulator. Much of the work is the result of research efforts conducted during the last two decades at the Air Force Weapons Laboratory, and in industries/universities as well. The principal features of individual simulator components are discussed. The report also emphasizes that it is imperative to hybridize our understanding of individual components so that we can draw meaningful conclusions of simulator performance as a whole.

  6. Neutron detector using sol-gel absorber

    DOEpatents

    Hiller, John M.; Wallace, Steven A.; Dai, Sheng

    1999-01-01

    An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.

  7. Modelling hazardous surface hoar layers in the mountain snowpack over space and time

    NASA Astrophysics Data System (ADS)

    Horton, Simon Earl

    Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.

  8. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb failure stress up to 0.45 bar/yr. While creeping segments are suggested to act as barriers and arrest rupture, our study implies that SSEs on these zones may trigger seismic events on adjacent locked parts.

  9. Scalar Casimir densities and forces for parallel plates in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.

    2018-04-01

    We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.

  10. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  11. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  12. Dealing with the white death: avalanche risk management for traffic routes.

    PubMed

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  13. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  14. Avalanches and Criticality in Driven Magnetic Skyrmions

    NASA Astrophysics Data System (ADS)

    Díaz, S. A.; Reichhardt, C.; Arovas, D. P.; Saxena, A.; Reichhardt, C. J. O.

    2018-03-01

    We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.

  15. Historic avalanches in the northern front range and the central and northern mountains of Colorado

    Treesearch

    M. Martinelli; Charles F. Leaf

    1999-01-01

    Newspaper accounts of avalanche accidents from the 1860s through 1950 have been compiled, summarized, and discussed. Many of the avalanches that caused fatalities came down rather small, innocuous-looking paths. Land use planners can use historical avalanche information as a reminder of the power of snow avalanches and to assure rational development in the future....

  16. Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Lato, M. J.; Frauenfelder, R.; Bühler, Y.

    2012-09-01

    Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.

  17. Electromagnetic fields of a relativistic electron avalanche with special attention to the origin of lightning signatures known as narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid

    2014-11-01

    In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.

  18. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  19. Nano-multiplication region avalanche photodiodes and arrays

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  20. Parallelism measurement for base plate of standard artifact with multiple tactile approaches

    NASA Astrophysics Data System (ADS)

    Ye, Xiuling; Zhao, Yan; Wang, Yiwen; Wang, Zhong; Fu, Luhua; Liu, Changjie

    2018-01-01

    Nowadays, as workpieces become more precise and more specialized which results in more sophisticated structures and higher accuracy for the artifacts, higher requirements have been put forward for measuring accuracy and measuring methods. As an important method to obtain the size of workpieces, coordinate measuring machine (CMM) has been widely used in many industries. In order to achieve the calibration of a self-developed CMM, it is found that the parallelism of the base plate used for fixing the standard artifact is an important factor which affects the measurement accuracy in the process of studying self-made high-precision standard artifact. And aimed to measure the parallelism of the base plate, by using the existing high-precision CMM, gauge blocks, dial gauge and marble platform with the tactile approach, three methods for parallelism measurement of workpieces are employed, and comparisons are made within the measurement results. The results of experiments show that the final accuracy of all the three methods is able to reach micron level and meets the measurement requirements. Simultaneously, these three approaches are suitable for different measurement conditions which provide a basis for rapid and high-precision measurement under different equipment conditions.

  1. Mini-Fragment Fixation Is Equivalent to Bicortical Screw Fixation for Horizontal Medial Malleolus Fractures.

    PubMed

    Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F

    2018-05-01

    Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as P<.05. The mean stiffness (±SD) values of both mini-fragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.

  2. MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Song, Weixing

    2018-01-01

    We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.

  3. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  4. Determination of crack depth in aluminum using eddy currents and GMR sensors

    NASA Astrophysics Data System (ADS)

    Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.

    2015-03-01

    In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.

  5. Experimental and Numerical Analysis of Electric Currents and Electromagnetic Blunting of Cracks in Thin Plates

    DTIC Science & Technology

    1984-12-01

    currents are assumed to flow parallel to midsurface of the plate. 6. The normal component of the induced magnetic field does not vary across the...is coincident with the midsurface of the plate. The relationship between the two coordinates is given by: X = x(a, B) ^ y = y(c’, e) Z

  6. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  7. Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.

    2013-05-15

    The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.

  8. Real time avalanche detection for high risk areas.

    DOT National Transportation Integrated Search

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  9. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on Glaciers: Application to the 2016 Lamplugh Rock Avalanche in Glacier Bay National Park, Alaska

    USGS Publications Warehouse

    Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy

    2018-01-01

    The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.

  10. Dynamics of avalanche-generated impulse waves: three-dimensional hydrodynamic simulations and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; McKinney, Daene C.

    2018-05-01

    This paper studies the lake dynamics for avalanche-triggered glacial lake outburst floods (GLOFs) in the Cordillera Blanca mountain range in Ancash, Peru. As new glacial lakes emerge and existing lakes continue to grow, they pose an increasing threat of GLOFs that can be catastrophic to the communities living downstream. In this work, the dynamics of displacement waves produced from avalanches are studied through three-dimensional hydrodynamic simulations of Lake Palcacocha, Peru, with an emphasis on the sensitivity of the lake model to input parameters and boundary conditions. This type of avalanche-generated wave is an important link in the GLOF process chain because there is a high potential for overtopping and erosion of the lake-damming moraine. The lake model was evaluated for sensitivity to turbulence model and grid resolution, and the uncertainty due to these model parameters is significantly less than that due to avalanche boundary condition characteristics. Wave generation from avalanche impact was simulated using two different boundary condition methods. Representation of an avalanche as water flowing into the lake generally resulted in higher peak flows and overtopping volumes than simulating the avalanche impact as mass-momentum inflow at the lake boundary. Three different scenarios of avalanche size were simulated for the current lake conditions, and all resulted in significant overtopping of the lake-damming moraine. Although the lake model introduces significant uncertainty, the avalanche portion of the GLOF process chain is likely to be the greatest source of uncertainty. To aid in evaluation of hazard mitigation alternatives, two scenarios of lake lowering were investigated. While large avalanches produced significant overtopping waves for all lake-lowering scenarios, simulations suggest that it may be possible to contain waves generated from smaller avalanches if the surface of the lake is lowered.

  11. Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.

    2016-12-01

    Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.

  12. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  13. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less

  14. Morphology of Proeutectoid Ferrite

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-03-01

    The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.

  15. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  16. Timing of wet snow avalanche activity: An analysis from Glacier National Park, Montana, USA.

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2012-01-01

    Wet snow avalanches pose a problem for annual spring road opening operations along the Going-to-the-Sun Road (GTSR) in Glacier National Park, Montana, USA. A suite of meteorological metrics and snow observations has been used to forecast for wet slab and glide avalanche activity. However, the timing of spring wet slab and glide avalanches is a difficult process to forecast and requires new capabilities. For the 2011 and 2012 spring seasons we tested a previously developed classification tree model which had been trained on data from 2003-2010. For 2011, this model yielded a 91% predictive rate for avalanche days. For 2012, the model failed to capture any of the avalanche days observed. We then investigated these misclassified avalanche days in the 2012 season by comparing them to the misclassified days from the original dataset from which the model was trained. Results showed no significant difference in air temperature variables between this year and the original training data set for these misclassified days. This indicates that 2012 was characterized by avalanche days most similar to those that the model struggled with in the original training data. The original classification tree model showed air temperature to be a significant variable in wet avalanche activity which implies that subsequent movement of meltwater through the snowpack is also important. To further understand the timing of water flow we installed two lysimeters in fall 2011 before snow accumulation. Water flow showed a moderate correlation with air temperature later in the season and no synchronous pattern associated with wet slab and glide avalanche activity. We also characterized snowpack structure as the snowpack transitioned from a dry to a wet snowpack throughout the spring. This helped to assess potential failure layers of wet snow avalanches and the timing of avalanches compared to water moving through the snowpack. These tools (classification tree model and lysimeter data), combined with standard meteorological and avalanche observations, proved useful to forecasters regarding the timing of wet snow avalanche activity along the GTSR.

  17. Infrasound and seismic array analysis of snow avalanches: results from the 2015-2017 experiment in Dischma valley above Davos, Switzerland

    NASA Astrophysics Data System (ADS)

    Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio

    2017-04-01

    While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.

  18. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  19. Flexure Based Linear and Rotary Bearings

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    2016-01-01

    A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.

  20. Crackling to periodic transition in a granular stick-slip experiment

    NASA Astrophysics Data System (ADS)

    Abed Zadeh, Aghil; BaréS, Jonathan; Behringer, Robert

    We perform a stick-slip experiment to characterize avalanches in time and space for granular materials. In our experiment, a constant speed stage pulls a slider which rests on a vertical bed of circular photo-elastic particles in a 2D system. The stage is connected to the slider by a spring. We measure the force on the spring by a force sensor attached to the spring. We study the avalanche size statistics, and other seismicity laws of slip avalanches. Using the power spectrum of the force signal and avalanche statistics, we analyze the effect of the loading speed and of the spring stiffness and we capture a transition from crackling to periodic regime by changing these parameters. From a more local point of view and by using a high speed camera and the photo-elastic properties of our particles, we characterize the local stress change and flow of particles during slip avalanches. By image processing, we detect the local avalanches as connected components in space and time, and we study the avalanche size probability density functions (PDF). The PDF of avalanches obey power laws both at global and local scales, but with different exponents. We try to understand the correlation of local avalanches in space and the way they coarse grain to the global avalanches. NSF Grant DMR-1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  1. Artificial dielectric stepped-refractive-index lens for the terahertz region.

    PubMed

    Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M

    2018-02-05

    In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.

  2. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  3. Geomorphological analysis, monitoring and modeling of large rock avalanches in northern Chile (Iquique area) for regional hazard assessment.

    NASA Astrophysics Data System (ADS)

    Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.

    2012-04-01

    Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been mapped characterized by well defined lateral levees and clear internal morphological features (ridges and furrows, hummocks). Rock avalanche run out simulations have been carried out to back analyze the sites using DAN 3D and a 3 m pixel resolution digital elevation model (DEM) obtained from stereoscopic Geoeye-1 images to assess parameters that controlled propagation mechanism and impact area extent of the events. The older lobes were dated by radiocarbon methods. Results indicate ages higher than 40,000 yr BP for the northern site. The second site could only be dated relatively with an underlying terrace that resulted older than the age limit of radiocarbon dating (43.500 yr BP). All the deposits are positioned well above (40-70 m) the present sea level rise, and at the reported uplift rates for the area, they could be associated to events older than some hundreds of thousand years. A more complete record of the failure history of the sites will be obtained when results of cosmogenic nuclides (CN) and luminescence dating will become available later this year. Several other smaller rock avalanches have been mapped in the study area. Satellite-based radar interferometry (InSAR) was performed using ERS-1 and ERS-2 scenes from 1995-2000 as well as ENVISAT ASAR scenes from 2004-2010. Both datasets show only small deformation in the area. This deformation includes sliding of small surficial slope deposits and subsidence apparently due to local groundwater withdrawal. No deformation of bedrock along the escarpment edge is observed. Results show that only major rock avalanches could reach the main access roads to Iquique and currently no large slope segments show signs of large displacement rates. Moreover, there is no strong correlation between M > 8 earthquakes return periods and age of the dated deposits, which implies that large rock avalanches could have been triggered by other factors. Hence, from a hazard and risk perspective, it is unlikely that large rock avalanches, that could block the access roads to the city, would occur in the near future. Results from CN and luminescence dating will help to get a better understanding of the conditioning and triggering of past events.

  4. Static analysis of the hull plate using the finite element method

    NASA Astrophysics Data System (ADS)

    Ion, A.

    2015-11-01

    This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.

  5. Casimir force in a Lorentz violating theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Turan, Ismail

    2006-08-01

    We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less

  6. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Zhang Xiaowei; Yoda, Yoshitaka

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  7. Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry

    NASA Astrophysics Data System (ADS)

    Zink, K.; Wulff, J.

    2012-04-01

    Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.

  8. Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Joo

    We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.

  9. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  10. Resin Characterization

    DTIC Science & Technology

    2015-06-01

    environmental test chamber attachment to control temperature and disposable parallel plates . The experiment can be stopped when the sample...is auto-stopping when its torque limit is reached and to prevent too high of an extent of cure that could make removal of the disposable plates from...separated by a 0.025-mm-thick Teflon spacer (International Crystal Labs) or pressed with potassium bromide (KBr) powder into pellets. The salt plate

  11. Negative feedback avalanche diode

    NASA Technical Reports Server (NTRS)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  12. Snow supporting structures for avalanche hazard reduction, 151 Avalanche, US 89/191, Jackson, Wyoming.

    DOT National Transportation Integrated Search

    2009-04-01

    The 151 Avalanche, near Jackson, Wyoming has, historically, avalanched to the road below 1.5 to 2 times a year. The road, US 89/191 is four lanes and carries an estimated 8,000 vehicles per day in the winter months. The starting zone of the 151 Avala...

  13. Forecasting for natural avalanches during spring opening of Going-to-the-Sun Road, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, Blase; Lundy, Chris

    2004-01-01

    The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.

  14. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  15. Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver

    2017-10-01

    Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.

  16. Automatic detection of snow avalanches in continuous seismic data using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat

    2018-01-01

    Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.

  17. Analysis of avalanche risk factors in backcountry terrain based on usage frequency and accident data in Switzerland

    NASA Astrophysics Data System (ADS)

    Techel, F.; Zweifel, B.; Winkler, K.

    2015-09-01

    Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - bergportal.ch and camptocamp.org. Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the other hand, require the expertise to adjust the planning of a tour and their backcountry travel behavior depending on the avalanche danger and the avalanche problem.

  18. Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber.

    PubMed Central

    Millsap, K; Reid, G; van der Mei, H C; Busscher, H J

    1994-01-01

    The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082

  19. Vibration energy harvesting using a piezoelectric circular diaphragm array.

    PubMed

    Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi

    2012-09-01

    This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.

  20. Risk analysis for dry snow slab avalanche release by skier triggering

    NASA Astrophysics Data System (ADS)

    McClung, David

    2013-04-01

    Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles, the risk analysis showed there are two ranges: ˜ 320; × 460for which risk is lowest. In this case, both the range of and the consequences vary by about a factor of two so the probability of release dominates the risk analysis to yield low risk at the tails of the distribution of with highest risk in the middle (330 - 450) of the expected range (250 - 550).

  1. Modeling of snow avalanches for protection measures designing

    NASA Astrophysics Data System (ADS)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton

    2017-04-01

    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in Khibini Mountains by different avalanche scenarios and discuss the technical procedure and obtained results. RAMMS results were compared with field observations data and values received with Russian well-known one dimensional avalanche models. In the Caucasus, Russia, new ski resorts are being under the development which is impossible without avalanche protection. The choice of the avalanche mitigation type has to be done by experts depending on many factors. Within the ski resort Arkhyz, Caucasus we implemented RAMMS into the procedure of the structural measures type decision making. RAMMS as well as Russian well-known one-dimensional models were used to calculate the key input parameters for structures designing. The calculation results were coupled with field observations data and historical records. Finally we suggested the avalanche protection plan for the area of interest. The interpretation of RAMMS simulations including mitigation structures has been made in order to assess the reliability of the proposed protection.

  2. APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS

    DOEpatents

    Neidigh, R.V.

    1963-07-01

    An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)

  3. Evolution and hydration of the Juan de Fuca crust and uppermost mantle: a plate-scale seismic investigation from ridge to trench

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.

    2012-12-01

    The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to characterize variations in plate structure and hydration linked to JdF plate segmentation for over 450 km along the margin. Shipboard brute stacks of the MCS data reveal evidence for reactivation of abyssal hill faulting in the plate interior far from the trench. Ridgeward-dipping lower crustal reflectors are observed, similar to those observed in mature Pacific crust elsewhere, as well as conjugate reflectivity near the deformation front along the Oregon transect. Bright intracrustal reflectivity is also observed along the trench-parallel transect with marked changes in reflectivity along the Oregon and Washington margins. Initial inspection of the OBS record sections indicate good quality data with the expected oceanic crustal and upper mantle P-wave arrivals: Ps and Pg refractions through sedimentary and igneous layers, respectively, PmP wide-angle reflections from the crust-mantle transition zone, and Pn upper mantle refractions. The Pg-PmP-Pn triplication is typically observed at 40-50 km source-receiver offsets. Pn characteristics show evidence for upper mantle azimuthal anisotropic propagation: along the plate transects Pn is typically weaker and difficult to observe beyond ~80 km offsets, while along the trench-parallel transect Pn arrivals have higher amplitude and are easily observed up to source-receiver offsets of 160-180 km. An overview on the Cascadia Ridge to Trench data acquisition program and preliminary results will be presented.

  4. 3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2017-04-01

    The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.

  5. Designing an upgrade of the Medley setup for light-ion production and fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Jansson, K.; Gustavsson, C.; Al-Adili, A.; Hjalmarsson, A.; Andersson-Sundén, E.; Prokofiev, A. V.; Tarrío, D.; Pomp, S.

    2015-09-01

    Measurements of neutron-induced fission cross-sections and light-ion production are planned in the energy range 1-40 MeV at the upcoming Neutrons For Science (NFS) facility. In order to prepare our detector setup for the neutron beam with continuous energy spectrum, a simulation software was written using the Geant4 toolkit for both measurement situations. The neutron energy range around 20 MeV is troublesome when it comes to the cross-sections used by Geant4 since data-driven cross-sections are only available below 20 MeV but not above, where they are based on semi-empirical models. Several customisations were made to the standard classes in Geant4 in order to produce consistent results over the whole simulated energy range. Expected uncertainties are reported for both types of measurements. The simulations have shown that a simultaneous precision measurement of the three standard cross-sections H(n,n), 235U(n,f) and 238U(n,f) relative to each other is feasible using a triple layered target. As high resolution timing detectors for fission fragments we plan to use Parallel Plate Avalanche Counters (PPACs). The simulation results have put some restrictions on the design of these detectors as well as on the target design. This study suggests a fissile target no thicker than 2 μm (1.7 mg/cm2) and a PPAC foil thickness preferably less than 1 μm. We also comment on the usability of Geant4 for simulation studies of neutron reactions in this energy range.

  6. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  7. Avalanche mode of motion - Implications from lunar examples.

    NASA Technical Reports Server (NTRS)

    Howard, K. A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as 'efficient' as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  8. Avalanche mode of motion: Implications from lunar examples

    USGS Publications Warehouse

    Howard, K.A.

    1973-01-01

    A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as "efficient" as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.

  9. Avalanches and scaling collapse in the large-N Kuramoto model

    NASA Astrophysics Data System (ADS)

    Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.

    2018-04-01

    We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.

  10. [Morphology determination of multi-needle-to-plate positive corona discharge].

    PubMed

    Su, Peng-hao; Zhu, Yi-min; Chen, Hai-feng

    2008-09-01

    Using the method of OES (optical emission spectrum) for measuring N2 emission spectrum, the distribution of the energetic electrons in multi-needle-to-plate positive corona discharge at atmospheric pressure was investigated, and compared with that in negative corona discharge. According to the distribution of N2 second positive band's intensity I(SPB), the outline of the ionization region in glow discharge and the streamer channel were drawn rather accurately. The relationship between I(SPB) and the discharge current I in glow discharge can be obtained through the volume integral of the I(SPB). In glow discharge, both the ionization region scale and I(SPB) are smaller than in negative corona discharge, the electron avalanche develops farther along the radius direction of needle than along axis direction, and only the arrange along axis direction is enhanced slightly with the rise of the applied voltage U. The integral of I(SPB) is second order linear to I. In streamer discharge, the discharge channels develop from needlepoint to the plate, while the shape of the region in which I(SPB) is higher looks like a bullet. The density of energetic electron in the channel farther away from the needlepoint is relatively uniform along the axis direction, but first increases then decreases along the radius direction.

  11. Performance test of the Multi-gap Resistive Plate Chamber (MRPC) with cosmic ray

    NASA Astrophysics Data System (ADS)

    Ikeda, Michihiko; Akieda, Tomomi; Tomita, Shoko; Ninomiya, Aki

    2014-09-01

    MRPC is a gaseous ionization detector, which a good timing resolution has been used practically in the nuclear and particle physics experiment. A mixed gas of SF6 and Fleon 134a was flowed through the gaps between high resistive plates (500 μm thickness glass). A high electric field of ~2 ×106 [V/m] was applied between the plates. A charged particle passes through the MRPC and causes avalanche amplification. We constructed a relatively small MRPC with a readout pad (20 mm × 50 mm). The development is motivated by feasibility study of the MRPC as a photon tagger at the Research Center for Electron Photon Science (ELPH), Tohoku University. The photon tagger needs a good timing resolution (<100 ps), therefore we studied the small size MRPC, while a large sized MRPCs are widely used in nuclear and particle experiments. The MRPC can operate under the strong magnetic field and thus it can be a good candidate as an electron detector placed in the magnet. We tested the HV dependence of time resolution of the MRPC with cosmic rays. The MRPC will be demonstrated at the open campus of the Tohoku University as an example of nuclear experimental detectors. We will measure the zenith angle and velocity distributions of cosmic ray.

  12. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  13. Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.

    PubMed

    Wang, Wenliang; Xiong, Shengming; Zhang, Yundong

    2007-06-01

    Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.

  14. All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Xiong, Shenming; Zhang, Yundong

    2007-12-01

    Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.

  15. Numerical Solution of the Navier-Stokes Equations for Steady Magnetohydrodynamic Flow Between Two Parallel Porous Plates with an Angular Velocity

    NASA Astrophysics Data System (ADS)

    Delhi Babu, R.; Ganesh, S.

    2018-04-01

    The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.

  16. Experimental Observation of the Effects of Translational and Rotational Electrode Misalignment on a Planar Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.

    2018-04-01

    The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.

  17. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  18. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  19. Lighting system with heat distribution face plate

    DOEpatents

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  20. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOEpatents

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  1. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    NASA Astrophysics Data System (ADS)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  2. Quantum key distribution with 1.25 Gbps clock synchronization.

    PubMed

    Bienfang, J; Gross, A; Mink, A; Hershman, B; Nakassis, A; Tang, X; Lu, R; Su, D; Clark, Charles; Williams, Carl; Hagley, E; Wen, Jesse

    2004-05-03

    We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.

  3. Disordered artificial spin ices: Avalanches and criticality (invited)

    NASA Astrophysics Data System (ADS)

    Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles

    2015-05-01

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  4. Risk assessment in the North Caucasus ski resorts

    NASA Astrophysics Data System (ADS)

    Komarov, Anton Y.; Seliverstov, Yury G.; Glazovskaya, Tatyana G.; Turchaninova, Alla S.

    2016-10-01

    Avalanches pose a significant problem in most mountain regions of Russia. The constant growth of economic activity, and therefore the increased avalanche hazard, in the North Caucasus region lead to demand for the development of large-scale avalanche risk assessment methods. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments.The requirement of natural hazard risk assessments is determined by the Federal Law of the Russian Federation (Federal Law 21.12.1994 N 68-FZ, 2016). However, Russian guidelines (SNIP 11-02-96, 2013; SNIP 22-02-2003, 2012) are not clearly presented concerning avalanche risk assessment calculations. Thus, we discuss these problems by presenting a new avalanche risk assessment approach, with the example of developing but poorly researched ski resort areas. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (appropriate, acceptable and inappropriate) and to suggest methods to decrease the individual risk to an acceptable level or better. The analysis makes it possible to compare risk quantitative data obtained from different regions, analyze them and evaluate the economic feasibility of protection measures.

  5. Disordered artificial spin ices: Avalanches and criticality (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less

  6. Seamount subduction underneath an accretionary wedge: modelling mass wasting and wedge collapse

    NASA Astrophysics Data System (ADS)

    Mannu, Utsav; Ueda, Kosuke; Willett, Sean; Gerya, Taras; Strasser, Michael

    2017-04-01

    Seamounts (h >1 km) and knolls (h = 500 m-1000 m) cover about one-fifth of the total ocean floor area. These topographical highs of the ocean floor eventually get subducted. Subduction of these topographical features leads to severe deformation of the overriding plate and can cause extensive tectonic erosion and mass wasting of the frontal prism, which can ultimately cause a forearc wedge collapse. Large submarine landslides and the corresponding wedge collapse have previously been reported, for instance, in the northern part of the Hikurangi margin where the landslide is known as the giant Ruatoria debris avalanche, and have also been frequently reported in several seismic sections along the Costa Rica margin. Size and frequency relation of landslides suggest that the average size of submarine landslides in margins with rough subducting plates tends to be larger. However, this observation has not yet been tested or explained by physical models. In numerical subduction models, landslides take place, if at all, on a much larger timescale (in the order of 104-105 years, depending on the time steps of the model) than in natural cases. On the other hand, numerical models simulating mass wasting events such as avalanches and submarine landslides, typically model single events at a much smaller spatio-temporal domain, and do not consider long-term occurrence patterns of freely forming landslides. In this contribution, we present a multi-scale nested numerical approach to emulate short-term landslides within long-term progressive subduction. The numerical approach dynamically produces instantaneous submarine landslides and the resulting debris flow in the spatially and temporally refined inner model. Then we apply these convoluted changes in topography (e.g. due to the submarine landslide etc.) back to an outer larger-scale model instance that addresses wedge evolution. We use this approach to study the evolution of the accretionary wedge during seamount subduction.

  7. Heat transfer optimization for air-mist cooling between a stack of parallel plates

    NASA Astrophysics Data System (ADS)

    Issa, Roy J.

    2010-06-01

    A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.

  8. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.

    1990-01-01

    An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.

  9. Wet and full-depth glide snow avalanche onset monitoring and detection with ground based Ku-band radar

    NASA Astrophysics Data System (ADS)

    Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena

    2017-04-01

    Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones prone to wet and full-depth glide snow avalanches in the near future. Therefore in the current winter season, we attempt to automatically detect snowpack displacement and avalanche releases at Dorfberg. Automatic warnings issued by the radar about the presence and amount of displacement and information about location and altitude of creeping regions as well as released avalanches will be combined with simulated LWC (Liquid Water Content) for the observed area. This slope-specific knowledge will be evaluated for inclusion into the more regional avalanche bulletin issued by SLF. Two cameras capture photographs at 1 and 10 minute intervals respectively to reference the opening of optically visible tensile cracks and triggering of avalanches. [1] C. Lucas, Y. Buehler, A. Marino, I. Hajnsek: Investigation of Snow Avalanches wit Ground Based Ku-band Radar, EUSAR 2016; 11th European Conference on Synthetic Aperture Radar; Proceedings of, 2016 [2] R. Bamler, P. Hartl: Synthetic aperture radar interferometry, Inverse Problems, Vol. 14 R1-R54, 1988 [3] Y. Buehler, C. Pielmeier, R. Frauenfelder, C. Jaedicke, G. Bippus, A. Wiesmann and R. Caduff: Improved Alpine Avalanche Forecast Service AAF, Final Report, European Space Agency ESA, 2014 [4] R. Caduff, A. Wiesmann, Y. Buehler, and C. Pielmeier: Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry, Geophysical Research Letters, vol. 42, no. 3, 2015. [5] R. Caduff, A. Wiesmann, Y. Bühler, C. Bieler, and P. Limpach, "Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow," in Interpraevent, 2016, pp. 239-248.

  10. Information processing occurs via critical avalanches in a model of the primary visual cortex

    NASA Astrophysics Data System (ADS)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  11. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  12. Assessment and prevention of the avalanche risk on medium-high mountain from a geo-historical point of view. The Vosges range (France) as a case study.

    NASA Astrophysics Data System (ADS)

    Giacona, Florie; Martin, Brice; David, Pierre-Marie

    2010-05-01

    To mention avalanche risks in the Vosges generally causes certain disbelief because of its modest height. Moreover, as far as natural risks are concerned, and especially the avalanche risk, medium-high mountains are not usually studied. The attention is more focused on the spectacular and destructive phenomena that occur in highest mountains such as the Alps or the Pyrenees. However, in January and February 2000, fifteen people were victims of avalanches and three of them died. These accidents have suddenly drawn attention to the fact that avalanche risk is underestimated. In opposition to the Alps and Pyrenees there is no study or systematic inventory of avalanches in the medium-high mountain ranges. Moreover, the many research and methodological articles dedicated to studies on avalanches in the high mountain ranges do not, unfortunately, raise any concerns about medium-high mountain ranges. So, we had to develop a new research method based on handwritten, printed, and oral sources as well as on observations. The results of this historical research exceeded all expectations. About 300 avalanche events have been reported since the end of the 18th century; they happened in about 90 avalanche paths. Spatial and temporal distributions of the avalanche events can be explained by climate, vulnerability and land use evolutions. The vulnerability has evolved since the 18th century: material vulnerability decreased whereas human vulnerability increased due to the expansion of winter sports. Finally we focus our study on the perception of the avalanche risk by the winter sports adepts in the Vosges mountains. Indeed, at the beginning of this research, we were directly confronted to a lack of knowledge, or even to an ignorance, of the avalanche risk. Several factors contribute to this situation among which the topography. Even though some places in the Vosges mountains look like the alpine topography, most of the summits are rounded. Furthermore, this mountain presents an annual and seasonal variability of snowfall and snow height. And the summits and slopes which present an avalanche risk can be easily reached in wintertime thanks to car parks close to the summits and the clearing of snow from the roads. A study is therefore being carried out in order to understand the mechanisms of perception and awareness of the avalanche risk. This is the first step towards the development of a new prevention method adapted to the recreational public in medium-high mountains.

  13. Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Hays, William H.

    2003-01-01

    The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a succession of rocks that includes not only strata equivalent to those of the remainder of the quadrangle, but also the Middle Proterozoic Newland, Greyson, and Spokane Formations, Pennsylvanian and Upper Mississippian Amsden Formation and Big Snowy Group undivided, the Permian and Pennsylvanian Phosphoria and Quadrant Formations undivided, the Jurassic Ellis Group and Lower Cretaceous Kootenai Formation. Hornblende diorite sills and irregular bodies of probable Late Cretaceous age intrude Middle Proterozoic, Cambrian and Devonian strata. No equivalent intrusive rocks are present in structurally underlying successions of strata. In this main part of the quadrangle, the Flathead Sandstone cuts unconformably downward from south to north across the Spokane Formation into the upper middle part of the Greyson Formation. Tertiary (Miocene?) strata including sandstone, pebble and cobble conglomerate, and vitric crystal tuff underlie, but are poorly exposed, in the southeastern part of the quadrangle where they are overlain by late Tertiary and Quaternary gravel. The structural complexity of the quadrangle decreases from northeast to southwest across the quadrangle. At the lowest structural level (Avalanche Butte thrust plate) exposed in the canyon of Beaver Creek, lower and middle Paleozoic rocks are folded in northwest-trending east-inclined disharmonic anticlines and synclines that are overlain by recumbently folded and thrust faulted Devonian and Mississippian rocks. The Mississippian strata are imbricated adjacent to the recumbent folds. In the east-central part of the quadrangle, a structurally overlying thrust plate, likely equivalent to the Hogback Mountain thrust plate of the Hogback Mountain quadrangle adjacent to the east (Reynolds, 20xx), juxtaposes recumbently folded Middle Proterozoic and unconformably overlying lower Paleozoic rocks on the complexly folded and faulted rocks of the Avalanche Butte thrust plate. The highest structural plate, bounded below

  14. Explosive-residue compounds resulting from snow avalanche control in the Wasatch Mountains of Utah

    USGS Publications Warehouse

    Naftz, David L.; Kanagy, Leslie K.; Susong, David D.; Wydoski, Duane S.; Kanagy, Christopher J.

    2003-01-01

    A snow avalanche is a powerful force of nature that can play a significant role in developing mountain landscapes (Perla and Martinelli, 1975). More importantly, loss of life can occur when people are caught in the path of snow avalanches (Grossman, 1999). Increasing winter recreation, including skiing, snowboarding, snowmobiling, snowshoeing, and climbing in mountainous areas, has increased the likelihood of people encountering snow avalanches (fig. 1). Explosives are used by most ski areas and State highway departments throughout the Western United States to control the release of snow avalanches, thus minimizing the loss of human life during winter recreation and highway travel (fig. 2).Common explosives used for snow avalanche control include trinitrotoluene (TNT), pentaerythritoltetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), tetrytol, ammonium nitrate, and nitroglycerin (Perla and Martinelli, 1975). During and after snowfall or wind loading of potential avalanche slopes, ski patrollers and Utah Department of Transportation personnel deliver explosive charges onto predetermined targets to artificially release snow avalanches, thereby rendering the slope safer for winter activities. Explosives can be thrown by hand onto target zones or shot from cannons for more remote delivery of explosive charges. Hand-delivered charges typically contain about 2 pounds of TNT or its equivalent (Perla and Martinelli, 1975).Depending on the size of the ski area, acreage of potential avalanche terrain, and weather conditions, the annual quantity of explosives used during a season of snow avalanche control can be substantial. For example, the three ski areas of Alta, Snowbird, and Brighton, plus the Utah Department of Transportation, may use as many as 11,200 hand charges per year (Wasatch Powderbird Guides, unpub. data, 1999) for snow avalanche control in Big and Little Cottonwood Canyons (fig. 3). If each charge is assumed to weigh 2 pounds, this equates to about 22,400 pounds of explosive hand charges per year. In addition, 2,240 to 3,160 Avalauncher rounds and 626 to 958 military artillery rounds (explosive mass not specified) are used each year by the three ski areas and the Utah Department of Transportation for snow avalanche control in Big and Little Cottonwood Canyons (Wasatch Powderbird Guides, unpub. data, 1999). The other ski area in Big Cottonwood Canyon, Brighton, uses about 2,000 pounds of explosives per year for snow avalanche control (Michele Weidner, Cirrus Ecological Solutions consultant, written commun., 2001).

  15. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of intrinsic avalanche noise.

    PubMed

    Hunt, D C; Tanioka, Kenkichi; Rowlands, J A

    2007-12-01

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers-veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.

  16. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.

    2007-01-01

    Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years. Simple avalanche flow modeling was able to reasonably replicate Iliamna avalanches and can thus be applied for hazard assessments. Hazards at Iliamna Volcano are low due to its remote location; however, we emphasize the transfer potential of the methods presented here to other ice-capped volcanoes with much higher hazards such as those in the Cascades or the Andes. ?? 2007 Elsevier B.V. All rights reserved.

  17. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of intrinsic avalanche noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-12-15

    The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comesmore » with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.« less

  18. Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1975-01-01

    A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.

  19. High-throughput measurements of biochemical responses using the plate::vision multimode 96 minilens array reader.

    PubMed

    Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich

    2006-01-01

    The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.

  20. The dynamics of plate tectonics and mantle flow: from local to global scales.

    PubMed

    Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar

    2010-08-27

    Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.

  1. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  2. Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.

  3. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  4. Thermal Creep Force: Analysis And Application

    DTIC Science & Technology

    2016-06-01

    University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers

  5. IFKIS a basis for organizational measures in avalanche risk management

    NASA Astrophysics Data System (ADS)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  6. Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.

    2004-01-01

    In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.

  7. Statistical analyses support power law distributions found in neuronal avalanches.

    PubMed

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  8. Age of Palos Verdes submarine debris avalanche, southern California

    USGS Publications Warehouse

    Normark, W.R.; McGann, M.; Sliter, R.

    2004-01-01

    The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.

  9. Apparatus and method for recharging a string a avalanche transistors within a pulse generator

    DOEpatents

    Fulkerson, E. Stephen

    2000-01-01

    An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.

  10. A practitioner's tool for assessing glide crack activity

    USGS Publications Warehouse

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2010-01-01

    Glide cracks can result in full-depth glide avalanche release. Avalanches from glide cracks are notoriously difficult to forecast, but are a reoccurring problem in a number of different avalanche forecasting programs across a range of snow climates. Despite this, there is no consensus for how to best manage, mitigate, or even observe glide cracks and the potential resultant avalanche activity. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity, so frequent measuring of glide crack movement provides an index of instability. Therefore, a comprehensive avalanche program with glide crack avalanche activity, should at the least, undertake some form of direct monitoring of glide crack movement. In this paper we present a simple, cheap and repeatable method to track glide crack activity using a series of stakes, reflectors and a laser rangefinder (LaserTech TruPulse360B) linked to a GPS (Trimble Geo XH). We tested the methodology in April 2010, on a glide crack above the Going to the Sun Road in Glacier National Park, Montana, USA. This study suggests a new method to better track the development and movement of glide cracks. It is hoped that by introducing a workable method to easily record glide crack movement, avalanche forecasters will improve their understanding of when, or if, avalanche activity will ensue. Our initial results suggest that these new observations, when combined with local micrometeorological data will result in improved process understanding and forecasting of these phenomena.

  11. A MEMS Multi-Cantilever Variable Capacitor On Metamaterial

    DTIC Science & Technology

    2009-03-26

    tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering

  12. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement.

    PubMed

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-10-15

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.

  13. Avalanche risk in backcountry terrain based on usage frequency and accident data

    NASA Astrophysics Data System (ADS)

    Techel, F.; Zweifel, B.; Winkler, K.

    2014-08-01

    In Switzerland, the vast majority of avalanche accidents occurs during recreational activities. Risk analysis studies mostly rely on accident statistics without considering exposure (or the elements at risk), i.e. how many and where people are recreating. We compared the accident data (backcountry touring) with reports from two social media mountaineering networks - bergportal.ch and camptocamp.org. On these websites, users reported more than 15 000 backcountry tours during the five winters 2009/2010 to 2013/2014. We noted similar patterns in avalanche accident data and user data like demographics of recreationists, distribution of the day of the week (weekday vs. weekend) or weather conditions (fine vs. poor weather). However, we also found differences such as the avalanche danger conditions on days with activities and accidents, but also the geographic distribution. While backcountry activities are concentrated in proximity to the main population centres in the West and North of the Swiss Alps, a large proportion of the severe avalanche accidents occurred in the inner-alpine, more continental regions with frequently unfavorably snowpack structure. This suggests that even greater emphasis should be put on the type of avalanche problem in avalanche education and avalanche forecasting to increase the safety of backcountry recreationists.

  14. Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout

    NASA Astrophysics Data System (ADS)

    Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry

    2018-03-01

    Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.

  15. Ionospheric plasma flow about a system of electrically biased flat plates. M.S. Thesis - Cleveland State Univ. Final Report

    NASA Technical Reports Server (NTRS)

    Herr, Joel L.

    1993-01-01

    The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.

  16. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  17. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  18. Modeling of composite beams and plates for static and dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Atilgan, Ali R.; Lee, Bok Woo

    1990-01-01

    A rigorous theory and corresponding computational algorithms was developed for a variety of problems regarding the analysis of composite beams and plates. The modeling approach is intended to be applicable to both static and dynamic analysis of generally anisotropic, nonhomogeneous beams and plates. Development of a theory for analysis of the local deformation of plates was the major focus. Some work was performed on global deformation of beams. Because of the strong parallel between beams and plates, the two were treated together as thin bodies, especially in cases where it will clarify the meaning of certain terminology and the motivation behind certain mathematical operations.

  19. The Avalanche Catastrophe of El Teniente-chile: August 8 of 1944.

    NASA Astrophysics Data System (ADS)

    Vergara, J.; Baros, M.

    The avalanche of El Teniente-Chile (~34S) August 8 of 1944, was the most serious avalanche accident in Chile of the last 100 years. On the night of August 8, 1944, a major avalanche impacted a The Sewell, a worked village of the Copper Mine of El Teniente, there were 102 fatalities, 8 building, one school and one bridged de- stroyed. Due to a storm over the central part of Chile where intense precipitation fall over the Andes mountains during nine days. Historical precipitation records near to Sewell shows that total rainfall during the storms was 299mm (La Rufina) and 349mm (Bullileo), and the day before of avalanche the 24 hours rain intensity was 93mm. The Weilbull statistical analysis of monthly snowfall (water equivalent) record in Sewell from 1912-2001 show that the total August 1944 snowfall (621mm) was the larger of the all historical records and the return period is close one events in 180 years, and the annual snowfall during 1944 was 1140mm and return periods was 3.8 years. KEYWRODS: Chile, Avalanches, Andes Mountains, Avalanche Disaster, Historical Snow Records.

  20. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  1. A solid-state amorphous selenium avalanche technology for low photon flux imaging applications

    PubMed Central

    Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2010-01-01

    Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217

  2. Process for manufacturing hollow fused-silica insulator cylinder

    DOEpatents

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  3. Characterization of granular collapse onto hard substrates by acoustic emissions

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.

  4. Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï

    2014-05-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.

  5. Characterization of blocks impacts from elastic waves: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.

    2013-12-01

    Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.

  6. First approximations in avalanche model validations using seismic information

    NASA Astrophysics Data System (ADS)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position of the flow in the slope, and make observations of the internal flow dynamics, especially flow regimes transitions, which depend on the slope-perpendicular energy fluxes induced by collisions at the basal boundary. The recorded data over several experimental seasons provide a catalogue of seismic data from different types and sizes of avalanches triggered at the VDLS experimental site. These avalanches are recorded also by the SLF instrumentation (FMCW radars, photography, photogrammetry, video, videogrammetry, pressure sensors). We select the best-quality avalanche data to model and establish comparisons. All this information allows us to calibrate parameters governing the internal energy fluxes, especially parameters governing the interaction of the avalanche with the incumbent snow cover. For the comparison between the seismic signal and the RAMMS models, we are focusing at the temporal evolution of the flow, trying to find the same arrival times of the front at the seismic sensor location in the avalanche path. We make direct quantitative comparisons between measurements and model outputs, using modelled flow height, normal stress, velocity, and pressure values, compared with the seismic signal, its envelope and its running spectrogram. In all cases, the first comparisons between the seismic signal and RAMMS outputs are very promising.

  7. Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides

    NASA Astrophysics Data System (ADS)

    Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua

    2018-03-01

    In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.

  8. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    NASA Astrophysics Data System (ADS)

    Stupakov, Gennady; Zhou, Demin

    2016-04-01

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  9. Rapid viscosity measurements of powdered thermosetting resins

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.; Dalal, S. K.

    1978-01-01

    A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.

  10. Investigation of the charging characteristics of micrometer sized droplets based on parallel plate capacitor model.

    PubMed

    Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping

    2013-02-05

    The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.

  11. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.

  12. Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C. K.; Bane, K. L.F.

    A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters longmore » in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.« less

  13. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  14. Tunable THz notch filter with a single groove inside parallel-plate waveguides.

    PubMed

    Lee, Eui Su; Jeon, Tae-In

    2012-12-31

    A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.

  15. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.

    1990-11-13

    An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.

  16. Practical operational implementation of Teton Pass avalanche monitoring infrasound system.

    DOT National Transportation Integrated Search

    2008-12-01

    Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...

  17. Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe

    NASA Astrophysics Data System (ADS)

    Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.

    2017-03-01

    We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.

  18. NASA's Potential Contributions to Avalanche Forecasting Using Active and Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir

    2007-01-01

    This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.

  19. Influence of obliquely subducting slab on Pacific-North America shear motion inferred from seismic anisotropy along the Queen Charlotte margin

    NASA Astrophysics Data System (ADS)

    Cao, L.; Kao, H.; Wang, K.; Wang, Z.

    2016-12-01

    Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.

  20. Avalanche risk assessment in Russia

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended. The case studies of specific territories are performed using large-scale risk assessment methods. Thus, we discuss these problems by presenting an avalanche risk assessment approach on example of the developing but poorly researched ski resort areas in the North Caucasus. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (acceptable, admissible and unacceptable) and to suggest methods to decrease the individual risk to acceptable level or better. It makes possible to compare risk quantitative data obtained from different mountain regions, analyze it and evaluate the economic feasibility of protection measures. At present, we are developing methods of avalanche risk assessment in economic performance. It conceder costs of objects located in avalanche prone area, traffic density values and probability of financial loss.

  1. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, S.; Labanca, I.; Rech, I.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments.more » However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.« less

  2. Seismicity of the Earth 1900-2007, Japan and Vicinity

    USGS Publications Warehouse

    Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley

    2010-01-01

    This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.

  3. Evanescent wave coupling in terahertz waveguide arrays.

    PubMed

    Reichel, K S; Sakoda, N; Mendis, R; Mittleman, D M

    2013-07-15

    We study energy transfer among an array of identical finite-width parallel-plate waveguides in close proximity, via evanescent wave coupling of broadband terahertz waves. We observe stronger coupling with larger plate separations and longer propagation paths. This work establishes a platform to investigate new opportunities for THz components and devices based on evanescent wave coupling.

  4. 46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Plate for which Charpy V-notch impact testing is required in the parent material and for which V-notch minima are specified shall similarly have welding procedures qualified for toughness by Charpy V-notch testing. For these tests, the test plates shall be oriented with their final rolling direction parallel to...

  5. Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.

    2013-01-01

    An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.

  6. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up

    Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less

  7. Advanced Avalanche Safety Equipment of Backcountry Users: Current Trends and Perceptions.

    PubMed

    Ng, Pearlly; Smith, William R; Wheeler, Albert; McIntosh, Scott E

    2015-09-01

    Backcountry travelers should carry a standard set of safety gear (transceiver, shovel, and probe) to improve rescue chances and reduce mortality risk. Many backcountry enthusiasts are using other advanced equipment such as an artificial air pocket (eg, the AvaLung) or an avalanche air bag. Our goal was to determine the numbers of backcountry users carrying advanced equipment and their perceptions of mortality and morbidity benefit while carrying this gear. A convenience sample of backcountry skiers, snowboarders, snowshoers, and snowmobilers was surveyed between February and April 2014. Participants of this study were backcountry mountain users recruited at trailheads in the Wasatch and Teton mountain ranges of Utah and Wyoming, respectively. Questions included prior avalanche education, equipment carried, and perceived safety benefit derived from advanced equipment. In all, 193 surveys were collected. Skiers and snowboarders were likely to have taken an avalanche safety course, whereas snowshoers and snowmobilers were less likely to have taken a course. Most backcountry users (149, 77.2%), predominantly skiers and snowboarders, carried standard safety equipment. The AvaLung was carried more often (47 users) than an avalanche air bag (10 users). The avalanche air bag had a more favorable perceived safety benefit. A majority of participants reported cost as the barrier to obtaining advanced equipment. Standard avalanche safety practices, including taking an avalanche safety course and carrying standard equipment, remain the most common safety practices among backcountry users in the Wasatch and Tetons. Snowshoers remain an ideal target for outreach to increase avalanche awareness and safety. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  8. Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge

    USGS Publications Warehouse

    Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris

    2006-01-01

    In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.

  9. Seismic spectrograms analysis applying the Hough transform to estimate the front speed of mass movements: Application to snow avalanches

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, L.; Suriñach-Cornet, E., Sr.

    2017-12-01

    Seismic signals generated by snow avalanches and other mass movements are analyzed in their spectrogram representation. Spectrogram displays the evolution in time of the frequency content of the signals. The spectrogram of a seismic signal of a station to which a sliding mass, such as a snow avalanche, approaches, exhibits a triangular time / frequency signature. This increase in its higher frequency content over time is a consequence of the attenuation of the waves propagating in a media. Recognition of characteristic footprints in a spectrogram could help to identify and characterize diverse mass movement events such as landslides or snow avalanches. In order to recognize spectrogram features of seismic signals of Alpine snow avalanches, we propose an algorithm based on the Hough transform. The proposed algorithm is applied on an edge representation image of the seismic spectrogram obtained after fixing a threshold filter to the spectrogram, which enhances the most interesting frequencies of the seismogram that appear over time. This enables us to identify parameters (slopes) that correspond to the speeds associated with the type of snow avalanches, such as, powder, dense or transitional snow avalanches. The data analyzed in this work correspond to twenty different seismic signals generated by snow avalanches artificially released in the experimental site of Vallée de la Sionne (VDLS, SLF, Switzerland). The shape of the signal spectrograms are linked to the flow regimes previously identified. Our findings show that some ranges of speeds are inherent to the type of avalanche.

  10. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, G.A.

    1984-05-29

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  11. Fuel cell separator plate with bellows-type sealing flanges

    DOEpatents

    Louis, George A.

    1986-08-05

    A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

  12. Robust snow avalanche detection using machine learning on infrasonic array data

    NASA Astrophysics Data System (ADS)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially trained by using characteristic data features from known avalanche and non-avalanche events. Data features are obtained from output signals of the source localization algorithm or from Fourier or time domain processing and support the learning phase of the system. A significantly improved detection rate as well as a reduction of the false alarm rate was achieved compared to previous approaches.

  13. Transient events in bright debris discs: Collisional avalanches revisited

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.

    2018-01-01

    Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an avalanche would be a two-belt structure, with an inner belt (at 1 or 10 au for the "warm" and "cold" disc cases, respectively) of fractional luminosity f ≳ 10-4 where breakups of massive planetesimals occur, and a more massive outer belt, with τ of a few 10-3, into which the avalanche chain reaction develops and propagates.

  14. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M.; Zhao, W.; Tanioka, K.

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less

  15. Monte-Carlo simulation of spatial resolution of an image intensifier in a saturation mode

    NASA Astrophysics Data System (ADS)

    Xie, Yuntao; Wang, Xi; Zhang, Yujun; Sun, Xiaoquan

    2018-04-01

    In order to investigate the spatial resolution of an image intensifier which is irradiated by high-energy pulsed laser, a three-dimensional electron avalanche model was built and the cascade process of the electrons was numerically simulated. The influence of positive wall charges, due to the failure of replenishing charges extracted from the channel during the avalanche, was considered by calculating its static electric field through particle-in-cell (PIC) method. By tracing the trajectory of electrons throughout the image intensifier, the energy of the electrons at the output of the micro channel plate and the electron distribution at the phosphor screen are numerically calculated. The simulated energy distribution of output electrons are in good agreement with experimental data of previous studies. In addition, the FWHM extensions of the electron spot at phosphor screen as a function of the number of incident electrons are calculated. The results demonstrate that the spot size increases significantly with the increase in the number of incident electrons. Furthermore, we got the MTFs of the image intensifier by Fourier transform of a point spread function at phosphor screen. Comparison between the MTFs in our model and the MTFs by analytic method shows that spatial resolution of the image intensifier decreases significantly as the number of incident electrons increases, and it is particularly obvious when incident electron number greater than 100.

  16. Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range

    NASA Astrophysics Data System (ADS)

    Hahn, L.; Fuchs, F.; Kirste, L.; Driad, R.; Rutz, F.; Passow, T.; Köhler, K.; Rehm, R.; Ambacher, O.

    2018-04-01

    AlxGa1-xN based avalanche photodiodes grown on sapphire substrate with Al-contents of x = 0.65 and x = 0.60 have been examined under back- and frontside illumination with respect to their avalanche gain properties. The photodetectors suitable for the solar-blind ultraviolet spectral regime show avalanche gain for voltages in excess of 30 V reverse bias in the linear gain mode. Devices with a mesa diameter of 100 μm exhibit stable avalanche gain below the break through threshold voltage, exceeding a multiplication gain of 5500 at 84 V reverse bias. A dark current below 1 pA can be found for reverse voltages up to 60 V.

  17. Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement

    PubMed Central

    Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander

    2012-01-01

    In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447

  18. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  19. Multipactor experiment on a dielectric surface

    NASA Astrophysics Data System (ADS)

    Anderson, Rex Beach, III

    2001-12-01

    Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along with a bead pull perturbation method are used to calculate the threshold rf fields at the dielectric surface when multipactor occurs. This experiment is the first to measure electron current from the dielectric using an electron probe. The electron probe provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Another unique electron diagnostic utilized in this multipactor experiment is phosphor. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. Phosphors with different excitation energies are used as a crude electron energy analyzer. Experimental results from these diagnostics match well with theoretical calculations.

  20. Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments.

    PubMed

    Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M

    2000-02-25

    The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.

  1. Partial Arc Curvilinear Direct Drive Servomotor

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong (Inventor)

    2014-01-01

    A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.

  2. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  3. CALUTRON RECEIVER

    DOEpatents

    York, H.F.

    1959-07-01

    A receiver construction is presented for calutrons having two or more ion sources and an individual receiver unit for each source. Design requirements dictate that the face plate defining the receiver entrance slots be placed at an angle to the approaching beam, which means that ions striking the face plate are likely to be scattcred into the entrance slots of other receivers. According to the present invention, the face plate has a surface provided with parallel ridges so disposed that one side only of each ridge's exposed directly to the ion beam. The scattered ions are directed away from adjacent receivers by the ridges on the lace plate.

  4. Avalanche risk assessment - a multi-temporal approach, results from Galtür, Austria

    NASA Astrophysics Data System (ADS)

    Keiler, M.; Sailer, R.; Jörg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S.

    2006-07-01

    Snow avalanches pose a threat to settlements and infrastructure in alpine environments. Due to the catastrophic events in recent years, the public is more aware of this phenomenon. Alpine settlements have always been confronted with natural hazards, but changes in land use and in dealing with avalanche hazards lead to an altering perception of this threat. In this study, a multi-temporal risk assessment is presented for three avalanche tracks in the municipality of Galtür, Austria. Changes in avalanche risk as well as changes in the risk-influencing factors (process behaviour, values at risk (buildings) and vulnerability) between 1950 and 2000 are quantified. An additional focus is put on the interconnection between these factors and their influence on the resulting risk. The avalanche processes were calculated using different simulation models (SAMOS as well as ELBA+). For each avalanche track, different scenarios were calculated according to the development of mitigation measures. The focus of the study was on a multi-temporal risk assessment; consequently the used models could be replaced with other snow avalanche models providing the same functionalities. The monetary values of buildings were estimated using the volume of the buildings and average prices per cubic meter. The changing size of the buildings over time was inferred from construction plans. The vulnerability of the buildings is understood as a degree of loss to a given element within the area affected by natural hazards. A vulnerability function for different construction types of buildings that depends on avalanche pressure was used to assess the degree of loss. No general risk trend could be determined for the studied avalanche tracks. Due to the high complexity of the variations in risk, small changes of one of several influencing factors can cause considerable differences in the resulting risk. This multi-temporal approach leads to better understanding of the today's risk by identifying the main changes and the underlying processes. Furthermore, this knowledge can be implemented in strategies for sustainable development in Alpine settlements.

  5. A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999

    USGS Publications Warehouse

    Morton, Douglas M.; Hauser, Rachel M.

    2001-01-01

    This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.

  6. Are dragon-king neuronal avalanches dungeons for self-organized brain activity?

    NASA Astrophysics Data System (ADS)

    de Arcangelis, L.

    2012-05-01

    Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in relation to different drives, neuronal states and microscopic mechanisms of charge storage and release in neuronal networks.

  7. Conditions for Triggering Avalanches in Mn12-acetate.

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; McHugh, S.; Jaafar, R.; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2007-03-01

    Recent measurements in Mn12-acetate have shown that magnetic avalanches (corresponding to fast magnetization reversal) propagate as a narrow front with a velocity that is roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front through a flammable chemical substance (deflagration) [1]. The conditions for nucleation of avalanches triggered in response to a time-varying (swept) magnetic field were studied for different fields and temperatures. In these crystals, avalanches happened only at low temperatures and were found to occur stochastically at fields ranging from 1.0 T to 4.5 T. There is no apparent structure in the distribution of avalanches for fields below 3.5 T; at higher fields we find evidence that the probability is lower at ``nonresonant'' magnetic fields where tunneling across the anisotropy barrier is suppressed. This provides evidence that lowering the barrier by quantum mechanical tunneling facilitates the ignition of avalanches. Based on these and other measurements, we suggest that avalanches are triggered below 3.5 T by defects with lower energy barriers. [1] Y. Suzuki, et al., Phys. Rev. Lett. 95, 147201 (2005).

  8. Study of the quasi-tragic snow-avalanche event occurred on August 2009 at Aconcagua Provincial Park, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Leiva, J. C.; Casteller, A.; Martínez, H. H.; Norte, F. A.; Simonelli, S. C.

    2010-03-01

    Snow avalanches commonly threaten people and infrastructure in mountainous areas worldwide. Winter precipitation events in the Central Andes are caused by the interaction of the atmospheric general circulation and their steep orography. Almost every winter season snow storms and winds cause the blockage of routes and lead to the snowpack conditions that generate avalanche events. The amount of winter snow accumulation is highly variable and is one of the most important factors for assessing the impacts of climate change not only on the water availability, but also to plan future mitigation measures to reduce the avalanche hazard. The authors have conducted studies on snow avalanches that regularly affect the international route linking Mendoza (Argentina) with Santiago de Chile (Chile) but none of them was done at the Aconcagua Provincial Park The park is nearby this route, about 13 km kilometers east from the international border, which in this sector of the Andes coincides with the continental divide. On the night of 17 August 2009, seven people were caught by an avalanche that hit the Aconcagua Park rangers refuge (32° 48' 40'' S, 69° 56' 33'' W; 2950 masl).This paper describes the meteorological and snow precipitation conditions originating the event. On August 14 th. the synoptic surface and upper-air conditions from NCEP reanalysis were those associated with a severe Zonda wind occurrence in the region, that is: a 500 hPa level trough, a deep low-pressure surface system located over the Pacific Ocean close to the Chilean coast, approximately over 48 ° S and 80° W, and a jet stream at middle upper-air levels. The avalanche event occurred during a new and very heavy snowfall a while more than two days later of these extreme episodes. The topographical characteristics of the avalanche path, the snow storm intensity and the snow accumulation on the avalanche starting zone allowed the authors to simulate the avalanche flow. Snow storm intensity and snow accumulation data from Los Penitentes ski resort (about 10 km east of the Park entrance) were used as input data for the avalanche modeling. However, an additional snow mass was considered due to the fact that the starting zone is in a leeward slope. Vertical aerial photographs (1974), topographic profiles, a DEM generated from ASTER images and the snow accumulation data enabled the authors to simulate the avalanche flow using a bi-dimensional and a three-dimensional avalanche dynamics model. Our results indicate that the studied avalanche event was originated by two main factors. Firstly, prior to the studied event, the snowpack had gone through several cycles of high and low temperatures, thus producing a highly metamorphosed snowpack that facilitated the slide of the new snow. Secondly, the high intensity of the new snow precipitation did not allow for its good settlement. This study is the first step towards an avalanche hazard map of Aconcagua Park and will serve as a basis for advising the Park authorities in regards to the definition of the location of a new refuge and the necessary building structure requirements to be fulfilled.

  9. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  10. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  11. Two-threshold model for scaling laws of noninteracting snow avalanches

    USGS Publications Warehouse

    Faillettaz, J.; Louchet, F.; Grasso, J.-R.

    2004-01-01

    A two-threshold model was proposed for scaling laws of noninteracting snow avalanches. It was found that the sizes of the largest avalanches just preceding the lattice system were power-law distributed. The proposed model reproduced the range of power-law exponents observe for land, rock or snow avalanches, by tuning the maximum value of the ratio of the two failure thresholds. A two-threshold 2D cellular automation was introduced to study the scaling for gravity-driven systems.

  12. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting

    USGS Publications Warehouse

    Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.

    2005-01-01

    Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.

  13. Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth

    NASA Astrophysics Data System (ADS)

    Stock, J. M.; Smrekar, S. E.

    2016-12-01

    We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.

  14. Influence of snow temperature on avalanche impact pressure

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; Koehler, Anselm; Steinkogler, Walter; Fischer, Jan-Thomas

    2015-04-01

    The properties of the snow entrained by an avalanche during its motion (density, temperature) significantly affect flow dynamics and can determine whether the flowing material forms granules or maintains its original fine-grained structure. In general, a cold and light snow cover typically fluidizes, while warmer and more cohesive snow may form a granular denser layer in a flowing avalanche. This structural difference has a fundamental influence not only in the mobility of the flow but also on the impact pressure of avalanches. Using measurements of impact pressure, velocity, density and snow temperature performed at the Swiss Vallée de la Sionne full-scale test site, we show that, impact pressure fundamentally changes with snow temperature. A transition threshold of about -2°C is determined, the same temperature at which snow granulation starts. On the one hand warm avalanches, characterized by temperatures larger than -2°C, move as a plug and exert impact pressures linearly proportional to the avalanche depth. For Froude numbers larger than 1, an additional square-velocity dependent contribution cannot be neglected. On the other hand cold avalanches, characterized by a temperature smaller than -2°C, move as dense sheared flows, or completely dilute powder clouds and exert impact pressures, which are mainly proportional to the square of the flow velocity. For these avalanches the impact pressures strongly depend on density variations within the flow. We suggest that the proposed temperature threshold can be used as a criterion to define the transition between the impact pressures exerted by warm and cold avalanches, thus offering a new way to elude the notorious difficulties in defining the differences between wet and dry flow, respectively.

  15. Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-Jen; Taboada, Alfredo

    2009-09-01

    We present Contact Dynamics discrete element simulations of the earthquake-triggered Jiufengershan avalanche, which mobilized a 60 m thick, 1.5 km long sedimentary layer, dipping ˜22°SE toward a valley. The dynamic behavior of the avalanche is simulated under different assumptions about rock behavior, water table height, and boundary shear strength. Additionally, seismic shaking is introduced using strong motion records from nearby stations. We assume that seismic shaking generates shearing and frictional heating along the surface of rupture, which, in turn, may induce dynamic weakening and avalanche triggering; a simple "slip-weakening" criterion was adopted to simulate shear strength drop along the rupture surface. We investigate the mechanical processes occurring during triggering and propagation of an avalanche mobilizing shallowly dipping layers. Incipient deformation forms a pop-up structure at the toe of the dip slope. As the avalanche propagates, the pop-up deforms into an overturned fold, which overrides the surface of separation along a décollement. Simultaneously, uphill layers slide at high velocity (125 km/h) and are folded and disrupted as they reach the toe of the dip slope. The avalanche foot forms a wedge that is pushed forward as deformed rocks accrete at its rear. We simulated five cross sections across the Jiufengershan avalanche, which differ in the geometry of the surface of separation. Topographic and simulated surface profiles are similar. The friction coefficient at the surface of separation determined from back analysis is abnormally low (μSS = 0.2), possibly due to lubrication by liquefied soils. The granular deposits of simulated earthquake- and rain-triggered avalanches are similar.

  16. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data: Bingham Canyon Rock Avalanches

    DOE PAGES

    Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; ...

    2017-03-01

    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less

  17. Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2000-01-01

    Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (<25 m) around Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (<500 yr. B.P.) were traveling at velocities in the range of 50 to 100 meters per second, the kinetic energy of the avalanches at the point of impact with the ocean would have been between 1014 and 1015 joules. Although some of this energy would be dissipated through boundary interactions and momentum transfer between the avalanche and the sea, the initial wave should have possessed sufficient kinetic energy to do geomorphic work (erosion, sediment transport, formation of wave-cut features) on the coastline of lowwer Cook Inlet. Because widespread evidence of the effects of large waves cannot be found, it appears that the debris avalanches could not have been traveling very fast when they entered the sea, or they happened during low tide and displaced only small volumes of water. In light of these results, the hazard from volcanigenic tsunamis from Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.

  18. Transient response of a laminated composite plate

    NASA Technical Reports Server (NTRS)

    Datta, S. K.; Ju, T. H.; Bratton, R. L.; Shah, A. H.

    1992-01-01

    Results are presented from an investigation of the effect of layering on transient wave propagation in a laminated cross-ply plate, giving attention to the case of 2D plane strain in the case where a line vertical force is applied on a free surface of the plate; the line may be either parallel or perpendicular to the fibers in a ply. The results are in both the time and frequency domains for the normal stress component in the x direction, at a point on the surface of the plate on which the force is applied. Comparative results are also presented for a homogeneous plate whose properties are the static effective ones, when the number of plies is large.

  19. Relation of the runaway avalanche threshold to momentum space topology

    NASA Astrophysics Data System (ADS)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  20. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  1. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  2. Large volume flow-through scintillating detector

    DOEpatents

    Gritzo, Russ E.; Fowler, Malcolm M.

    1995-01-01

    A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.

  3. Waves on Thin Plates: A New (Energy Based) Method on Localization

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Lengliné, Olivier; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    Noisy acoustic signal localization is a difficult problem having a wide range of application. We propose a new localization method applicable for thin plates which is based on energy amplitude attenuation and inversed source amplitude comparison. This inversion is tested on synthetic data using a direct model of Lamb wave propagation and on experimental dataset (recorded with 4 Brüel & Kjær Type 4374 miniature piezoelectric shock accelerometers, 1 - 26 kHz frequency range). We compare the performance of this technique with classical source localization algorithms, arrival time localization, time reversal localization, localization based on energy amplitude. The experimental setup consist of a glass / plexiglass plate having dimensions of 80 cm x 40 cm x 1 cm equipped with four accelerometers and an acquisition card. Signals are generated using a steel, glass or polyamide ball (having different sizes) quasi perpendicular hit (from a height of 2-3 cm) on the plate. Signals are captured by sensors placed on the plate on different locations. We measure and compare the accuracy of these techniques as function of sampling rate, dynamic range, array geometry, signal to noise ratio and computational time. We show that this new technique, which is very versatile, works better than conventional techniques over a range of sampling rates 8 kHz - 1 MHz. It is possible to have a decent resolution (3cm mean error) using a very cheap equipment set. The numerical simulations allow us to track the contributions of different error sources in different methods. The effect of the reflections is also included in our simulation by using the imaginary sources outside the plate boundaries. This proposed method can easily be extended for applications in three dimensional environments, to monitor industrial activities (e.g boreholes drilling/production activities) or natural brittle systems (e.g earthquakes, volcanoes, avalanches).

  4. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  5. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  6. Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...

  7. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  8. Design and characterization of single photon avalanche diodes arrays

    NASA Astrophysics Data System (ADS)

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  9. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state

    PubMed Central

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001 PMID:26151674

  10. Thermally Driven Inhibition of Superconducting Vortex Avalanches

    NASA Astrophysics Data System (ADS)

    Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.

    2017-09-01

    Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.

  11. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  12. The experimental set-up of the RIB in-flight facility EXOTIC

    NASA Astrophysics Data System (ADS)

    Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.

    2016-10-01

    We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.

  13. NASA Tech Briefs, September 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures; Multi-Axis Accelerometer Calibration System; Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems; Autonomous System for Monitoring the Integrity of Composite Fan Housings; A Safe, Self-Calibrating, Wireless System for Measuring Volume of Any Fuel at Non-Horizontal Orientation; Adaptation of the Camera Link Interface for Flight-Instrument Applications; High-Performance CCSDS Encapsulation Service Implementation in FPGA; High-Performance CCSDS AOS Protocol Implementation in FPGA; Advanced Flip Chips in Extreme Temperature Environments; Diffuse-Illumination Systems for Growing Plants; Microwave Plasma Hydrogen Recovery System; Producing Hydrogen by Plasma Pyrolysis of Methane; Self-Deployable Membrane Structures; Reactivation of a Tin-Oxide-Containing Catalys; Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation; Miniature Piezoelectric Macro-Mass Balance; Acoustic Liner for Turbomachinery Applications; Metering Gas Strut for Separating Rocket Stages; Large-Flow-Area Flow-Selective Liquid/Gas Separator; Counterflowing Jet Subsystem Design; Water Tank with Capillary Air/Liquid Separation; True Shear Parallel Plate Viscometer; Focusing Diffraction Grating Element with Aberration Control; Universal Millimeter-Wave Radar Front End; Mode Selection for a Single-Frequency Fiber Laser; Qualification and Selection of Flight Diode Lasers for Space Applications; Plenoptic Imager for Automated Surface Navigation; Maglev Facility for Simulating Variable Gravity; Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection; High-Speed Operation of Interband Cascade Lasers; 3D GeoWall Analysis System for Shuttle External Tank Foreign Object Debris Events; Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates; Hidden Statistics Approach to Quantum Simulations; Reconstituted Three-Dimensional Interactive Imaging; Determining Atmospheric-Density Profile of Titan; Digital Microfluidics Sample Analyzer; Radiation Protection Using Carbon Nanotube Derivatives; Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells; and TEAMS Model Analyzer.

  14. Particle-in-cell simulation of multipactor discharge on a dielectric in a parallel-plate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakharov, A. S., E-mail: sakharov-as@mail.ru; Ivanov, V. A.; Konyzhev, M. E.

    2016-06-15

    An original 2D3V (two-dimensional in coordinate space and three-dimensional in velocity space) particle-in-cell code has been developed for simulation of multipactor discharge on a dielectric in a parallelplate metal waveguide with allowance for secondary electron emission (SEE) from the dielectric surface and waveguide walls, finite temperature of secondary electrons, electron space charge, and elastic and inelastic scattering of electrons from the dielectric and metal surfaces. The code allows one to simulate all stages of the multipactor discharge, from the onset of the electron avalanche to saturation. It is shown that the threshold for the excitation of a single-surface multipactor onmore » a dielectric placed in a low-profile waveguide with absorbing walls increases as compared to that in the case of an unbounded dielectric surface due to escape of electrons onto the waveguide walls. It is found that, depending on the microwave field amplitude and the SEE characteristics of the waveguide walls, the multipactor may operate in two modes. In the first mode, which takes place at relatively low microwave amplitudes, a single-surface multipactor develops only on the dielectric, the surface of which acquires a positively potential with respect to the waveguide walls. In the second mode, which occurs at sufficiently high microwave intensities, a single-surface multipactor on the dielectric and a two-surface multipactor between the waveguide walls operate simultaneously. In this case, both the dielectric surface and the interwall space acquire a negative potential. It is shown that electron scattering from the dielectric surface and waveguide walls results in the appearance of high-energy tails in the electron distribution function.« less

  15. Analytical theory of coherent synchrotron radiation wakefield of short bunches shielded by conducting parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady; Zhou, Demin

    2016-04-21

    We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less

  16. Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg

    2010-05-01

    Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus the deposit bears features of both debris avalanches and lithic-rich block-and-ash flows. The avalanche was rather mobile (L~6 km; H~1 km; H/L~0.16), despite its small volume (0.02 km³). Its speed reached 40 m/s at a distance of 5 km from the source (based on 80 m high runup of the avalanche). The characteristics of the avalanche deposit indicate that crystallized, degassed, but still hot material of a newly extruded lava dome was involved in the collapse. Unusual low mobile debris avalanche was formed as a result of collapse of western slope of Mt. Cising. A former lava coulee, which was involved in the collapse, underwent only weak disintegration: debris avalanche deposit is represented by big boulders with few fine grained matrix. Leading snout of the landslide traveled only 2 km, while rear slide blocks stopped near the landslide source forming multiple narrow toreva blocks descending downslope. Volume of the collapse 0.05 km³; maximum dropped height 0.5 km, H/L 0.25. Around the distal snout of the avalanche a "bulldozer facies" is well developed. Dating of vegetation entrained into the deposit gave 14C calibrated age 6000-6080 BP. Mobility of the studied debris avalanches was twice smaller than the average mobility of volcanic debris avalanches. Relatively small volume of the collapses, the particular type of material involved (massive lava domes) and the fact that the collapses occurred long after the volcanoes stopped erupting may have played a role in the low mobility of the debris avalanches of the Tatun Group.

  17. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  18. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  19. No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996

    USGS Publications Warehouse

    Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.

    1999-01-01

    Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.

  20. Application of coordinate transform on ball plate calibration

    NASA Astrophysics Data System (ADS)

    Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei

    2015-02-01

    For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.

  1. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  2. XeCl Avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, Robert C.

    1981-01-01

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  3. Application of LANDSAT data to delimitation of avalanche hazards in Montane, Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H. (Principal Investigator); Ives, J. D.; Summer, R.

    1976-01-01

    The author has identified the following significant results. Photointerpretation of individual avalanche paths on single band black and white LANDSAT images is greatly hindered by terrain shadows and the low spatial resolution of the LANDSAT system. Maps produced in this way are biased towards the larger avalanche paths that are under the most favorable illumination conditions during imaging; other large avalanche paths, under less favorable illumination, are often not detectable and the smaller paths, even those defined by sharp trimlines, are only rarely identifiable.

  4. Relation of the runaway avalanche threshold to momentum space topology

    DOE PAGES

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu

    2018-01-05

    Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less

  5. Relation of the runaway avalanche threshold to momentum space topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu

    Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less

  6. Precursory seismicity associated with frequent, large ice avalanches on Iliamna Volcano, Alaska, USA

    USGS Publications Warehouse

    Caplan-Auerbach, Jacqueline; Huggel, C.

    2007-01-01

    Since 1994, at least six major (volume>106 m3) ice and rock avalanches have occurred on Iliamna volcano, Alaska, USA. Each of the avalanches was preceded by up to 2 hours of seismicity believed to represent the initial stages of failure. Each seismic sequence begins with a series of repeating earthquakes thought to represent slip on an ice-rock interface, or between layers of ice. This stage is followed by a prolonged period of continuous ground-shaking that reflects constant slip accommodated by deformation at the glacier base. Finally the glacier fails in a large avalanche. Some of the events appear to have entrained large amounts of rock, while others comprise mostly snow and ice. Several avalanches initiated from the same source region, suggesting that this part of the volcano is particularly susceptible to failure, possibly due to the presence of nearby fumaroles. Although thermal conditions at the time of failure are not well constrained, it is likely that geothermal energy causes melting at the glacier base, promoting slip and culminating in failure. The frequent nature and predictable failure sequence of Iliamna avalanches makes the volcano an excellent laboratory for the study of ice avalanches. The prolonged nature of the seismic signal suggests that warning may one day be given for similar events occurring in populated regions.

  7. Assessment of the Biomechanical Performance of 5 Plating Techniques in Fixation of Mandibular Subcondylar Fracture Using Finite Element Analysis.

    PubMed

    Darwich, Mhd Ayham; Albogha, Mhd Hassan; Abdelmajeed, Adnan; Darwich, Khaldoun

    2016-04-01

    The aim of this study was to compare the performances of 5 plating techniques for fixation of unilateral mandibular subcondylar fracture. Five titanium plating techniques for fixation of condylar fracture were analyzed using the finite element method. The modeled techniques were 1) 1 straight plate, 2) 2 parallel straight plates, 3) 2 angulated straight plates, 4) 1 trapezoidal plate, and 5) 1 square plate. Three-dimensional models were generated using patient-specific geometry for the mandible obtained from a computerized tomographic image of a healthy living man. Plates were designed and combined with the mandible and analyzed under a 500-N load. The single straight plate presented the most inferior performance; it presented maximum displacement and strain on cortical bone. The trapezoidal plate induced the least amount of strain on cortical bone and was best at resisting displacement. The trapezoidal plate is recommended for fixation of subcondylar fracture. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters

    PubMed Central

    Zhang, Fan; Song, Kaijun; Fan, Yong

    2017-01-01

    A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514

  9. Finite element analysis of three patterns of internal fixation of fractures of the mandibular condyle.

    PubMed

    Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen

    2013-06-01

    The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  11. Nondestructive Determination of Moisture Content in Dry Fruits by Impedance and Phase angle measurements

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...

  12. Tunable Patch Antennas Using Microelectromechanical Systems

    DTIC Science & Technology

    2011-05-11

    Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended

  13. Electric alignment of plate shaped clay aggregates in oils

    NASA Astrophysics Data System (ADS)

    Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik

    2016-01-01

    We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.

  14. Seismicity of the Earth 1900-2010 Aleutian arc and vicinity

    USGS Publications Warehouse

    Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan

    2011-01-01

    This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel the Aleutian Trench from the Gulf of Alaska to the Rat Islands.

  15. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  16. Increasing rock-avalanche size and mobility in Glacier Bay National Park and Preserve, Alaska detected from 1984 to 2016 Landsat imagery

    USGS Publications Warehouse

    Coe, Jeffrey A.; Bessette-Kirton, Erin; Geertsema, Marten

    2018-01-01

    In the USA, climate change is expected to have an adverse impact on slope stability in Alaska. However, to date, there has been limited work done in Alaska to assess if changes in slope stability are occurring. To address this issue, we used 30-m Landsat imagery acquired from 1984 to 2016 to establish an inventory of 24 rock avalanches in a 5000-km2 area of Glacier Bay National Park and Preserve in southeast Alaska. A search of available earthquake catalogs revealed that none of the avalanches were triggered by earthquakes. Analyses of rock-avalanche magnitude, mobility, and frequency reveal a cluster of large (areas ranging from 5.5 to 22.2 km2), highly mobile (height/length < 0.3) rock avalanches that occurred from June 2012 through June 2016 (near the end of the 33-year period of record). These rock avalanches began about 2  years after the long-term trend in mean annual maximum air temperature may have exceeded 0 °C. Possibly more important, most of these rock avalanches occurred during a multiple-year period of record-breaking warm winter and spring air temperatures. These observations suggested to us that rock avalanches in the study area may be becoming larger because of rock-permafrost degradation. However, other factors, such as accumulating elastic strain, glacial thinning, and increased precipitation, may also play an important role in preconditioning slopes for failure during periods of warm temperatures.

  17. Emplacement of rock avalanche material across saturated sediments, Southern Alp, New Zealand

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Davies, T. R.; McSaveney, M. J.

    2012-04-01

    The spreading of material from slope failure events is not only influenced by the volume and nature of the source material and the local topography, but also by the materials encountered in the runout path. In this study, evidence of complex interactions between rock avalanche and sedimentary runout path material were investigated at the 45 x 106 m3 long-runout (L: 4.8 km) Round Top rock avalanche deposit, New Zealand. It was sourced within myolinitic schists of the active strike-slip Alpine Fault. The narrow and in-failure-direction elongate source scarp is deep-seated, indicating slope failure was triggered by strong seismic activity. The most striking morphological deposit features are longitudinal ridges aligned radially to source. Trenching and geophysical surveys show bulldozed and sheared substrate material at ridge termini and laterally displaced sedimentary strata. The substrate failed at a minimum depth of 3 m indicating a ploughing motion of the ridges into the saturated material below. Internal avalanche compression features suggest deceleration behind the bulldozed substrate obstacle. Contorted fabric in material ahead of the ridge document substrate disruption by the overriding avalanche material deposited as the next down-motion hummock. Comparison with rock avalanches of similar volume but different emplacement environments places Round Top between longer runout avalanches emplaced over e.g. playa lake sediments and those with shorter travel distances, whose runout was apparently retarded by topographic obstacles or that entrained high-friction debris. These empirical observations indicate the importance of runout path materials on tentative trends in rock avalanche emplacement dynamics and runout behaviour.

  18. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, R.S.

    1986-05-02

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  19. Adapter plate assembly for adjustable mounting of objects

    DOEpatents

    Blackburn, Robert S.

    1987-01-01

    An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.

  20. Terrain Classification of Norwegian Slab Avalanche Accidents

    ERIC Educational Resources Information Center

    Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart

    2016-01-01

    It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…

  1. Snow supporting structures for milepost 151 Avalanche, Highway US 89/191, Jackson, Wyoming : plans.

    DOT National Transportation Integrated Search

    2009-04-01

    The 151 Avalanche, near Jackson, Wyoming has, historically, avalanched to the road below 1.5 to 2 times a year. The road, US 89/191 is four lanes and carries an estimated 8,000 vehicles per day in the winter months. The starting zone of the 151 Avala...

  2. Salinity transfer in double diffusive convection bounded by two parallel plates

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; van der Poel, Erwin P.; Ostilla-Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef

    2014-11-01

    The double diffusive convection (DDC) is the convection flow with the fluid density affected by two different components. In this study we numerically investigate DDC between two parallel plates with no-slip boundary conditions. The top plate has higher salinity and temperature than the lower one. Thus the flow is driven by the salinity difference and stabilised by the temperature difference. Our simulations are compared with the experiments by Hage and Tilgner (Phys. Fluids 22, 076603 (2010)) for several sets of parameters. Reasonable agreement is achieved for the salinity flux and its dependence on the salinity Rayleigh number. For all parameters considered, salt fingers emerge and extend through the entire domain height. The thermal Rayleigh number shows minor influence on the salinity flux although it does affect the Reynolds number. We apply the Grossmann-Lohse theory for Rayleigh-Bénard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux with respect to the scaling for both the numerical and experimental results.

  3. Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit

    NASA Technical Reports Server (NTRS)

    Stobb, C. A.; Limardo, Jose G.

    1992-01-01

    The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.

  4. Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Fahnestock, Robert K.

    1965-01-01

    In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.

  5. Spatial shape of avalanches

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoxuan; Wiese, Kay Jörg

    2017-12-01

    In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x ) 〉 ℓ given ℓ , as well as its fluctuations encoded in the second cumulant 〈S2(x ) 〉 ℓ c. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.

  6. Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise

    NASA Astrophysics Data System (ADS)

    Laitinen, Antti; Kumar, Manohar; Elo, Teemu; Liu, Ying; Abhilash, T. S.; Hakonen, Pertti J.

    2018-06-01

    We have investigated the cross-over from Zener tunneling of single charge carriers to avalanche type of bunched electron transport in a suspended graphene Corbino disk in the zeroth Landau level. At low bias, we find a tunneling current that follows the gyrotropic Zener tunneling behavior. At larger bias, we find an avalanche type of transport that sets in at a smaller current the larger the magnetic field is. The low-frequency noise indicates strong bunching of the electrons in the avalanches. On the basis of the measured low-frequency switching noise power, we deduce the characteristic switching rates of the avalanche sequence. The simultaneous microwave shot noise measurement also reveals intrinsic correlations within the avalanche pulses and indicate a decrease in correlations with increasing bias.

  7. Single-shot measurements of laser-induced avalanche breakdown demonstrating spatial and temporal control by an external source

    NASA Astrophysics Data System (ADS)

    Woodbury, Daniel; Wahlstrand, Jared; Goers, Andy; Feder, Linus; Miao, Bo; Hine, George; Salehi, Fatholah; Milchberg, Howard

    2016-10-01

    We report on the use of single-shot supercontinuum spectral interferometry (SSSI) to make temporally and spatially resolved measurements of laser-induced avalanche breakdown in ambient air by a 200 ps pulse. By seeding the breakdown using an external 100 fs pulse, we demonstrate control over the timing and spatial characteristics of the avalanche. In addition, we calculate the collisional ionization rates at various laser intensities and demonstrate seeding of the avalanche breakdown both by multiphoton ionization and by photodetaching ions produced from a radioactive source. These observations provide proof-of-concept support for recent proposals to remotely measure radioactivity using laser-induced avalanche breakdown. This work supported by a DTRA, C-WMD Basic Research Program, and by the DOE NNSA Stewardship Science Graduate Fellowship, provided under Grant Number DE-NA0002135.

  8. Volcanic mixed avalanches: a distinct eruption-triggered mass-flow process at snow-clad volcanoes

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.

    1994-01-01

    A generally unrecognized type of pyroclastic deposit was produced by rapid avalanches of intimately mixed snow and hot pyroclastic debris during eruptions at Mount St. Helens, Nevado del Ruiz, and Redoubt Volcano between 1982 and 1989. These "mixed avalanches' traveled as far as 14 km at velocities up to ~27 m/s, involved as much as 107 m3 of rock and ice, and left unmelted deposits of single flow units as thick as 5 m. During flow downslope, heat transfer from hot rocks to snow produced meltwater that partially saturated the mixtures, apparently giving these mixed avalanches mobilities equal to or greater than those of "dry' debris avalanches of similar volume. After melting and desiccation, the deposits are highly susceptible to erosion and unlikely to be well preserved in the stratigraphic record. -Authors

  9. Current–voltage characteristics of high-voltage 4H-SiC p{sup +}–n{sub 0}–n{sup +} diodes in the avalanche breakdown mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.

    p{sup +}–n{sub 0}–n{sup +} 4H-SiC diodes with homogeneous avalanche breakdown at 1860 V are fabricated. The pulse current–voltage characteristics are measured in the avalanche-breakdown mode up to a current density of 4000 A/cm{sup 2}. It is shown that the avalanche-breakdown voltage increases with increasing temperature. The following diode parameters are determined: the avalanche resistance (8.6 × 10{sup –2} Ω cm{sup 2}), the electron drift velocity in the n{sub 0} base at electric fields higher than 10{sup 6} V/cm (7.8 × 10{sup 6} cm/s), and the relative temperature coefficient of the breakdown voltage (2.1 × 10{sup –4} K{sup –1}).

  10. Intermittency between avalanche regimes on grain piles

    NASA Astrophysics Data System (ADS)

    Arran, M. I.; Vriend, N. M.

    2018-06-01

    We experimentally investigate discrete avalanches of grains, driven by a low inflow rate, on an erodible pile in a channel. We observe intermittency between one regime, in which avalanches are quasiperiodic and system spanning, and another, in which they pass at irregular intervals and have a power-law size distribution. Observations are robust to changes of inflow rate and grain type and require no tuning of external parameters. We demonstrate that the state of the pile's surface determines whether avalanche fronts propagate to the end of the channel or stop partway down, and we introduce a toy model for the latter case that reproduces the observed power-law size distribution. We suggest direct applications to avalanches of pharmaceutical and geophysical grains, and the possibility of reconciling the "self-organized criticality" predicted by several authors with the hysteretic behavior described by others.

  11. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  12. Apparatus for reading two-dimensional electrophoretograms containing. beta. -ray-emitting labeled compounds

    DOEpatents

    Anderson, H.L.; Kinnison, W.W.; Lillberg, J.W.

    1985-04-30

    An apparatus and method for electronically reading planar two-dimensional ..beta..-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the ..beta..-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700-..mu..m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  13. Apparatus and method for reading two-dimensional electrophoretograms containing .beta.-ray-emitting labeled compounds

    DOEpatents

    Anderson, Herbert L.; Kinnison, W. Wayne; Lillberg, John W.

    1987-01-01

    Apparatus and method for electronically reading planar two dimensional .beta.-ray emitter-labeled gel electrophoretograms. A single, flat rectangular multiwire proportional chamber is placed in close proximity to the gel and the assembly placed in an intense uniform magnetic field disposed in a perpendicular manner to the rectangular face of the proportional chamber. Beta rays emitted in the direction of the proportional chamber are caused to execute helical motions which substantially preserve knowledge of the coordinates of their origin in the gel. Perpendicularly oriented, parallel wire, parallel plane cathodes electronically sense the location of the .beta.-rays from ionization generated thereby in a detection gas coupled with an electron avalanche effect resulting from the action of a parallel wire anode located therebetween. A scintillator permits the present apparatus to be rendered insensitive when signals are generated from cosmic rays incident on the proportional chamber. Resolution for concentrations of radioactive compounds in the gel exceeds 700 .mu.m. The apparatus and method of the present invention represent a significant improvement over conventional autoradiographic techniques in dynamic range, linearity and sensitivity of data collection. A concentration and position map for gel electrophoretograms having significant concentrations of labeled compounds and/or highly radioactive labeling nuclides can generally be obtained in less than one hour.

  14. Time lapse photography as an approach to understanding glide avalanche activity

    USGS Publications Warehouse

    Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.

    2012-01-01

    Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.

  15. A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.

    NASA Astrophysics Data System (ADS)

    Hendrikx, J.; Johnson, J.

    2015-12-01

    To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the intermediate users under similar avalanche conditions, demonstrating different terrain choice and use as a function of experience rather than hazard level.

  16. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  17. Snow avalanche activity in the High Tatras Mountains: new data achieved by means of dendrogeomorphic methods

    NASA Astrophysics Data System (ADS)

    Tichavsky, R.

    2016-12-01

    The High Tatras Mountains are permanently affected by the occurrence of hazardous geomorphic processes. Snow avalanches represent a common hazard that threatens the infrastructure and humans living and visiting the mountains. So far, the spatio-temporal reconstruction of snow avalanche histories was based only on existing archival records, orthophoto interpretation and lichenometric dating in the High Tatras Mountains. Dendrogeomorphic methods allow for the intra-seasonal dating of scars on tree stems and branches and have been broadly used for the dating of snow avalanche events all over the world. We extracted the increment cores and cross sections from 189 individuals of Pinus mugo var. mugo growing on four tali in the Great Cold Valley and dated all the past scars that could correspond with the winter to early spring occurrence of snow avalanches. The dating was supported by the visual analysis of three orthophoto images from 2004, 2009 and 2014. In total, nineteen event years of snow avalanches (10 certain events, and 9 probable events) were identified since 1959. Historical archives provided evidence only for nine event years since 1987, and three of them were confirmed dendrogeomorphically. Geomorphic effect of recent snow avalanches identified by the spatial distribution of scarred trees in individual years corresponds with the extent of events visible from the orthophotos. We can confirm higher frequency of snow avalanche events since 1980s (17 out of 19 events) and significant increase during the last ten years. The future expected climatic changes associated with the changes in temperature and precipitation regime could significantly influence on the frequency of snow avalanches. Therefore, our results can become the starting line for more extensive dendrogeomorphic survey in the High Tatras Mountains in order to create a catalogue of all natural hazards for the future prediction and modelling of these phenomena in context of environmental changes.

  18. WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Goldan, A; Zhao, W

    2014-06-15

    Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less

  19. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wei; Li Dan; Reznik, Alla

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less

  20. Avalanche Statistics Identify Intrinsic Stellar Processes near Criticality in KIC 8462852

    NASA Astrophysics Data System (ADS)

    Sheikh, Mohammed A.; Weaver, Richard L.; Dahmen, Karin A.

    2016-12-01

    The star KIC8462852 (Tabby's star) has shown anomalous drops in light flux. We perform a statistical analysis of the more numerous smaller dimming events by using methods found useful for avalanches in ferromagnetism and plastic flow. Scaling exponents for avalanche statistics and temporal profiles of the flux during the dimming events are close to mean field predictions. Scaling collapses suggest that this star may be near a nonequilibrium critical point. The large events are interpreted as avalanches marked by modified dynamics, limited by the system size, and not within the scaling regime.

  1. XeCl avalanche discharge laser employing Ar as a diluent

    DOEpatents

    Sze, R.C.

    1979-10-10

    A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

  2. Emplacement mechanisms of contrasting debris avalanches at Volcán Mombacho (Nicaragua), provided by structural and facies analysis

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; van Wyk de Vries, Benjamin; Pilato, Martín

    2008-07-01

    We study the lithology, structure, and emplacement of two debris-avalanche deposits (DADs) with contrasting origins and materials from the Quaternary-Holocene Mombacho Volcano, Nicaragua. A clear comparison is possible because both DADs were emplaced onto similar nearly flat (3° slope) topography with no apparent barrier to transport. This lack of confinement allows us to study, in nature, the perfect case scenario of a freely spreading avalanche. In addition, there is good evidence that no substratum was incorporated in the events during flow, so facies changes are related only to internal dynamics. Mombacho shows evidence of at least three large flank collapses, producing the two well-preserved debris avalanches of this study; one on its northern flank, “Las Isletas,” directed northeast, and the other on its southern flank, “El Crater,” directed south. Other south-eastern features indicate that the debris-avalanche corresponding to the third collapse (La Danta) occurred before Las Isletas and El Crater events. The materials involved in each event were similar, except in their alteration state and in the amount of substrata initially included in the collapse. While “El Crater” avalanche shows no signs of substratum involvement and has characteristics of a hydrothermal weakening-related collapse, the “Las Isletas” avalanche involves significant substratum and was generated by gravity spreading-related failure. The latter avalanche may have interacted with Lake Nicaragua during transport, in which case its run-out could have been modified. Through a detailed morphological and structural description of the Mombacho avalanches, we provide two contrasting examples of non-eruptive volcanic flank collapse. We show that, remarkably, even with two distinct collapse mechanisms, the debris avalanches developed the same gross stratigraphy of a coarse layer above a fine layer. This fine layer provided a low friction basal slide layer. Whereas DAD layering and the run-outs are roughly similar, the distribution of structures is different and related to lithology: Las Isletas has clear proximal faults replaced distally by inter-hummock depressions where basal unit zones are exhumed, whereas El Crater has faults throughout, but the basal layer is hidden in the distal zone. Hummocky forms depend on material type, with steep hummocks being formed of coherent lava units, and low hummocks by matrix-rich units. In both avalanches, extensional structures predominate; the upper layers exclusively underwent longitudinal and lateral extension. This is consistent with evidence of only small amounts of block-to-block interactions during bulk horizontal spreading. The base of the moving mass accommodated transport by large amounts of simple shear. We suggest that contractional structures and inter-block collisions seen in many other avalanches are artifacts related to topographic confinement.

  3. Performance of timing Resistive Plate Chambers with protons from 200 to 800 MeV

    NASA Astrophysics Data System (ADS)

    Machado, J.; Adamczewski-Musch, J.; Blanco, A.; Boretzky, K.; Cabanelas, P.; Cartegni, L.; Ferreira Marques, R.; Fonte, P.; Fruehauf, J.; Galaviz, D.; Heil, M.; Henriques, A.; . Ickert, G.; Körper, D.; Lopes, L.; Palka, M.; Pereira, A.; Rossi, D.; Simon, H.; Teubig, P.; Traxler, M.; Velho, P.; Altstadt, S.; Atar, L.; Aumann, T.; Bemmerer, D.; Caesar, C.; Charpy, A.; Elekes, Z.; Fiori, E.; Gasparic, I.; Gerbig, J.; Göbel, K.; Heftrich, T.; Heine, M.; Heinz, A.; Holl, M.; Ignatov, A.; Isaak, J.; Johansson, H.; Kelic-Heil, A.; Lederer, C.; Lindberg, S.; Löher, B.; Marganiec, J.; Martensson, M.; Nilsson, T.; Panin, V.; Paschalis, S.; Petri, M.; Plag, R.; Pohl, M.; Rastrepina, G.; Reifarth, R.; Reinhardt, T. P.; Röder, M.; Savran, D.; Scheit, H.; Schrock, P.; Silva, J.; Stach, D.; Strannerdahl, F.; Thies, R.; Wagner, A.; Wamers, F.; Weigand, M.

    2015-01-01

    A prototype composed of four resistive plate chamber layers has been exposed to quasi-monoenergetic protons produced from a deuteron beam of varying energy (200 to 800 AMeV) in experiment S406 at GSI, Darmstadt, Germany. The aim of the experiment is to characterize the response of the prototype to protons in this energy range, which deposit from 1.75 to 6 times more energy than minimum ionizing particles. Each layer, with an active area of about 2000 × 500 mm2, is made of modules containing the active gaps, all in multigap construction. Each gap is defined by 0.3 mm nylon mono-filaments positioned between 2.85 mm thick float glass electrodes. The modules are operated in avalanche mode with a non-flammable gas mixture composed of 90% C2H2F4 and 10% SF6. The signals are readout by a pick-up electrode formed by 15 copper strips (per layer), spaced at a pitch of 30 mm, connected at both sides to timing front end electronics. Results show an uniform efficiency close to 100% along with a timing resolution of around 60 ps on the entire 2000 × 500 mm2 area.

  4. Receiver performance of laser ranging measurements between the Lunar Observer and a subsatellite for lunar gravity studies

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli

    1992-01-01

    The optimal receiver for a direct detection laser ranging system for slow Doppler frequency shift measurement is shown to consist of a phase tracking loop which can be implemented approximately as a phase lock loop with a 2nd or 3rd order loop filter. The laser transmitter consists of an AlGaAs laser diode at a wavelength of about 800 nm and is intensity modulated by a sinewave. The receiver performance is shown to be limited mainly by the preamplifier thermal noise when a silicon avalanche photodiode is used. A high speed microchannel plate photomultiplier tube is shown to outperform a silicon APD despite its relatively low quantum efficiency at wavelengths near 800 nm. The maximum range between the Lunar Observer and the subsatellite for lunar gravity studies is shown to be about 620 km when using a state-of-the-art silicon APD and about 1000 km when using a microchannel plate photomultiplier tube in order to achieve a relative velocity measurement accuracy of 1 millimeter per second. Other parameters such as the receiver time base jitter and drift also limit performance and have to be considered in the design of an actual system.

  5. A near-Infrared SETI Experiment: Alignment and Astrometric precision

    NASA Astrophysics Data System (ADS)

    Duenas, Andres; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-06-01

    Beginning in March 2015, a Near-InfraRed Optical SETI (NIROSETI) instrument aiming to search for fast nanosecond laser pulses, has been commissioned on the Nickel 1m-telescope at Lick Observatory. The NIROSETI instrument makes use of an optical guide camera, SONY ICX694 CCD from PointGrey, to align our selected sources into two 200µm near-infrared Avalanche Photo Diodes (APD) with a field-of-view of 2.5"x2.5" each. These APD detectors operate at very fast bandwidths and are able to detect pulse widths extending down into the nanosecond range. Aligning sources onto these relatively small detectors requires characterizing the guide camera plate scale, static optical distortion solution, and relative orientation with respect to the APD detectors. We determined the guide camera plate scale as 55.9+- 2.7 milli-arcseconds/pixel and magnitude limit of 18.15mag (+1.07/-0.58) in V-band. We will present the full distortion solution of the guide camera, orientation, and our alignment method between the camera and the two APDs, and will discuss target selection within the NIROSETI observational campaign, including coordination with Breakthrough Listen.

  6. Dense Granular Avalanches: Mathematical Description and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Tai, Y.-C.; Hutter, K.; Gray, J. M. N. T.

    Snow avalanches, landslides, rock falls and debris flows are extremely dangerous and destructive natural phenomena. The frequency of occurrence and amplitudes of these disastrous events appear to have increased in recent years perhaps due to recent climate warming. The events endanger the personal property and infra-structure in mountainous regions. For example, from the winters 1940/41 to 1987/88 more than 7000 snow avalanches occurred in Switzerland with damaged property leading to a total of 1269 deaths. In February 1999, 36 people were buried by a single avalanche in Galtür, Austria. In August 1996, a very large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approximate property damage of more than 19 billion NT dollars (ca. 600 million US dollars) [18]. In Europe, a suddenly released debris flow in North Italy in August 1998 buried 5 German tourists on the Superhighway "Brenner-Autobahn". The topic has gained so much significance that in 1990 the United Nations declared the International Decade for Natural Disasters Reduction (IDNDR); Germany has its own Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V. Special conferences are devoted to the theme, e.g., the CALAR conference on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January 2000), INTERPRAEVENT, annual conferences on the protection of habitants from floods, debris flows and avalanches, special conferences on debris flow hazard mi tigation and those exclusively on Avalanches.

  7. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.

    PubMed

    Mendis, Rajind; Mittleman, Daniel M

    2009-08-17

    We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America

  8. Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters

    PubMed Central

    Lewis, Gregory S.; Hering, Susanne V.

    2013-01-01

    Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507

  9. Unsteady MHD blood flow through porous medium in a parallel plate channel

    NASA Astrophysics Data System (ADS)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.

  10. A proposed experimental search for chameleons using asymmetric parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk

    2016-08-01

    Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less

  11. A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.

  12. MCT (HgCdTe) IR detectors: latest developments in France

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard

    2010-10-01

    This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.

  13. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging.

    PubMed

    Acconcia, G; Cominelli, A; Rech, I; Ghioni, M

    2016-11-01

    In recent years, lifetime measurements by means of the Time Correlated Single Photon Counting (TCSPC) technique have led to a significant breakthrough in medical and biological fields. Unfortunately, the many advantages of TCSPC-based approaches come along with the major drawback of a relatively long acquisition time. The exploitation of multiple channels in parallel could in principle mitigate this issue, and at the same time it opens the way to a multi-parameter analysis of the optical signals, e.g., as a function of wavelength or spatial coordinates. The TCSPC multichannel solutions proposed so far, though, suffer from a tradeoff between number of channels and performance, and the overall measurement speed has not been increased according to the number of channels, thus reducing the advantages of having a multichannel system. In this paper, we present a novel readout architecture for bi-dimensional, high-density Single Photon Avalanche Diode (SPAD) arrays, specifically designed to maximize the throughput of the whole system and able to guarantee an efficient use of resources. The core of the system is a routing logic that can provide a dynamic connection between a large number of SPAD detectors and a much lower number of high-performance acquisition channels. A key feature of our smart router is its ability to guarantee high efficiency under any operating condition.

  14. 3D PIC-MCC simulations of positive streamers in air gaps

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Li, Y.; Wang, H.; Liu, C.

    2017-10-01

    Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.

  15. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!

  16. Seismic anisotropy beneath South China Sea: using SKS splitting to constrain mantle flow

    NASA Astrophysics Data System (ADS)

    Xue, M.; Le, K.; Yang, T.

    2011-12-01

    The evolution of South China Sea is under debate and several hypotheses have been proposed: (1) The collision of India plate and Eurasia plate; (2) the backward movement of the Pacific subduction plate; (3) mantle upwelling; and (4) combinations of above hypotheses. All these causal mechanisms emphasize the contributions of deep structures to the evolution of South China Sea. In this study we use earthquake data recorded by seismic stations surrounding South China Sea to constrain mantle flow beneath. To fill the vacancy of seismic data in Viet Nam, we deployed 4 seismic stations (VT01-VT04) in a roughly north - south orientation in Viet Nam in Nov. 2009. We combine the VT dataset with the AD and MY datasets from IRIS and select 81 events for SKS splitting analysis. Measurements were made at 11 stations using Wolfe and Silver (1998)'s multi-event stacking procedure. Our observed splitting directions in Vietnam are generally consistent with those of Bai et. al. (2009) . In northern Vietnam, the splitting times are around 1 sec and the fast directions are NWW-SEE, parallel to the absolute plate motion as well as the motion of the Earth surface, implying the crust and the mantle are coupled in this region and is moving as a result of the collision of India and China. While in southern Vietnam and Malaya, the fast directions are NE-SW, almost perpendicular to the absolute plate motion as well as the surface motion of Eurasia plate. However, the observed NE-SW is parallel to the subduction direction of the Australian plate, which might be caused by the mantle flow along NE-SW induced by the subduction.

  17. Stellar Winds and Dust Avalanches in the AU Mic Debris Disk

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene; Fung, Jeffrey

    2017-10-01

    We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ˜35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.

  18. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; Koper, Keith D.; Hale, J. Mark; Aaron, Jordan; Larsen, Chris F.

    2017-03-01

    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5-2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10-50 s) seismic data. Intermediate- and shorter-period (1-50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2-1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes 104-105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.

  19. Infrasonic monitoring of snow avalanches in the Alps

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  20. Energy mechanics of rock and snow avalanches and the role of fragmentation (invited)

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Buser, Othmar; Glover, James

    2014-05-01

    The energy mechanics of rock and snow avalanches are traditionally described using a two-step transformation: potential energy is first converted into kinetic energy; kinetic energy is dissipated to heat by frictional processes. If the frictional processes are known, the energy fluxes of avalanches can be calculated completely. The break-up of the released mass, however, introduces several new energy fluxes into the avalanche problem. The first energy is associated with the fragmentation, which generates random particle motions. This is true kinetic energy. Inter-particle interactions (collisions, abrasion, fracture) cause the energy of the random particle motion to dissipate to heat. A constraint on the random motions is the basal boundary. It is at this interface that the dispersive pressure is created by vertical particle motions that are directed upwards into the flow. The integral of the upward particle motions can induce a change in avalanche flow volume and density, depending on the relationship between the weight of the flow and the dispersive pressure. Interestingly, normal pressures will only diverge from hydrostatic when there are changes in flow density. We are therefore confronted with the problem of calculating not only the vertical acceleration of the dispersive pressure, but also the change in vertical acceleration. In this contribution we discuss a method to calculate random particle motions, dispersive pressure and changes in avalanche flow density. These are dependent not only on the absolute mass, but also on the material properties of the disintegrating mass. This becomes particularly interesting when considering the motion of snow and rock avalanches as it allows the prediction of flow regime changes and therefore extreme avalanche run-out potential.

  1. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  2. Development of solid-state avalanche amorphous selenium for medical imaging.

    PubMed

    Scheuermann, James R; Goldan, Amir H; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.

  3. Method for controlling protein crystallization

    NASA Technical Reports Server (NTRS)

    Noever, David A. (Inventor)

    1993-01-01

    A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.

  4. Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell

    DOEpatents

    Kaufman, Arthur; Werth, John

    1986-01-01

    A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.

  5. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    DOE PAGES

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...

    2017-04-22

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO 2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less

  6. Backcountry snowmobilers' risk perceptions, avalanche related information seeking behaviours, preparedness and decision-making processes

    NASA Astrophysics Data System (ADS)

    Baker, Jennifer

    Although there has been substantial research on the avoidance of risk, much less has been completed on voluntary risk. This study examined backcountry snowmobilers' risk perceptions, avalanche related information seeking behaviours, and decision-making processes when dealing with avalanches and backcountry risk in Canada. To accomplish this, in-depth, semi-structured interviews were conducted with 17 participants who were involved in backcountry snowmobiling. Interviews were done both in person and by telephone. The results of this study show that, unlike previous research on snowmobilers, the participants of this study were well prepared and knowledgeable about backcountry risks. All 17 participants stated that they carried a shovel, probe, and transceiver with them on each backcountry trip, and 10 participants had taken an avalanche safety course. Group dynamics and positive peer pressure were influential in promoting safe backcountry behaviour. KEYWORDS: Backcountry snowmobiling, Avalanches, Voluntary Risk, Preparedness, Decision-Making.

  7. Avalanche statistics from data with low time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less

  8. Avalanche statistics from data with low time resolution

    DOE PAGES

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; ...

    2016-11-22

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less

  9. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  10. The Anisotropic Structure of South China Sea: Using OBS Data to Constrain Mantle Flow

    NASA Astrophysics Data System (ADS)

    Li, L.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huang, H.; Le, B. M.; Huo, D.; Pan, M.

    2015-12-01

    The dynamic mechanism of the formation of South China Sea (SCS) has been debated for decades. The anisotropic structure can provide useful insight into the complex evolution of SCS by indicating its mantle flow direction and strength. In this study, we employ shear wave splitting methods on two half-year seismic data collected from 10 and 6 passive source Ocean Bottom Seismometers (OBS) respectively. These OBSs were deployed along both sides of the extinct ridge in the central basin of SCS by Tongji University in 2012 and 2013 respectively, which were then successfully recovered in 2013 and 2015 respectively. Through processing and inspecting the global and regional earthquakes (with local events being processing) of the 2012 dataset, measurements are made for 2 global events and 24 regional events at 5 OBSs using the tangential energy minimization, the smallest eigenvalue minimization, as well as the correlation methods. We also implement cluster analysis on the splitting results obtained for different time windows as well as filtered at different frequency bands. For teleseismic core phases like SKS and PKS, we find the fast polarization direction beneath the central basin is approximately NE-SW, nearly parallel to the extinct ridge in the central basin of SCS. Whereas for regional events, the splitting analysis on S, PS and ScS phases shows much more complicated fast directions as the ray path varies for different phases. The fast directions observed can be divided into three groups: (1) for the events from the Eurasia plate, a gradual rotation of the fast polarization direction from NNE-SSW to NEE-SWW along the path from the inner Eurasia plate to the central SCS is observed, implying the mantle flow is controlled by the India-Eurasia collision; (2) for the events located at the junction of Pacific plate and Philippine plate, the dominant fast direction is NW-SE, almost perpendicular to Ryukyu Trench as well as sub-parallel to the absolute direction of Philippine plate; (3) for the events occurred in the SE direction near the Philippine Fault zone, the observed NE-SW fast direction is sub-parallel to the subduction direction of the Philippine plate.

  11. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  12. Application of LANDSAT data to delimitation of avalanche hazards in Montane, Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H. (Principal Investigator); Summer, R.

    1976-01-01

    The author has identified the following significant results. With rare exceptions, avalanche areas cannot be identified on LANDSAT imagery. Avalanche hazard mapping on a regional scale is best conducted using LANDSAT imagery in conjunction with complementary data sources. Level of detail of such maps will be limited by the amount and completeness of the complementary information used.

  13. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    DOE R&D Accomplishments Database

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  14. Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2010-08-01

    Transform faults at mid-ocean ridges—one of the most striking, yet enigmatic features of terrestrial plate tectonics—are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  15. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  16. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  17. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    NASA Astrophysics Data System (ADS)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10.1029/2006GL027426. [3] Cooray, V. and G. Cooray (2010), IEEE Transactions on Electromagnetic Compatibility, 52, No. 4, 944 - 955. [4] Eack, K. B. (2004), Geophys. Res. Lett., Vol. 31, L20102, doi: 10.1029/2005GL023975.

  18. Spatiotemporal stick-slip phenomena in a coupled continuum-granular system

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.

  19. Nanoactuators Based on Electrostatic Forces on Dielectrics

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2005-01-01

    Nanoactuators of a proposed type would exploit the forces exerted by electric fields on dielectric materials. As used here, "nanoactuators" includes motors, manipulators, and other active mechanisms that have dimensions of the order of nanometers and/or are designed to manipulate objects that have dimensions of the order of nanometers. The underlying physical principle can be described most simply in terms of the example of a square parallel-plate capacitor in which a square dielectric plate is inserted part way into the gap between the electrode plates (see Figure Typically, the force is small from our macroscopic human perspective. The above equation shows that the force depends on the ratio between the capacitor dimensions but does not depend on the size. In other words, the force remains the same if the capacitor and the dielectric slab are shrunk to nanometer dimensions. At the same time, the masses of all components are proportional to third power of their linear dimensions. Therefore the force-to-mass ratio (and, consequently, the acceleration that can be imparted to the dielectric slab) is much larger at the nanoscale than at the macroscopic scale. The proposed actuators would exploit this effect. The upper part of Figure 2 depicts a simple linear actuator based on a parallel- plate capacitor similar to Figure 1. In this case, the upper electrode plate would be split into two parts (A and B) and the dielectric slab would be slightly longer than plate A or B. The actuator would be operated in a cycle. During the first half cycle, plate B would be grounded to the lower plate and plate A would be charged to a potential, V, with respect to the lower plate, causing the dielectric slab to be pulled under plate A. During the second half cycle, plate A would be grounded and plate B would be charged to potential V, causing the dielectric slab to be pulled under plate B. The back-and-forth motion caused by alternation of the voltages on plates A and B could be used to drive a nanopump, for example. A rotary motor, shown in the middle part of Figure 2, could include a dielectric rotor sandwiched between a top and a bottom plate containing multiple electrodes arranged symmetrically in a circle. Voltages would be applied sequentially to electrode pairs 1 and 1a, then 2 and 2a, then 3 and 3a in order to attract the dielectric rotor to sequential positions between the electrode pairs.

  20. HPCC Methodologies for Structural Design and Analysis on Parallel and Distributed Computing Platforms

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1998-01-01

    In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.

  1. The characteristic patterns of neuronal avalanches in mice under anesthesia and at rest: An investigation using constrained artificial neural networks

    PubMed Central

    Knöpfel, Thomas; Leech, Robert

    2018-01-01

    Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654

  2. Neuronal avalanches and coherence potentials

    NASA Astrophysics Data System (ADS)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  3. Knowledge of the Avalanche Victim Resuscitation Checklist and Utility of a Standardized Lecture in Italy.

    PubMed

    Strapazzon, Giacomo; Migliaccio, Daniel; Fontana, Diego; Stawinoga, Agnieszka Elzbieta; Milani, Mario; Brugger, Hermann

    2018-03-01

    To explore baseline knowledge about avalanche guidelines and the Avalanche Victim Resuscitation Checklist (AVReCh) in Italy and the knowledge acquisition from a standardized lecture. Standardized lecture material discussing AVReCh was presented during 8 mountain medicine courses from November 2014 to April 2016 in different regions of Italy. To determine the knowledge acquisition from the lecture, a pre- and postlecture survey was utilized. A total of 193 surveys were analyzed. More than 50% of the participants had never participated in lectures/courses on avalanche guidelines, and less than 50% of the participants knew about the AVReCh before the lecture. The correct temporal sequence of reportable information in the basic life support section of the AVReCh was selected by 40% of the participants before the lecture and by 75% after the lecture (P<0.001). Within subgroups analysis, most groups saw significant improvement in performance (P<0.05). The selection of the correct burial time increased from 36 to 84% (P<0.05). Health care providers and mountain rescue personnel are not widely aware of avalanche guidelines. The standardized lecture significantly improved knowledge of the principles of avalanche management related to core AVReCh elements. However, the effect that this knowledge acquisition has on avalanche victim survival or adherence to the AVReCh in the field is yet to be determined. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  4. Dynamic Mars

    NASA Image and Video Library

    2015-09-30

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows a channel system flowing to the southwest toward the huge Hellas impact basin. Click on the image for larger version The scarp at the edge of the North Polar layered deposits of Mars is the site of the most frequent frost avalanches seen by HiRISE. At this season, northern spring, frost avalanches are common and HiRISE monitors the scarp to learn more about the timing and frequency of the avalanches, and their relationship to the evolution of frost on the flat ground above and below the scarp. This picture managed to capture a small avalanche in progress, right in the color strip. See if you can spot it in the browse image, and then click on the cutout to see it at full resolution. The small white cloud in front of the brick red cliff is likely carbon dioxide frost dislodged from the layers above, caught in the act of cascading down the cliff. It is larger than it looks, more than 20 meters across, and (based on previous examples) it will likely kick up clouds of dust when it hits the ground. The avalanches tend to take place at a season when the North Polar region is warming, suggesting that the avalanches may be triggered by thermal expansion. The avalanches remind us, along with active sand dunes, dust devils, slope streaks and recurring slope lineae, that Mars is an active and dynamic planet. http://photojournal.jpl.nasa.gov/catalog/PIA19961

  5. Preliminary Diffusive Clearance of Silicon Nanopore Membranes in a Parallel Plate Configuration for Renal Replacement Therapy

    PubMed Central

    Kim, Steven; Heller, James; Iqbal, Zohora; Kant, Rishi; Kim, Eun Jung; Durack, Jeremy; Saeed, Maythem; Do, Loi; Hetts, Steven; Wilson, Mark; Brakeman, Paul; Fissell, William H.; Roy, Shuvo

    2015-01-01

    Silicon nanopore membranes (SNM) with compact geometry and uniform pore size distribution have demonstrated a remarkable capacity for hemofiltration. These advantages could potentially be used for hemodialysis. Here we present an initial evaluation of the SNM’s mechanical robustness, diffusive clearance, and hemocompatibility in a parallel plate configuration. Mechanical robustness of the SNM was demonstrated by exposing membranes to high flows (200ml/min) and pressures (1,448mmHg). Diffusive clearance was performed in an albumin solution and whole blood with blood and dialysate flow rates of 25ml/min. Hemocompatibility was evaluated using scanning electron microscopy and immunohistochemistry after 4-hours in an extra-corporeal porcine model. The pressure drop across the flow cell was 4.6mmHg at 200ml/min. Mechanical testing showed that SNM could withstand up to 775.7mmHg without fracture. Urea clearance did not show an appreciable decline in blood versus albumin solution. Extra-corporeal studies showed blood was successfully driven via the arterial-venous pressure differential without thrombus formation. Bare silicon showed increased cell adhesion with a 4.1 fold increase and 1.8 fold increase over polyethylene-glycol (PEG)-coated surfaces for tissue plasminogen factor (t-PA) and platelet adhesion (CD-41), respectively. These initial results warrant further design and development of a fully scaled SNM-based parallel plate dialyzer for renal replacement therapy. PMID:26692401

  6. Elements of radiative interactions in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption model are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is identical to the second system. Here, the influence of nongray walls is also studied, and a correlation between the parallel plates and circular tube results is presented. The particular gases selected are CO, CO2, H2O, CH4, N2O, NH3, OH, and NO. The temperature and pressure range considered are 300 to 2000 K, and 0.1 to 100 atmosphere, respectively. Illustrative results obtained for different cases are discussed and some specific conclusions are provided.

  7. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods

    NASA Astrophysics Data System (ADS)

    Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.

    2014-09-01

    Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is projected. These changes are relatively strong compared to changes in snow and meteorological variables. The decrease is amplified in spring and at low altitude. In contrast, an increase in avalanche activity is expected in winter at high altitude because of conditions favourable to wet-snow avalanches earlier in the season. Comparison with the outputs of the deterministic avalanche hazard model MEPRA (Modèle Expert d'aide à la Prévision du Risque d'Avalanche) shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity is clearly projected to decrease, the decreasing trend may be less strong and smooth than suggested by the statistical analysis based on changes in snowpack characteristics and their links to avalanches observations in the past. This important point for risk assessment pleads for further work focusing on shorter timescales. Finally, the small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.

  8. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  9. Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates

    DOEpatents

    Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.

    1986-01-01

    A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.

  10. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations.

    PubMed

    Pujolar, J M; Ferchaud, A L; Bekkevold, D; Hansen, M M

    2017-07-01

    This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used. © 2017 The Fisheries Society of the British Isles.

  11. Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed-Energy Capability

    DTIC Science & Technology

    2017-03-01

    Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed- Energy Capability Damian Urciuoli, Miguel Hinojosa, and Ronald Green US...were pulse tested in an inductive load circuit at peak powers of over 110 kW. Total pulsed- energy dissipation was kept nearly the same among the...voltages about which design provides the highest pulsed- energy capability. Keywords: Avalanche; Breakdown; Diode; Silicon Carbide Introduction

  12. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.

  13. Self-propulsion of Leidenfrost Drops between Non-Parallel Structures.

    PubMed

    Luo, Cheng; Mrinal, Manjarik; Wang, Xiang

    2017-09-20

    In this work, we explored self-propulsion of a Leidenfrost drop between non-parallel structures. A theoretical model was first developed to determine conditions for liquid drops to start moving away from the corner of two non-parallel plates. These conditions were then simplified for the case of a Leidenfrost drop. Furthermore, ejection speeds and travel distances of Leidenfrost drops were derived using a scaling law. Subsequently, the theoretical models were validated by experiments. Finally, three new devices have been developed to manipulate Leidenfrost drops in different ways.

  14. Viva La Ciencia: Cuba’s Creative Scientists Aim to Make Knowledge Their Country’s Sugar Substitute

    NASA Astrophysics Data System (ADS)

    Reid, Rosalind; Hayes, Brian

    At first, peas served as particles in Ernesto Altshuler's experiment. A mechanical dispenser would drop the chícharos one by one into the space between two glass plates, forming a tidy two-dimensional approximation of a sand pile. Lattice structure appeared, then vanished, as the pile self-organized and went critical—avalanche! But Havana's insects soon found the peas in Altshuler's physics lab. For a physicist working under harsh economic conditions of Cuba in the early 1990s, options were few. Yet Altshuler's solution came as a byproduct of the crisis: Because of fuel shortages, the country had begun importing Chinese bicycles, and ball bearings were available in abundance. Thus the peas have been replaced by steel beads, but Altshuler and his students still call their machine the chícharotron.

  15. Multipactor saturation in parallel-plate waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E.; Mattes, M.

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. Themore » impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.« less

  16. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  17. Flow-induced attraction of swimming microorganisms by surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2008-03-01

    In this talk, we present an experimental and theoretical investigation of the accumulation of swimming cells by nearby surfaces. First, we present results of an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates; the distribution for the bacteria concentration is found to peak near the glass plates. We then present a physical model for the observed attraction, based on the hydrodynamics interactions between the swimming cells and the walls. We show that such interactions result in a reorientation of the cells in the direction parallel to the surfaces, and an attraction of these (parallel) cells by the nearest wall. Our results are exploited to obtain an estimate of the propulsive force of smooth-swimming E. coli.

  18. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  19. Evaluation of RANS and LES models for Natural Convection in High-Aspect-Ratio Parallel Plate Channels

    NASA Astrophysics Data System (ADS)

    Fradeneck, Austen; Kimber, Mark

    2017-11-01

    The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.

  20. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  1. Skier triggering of backcountry avalanches with skilled route selection

    NASA Astrophysics Data System (ADS)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for exposure to Considerable hazard. While the absolute values for triggering probability cannot be compared to the 2009 study because of different definitions of exposure, our preliminary results suggest that with skilled route selection the triggering probability is similar all hazard levels, except for extreme for which there are few exposures. This means that the guiding teams of backcountry skiing operations effectively control the hazard from triggering avalanches with skilled route selection. Groups were exposed relatively evenly to Low hazard (1275 times or 29% of total exposure), Moderate hazard (1450 times or 33 %) and Considerable hazard (1215 times or 28 %). At higher levels, the exposure reduced to roughly 380 times (9 % of total exposure) to High hazard, and only 13 times (0.3 %) to Extreme hazard. We assess the sensitivity of the results to some of our key assumptions.

  2. Two dimensional numerical analysis of snow avalanche interaction with structures

    NASA Astrophysics Data System (ADS)

    Bovet, Eloïse; Chiaia, Bernardino; Preziosi, Luigi

    2010-05-01

    The purpose of this work, within the Project "DynAval - Dynamique des avalanches: départ et interactions écoulement/obstacles" - European Territorial Cooperation objective Italy - France (Alps), is to analyse the snow avalanche and structure interaction, through a numerical analysis. The avalanche behaviour, considered as an incompressible fluid, is described by a two-dimensional, in the avalanche slope, Navier-Stokes equations to which an advection equation is coupled to take into account the shape variation. The model allows to describe the velocity and the pressure at every point, representing important features for the structural design. The simulations are carried using a FEM Multiphysics software. For a such problem different analysis can be carried. Firstly, changing the obstacle shape (circle, square, triangle) and its dimension in relation to the avalanche size, the drag coefficient Cd can be evaluated. The obtained results are then compared with the values indicated by the procedures, concerning the avalanches, available in the literature. This study is realized for different Froude numbers too. Secondarily the pressure acting on the different parts of the obstacle (up-wind, down-wind, lateral) is studied. The first investigation concerns the evaluation of the Cp coefficient and on its comparison with the wind effects. The second analysis allows to evaluates, by an integration process, the total load exerted by the avalanche on the obstacle. A practical example of a building design is presented, taking into account the results of the simulations. Thirdly the study is focused on the characterization of the two dead zones created up-wind and down-wind the obstacle. The dependence of the dead zone on the obstacle characteristics, such as dimension and shape, and on the avalanche features, such as density and velocity, is analysed. The results obtained are compared with the data available in the literature concerning snow or granular material interaction with obstacle. In addition the dead zone is studied using a two dimensional model in the avalanche section too. In this way, in fact, the jet length created in the impact, for instance with a dam, can be measured and compared with the laws proposed in the literature. Fourthly the evolution in time of the pressure during the impact is investigated, showing a peak in the first times steps of the interaction. The time and the intensity of this maximum value is related with the flow and the obstacle characteristics. In conclusion, the fan of the analysis carried recovers different and very important features that represent the starting point for reliable design of the structures in avalanche-risk zones. In addition it shows the capabilities and the deficiencies of the model proposed and, finally, it introduces some aspects that will should be furtherer experimentally studied and validated.

  3. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, D.E.; Garner, D.C.; Hopkins, R.J.; Land, J.T.

    1993-11-30

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof. 3 figures.

  4. Apparatus for suppressing formation of vortices in the coolant fluid of a nuclear reactor and associated method

    DOEpatents

    Ekeroth, Douglas E.; Garner, Daniel C.; Hopkins, Ronald J.; Land, John T.

    1993-01-01

    An apparatus and method are provided for suppressing the formation of vortices in circulating coolant fluid of a nuclear reactor. A vortex-suppressing plate having a plurality of openings therein is suspended within the lower plenum of a reactor vessel below and generally parallel to the main core support of the reactor. The plate is positioned so as to intersect vortices which may form in the circulating reactor coolant fluid. The intersection of the plate with such vortices disrupts the rotational flow pattern of the vortices, thereby disrupting the formation thereof.

  5. On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

    NASA Astrophysics Data System (ADS)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2018-02-01

    Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  6. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, A.

    1985-10-25

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  7. Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate

    DOEpatents

    Travelli, Armando

    1988-01-01

    A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.

  8. Biomechanics of far cortical locking.

    PubMed

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  9. Biomechanics of Far Cortical Locking

    PubMed Central

    Bottlang, Michael; Feist, Florian

    2011-01-01

    The development of FCL was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biological fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have shown to enhance fixation and fracture healing: Flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80–88% to actively promote callus proliferation similar to an external fixator. Load distribution is evenly shared between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by s-shaped flexion of FCL screws has shown to induce symmetric callus formation. In combination, these features of FCL constructs have shown to induce more callus and to yield significantly stronger and more consistent healing compared to standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biological healing response of external fixators. PMID:21248556

  10. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  11. Relation between self-organized criticality and grain aspect ratio in granular piles

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.

    2012-05-01

    We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.

  12. Griffiths phase and long-range correlations in a biologically motivated visual cortex model

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-07-01

    Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.

  13. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    DOE PAGES

    Chen, S. H.; Chan, K. C.; Wang, G.; ...

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less

  14. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    NASA Astrophysics Data System (ADS)

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  15. Scaling, clustering and avalanches for steel beads in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Marquinez, Alyse; Thvedt, Ingrid; Lehman, S. Y.; Jacobs, D. T.

    2011-03-01

    We investigated avalanches using uniform 3mm steel spheres (``beads'') dropped onto a conical bead pile within a uniform magnetic field. The bead pile is built by pouring beads onto a circular base where the bottom layer of beads had been glued randomly. Beads are then individually dropped from a fixed height after which the pile is massed. This process is repeated for thousands of bead drops. By measuring the number of avalanches of a given size that occurred during the experiment, the resulting avalanche size distribution was compared to a power law description as predicted by self-organized criticality. As the magnetic field intensity increased, the beads clustered to give a larger angle of repose and we measured the change in the avalanche size distribution. The moments of the distribution give a sensitive test of mean-field theory as the universality class for these bead piles. We acknowledge support from Research Corporation and NSF-REU grant DMR 0649112.

  16. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  17. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  18. Electron avalanche structure determined by random walk theory

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  19. Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Veitinger, Jochen; Purves, Ross Stuart; Sovilla, Betty

    2016-10-01

    Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.

  20. Friction and dynamics of rock avalanches travelling on glaciers

    NASA Astrophysics Data System (ADS)

    De Blasio, Fabio Vittorio

    2014-05-01

    Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.

  1. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  2. Reaction Force of Micro-scale Liquid Droplets Constrained Between Parallel Plates through CFD

    NASA Astrophysics Data System (ADS)

    Free, Robert; Hekiri, Haider; Hawa, Takumi

    2012-02-01

    Micro-scale liquid droplets responding to depression between parallel plates are investigated analytically and numerically. The functional dependence of the reaction force accrued in such droplets on droplet size, surface tension, depression amount, and contact angle is explored. For both the 2D and 3D case, an analytical model is developed based on first principles. Computational fluid dynamics is then utilized to evaluate the validity of these models. The reaction force is highly nonlinear, initially increasing very slowly with increasing depression of the droplet, but eventually moving asymptotically to infinity. The force scales linearly with both the droplet free radius and surface tension of the liquid, but has a much more complicated dependence on the contact angle and depression. Explicit expressions for the reaction force have been determined, showing these dependencies. The 3D model has been largely supported by the CFD results. It very accurately predicts the reaction force on the upper plate as the droplet is crushed, accounting for the effect of contact angle, surface tension, and droplet size.

  3. Glass matrix armor

    DOEpatents

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  4. Architecture for Absorption Based Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  5. Control of the pattern of perithecium development in Sordaria fimicola on agar medium.

    PubMed

    Pollock, R T

    1975-06-01

    In a Sordaria fimicola (Rob.) Ces. and de Not. colony grown on agar medium in a petri plate, perithecia developed in a narrow band around the plate edge after the colony margin reached the edge. Physical wounding of the colony carried out shortly before or during the time perithecia were developing around the plate edge stimulated perithecium development in the wound area. Diffusion barriers were created by cutting small trenches in the agar parallel to the plate edge. The trenches were made at several different positions between the plate center and edge using cultures of several different ages, and the resultant distribution of perithecia along the trench edges suggested that the colony center and periphery produce diffusible inhibitors of perithecium development. These inhibitors may be responsible, in part, for the observed pattern of perithecium development in the colony.

  6. Seismic evidence for convection-driven motion of the North American plate.

    PubMed

    Eaton, David W; Frederiksen, Andrew

    2007-03-22

    Since the discovery of plate tectonics, the relative importance of driving forces of plate motion has been debated. Resolution of this issue has been hindered by uncertainties in estimates of basal traction, which controls the coupling between lithospheric plates and underlying mantle convection. Hotspot tracks preserve records of past plate motion and provide markers with which the relative motion between a plate's surface and underlying mantle regions may be examined. Here we show that the 115-140-Myr surface expression of the Great Meteor hotspot track in eastern North America is misaligned with respect to its location at 200 km depth, as inferred from plate-reconstruction models and seismic tomographic studies. The misalignment increases with age and is consistent with westward displacement of the base of the plate relative to its surface, at an average rate of 3.8 +/- 1.8 mm yr(-1). Here age-constrained 'piercing points' have enabled direct estimation of relative motion between the surface and underside of a plate. The relative displacement of the base is approximately parallel to seismic fast axes and calculated mantle flow, suggesting that asthenospheric flow may be deforming the lithospheric keel and exerting a driving force on this part of the North American plate.

  7. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  8. Broad band antennas and feed methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benzel, David M.; Twogood, Richard E.

    Two or more Vivaldi antennas, consisting of two plates each, each with the antenna's natural impedance of approximately 100 ohms, are placed in parallel to achieve a 50 ohm impedance in the case of two antennas or other impedances (100/n ohms) for more than two antennas. A single Vivaldi antenna plate (half Vivaldi antenna) over a ground plane can also be used to achieve a 50 ohm impedance, or two or more single plates over a ground plane to achieve other impedances. Unbalanced 50 ohm transmission lines, e.g. coaxial cables, can be used to directly feed, the dual Vivaldi (fourmore » plate) antenna in a center fed angled center departure, or more desirably, a center fed offset departure configuration.« less

  9. [A case control study of perpendicular or parallel double plate for the treatment of young and middle-aged patients with type C fractures of distal humerus].

    PubMed

    Yu, Ye-Feng; Dai, Jia-Ping; Sheng, Jian-Ming; Zhou, Xiao

    2017-06-25

    To compare clinical outcomes of perpendicular or parallel double plate in treating type C fractures of distal humerus in adults. From March 2009 and March 2013, 40 adult patients with type C distal humerus fractures were treated. The patients were divided into two groups according to fixed form. In perpendicular group(group A), there were 13 males and 9 females with a mean age of (37.56±9.24) years old(ranged 18 to 56);while in parallel plating group(group B), including 11 males and 7 females, with a mean age of (41.35±9.03) year old(ranged 20 to 53). All fractures were fresh and closed without blood vessels or nerve damaged. Incision length, operating time, blood loss, hospital stay, preoperative and postoperative radiological change, range of activity of elbow joint, Mayo score, flexor and extensor elbow strength, and postoperative complications were observed and compared. All incisions were healed well. One patient occurred myositis ossificans between two groups. Two patients in group A and 1 patient in group B occurred elbow joint stiffness. All fractures were obtained bone union. Group A were followed up from 20 to 36 months with an average of (25.2±7.1) months, while group B were followed up from 18 to 35 months with an average of(24.3±6.0) months. There were significant differences in blood loss and operative time, while there was no obvious meaning in incision length, hospital stay, muscle strength, fracture healing time, range of activity of elbow joint. Mayo score of group A was 82.27±10.43, 6 cases obtained excellent results, 12 good, 3 moderate and 1 poor;in group B was 81.94±12.02, 5 cases obtained excellent results, 9 good, 3 moderate and 1 poor;and there were no statistical significance between two groups. There was no significant differences in clinical effects between perpendicular and parallel double plate for adult patients with type C distal humerus fractures, while the operation should choose according to facture and proficiency of operator.

  10. Examining spring wet slab and glide avalanche occurrence along the Going-to-the-Sun Road corridor, Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase

    2012-01-01

    The results suggest that the role of air temperature and snowpack settlement appear to be the most important variables in wet slab and glide avalanche occurrence. When applied to the 2011 season, the results of the CART model are encouraging and they enhance our understanding of some of the required meteorological and snowpack conditions for wet slab and glide avalanche occurrence.

  11. Theory of single-photon detectors employing smart strategies of detection

    NASA Astrophysics Data System (ADS)

    Silva, João Batista Rosa; Ramos, Rubens Viana

    2005-11-01

    Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.

  12. Cartographic modeling of snow avalanche path location within Glacier National Park, Montana

    NASA Technical Reports Server (NTRS)

    Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.

    1990-01-01

    Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.

  13. Avalanches, loading and finite size effects in 2D amorphous plasticity: results from a finite element model

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David

    2015-02-01

    Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.

  14. Avalanches and plastic flow in crystal plasticity: an overview

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  15. Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap

    NASA Astrophysics Data System (ADS)

    Jadamec, M.; Fischer, K. M.

    2012-12-01

    In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.

  16. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite/limestone sequences to weaker siliciclastic and evaporitic beds (sand-/siltstones, rauhwacken) can be pinpointed on LiDAR shaded relief images of the rock avalanche deposit. Hence, several morphological signatures are clearly related to differences in mechanical behaviour of the involved lithologies, whereas others reflect particular emplacement modes of the same rock unit: e.g. rockslide motion versus rock avalanche spreading. Reference Patzelt G. 2012. The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply. (German language only). Jahrbuch der Geologischen Bundesanstalt 152(1-4): 13-24.

  17. New Perspectives on Long Run-out Rock Avalanches: A Dynamic Analysis of 20 Events in the Vaigat Strait, West Greenland

    NASA Astrophysics Data System (ADS)

    Benjamin, J.; Rosser, N. J.; Dunning, S.; Hardy, R. J.; Karim, K.; Szczucinski, W.; Norman, E. C.; Strzelecki, M.; Drewniak, M.

    2014-12-01

    Risk assessments of the threat posed by rock avalanches rely upon numerical modelling of potential run-out and spreading, and are contingent upon a thorough understanding of the flow dynamics inferred from deposits left by previous events. Few records exist of multiple rock avalanches with boundary conditions sufficiently consistent to develop a set of more generalised rules for behaviour across events. A unique cluster of 20 large (3 x 106 - 94 x 106 m3) rock avalanche deposits along the Vaigat Strait, West Greenland, offers a unique opportunity to model a large sample of adjacent events sourced from a stretch of coastal mountains of relatively uniform geology and structure. Our simulations of these events were performed using VolcFlow, a geophysical mass flow code developed to simulate volcanic debris avalanches. Rheological calibration of the model was performed using a well-constrained event at Paatuut (AD 2000). The best-fit simulation assumes a constant retarding stress with a collisional stress coefficient (T0 = 250 kPa, ξ = 0.01), and simulates run-out to within ±0.3% of that observed. Despite being widely used to simulate rock avalanche propagation, other models, that assume either a Coulomb frictional or a Voellmy rheology, failed to reproduce the observed event characteristics and deposit distribution at Paatuut. We applied this calibration to 19 other events, simulating rock avalanche motion across 3D terrain of varying levels of complexity. Our findings illustrate the utility and sensitivity of modelling a single rock avalanche satisfactorily as a function of rheology, alongside the validity of applying the same parameters elsewhere, even within similar boundary conditions. VolcFlow can plausibly account for the observed morphology of a series of deposits emplaced by events of different types, although its performance is sensitive to a range of topographic and geometric factors. These exercises show encouraging results in the model's ability to simulate a series of events using a single set of parameters obtained by back-analysis of the Paatuut event alone. The results also hold important implications for our process understanding of rock avalanches in confined fjord settings, where correctly modelling material flux at the point of entry into the water is critical in tsunami generation.

  18. A novel trigger for pseudospark switch with high repetition rate, low jitter, and compact structure

    NASA Astrophysics Data System (ADS)

    Yan, Jiaqi; Shen, Saikang; Wang, Yanan; Zhang, Siyu; Cheng, Le; Ding, Weidong

    2018-06-01

    This paper presents the design and development of a trigger with a high repetition rate, low jitter, and compact structure for the pseudospark switch (PSS), which includes an improved Marx generator based on avalanche transistors and a corona-plasma trigger unit. The generator adopted a novel 3 × 12-stage Marx circuit based on avalanche transistors in which the failure rate of transistors in the first and second stages was significantly reduced by connecting the parallel capacitors compared to the previous similar generator. The reason for the improved performance was also discussed. The main parameters of output pulses were an amplitude of -7 kV, rise time of 6 ns, jitter of 0.2 ns, and repetition rate of 2 kHz. The corona-plasma trigger unit adopted BaTiO3 ceramics with high ɛr as the dielectric and was arranged in the hollow cathode of the PSS. The experiments of triggering a PSS prototype were conducted. The influence of anode voltage and pressure on the trigger delay and jitter was studied, and the minimum trigger jitter achieved <1 ns. This trigger worked for 107 shots at the repetition rate of 2 kHz continuously without obvious performance degradation and any failure of the generator. The main advantage of this trigger is the simultaneous combination of the high repetition rate, low jitter, long lifetime, and great simplicity in a compact structure.

  19. Highly efficient router-based readout algorithm for single-photon-avalanche-diode imagers for time-correlated experiments

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Caldi, F.; Peronio, P.; Ghioni, M.; Rech, I.

    2018-02-01

    Time-Correlated Single Photon Counting (TCSPC) is a powerful tool that permits to record extremely fast optical signals with a precision down to few picoseconds. On the other hand, it is recognized as a relatively slow technique, especially when a large time-resolved image is acquired exploiting a single acquisition channel and a scanning system. During the last years, much effort has been made towards the parallelization of many acquisition and conversion chains. In particular, the exploitation of Single-Photon Avalanche Diodes in standard CMOS technology has paved the way to the integration of thousands of independent channels on the same chip. Unfortunately, the presence of a large number of detectors can give rise to a huge rate of events, which can easily lead to the saturation of the transfer rate toward the elaboration unit. As a result, a smart readout approach is needed to guarantee an efficient exploitation of the limited transfer bandwidth. We recently introduced a novel readout architecture, aimed at maximizing the counting efficiency of the system in typical TCSPC measurements. It features a limited number of high-performance converters, which are shared with a much larger array, while a smart routing logic provides a dynamic multiplexing between the two parts. Here we propose a novel routing algorithm, which exploits standard digital gates distributed among a large 32x32 array to ensure a dynamic connection between detectors and external time-measurement circuits.

  20. Evaluation of hydraulic plate compactor.

    DOT National Transportation Integrated Search

    2014-12-01

    This report presents the results of two parallel field investigations consisting of utility trench backfill compaction tests. The field : investigation at State College, Pa. was conducted to establish baseline measurements using a walk-behind vibrato...

Top