Fringe Capacitance of a Parallel-Plate Capacitor.
ERIC Educational Resources Information Center
Hale, D. P.
1978-01-01
Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors
2017-01-01
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton
2017-08-16
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Song, Weixing
2018-01-01
We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.
The restoring force on a dielectric in a parallel plate capacitor
NASA Astrophysics Data System (ADS)
Staunton, L. P.
2014-09-01
We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.
Tunable Patch Antennas Using Microelectromechanical Systems
2011-05-11
Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended
Benjamin Franklin and the dissectible capacitor: his observations might surprise you
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2017-11-01
Although he is best known as an American statesman, Benjamin Franklin also made important contributions to electrical science in the mid-18th century. At the time, the Leyden jar, the first capacitor, had just been invented, and Franklin performed experiments to determine the source of the spark and shock that occurred on discharge of the jar. In these experiments, he used Leyden jars and Franklin squares (parallel-plate capacitors) that could be disassembled and reassembled. These devices later became known as dissectible capacitors. One of the more interesting results Franklin obtained was that an electrified capacitor containing a dielectric could be disassembled, the electrodes discharged, and the capacitor reassembled without sacrificing its ability to produce a spark and shock. This result is contrary to what one expects from today’s theory for capacitors involving ideal dielectrics (those possessing polarization and no other special properties such as surface effects): all charge is on the electrodes, and once they are discharged the capacitor is no longer electrified. During the years since Franklin’s observations, additional experiments have been performed and various explanations offered for the cause of Franklin’s results. In this paper, we first review the details for Franklin’s experiments, and then we describe a very simple experiment that can be performed today with a parallel-plate capacitor that gives results similar to Franklin’s. Next we discuss the experiments of Addenbrooke and Zeleny, performed in the first half of the 20th century, which provide plausible explanations for Franklin’s observations. Finally we describe the relationship of Franklin’s dissectible parallel-plate capacitor to another important 18th century invention—Volta’s generator of static electricity, the electrophorus.
New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke
2010-12-01
A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.
Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.
Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor
2011-03-01
We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.
Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Shen, Yang; Ji, Renjie; Cai, Baoping
2013-02-05
The charging characteristics of micrometer sized aqueous droplets have attracted more and more attentions due to the development of the microfluidics technology since the electrophoretic motion of a charged droplet can be used as the droplet actuation method. This work proposed a novel method of investigating the charging characteristics of micrometer sized aqueous droplets based on parallel plate capacitor model. With this method, the effects of the electric field strength, electrolyte concentration, and ion species on the charging characteristics of the aqueous droplets was investigated. Experimental results showed that the charging characteristics of micrometer sized droplets can be investigated by this method.
MEMS closed-loop control incorporating a memristor as feedback sensing element
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose
In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less
MEMS closed-loop control incorporating a memristor as feedback sensing element
Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...
2015-12-01
In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less
Thin-Film Nanocapacitor and Its Characterization
ERIC Educational Resources Information Center
Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong
2007-01-01
An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…
Dyer, A.L.
1958-07-29
An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.
Capacitive acoustic wave detector and method of using same
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor)
1994-01-01
A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.
Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field
ERIC Educational Resources Information Center
Kholmetskii, A. L.; Yarman, T.
2008-01-01
In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…
Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...
Sensing the Moisture Content of Dry Cherries - A Rapid and Nondestructive Method
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a parallel-plate capacitor with a single cherry fruit between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture cont...
Nanoactuators Based on Electrostatic Forces on Dielectrics
NASA Technical Reports Server (NTRS)
Wang, Yu
2005-01-01
Nanoactuators of a proposed type would exploit the forces exerted by electric fields on dielectric materials. As used here, "nanoactuators" includes motors, manipulators, and other active mechanisms that have dimensions of the order of nanometers and/or are designed to manipulate objects that have dimensions of the order of nanometers. The underlying physical principle can be described most simply in terms of the example of a square parallel-plate capacitor in which a square dielectric plate is inserted part way into the gap between the electrode plates (see Figure Typically, the force is small from our macroscopic human perspective. The above equation shows that the force depends on the ratio between the capacitor dimensions but does not depend on the size. In other words, the force remains the same if the capacitor and the dielectric slab are shrunk to nanometer dimensions. At the same time, the masses of all components are proportional to third power of their linear dimensions. Therefore the force-to-mass ratio (and, consequently, the acceleration that can be imparted to the dielectric slab) is much larger at the nanoscale than at the macroscopic scale. The proposed actuators would exploit this effect. The upper part of Figure 2 depicts a simple linear actuator based on a parallel- plate capacitor similar to Figure 1. In this case, the upper electrode plate would be split into two parts (A and B) and the dielectric slab would be slightly longer than plate A or B. The actuator would be operated in a cycle. During the first half cycle, plate B would be grounded to the lower plate and plate A would be charged to a potential, V, with respect to the lower plate, causing the dielectric slab to be pulled under plate A. During the second half cycle, plate A would be grounded and plate B would be charged to potential V, causing the dielectric slab to be pulled under plate B. The back-and-forth motion caused by alternation of the voltages on plates A and B could be used to drive a nanopump, for example. A rotary motor, shown in the middle part of Figure 2, could include a dielectric rotor sandwiched between a top and a bottom plate containing multiple electrodes arranged symmetrically in a circle. Voltages would be applied sequentially to electrode pairs 1 and 1a, then 2 and 2a, then 3 and 3a in order to attract the dielectric rotor to sequential positions between the electrode pairs.
Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A.
2015-07-15
We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimesmore » are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.« less
A MEMS Multi-Cantilever Variable Capacitor On Metamaterial
2009-03-26
tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering
NASA Astrophysics Data System (ADS)
Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.
2018-03-01
Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.
USDA-ARS?s Scientific Manuscript database
Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with dry fruits between the plates was measured using a CI meter (Chari’s Impedance meter), at 1 and 9 MHz . Capacitance, C was derived from Z and ', and using the C, ', and Z values of a set of cherries whose moisture con...
NASA Astrophysics Data System (ADS)
Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh
2003-10-01
Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.
High power density capacitor and method of fabrication
Tuncer, Enis
2012-11-20
A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2012-01-01
This document has been developed in the course of NASA Electronic Parts and Packaging (NEPP) program and is not an official endorsement of the insertion of commercial capacitors in space programs or an established set of requirements for their testing. The purpose of this document is to suggest possible ways for selection, screening, and qualification of commercial capacitors for NASA projects and open discussions in the parts engineering community related to the use of COTS ceramic capacitors. This guideline is applicable to commercial surface mount chip, simple parallel plate design, multi-layer ceramic capacitors (MLCCs) rated to voltages of 100V and less. Parts with different design, e.g. low inductance ceramic capacitors (LICA), land grid array (LGA) etc., might need additional testing and tailoring of the requirements described in this document. Although the focus of this document is on commercial MLCCs, many procedures discussed below would be beneficial for military-grade capacitors
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
The Electrostatic Gavimeter: An Alternative Way of Measuring Gravitational Acceleration
NASA Astrophysics Data System (ADS)
Kashinski, David
2005-03-01
In the past, Earth’s gravitational acceleration g has been measured in many ways, including the use of a pendulum as well as other models involving the use of a mass and a spring. We have designed a new method incorporating a spring with a capacitor and a voltmeter. This capacitor model still uses a hanging mass on a spring, but alters the method of determining the change in position of the spring due to the gravitational acceleration. We relate the change in position to the potential difference across the capacitor needed to cause a discharge through parallel plates. By relating this voltage directly to the gravitaional acceleration,a new method of measuring g is obtained.
The moving plate capacitor paradox
NASA Astrophysics Data System (ADS)
Davis, B. R.; Abbott, D.; Parrondo, J. M. R.
2000-03-01
For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.
Self-Paced Physics, Segments 24-27.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Four study segments of the Self-Paced Physics Course materials are presented in this fifth problems and solutions book used as a part of student course work. The subject matter is related to work in electric fields, potential differences, parallel plates, electric potential energies, potential gradients, capacitances, and capacitor circuits.…
Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals
ERIC Educational Resources Information Center
Juretschke, H. J.
1977-01-01
Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)
Thermodynamic energy exchange in a moving plate capacitor
NASA Astrophysics Data System (ADS)
Davis, B. R.; Abbott, D.; Parrondo, J. M. R.
2001-09-01
In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.
Thermodynamic energy exchange in a moving plate capacitor.
Davis, B. R.; Abbott, D.; Parrondo, J. M. R.
2001-09-01
In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.
Using the Cycloid as an Introduction to Transformations of "E" and "B" Fields
ERIC Educational Resources Information Center
Frodyma, Marc; Le, My Phuong
2018-01-01
The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require…
Schofield, A.E.
1958-07-22
A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.
A LOW-COST IMPEDANCE METER FOR SENSING THE MOISTURE CONTENT OF IN-SHELL PEANUTS
USDA-ARS?s Scientific Manuscript database
A low cost impedance meter developed at the National Peanut Research Laboratory described here was used to generate RF signals at frequencies of 1, 5 and 9 MHz. The RF signals were applied to a parallel-plate capacitor holding a sample of peanuts and the capacitance (C), phase angle (') and impedanc...
Chemicapacitive microsensors for detection of explosives and TICs
NASA Astrophysics Data System (ADS)
Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.
2005-10-01
Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.
Optimal Super Dielectric Material
2015-09-01
INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated...containing liquid with dissolved ionic species will form large dipoles, polarized opposite the applied field. Large dipole SDM placed between the...electrodes of a parallel plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with
Fabrication of self-aligned, nanoscale, complex oxide varactors
NASA Astrophysics Data System (ADS)
Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.
2015-01-01
Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.
Structures with negative index of refraction
Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA
2011-11-08
The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.
A capacitive ultrasonic transducer based on parametric resonance.
Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F
2017-07-24
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
Fabricating with crystalline Si to improve superconducting detector performance
NASA Astrophysics Data System (ADS)
Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.
2017-05-01
We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Tong, Liqing; Liu, Kefu
2017-06-01
The purpose of impedance matching for a Marx generator and DBD lamp is to limit the output current of the Marx generator, provide a large discharge current at ignition, and obtain fast voltage rising/falling edges and large overshoot. In this paper, different impedance matching circuits (series inductor, parallel capacitor, and series inductor combined with parallel capacitor) are analyzed. It demonstrates that a series inductor could limit the Marx current. However, the discharge current is also limited. A parallel capacitor could provide a large discharge current, but the Marx current is also enlarged. A series inductor combined with a parallel capacitor takes full advantage of the inductor and capacitor, and avoids their shortcomings. Therefore, it is a good solution. Experimental results match the theoretical analysis well and show that both the series inductor and parallel capacitor improve the performance of the system. However, the series inductor combined with the parallel capacitor has the best performance. Compared with driving the DBD lamp with a Marx generator directly, an increase of 97.3% in radiant power and an increase of 59.3% in system efficiency are achieved using this matching circuit.
Multi-tunable microelectromechanical system (MEMS) resonators
Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM
2006-08-22
A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.
Using the Cycloid as an Introduction to Transformations of E and B Fields
NASA Astrophysics Data System (ADS)
Frodyma, Marc; Le, My Phuong
2018-05-01
The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require the full apparatus of Lorentz contraction and Lorentz transformation of forces, they are often postponed until the upper-division undergraduate electrodynamics course.
Fasching, George E.
1977-03-08
An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.
Nano-structured variable capacitor based on P(VDF-TrFE) copolymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lakbita, I.; El-Hami, K.
2018-02-01
A newly organic capacitor was conceived with a variable capacitance using the inverse piezoelectric effect. The device consists of two parallel plates of carbon nanotubes (CNTs), known for their large surface area, high sensitivity and high electric conductivity, separated by a thin film of a dielectric layer of Polyinylidene fluoride and trifluoroehtylene (P(VDF-TrFE)) promising material for piezoelectric and ferroelectric properties. The obtained architecture is the CNT/PVDF-TrFE/CNT capacitor device. In this study, an ultra-thin film of P(VDF-TrFE) (54/46) with thickness of 20 nm was elaborated on highly oriented pyrolytic graphite (HOPG) by spin-coating. The morphology of the ultra-thin film and the mechanical behavior of CNT/P(VDF-TrFE)/CNT system were studied using the atomic force microscopy (AFM) combined with a lock-in amplifier in contact mode. All changes in applied voltage induce a change in thin film thickness according to the inverse piezoelectric effect that affect, consequently the capacitance. The results showed that the ratio of capacitance change ΔC to initial capacitance C0 is ΔC/C0=5%. This value is sufficient to use P(VDF-TrFE) as variable organic capacitor.
What is the size of a floating sheath? An answer
NASA Astrophysics Data System (ADS)
Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter
2016-09-01
The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.
Tunable high-q superconducting notch filter
Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.
1979-11-29
A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.
Equal Plate Charges on Series Capacitors?
ERIC Educational Resources Information Center
Illman, B. L.; Carlson, G. T.
1994-01-01
Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)
NASA Technical Reports Server (NTRS)
Sechen, C. M.; Senturia, S. D.
1977-01-01
The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
Temperature responsive transmitter
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
Low inductance power electronics assembly
Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.
2012-10-02
A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.
Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.
Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A
2017-08-01
Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document presents a series of physics experiments which allow students to determine the value of unknown electrical capacitors. The exercises include both parallel and series connected capacitors. (SL)
Lai, Jih-Sheng; Liu, Changrong; Ridenour, Amy
2009-04-14
DC/DC converter has a transformer having primary coils connected to an input side and secondary coils connected to an output side. Each primary coil connects a full-bridge circuit comprising two switches on two legs, the primary coil being connected between the switches on each leg, each full-bridge circuit being connected in parallel wherein each leg is disposed parallel to one another, and the secondary coils connected to a rectifying circuit. An outer loop control circuit that reduces ripple in a voltage reference has a first resistor connected in series with a second resistor connected in series with a first capacitor which are connected in parallel with a second capacitor. An inner loop control circuit that reduces ripple in a current reference has a third resistor connected in series with a fourth resistor connected in series with a third capacitor which are connected in parallel with a fourth capacitor.
Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion
NASA Astrophysics Data System (ADS)
Aghakhani, Amirreza; Basdogan, Ipek
2018-03-01
Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.
A coaxial-output capacitor-loaded annular pulse forming line.
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
A coaxial-output capacitor-loaded annular pulse forming line
NASA Astrophysics Data System (ADS)
Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo
2018-04-01
A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the pulse rise time is about 5 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal
2014-02-24
On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta
2011-11-01
Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).
Efficient electron open boundaries for simulating electrochemical cells
NASA Astrophysics Data System (ADS)
Zauchner, Mario G.; Horsfield, Andrew P.; Todorov, Tchavdar N.
2018-01-01
Nonequilibrium electrochemistry raises new challenges for atomistic simulation: we need to perform molecular dynamics for the nuclear degrees of freedom with an explicit description of the electrons, which in turn must be free to enter and leave the computational cell. Here we present a limiting form for electron open boundaries that we expect to apply when the magnitude of the electric current is determined by the drift and diffusion of ions in a solution and which is sufficiently computationally efficient to be used with molecular dynamics. We present tight-binding simulations of a parallel-plate capacitor with nothing, a dimer, or an atomic wire situated in the space between the plates. These simulations demonstrate that this scheme can be used to perform molecular dynamics simulations when there is an applied bias between two metal plates with, at most, weak electronic coupling between them. This simple system captures some of the essential features of an electrochemical cell, suggesting this approach might be suitable for simulations of electrochemical cells out of equilibrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, Francesco; Bellacicca, Andrea; Milani, Paolo, E-mail: pmilani@mi.infn.it
We report the rapid prototyping of passive electrical components (resistors and capacitors) on plain paper by an additive and parallel technology consisting of supersonic cluster beam deposition (SCBD) coupled with shadow mask printing. Cluster-assembled films have a growth mechanism substantially different from that of atom-assembled ones providing the possibility of a fine tuning of their electrical conduction properties around the percolative conduction threshold. Exploiting the precise control on cluster beam intensity and shape typical of SCBD, we produced, in a one-step process, batches of resistors with resistance values spanning a range of two orders of magnitude. Parallel plate capacitors withmore » paper as the dielectric medium were also produced with capacitance in the range of tens of picofarads. Compared to standard deposition technologies, SCBD allows for a very efficient use of raw materials and the rapid production of components with different shape and dimensions while controlling independently the electrical characteristics. Discrete electrical components produced by SCBD are very robust against deformation and bending, and they can be easily assembled to build circuits with desired characteristics. The availability of large batches of these components enables the rapid and cheap prototyping and integration of electrical components on paper as building blocks of more complex systems.« less
Electromechanical x-ray generator
Watson, Scott A; Platts, David; Sorensen, Eric B
2016-05-03
An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.
Simple Ways to Make Real Capacitors
ERIC Educational Resources Information Center
Herman, Rhett
2014-01-01
Many of us have grabbed two pieces of aluminum foil and a paper towel, quickly sandwiched them together, and exclaimed in lecture, "Look! It's easy to make a capacitor!" Then we move on from there, calculating things such as capacitances with various dielectrics or plate sizes, the capacitance of capacitor networks, RC circuits,…
The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs
NASA Technical Reports Server (NTRS)
Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin
2004-01-01
A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.
Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.
Repetitive resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.
Repetitive resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.
High voltage pulse generator. [Patent application
Fasching, G.E.
1975-06-12
An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.
High Energy Density Capacitor Testing for the AFWL SHIVA
1981-06-01
eliminate units that are subject to premature failure mechanisms. Actual application in the large parallel capacitor barik will be less demanding than...then the 90% confidence interval for the full 576 capacitor SHIVA barik indicates that the first failure will occur at approximately 50 shots whiCh
The capacitive proximity sensor based on transients in RC-circuits
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-05-01
The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje
A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper andmore » lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.« less
Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin
2010-09-21
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-
Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin
2013-06-04
An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.
Profiles of electrified drops and bubbles
NASA Technical Reports Server (NTRS)
Basaran, O. A.; Scriven, L. E.
1982-01-01
Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.
Wirelessly Interrogated Position or Displacement Sensors
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2007-01-01
Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.
1997-01-01
High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.
Multiple resonant railgun power supply
Honig, E.M.; Nunnally, W.C.
1985-06-19
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
Multiple resonant railgun power supply
Honig, Emanuel M.; Nunnally, William C.
1988-01-01
A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.
An experimental setup for study direct charge battery based on Sr-90
NASA Astrophysics Data System (ADS)
Özkeçeci, S.; Koç, R.
2017-02-01
In this paper we present construction and analysis of nuclear micro battery driven by Strontium 90 (Sr-90). Our design based on charge deposition on the plates of a capacitor and polarization of dielectric materials between the plates. In the construction we have used liquid Sr-90 with activity 100 mCi in cylindrical ampoule coiled up by thin film graphene as one plate and Manganase dioxide (MnO2) as other plate of the capacitor. A dielectric material (paper) is inserted between the plates. The high energetic beta particles from the Sr-90 penetrate graphene to produce ionization and then electrons are removed from graphene to dielectric material. Electrons inside the dielectric material cause polarization of dipoles. Consequently the radiation from the isotope produces an external current. We discuss effect of beta particles on dielectrics and electrodes beside advantage and disadvantage of a battery of this type.
Comparison of converter topologies for charging capacitors used in pulsed load applications
NASA Technical Reports Server (NTRS)
Nelms, R. M.; Schatz, J. E.; Pollard, Barry
1991-01-01
The authors present a qualitative comparison of different power converter topologies which may be utilized for charging capacitors in pulsed power applications requiring voltages greater than 1 kV. The operation of the converters in capacitor charging applications is described, and relevant advantages are presented. All of the converters except one may be classified in the high-frequency switching category. One of the benefits from high-frequency operation is a reduction in size and weight. The other converter discussed is a member of the command resonant changing category. The authors first describe a boost circuit which functions as a command resonant charging circuit and utilizes a single pulse of current to charge the capacitor. The discussion of high-frequency converters begins with the flyback and Ward converters. Then, the series, parallel, and series/parallel resonant converters are examined.
Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
2002-09-17
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA
1999-05-25
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.
Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.
1999-01-19
A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.
NASA Astrophysics Data System (ADS)
Chahal, Premjeet
In this work, new approaches to achieving integral resistors and capacitors on large area substrates at low temperatures in a high density wiring (HDW) environment using non-vacuum deposition techniques are introduced. This includes the use of polymer-ceramic nanocomposites for integral capacitors and electroless plating for integral resistors. From the literature review it is believed that resistors in the range of 5--50 ohm/square and capacitors in the range of 1--20 nF/cm2 can satisfy most of the mixed-signal application needs. The proposed materials can satisfy this need as demonstrated in this work. Several test vehicles were fabricated and measured to characterize the material properties, and demonstrate conventional and novel circuits for mixed-signal applications. To begin with, several polymer-ceramic combinations were analyzed under varying conditions to gain a fundamental understanding of the material system. Experimental advances have been made to achieve high dielectric constant values for both epoxy-ceramic and polyimide-ceramic systems. These material systems in general can satisfy specific capacitances in the range of 1--22 nF/cm2. These materials were found to be stable into the GHz range and have low loss-tangent. For electroless resistors, several plating baths were studied and a combination of Ni-P/Ni-W-P was found to produce the best results. Uniform plating was achieved through better nucleation of PdCl2 catalyst through the use of organosilane surface treatment. The Ni-P/Ni-W-P films produced sheet resistance in the range of 5--50 ohm/square and TCR below 50 ppm/°C. The material is stable into the GHz range. Upon optimizing the electrical properties and processing of capacitors and resistors, several test vehicles were fabricated to demonstrate some conventional and novel passive structures for RF and mixed-signal applications (e.g., filters, delay lines, etc.). Some of the structures were modeled using MDS and PSPICE and a good correlation between measured and modeled results were obtained. Capacitors on large area PWB substrates using meniscus coating are also demonstrated with a typical capacitance of 10 nF/cm2. The yield of the capacitor structures is found to be affected by the surface roughness of the bottom copper electrode. Resistors have been demonstrated on 6″ x 6″ substrates using a simple set-up.
Resonant capacitive MEMS acoustic emission transducers
NASA Astrophysics Data System (ADS)
Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.
2006-12-01
We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.
Active energy recovery clamping circuit to improve the performance of power converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, Bret; Barkley, Adam
2017-05-09
A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.
Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front
Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.
1998-01-01
Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.
Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes
NASA Astrophysics Data System (ADS)
Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne
2007-02-01
Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.
NASA Astrophysics Data System (ADS)
Wang, Feifei; Yu, Haibo; Liu, Na; Mai, John D.; Liu, Lianqing; Lee, Gwo-Bin; Jung Li, Wen
2013-11-01
We report here an approach to rapidly construct organized formations of micron-scale pillars from a thin polydimethylsiloxane (PDMS) film by optically induced electrohydrodynamic instability (OEHI). In OEHI, a heterogeneous electric field is induced across two thin fluidic layers by stimulating a photoconductive thin film in a parallel-plate capacitor configuration with visible light. We demonstrated that this OEHI method could control nucleation sites of pillars formed by electrohydrodynamic instability. To investigate this phenomenon, a tangential electric force component is assumed to have arisen from the surface polarization charge and is introduced into the traditional perfect dielectric model for PDMS films. Numerical simulation results showed that this tangential electric force played an important role in OEHI.
A universal model for nanoporous carbon supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent
2009-01-01
Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimentalmore » breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.« less
Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong
2015-10-01
An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.
High Temperature Capacitive Strain Gage
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
High temperature capacitive strain gage
NASA Astrophysics Data System (ADS)
Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.
1990-01-01
Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward
A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less
NASA Astrophysics Data System (ADS)
Iwagoshi, Joel A.
Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V. Our research on the deposition process will contribute to the understanding of PVDF/TiO2 composite thin films. These results will lead to further investigation of PVDF/TiO2 high density energy storage capacitors. These capacitors can potentially increase the efficiency of alternative energy sources already in use.
Influence of particle arrangement on the permittivity of an elastomeric composite
NASA Astrophysics Data System (ADS)
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
NASA Technical Reports Server (NTRS)
Carollo, S. F.; Davis, J. M.; Dance, W. E.
1973-01-01
Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.
Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front
Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.
1998-07-14
Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.
Inkjet deposited circuit components
NASA Astrophysics Data System (ADS)
Bidoki, S. M.; Nouri, J.; Heidari, A. A.
2010-05-01
All-printed electronics as a means of achieving ultra-low-cost electronic circuits has attracted great interest in recent years. Inkjet printing is one of the most promising techniques by which the circuit components can be ultimately drawn (i.e. printed) onto the substrate in one step. Here, the inkjet printing technique was used to chemically deposit silver nanoparticles (10-200 nm) simply by ejection of silver nitrate and reducing solutions onto different substrates such as paper, PET plastic film and textile fabrics. The silver patterns were tested for their functionality to work as circuit components like conductor, resistor, capacitor and inductor. Different levels of conductivity were achieved simply by changing the printing sequence, inks ratio and concentration. The highest level of conductivity achieved by an office thermal inkjet printer (300 dpi) was 5.54 × 105 S m-1 on paper. Inkjet deposited capacitors could exhibit a capacitance of more than 1.5 nF (parallel plate 45 × 45 mm2) and induction coils displayed an inductance of around 400 µH (planar coil 10 cm in diameter). Comparison of electronic performance of inkjet deposited components to the performance of conventionally etched items makes the technique highly promising for fabricating different printed electronic devices.
Pyroelectric Energy Harvesting: Model and Experiments
2016-05-01
consisting of a current source for the pyroelectric current, a dielectric capacitor for the adiabatic charging and discharging, and optionally a resistor to...polarization) in a piezoelectric material. To extract work from the pyroelectric effect, the material acts as the dielectric in a capacitor that is...amplifier was chosen for the setup. The pyroelectric element is commonly modeled as a dielectric capacitor and a current source in parallel, as seen in
High frequency, high power capacitor development
NASA Astrophysics Data System (ADS)
White, C. W.; Hoffman, P. S.
1983-03-01
A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.
High frequency, high power capacitor development
NASA Technical Reports Server (NTRS)
White, C. W.; Hoffman, P. S.
1983-01-01
A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.
Particulate and aerosol detector
NASA Technical Reports Server (NTRS)
Wortman, J. J.; Donovan, R. P.; Brooks, A. D.; Monteith, L. K.; Kinard, W. H.; Oneil, R. L. (Inventor)
1976-01-01
A device is described for counting aerosols and sorting them according to either size, mass or energy. The component parts are an accelerator, a capacitor sensor and a readout. The accelerator is a means for accelerating the aerosols toward the face of the capacitor sensor with such force that they partially penetrate the capacitor sensor, momentarily discharging it. The readout device is a means for counting the number of discharges of the capacitor sensor and measuring the amplitudes of these different discharges. The aerosols are accelerated by the accelerator in the direction of the metal layer with such force that they penetrate the metal and damage the oxide layers, thereby allowing the electrical charge on the capacitor to discharge through the damaged region. Each incident aerosol initiates a discharge path through the capacitor in such a fashion as to vaporize the conducting path. Once the discharge action is complete, the low resistance path no longer exists between the two capacitor plates and the capacitor is again able to accept a charge. The active area of the capacitor is reduced in size by the damaged area each time a discharge occurs.
Simulation of external and internal electrostatic discharges at the spacecraft system test level
NASA Technical Reports Server (NTRS)
Whittlesey, A.; Leung, P.
1984-01-01
Environmental test activities concerned with space plasma-caused charging and discharing phenomena are discussed. It is pointed out that the origin of such an electrostatic discharge (ESD) is charging of spacecraft dielectrics by an energetic plasma in geosynchronous orbit, Jupiter's magnetosphere, or other similar space environments. In dealing with environmental testing problems, it is necessary to define the location and magnitude of any ESD's in preparation for a subsequent simulation of the given conditions. Questions of external and internal charging are discussed separately. The environmental hazard from an external discharge can be assessed by viewing the dielectric surface as one side of a parallel plate capacitor. In the case of internal charging, the level of environmental concern depends on the higher energy spectrum of the ambient electrons.
Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.
Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U
2015-01-25
The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.
Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators
NASA Astrophysics Data System (ADS)
Skarstad, Paul M.
Implantable cardioverter-defibrillators (ICDs) are implantable medical devices designed to treat ventricular fibrillation by administering a high-voltage shock directly to the heart. Minimizing the time a patient remains in fibrillation is an important goal of this therapy. Both batteries and high-voltage capacitors used in these devices can display time-dependency in performance, resulting in significant extension of charge time. Altering the electrode balance in lithium/silver vanadium oxide batteries used to power these devices has minimized time-dependent changes in battery resistance. Charge-interval dependent changes in capacitor cycling efficiency have been minimized for stacked-plate aluminum electrolytic capacitors by a combination of material and processing factors.
Lateral displacement and rotational displacement sensor
Duden, Thomas
2014-04-22
A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q.
2014-05-05
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount tomore » 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.« less
NASA Technical Reports Server (NTRS)
Mclyman, W. T. (Inventor)
1981-01-01
In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.
1995-01-01
A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.
1996-01-01
A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.
Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent
2008-01-01
Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.
2011-06-01
induction accelerator with a voltage output of 18MeV at a current of 3kA. The electron beam is focused onto a tantalum target to produce X-rays. The... capacitors in each bank, half of which are charged in parallel positively, and the other half are negatively charged in parallel. The charge voltage can...be varied from ±30kV to ±40kV. The Marx capacitors are fired in series into the Blumleins with up to 400kV 2µS output. Figure 1 FXR Pulsed Power
Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li
2016-03-15
Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB acrossmore » a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.« less
A compact submicrosecond, high current generator
NASA Astrophysics Data System (ADS)
Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.
2009-08-01
Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.
Breaking Barriers to Low-Cost Modular Inverter Production & Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdan Borowy; Leo Casey; Jerry Foshage
2005-05-31
The goal of this cost share contract is to advance key technologies to reduce size, weight and cost while enhancing performance and reliability of Modular Inverter Product for Distributed Energy Resources (DER). Efforts address technology development to meet technical needs of DER market protection, isolation, reliability, and quality. Program activities build on SatCon Technology Corporation inverter experience (e.g., AIPM, Starsine, PowerGate) for Photovoltaic, Fuel Cell, Energy Storage applications. Efforts focused four technical areas, Capacitors, Cooling, Voltage Sensing and Control of Parallel Inverters. Capacitor efforts developed a hybrid capacitor approach for conditioning SatCon's AIPM unit supply voltages by incorporating several typesmore » and sizes to store energy and filter at high, medium and low frequencies while minimizing parasitics (ESR and ESL). Cooling efforts converted the liquid cooled AIPM module to an air-cooled unit using augmented fin, impingement flow cooling. Voltage sensing efforts successfully modified the existing AIPM sensor board to allow several, application dependent configurations and enabling voltage sensor galvanic isolation. Parallel inverter control efforts realized a reliable technique to control individual inverters, connected in a parallel configuration, without a communication link. Individual inverter currents, AC and DC, were balanced in the paralleled modules by introducing a delay to the individual PWM gate pulses. The load current sharing is robust and independent of load types (i.e., linear and nonlinear, resistive and/or inductive). It is a simple yet powerful method for paralleling both individual devices dramatically improves reliability and fault tolerance of parallel inverter power systems. A patent application has been made based on this control technology.« less
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.
1995-05-09
A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.
High performance capacitors using nano-structure multilayer materials fabrication
Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.
1996-01-23
A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun
2018-05-01
The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.
Take-Home Electrostatics Experiments
NASA Astrophysics Data System (ADS)
Brown, Michael H.
1997-10-01
Important concepts in electrostatics can be taught using apparatus that students can find or build at home. A TV or monitor screens serves as the source of a strong electric field (10,000 V/m). It can be used to charge a capacitor made from foil-covered cardboard plates supported by the bottom of a plastic pop bottle. A foil ball suspended between the plates transfers charges in a version of Franklin's experiment. An electric dipole compass,made of carnauba wax polarized in the electric field of the TV, can be used to map the fringing field of the capacitor. Discharge of charged foil-covered balls produces ``static'' that can be detected with an AM radio. *supported in part by NSF CCD grant DUE-9555215
Laser interferometry force-feedback sensor for an interfacial force microscope
Houston, Jack E.; Smith, William L.
2004-04-13
A scanning force microscope is provided with a force-feedback sensor to increase sensitivity and stability in determining interfacial forces between a probe and a sample. The sensor utilizes an interferometry technique that uses a collimated light beam directed onto a deflecting member, comprising a common plate suspended above capacitor electrodes situated on a substrate forming an interference cavity with a probe on the side of the common plate opposite the side suspended above capacitor electrodes. The probe interacts with the surface of the sample and the intensity of the reflected beam is measured and used to determine the change in displacement of the probe to the sample and to control the probe distance relative to the surface of the sample.
Effects of microstructural defects on the performance of base-metal multilayer ceramic capacitors
NASA Astrophysics Data System (ADS)
Samantaray, Malay M.
Multilayer ceramic capacitors (MLCCs), owing to their processing conditions, can exhibit microstructure defects such as electrode porosity and roughness. The effect of such extrinsic defects on the electrical performance of these devices needs to be understood in order to achieve successful miniaturization into the submicron dielectric layer thickness regime. Specifically, the presence of non-planar and discontinuous electrodes can lead to local field enhancements while the relative morphologies of two adjacent electrodes determine variations in the local dielectric thickness. To study the effects of electrode morphologies, an analytical approach is taken to calculate the electric field enhancement and leakage current with respect to an ideal parallel-plate capacitor. Idealized electrode defects are used to simulate the electric field distribution. It is shown that the electrode roughness causes both the electric field and the leakage current to increase with respect to that of the ideal flat parallel-plate capacitor. Moreover, finite element methods are used to predict electric field enhancements by as high as 100% within capacitor structures containing rough interfaces and porosity. To understand the influence of microstructural defects on field distributions and leakage current, the real three-dimensional microstructure of local regions in MLCCs are reconstructed using a serial-sectioning technique in the focused ion beam. These microstructures are then converted into a finite element model in order to simulate the perturbations in electric field due to the presence of electrode defects. The electric field is three times the average value, and this leads to increase in current density of these devices. It is also shown that increasing sintering rates of MLCCs leads to improved electrode morphology with smoother more continuous electrodes, which in turn leads to a decrease in electric field enhancement and calculated leakage current density. To simulate scaling effects, the dielectric layer thickness is reduced from 2.0mum to 0.5mum in the three-dimensional microstructure keeping the same electrode morphology. It is seen that the effect of microstructure defects is more pronounced as one approaches thinner layers, leading to higher local electric field concentrations and a concomitant drop in insulation resistance. It is also seen that the electric field values are as high as 3.8 times the average field in termination regions due the disintegrated structure of the electrodes. In order to assess the effect of microstructure on MLCC performance, two sets of multilayer capacitors subjected to two vastly different sintering rates of 150ºC/hr and 3000ºC/hr are compared for their electrical properties. Capacitors with higher electrode continuity exhibit proportionally higher capacitance, provided the grain size distributions are similar. From the leakage current measurements, it is found that the Schottky barrier at the electrode-dielectric interface controls the conduction mechanism. This barrier height is calculated to be 1.06 eV for slow-fired MLCCs and was 1.15 for fast-fired MLCCs. This shows that high concentration of electrode defects cause field perturbations and subsequent drop in the net Schottky barrier height. These results are further supported by frequency-dependent impedance measurements. With temperature dependence behavior of current-voltage trends we note that below temperatures of 135°C, the conduction is controlled by interfacial effects, whereas at higher temperatures it is consistent with bulk-controlled space charge limited current for the samples that are highly reoxidized. The final part of this work studies the various aspects of the initial stages of degradation of MLCCs. MLCCs subjected to unipolar and bipolar degradation are studied for changes in microstructure and electrical properties. With bipolar degradation studies new insights into degradation are gained. First, the ionic accumulation with oxygen vacancies at cathodes is only partially reversible. This has implications on the controlling interface with electronic conduction. Also, it is shown that oxygen vacancy accumulation near the cathodes leads to a drop in insulation resistance. The capacitance also increases with progressive steps of degradation due to the effective thinning of dielectric layer. The reduction in interfacial resistance is also confirmed by impedance analysis. Finally, it is observed that on degradation, the dominant leakage current mechanism changes from being controlled by cathodic injection of electrons to being controlled by their anodic extraction. (Abstract shortened by UMI.)
20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies
NASA Technical Reports Server (NTRS)
Posta, S. J.; Michels, C. J.
1973-01-01
A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run
2018-06-01
We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.
Advanced Capacitor with SiC for High Temperature Applications
NASA Astrophysics Data System (ADS)
Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries
1994-07-01
An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.
Nonlinear Electrostatic Properties of Lunar Dust
NASA Technical Reports Server (NTRS)
Irwin, Stacy A.
2012-01-01
A laboratory experiment was designed to study the induction charging and charge decay characteristics of small dielectric particles, or glass beads. Initially, the goal of the experiment was further understanding of induction charging of lunar dust particles. However, the mechanism of charging became a point of greater interest as the project continued. Within an environmentally-controlled acrylic glove box was placed a large parallel plate capacitor at high-voltage (HV) power supply with reversible polarity. Spherical 1-mm and 0.5-mm glass beads, singly, were placed between the plates, and their behaviors recorded on video and quantified. Nearly a hundred trials at various humidities were performed. The analysis of the results indicated a non-linear relationship between humidity and particle charge exchange time (CET), for both sizes of beads. Further, a difference in CET for top-resting beads and bottom-resting beads hinted at a different charging mechanism than that of simple induction. Results from the I-mm bead trials were presented at several space science and physics conferences in 2008 and 2009, and were published as a Master's thesis in August 2009. Tangential work stemming from this project resulted in presentations at other international conferences in 2010, and selection to attend workshop on granular matter flow 2011.
Parallel Plate System for Collecting Data Used to Determine Viscosity
NASA Technical Reports Server (NTRS)
Ethridge, Edwin C. (Inventor); Kaukler, William (Inventor)
2013-01-01
A parallel-plate system collects data used to determine viscosity. A first plate is coupled to a translator so that the first plate can be moved along a first direction. A second plate has a pendulum device coupled thereto such that the second plate is suspended above and parallel to the first plate. The pendulum device constrains movement of the second plate to a second direction that is aligned with the first direction and is substantially parallel thereto. A force measuring device is coupled to the second plate for measuring force along the second direction caused by movement of the second plate.
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
Lin, Lin; Ma, Mingsheng; Zhang, Faqiang; Liu, Feng; Liu, Zhifu; Li, Yongxiang
2018-01-25
This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 μm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 μm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.
Synthesis and microstructural TEM investigation of CaCu 3Ru 4O 12 ceramic and thin film
NASA Astrophysics Data System (ADS)
Brizé, Virginie; Autret-Lambert, Cécile; Wolfman, Jérôme; Gervais, Monique; Gervais, François
2011-10-01
CaCu 3Ru 4O 12 (CCRO) is a conductive oxide having the same structure as CaCu 3Ti 4O 12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO 4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John M; Onar, Omer C; White, Cliff P
2014-01-01
Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unitmore » used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.« less
Tracing the transition of a macro electron shuttle into nonlinear response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chulki; Prada, Marta; Qin, Hua
We present a study on a macroscopic electron shuttle in the transition from linear to nonlinear response. The shuttle consists of a classical mechanical pendulum situated between two capacitor plates. The metallic pendulum enables mechanical transfer of electrons between the plates, hence allowing to directly trace electron shuttling in the time domain. By applying a high voltage to the plates, we drive the system into a controlled nonlinear response, where we observe period doubling.
Aaland, K.
1983-08-09
A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.
Large energy storage efficiency of the dielectric layer of graphene nanocapacitors.
Bezryadin, A; Belkin, A; Ilin, E; Pak, M; Colla, Eugene V; Hubler, A
2017-12-08
Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al 2 O 3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm -1 (i.e., 1 GV m -1 ), which is much larger than the table value of the Al 2 O 3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.
Large energy storage efficiency of the dielectric layer of graphene nanocapacitors
NASA Astrophysics Data System (ADS)
Bezryadin, A.; Belkin, A.; Ilin, E.; Pak, M.; Colla, Eugene V.; Hubler, A.
2017-12-01
Electric capacitors are commonly used in electronic circuits for the short-term storage of small amounts of energy. It is desirable however to use capacitors to store much larger energy amounts to replace rechargeable batteries. Unfortunately existing capacitors cannot store sufficient energy to be able to replace common electrochemical energy storage systems. Here we examine the energy storage capabilities of graphene nanocapacitors, which are tri-layer devices involving an Al film, Al2O3 dielectric layer, and a single layer of carbon atoms, i.e., graphene. This is a purely electronic capacitor and therefore it can function in a wide temperature interval. The capacitor shows a high dielectric breakdown electric field strength, of the order of 1000 kV mm-1 (i.e., 1 GV m-1), which is much larger than the table value of the Al2O3 dielectric strength. The corresponding energy density is 10-100 times larger than the energy density of a common electrolytic capacitor. Moreover, we discover that the amount of charge stored in the dielectric layer can be equal or can even exceed the amount of charge stored on the capacitor plates. The dielectric discharge current follows a power-law time dependence. We suggest a model to explain this behavior.
NASA Astrophysics Data System (ADS)
Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.
2018-04-01
A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.
2014-09-01
monitors were Daniel J. Dunmire [OUSD(AT&L)], Bernie Rodri- guez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Materials and...the electrode, a large voltage po- tential is created between the two plates of the capacitor (i.e., the electrode and the grounded steel of the...return (CWR) piping of each condenser. To install the capacitor rods, 1.5 in. mild steel thread-o-lets* were welded into a pipe elbow. Figure 5 shows
High Frequency Analog LSI Development.
1979-11-12
made to incorporate more optimal values through appropriate series or parallel connection of the four capacitors embedded on chip. The use of SPICE-2...collector of Q4 to about 50Q with some inductive reactance at the output. An external capacitor in series with the chip output serves as a DC block...by Under authority of CE Holland, Head CD Pierson, Jr, Head Advanced Applications Electronics Engineering Division and Sciences Department / f
Induction heating using induction coils in series-parallel circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James
A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.
Two-Dimensional Graphene-Gold Interfaces Serve as Robust Templates for Dielectric Capacitors.
Teshome, Tamiru; Datta, Ayan
2017-10-04
The electronic structures of novel heterostructures, namely, graphene-Au van der Waals (vdW) interfaces, have been studied using density functional theory. Dispersion-corrected PBE-D2 functionals are used to describe the phonon spectrum and binding energies. Ab initio molecular dynamics simulations reveal that the vdW framework is preserved till 1200 K. Beyond T = 1200 K, a transition of the quasiplanar Au into the three-dimensional cluster-like structure is observed. A dielectric capacitor is designed by placing 1-4 hexagonal boron nitride (h-BN) monolayers between graphene and Au conductive plates. Charge separation between the Au and graphene plates is carried out under the effect of an external field normal to the graphene-h-BN-Au interface. The gravimetric capacitances are computed as C 1 = 7.6 μF/g and C 2 = 3.2 μF/g for h-BN bilayers with the Au-graphene heterostructures. The capacitive behavior shows strong deviations from the classical charging models and exemplifies the importance of quantum phenomenon at short contacts, which eventually nullifies at large interelectrode distances. The graphene-Au interface is predicted to be an exciting vdW heterostructure with a potential application as a dielectric capacitor.
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
Shankla, Manish; Aksimentiev, Aleksei
2017-04-20
Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.
NASA Astrophysics Data System (ADS)
Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.
2018-01-01
The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).
Aaland, Kristian
1983-01-01
A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.
Electrical Circuits and Water Analogies
ERIC Educational Resources Information Center
Smith, Frederick A.; Wilson, Jerry D.
1974-01-01
Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)
Electrical power generation by mechanically modulating electrical double layers.
Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu
2013-01-01
Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.
Dissipation, Voltage Profile and Levy Dragon in a Special Ladder Network
ERIC Educational Resources Information Center
Ucak, C.
2009-01-01
A ladder network constructed by an elementary two-terminal network consisting of a parallel resistor-inductor block in series with a parallel resistor-capacitor block sometimes is said to have a non-dispersive dissipative response. This special ladder network is created iteratively by replacing the elementary two-terminal network in place of the…
Advanced Modeling of Micromirror Devices
NASA Technical Reports Server (NTRS)
Michalicek, M. Adrian; Sene, Darren E.; Bright, Victor M.
1995-01-01
The flexure-beam micromirror device (FBMD) is a phase only piston style spatial light modulator demonstrating properties which can be used for phase adaptive corrective optics. This paper presents a complete study of a square FBMD, from advanced model development through final device testing and model verification. The model relates the electrical and mechanical properties of the device by equating the electrostatic force of a parallel-plate capacitor with the counter-acting spring force of the device's support flexures. The capacitor solution is derived via the Schwartz-Christoffel transformation such that the final solution accounts for non-ideal electric fields. The complete model describes the behavior of any piston-style device, given its design geometry and material properties. It includes operational parameters such as drive frequency and temperature, as well as fringing effects, mirror surface deformations, and cross-talk from neighboring devices. The steps taken to develop this model can be applied to other micromirrors, such as the cantilever and torsion-beam designs, to produce an advanced model for any given device. The micromirror devices studied in this paper were commercially fabricated in a surface micromachining process. A microscope-based laser interferometer is used to test the device in which a beam reflected from the device modulates a fixed reference beam. The mirror displacement is determined from the relative phase which generates a continuous set of data for each selected position on the mirror surface. Plots of this data describe the localized deflection as a function of drive voltage.
NASA Astrophysics Data System (ADS)
Belyaev, B. A.; Drokin, N. A.; Poluboyarov, V. A.
2018-02-01
We report on the behavior of frequency and temperature dependences of the impedance of a measuring cell in the form of a parallel-plate capacitor filled with barium hexaaluminate ceramics with four aluminum cations replaced by iron (BaO · 2Fe2O3 · 4Al2O3). The measurements have been performed in the frequency range of 0.5-108 Hz at temperatures of 20-375°C. A technique for determining the electrical properties of the investigated ceramics is proposed, which is based on an equivalent electric circuit allowing the recorded impedance spectra to be approximated with sufficiently high accuracy. The established spectral features are indicative of the presence of two electric relaxation times different from each other by three orders of magnitude. This fact is explained by the difference between the charge transport processes in the bulk of crystallites and thin intercrystallite spacers, for which the charge activation energies have been determined.
Terahertz modulation based on surface plasmon resonance by self-gated graphene
NASA Astrophysics Data System (ADS)
Qian, Zhenhai; Yang, Dongxiao; Wang, Wei
2018-05-01
We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhiqiang; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Geng, Dalong
A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectricmore » effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.« less
Lischner, Johannes; Arias, T A
2010-02-11
We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.
NASA Astrophysics Data System (ADS)
Sasaki, Atsuya; Sasaki, Akito; Hirabayashi, Hideaki; Saito, Shuichi; Aoki, Katsuaki; Kataoka, Yoshinori; Suzuki, Koji; Yabuhara, Hidehiko; Ito, Takahiro; Takagi, Shigeyuki
2018-04-01
Li-ion batteries have attracted interest for use as storage batteries. However, the risk of fire has not yet been resolved. Although solid Li-ion batteries are possible alternatives, their performance characteristics are unsatisfactory. Recently, research on utilizing the accumulation of carriers at the trap levels of semiconductors has been performed. However, the detailed charge/discharge characteristics and principles have not been reported. In this report, we attempted to form new n-type oxide semiconductor/insulator/p-type oxide semiconductor structures. The battery characteristics of these structures were evaluated by charge/discharge measurements. The obtained results clearly indicated the characteristics of rechargeable batteries. Furthermore, the fabricated structure accumulated an approximately 5000 times larger number of carriers than a parallel plate capacitor. Additionally, by constructing circuit models based on the experimental results, the charge/discharge mechanisms were considered. This is the first detailed experimental report on a rechargeable battery that operates without the double injection of ions and electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukami, Tadashi; Imamura, Michinori; Kaburaki, Yuichi
1995-12-31
A new single-phase capacitor self-excited induction generator with self-regulating feature is presented. The new generator consists of a squirrel cage three-phase induction machine and three capacitors connected in series and parallel with a single phase load. The voltage regulation of this generator is very small due to the effect of the three capacitors. Moreover, since a Y-connected stator winding is employed, the waveform of the output voltage becomes sinusoidal. In this paper the system configuration and the operating principle of the new generator are explained, and the basic characteristics are also investigated by means of a simple analysis and experimentsmore » with a laboratory machine.« less
Lee, Sang Ki; Kim, Kap Jung; Park, Kyung Hoon; Choy, Won Sik
2014-10-01
With the continuing improvements in implants for distal humerus fractures, it is expected that newer types of plates, which are anatomically precontoured, thinner and less irritating to soft tissue, would have comparable outcomes when used in a clinical study. The purpose of this study was to compare the clinical and radiographic outcomes in patients with distal humerus fractures who were treated with orthogonal and parallel plating methods using precontoured distal humerus plates. Sixty-seven patients with a mean age of 55.4 years (range 22-90 years) were included in this prospective study. The subjects were randomly assigned to receive 1 of 2 treatments: orthogonal or parallel plating. The following results were assessed: operating time, time to fracture union, presence of a step or gap at the articular margin, varus-valgus angulation, functional recovery, and complications. No intergroup differences were observed based on radiological and clinical results between the groups. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes, mean operation time, union time, or complication rates. There were no cases of fracture nonunion in either group; heterotrophic ossification was found 3 patients in orthogonal plating group and 2 patients in parallel plating group. In our practice, no significant differences were found between the orthogonal and parallel plating methods in terms of clinical outcomes or complication rates. However, orthogonal plating method may be preferred in cases of coronal shear fractures, where posterior to anterior fixation may provide additional stability to the intraarticular fractures. Additionally, parallel plating method may be the preferred technique used for fractures that occur at the most distal end of the humerus.
Apparatus and method for measuring electrostatic polarization
Hahn, Erwin L.; Clarke, John; Sloater, Tycho; Hilbert, Claude; Heaney, Michael B.
1989-01-01
An apparatus and method for measuring the electric properties of solid matter which provides data for determining the polarizability of the electron distributions contained therein is disclosed. A sample of the solid to be studied is placed between the plates of a capacitor where it acts as a dielectric. The sample is excited by the interaction of electromagnetic radiation with an atomic species contained in the sample. The voltage induced across the capacitor is then measured as a function of time with the aid of a high Q circuit tuned to a frequency related to the frequency of the applied electromagnetic energy.
Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao
2014-11-17
A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.
NASA Astrophysics Data System (ADS)
Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang
2016-06-01
A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.
Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang
2016-06-01
A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak current of new generators can be increased to 5-6 MA and about 100 GPa ramp stress can be produced on the metallic samples for high pressure physics, and a conceptual design of CQ-5-MMAF was given.
Susceptibility to Cracking of Different Lots of CDR35 Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2017-01-01
On-orbit flight anomalies that occurred after several months of operation were attributed to excessive leakage currents in CDR35 style 0.47 microF 50 V capacitors operating at 10 V. In this work, a lot of capacitors similar to the lot that caused the anomaly have been evaluated in parallel with another lot of similar parts to assess their susceptibility to cracking under manual soldering conditions and get insight into a possible mechanism of failure. Leakage currents in capacitors were monitored at different voltages and environmental conditions before and after terminal solder dip testing that was used to simulate thermal shock during manual soldering. Results of cross-sectioning, acoustic microscopy, and measurements of electrical and mechanical characteristics of the parts have been analyzed, and possible mechanisms of failures considered. It is shown that the susceptibility to cracking and failures caused by manual soldering is lot-related. Recommendations for testing that would help to select lots that are more robust against manual soldering stresses and mitigate the risk of failures suggested.
Adding Resistances and Capacitances in Introductory Electricity
NASA Astrophysics Data System (ADS)
Efthimiou, C. J.; Llewellyn, R. A.
2005-09-01
All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.
Peak holding circuit for extremely narrow pulses
NASA Technical Reports Server (NTRS)
Oneill, R. W. (Inventor)
1975-01-01
An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.
Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks
NASA Astrophysics Data System (ADS)
Papaharalabos, George; Greenman, John; Stinchcombe, Andrew; Horsfield, Ian; Melhuish, Chris; Ieropoulos, Ioannis
2014-12-01
A microbial fuel cell (MFC) is a bioelectrochemical device that uses anaerobic bacteria to convert chemical energy locked in biomass into small amounts of electricity. One viable way of increasing energy extraction is by stacking multiple MFC units and exploiting the available electrical configurations for increasing the current or stepping up the voltage. The present study illustrates how a real-time electrical reconfiguration of MFCs in a stack, halves the time required to charge a capacitor (load) and achieves 35% higher current generation compared to a fixed electrical configuration. This is accomplished by progressively switching in-parallel elements to in-series units in the stack, thus maintaining an optimum potential difference between the stack and the capacitor, which in turn allows for a higher energy transfer.
Formalization, equivalence and generalization of basic resonance electrical circuits
NASA Astrophysics Data System (ADS)
Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay
2017-12-01
In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.
Degtiarenko, Pavel V.
2003-08-12
A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.
Online capacitive densitometer
Porges, K.G.
1988-01-21
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.
Calculation of the Displacement Current Using the Integral Form of Ampere's Law.
ERIC Educational Resources Information Center
Dahm, A. J.
1978-01-01
Derives the magnetic field as a function of position between two capacitor plates during discharge with the use of the integral form of Ampere's law and real currents only. The displacement current must be included to obtain the same result for arbitrary choices of contours. (Author/GA)
Online capacitive densitometer
Porges, Karl G.
1990-01-01
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.
Method and apparatus for radio frequency ceramic sintering
Hoffman, Daniel J.; Kimrey, Jr., Harold D.
1993-01-01
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.
Method and apparatus for radio frequency ceramic sintering
Hoffman, D.J.; Kimrey, H.D. Jr.
1993-11-30
Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor
NASA Astrophysics Data System (ADS)
Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.
2018-01-01
Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.
Environmentally friendly power generator based on moving liquid dielectric and double layer effect.
Huynh, D H; Nguyen, T C; Nguyen, P D; Abeyrathne, C D; Hossain, Md S; Evans, R; Skafidas, E
2016-06-03
An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(10(8)μW)/(mm(2)HzV(2)) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
NASA Astrophysics Data System (ADS)
Johansen, T. H.; Feder, J.; Jøssang, T.
1986-06-01
A fully automated apparatus has been designed for measurements of dilatation in solid samples under well-defined thermal conditions. The oven can be thermally stabilized to better than 0.1 mK over a temperature range of -60 to 150 °C using a two-stage control strategy. Coarse control is obtained by heat exchange with a circulating thermal fluid, whereas the fine regulation is based on a solid-state heat pump—a Peltier element, acting as heating and cooling source. The bidirectional action of the Peltier element permits the sample block to be controlled at the average temperature of the surroundings, thus making an essentially adiabatic system with a minimum of thermal gradients in the sample block. The dilatometer cell integrated in the oven assembly is of the parallel plate air capacitor type, and the apparatus has been successfully used with a sensitivity of 0.07 Å. Our system is well suited for measurements near structural phase transitions with a relative resolution of Δt=(T-Tc)/Tc=2×10-7 in temperature and ΔL/L=1×10-9 in strain.
End-compensated magnetostatic cavity for polarized 3He neutron spin filters.
McIver, J W; Erwin, R; Chen, W C; Gentile, T R
2009-06-01
We have expanded upon the "Magic Box" concept, a coil driven magnetic parallel plate capacitor constructed out of mu-metal, by introducing compensation sections at the ends of the box that are tuned to limit end-effects similar to those of short solenoids. This ability has reduced the length of the magic box design without sacrificing any loss in field homogeneity, making the device far more applicable to the often space limited neutron beam line. The appeal of the design beyond affording longer polarized 3He lifetimes is that it provides a vertical guide field, which facilitates neutron spin transport for typical polarized beam experiments. We have constructed two end-compensated magic boxes of dimensions 28.4 x 40 x 15 cm3 (length x width x height) with measured, normalized volume-averaged transverse field gradients ranging from 3.3 x 10(-4) to 6.3 x 10(-4) cm(-1) for cell sizes ranging from 8.1 x 6.0 to 12.0 x 7.9 cm2 (diameter x length), respectively.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
Atalar, Ata C; Tunalı, Onur; Erşen, Ali; Kapıcıoğlu, Mehmet; Sağlam, Yavuz; Demirhan, Mehmet S
2017-01-01
In intraarticular distal humerus fractures, internal fixation with double plates is the gold standard treatment. However the optimal plate configuration is not clear in the literature. The aim of this study was to compare the biomechanical stability of the parallel and the orthogonal anatomical locking plating systems in intraarticular distal humerus fractures in artificial humerus models. Intraarticular distal humerus fracture (AO13-C2) with 5 mm metaphyseal defect was created in sixteen artificial humeral models. Models were fixed with either orthogonal or parallel plating systems with locking screws (Acumed elbow plating systems). Both systems were tested for their stiffness with loads in axial compression, varus, valgus, anterior and posterior bending. Then plastic deformation after cyclic loading in posterior bending and load to failure in posterior bending were tested. The failure mechanisms of all the samples were observed. Stiffness values in every direction were not significantly different among the orthogonal and the parallel plating groups. There was no statistical difference between the two groups in plastic deformation values (0.31 mm-0.29 mm) and load to failure tests in posterior bending (372.4 N-379.7 N). In the orthogonal plating system most of the failures occurred due to the proximal shaft fracture, whereas in the parallel plating system failure occurred due to the shift of the most distal screw in proximal fragment. Our study showed that both plating systems had similar biomechanical stabilities when anatomic plates with distal locking screws were used in intraarticular distal humerus fractures in artificial humerus models. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Balla, Joseph V.
2010-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.
Safety devices for neonatal intensive care.
Neuman, M R; Flammer, C M; O'Connor, E
1982-01-01
Three relatively simple devices for improving safety in neonatal intensive care are described. When umbilical artery catheters are used, an inexpensive pressure switch is utilized to detect abnormally low pressures associated with catheter withdrawal or excessive fluid leakage from the catheter system. A capacitive, intravenous-line air bubble detector, consisting of a section of the intravenous line as the dielectric of a capacitor, is used to alert the clinical staff when air bubbles pass between the capacitor plates. An electronic temperature controller maintains the temperature of neonatal breathing gases to avoid temperature variations which occur with presently used techniques. These are relatively simple and inexpensive devices which can be fabricated by most hospital clinical engineering services.
Dual power, constant speed electric motor system
Kirschbaum, H.S.
1984-07-31
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.
Offset-free rail-to-rail derandomizing peak detect-and-hold circuit
DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand
2003-01-01
A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.
Dual power, constant speed electric motor system
Kirschbaum, Herbert S.
1984-01-01
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.
Nonaqueous Electrical Storage Device
McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.
1999-10-26
An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.
Resistance of a plate in parallel flow at low Reynolds numbers
NASA Technical Reports Server (NTRS)
Janour, Zbynek
1951-01-01
The present paper gives the results of measurements of the resistance of a plate placed parallel to the flow in the range of Reynolds numbers from 10 to 2300; in this range the resistance deviates from the formula of Blasius. The lower limit of validity of the Blasius formula is determined and also the increase in resistance at the edges parallel to the flow in the case of a plate of finite width.
Stress-dependent voltage offsets from polymer insulators used in rock mechanics and material testing
NASA Astrophysics Data System (ADS)
Carlson, G. G.; Dahlgren, R.; Vanderbilt, V. C.; Johnston, M. J.; Dunson, C.; Gray, A.; Freund, F.
2013-12-01
Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics, material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In many experimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has been qualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent during high-impedance measurements if not mitigated. However even when following best practices, a force-dependent voltage signal still remains and its behavior is explored in this presentation. In this experiment two thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternately between three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testing machine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming the relative dielectric permittivity of PE is ~2.3. The outer two aluminum bars were connected to the LO input of the electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed to be a linear function of the baseline voltage for a given change in applied force. For a periodically applied force of 66.7 kN the voltage offsets were measured as a function of initial voltage, and these data were fit with a linear function that was constrained to pass through the origin. The best fit solution had a correlation coefficient of R = 0.85 and a slope of approximately -0.0228 volts/volt. The voltage offset when normalized is demonstrated to be constant -2.28 % for both positive and negative polarities over nearly 3 orders of baseline voltage magnitude. From this, the voltage-force coefficient is derived to be -0.34 ppm/N. This correlates well to a first-order parallel plate capacitor model that assumes constant area, and small deformation such that the polymer may be mechanically modeled by a spring that obeys Hooke's law. This simple model predicts that the coefficient of proportionality is a function of Young's modulus E = 0.8 GPa and surface area of the insulator, theoretically -1/EA = -0.31 ppm/N. The outcome of this work is an improved insulator made from ultra-high molecular weight (UHMW) polyethylene and other approaches toward the minimization of and compensation for these experimental artifacts. References: [1] Keithley Instruments, Low level measurements handbook, 'Choosing the best insulator,' 2-11 (2004). [2] Ibid., 2-26. [3] A. Skumiel, 'How to transform mechanical work into electrical energy using a capacitor,' European Journal of Physics 32, 625-630 (2011).
Intercondylar humerus fracture- parallel plating and its results.
Kumar, Sanjiv; Singh, Sudhir; Kumar, Dharmender; Kumar, Neeraj; Verma, Reetu
2015-01-01
Intercondylar fracture of humerus is one of the commonest fractures of young adult and counts for about 30% of all elbow fractures. The treatment of these fractures continues to present challenges despite advances in internal fixation. Although orthogonal plating use to provid adequate functional results in these fractures, parallel plating is said to be mechanically more stable construct thus allowing early mobilization and better range of motion. AIM of the study is to assess the clinical as well functional results of these fractures treated with parallel plating. Prospective study in a tertiary care hospital. A total of 23 fresh patients of intercondylar fracture of humerus from Jan 2013 to May 2014 were included in the study and were treated with parallel plating. These patients were followed at 3, 6, 12, 24 weeks and at 1year of follow up and assessed in terms of time for union, range of motion, MAYO score, DASH score and complication rate. At final follow up Mayo score was 96.32±04.96 from 5.00±01.26 and DASH SCORE was 31.42±2.04 which dropped from 150±05.34, Range of motion improved from 21.38±05.70 to 116.1±07.92 with 100% union rate and complications less than 19%. Parallel plating for intercondylar fracture of humerus is excellent method of fixation and results are similar to those treated with orthogonal plating.
Shahinpoor, Mohsen
1995-01-01
A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.
Li, B B; Lin, F; Cai, L H; Chen, Y; Lin, Z J
2017-08-01
Objective: To evaluate the effects of parallel versus perpendicular double plating for distal humerus fracture of type C. Methods: A standardized comprehensive literature search was performed by PubMed, Embase, Cochrane library, CMB, CNKI and Medline datebase.Randomized controlled studies on comparison between parallel versus perpendicular double plating for distal humerus fracture of type C before December 2015 were enrolled in the study.All date were analyzed by the RevMan 5.2 software. Results: Six studies, including 284 patients, met the inclusion criteria.There were 155 patients in perpendicular double plating group, 129 patients in parallel double plating group.The results of Meta-analysis indicated that there were statistically significant difference between the two groups in complications ( OR =2.59, 95% CI : 1.03 to 6.53, P =0.04). There was no significant difference between the two groups in surgical duration ( MD =-1.84, 95% CI : -9.06 to 5.39, P =0.62), bone union time ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Mayo Elbow Performance Score ( MD =0.09, 95% CI : -0.06 to 0.24, P =0.22), Range of Motions ( MD =-0.92, 95% CI : -4.65 to 2.81, P =0.63) and the rate of excellent and good results ( OR =0.64, 95% CI : 0.27 to 1.52, P =0.31). Conclusion: Both perpendicular and parallel double plating are effective in distal humerus fracture of type C, parallel double plating has less complications.
Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
Haskins, Justin B; Lawson, John W
2016-05-14
We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.
Low power interface IC's for electrostatic energy harvesting applications
NASA Astrophysics Data System (ADS)
Kempitiya, Asantha
The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the design of charge constrained synchronous EHC's, making electrostatic converters a possible candidate for powering emerging communication transceivers and portable electronics.
Luongo, Giuseppe; Giubileo, Filippo; Genovese, Luca; Iemmo, Laura; Martucciello, Nadia; Di Bartolomeo, Antonio
2017-06-27
We study the effect of temperature and light on the I-V and C-V characteristics of a graphene/silicon Schottky diode. The device exhibits a reverse-bias photocurrent exceeding the forward current and achieves a photoresponsivity as high as 2.5 A / W . We show that the enhanced photocurrent is due to photo-generated carriers injected in the graphene/Si junction from the parasitic graphene/SiO₂/Si capacitor connected in parallel to the diode. The same mechanism can occur with thermally generated carriers, which contribute to the high leakage current often observed in graphene/Si junctions.
Cooled particle accelerator target
Degtiarenko, Pavel V.
2005-06-14
A novel particle beam target comprising: a rotating target disc mounted on a retainer and thermally coupled to a first array of spaced-apart parallel plate fins that extend radially inwardly from the retainer and mesh without physical contact with a second array of spaced-apart parallel plate fins that extend radially outwardly from and are thermally coupled to a cooling mechanism capable of removing heat from said second array of spaced-apart fins and located within the first array of spaced-apart parallel fins. Radiant thermal exchange between the two arrays of parallel plate fins provides removal of heat from the rotating disc. A method of cooling the rotating target is also described.
Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer
NASA Technical Reports Server (NTRS)
Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.
1987-01-01
The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.
Twisted Pair Of Insulated Wires Senses Moisture
NASA Technical Reports Server (NTRS)
Laue, Eric G.; Stephens, James B.
1989-01-01
Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.
Two-Stage Series-Resonant Inverter
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.
1994-01-01
Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffel, J.A.; Mullinix, B.R.; Ranson, W.F.
An experimental technique to simulate and evaluate the effects of high concentrations of x-rays resulting from a nuclear detonation on missile structures is presented. Data from 34 tests are included to demonstrate the technique. The effects of variations in the foil thickness, capacitor voltage, and plate thickness on the total impulse and maximum strain in the structure were determined. The experimental technique utilizes a high energy capacitor discharge unit to explode an aluminum foil on the surface of the structure. The structural response is evaluated by optical methods using the grid slope deflection method. The fringe patterns were recorded usingmore » a high-speed framing camera. The data were digitized using an optical comparator with an x-y table. The analysis was performed on a CDC 6600 computer.« less
Shahinpoor, M.
1995-07-25
A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.
Dielectric properties of biological tissues in which cells are connected by communicating junctions
NASA Astrophysics Data System (ADS)
Asami, Koji
2007-06-01
The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Yu; Song, Qing; Xu, Feng; Sheng, Su; Wang, Peng; Ong, C. K.
2010-03-01
Figures 1, 2 and 5 of this paper are reprinted from the authors' previous paper, Zhang X-Y, Wang P, Sheng S, Xu F and Ong C K 2008 Ferroelectric BaxSr1 - xTiO3 thin-film varactors with parallel plate and interdigital electrodes for microwave applications J. Appl. Phys. 104 124110, copyright 2008, with permission from the American Institute of Physics.
NASA Astrophysics Data System (ADS)
Sasikala, R.; Govindarajan, A.; Gayathri, R.
2018-04-01
This paper focus on the result of dust particle between two parallel plates through porous medium in the presence of magnetic field with constant suction in the upper plate and constant injection in the lower plate. The partial differential equations governing the flow are solved by similarity transformation. The velocity of the fluid and the dust particle decreases when there is an increase in the Hartmann number.
Oscillator or Amplifier With Wide Frequency Range
NASA Technical Reports Server (NTRS)
Kleinberg, L.; Sutton, J.
1987-01-01
Inductive and capacitive effects synthesized with feedback circuits. Oscillator/amplifier resistively tunable over wide frequency range. Feedback circuits containing operational amplifiers, resistors, and capacitors synthesize electrical effects of inductance and capacitance in parallel between input terminals. Synthetic inductance and capacitance, and, therefore, resonant frequency of input admittance, adjusted by changing potentiometer setting.
NASA Technical Reports Server (NTRS)
Laue, H. H.; Clough, L. G. (Inventor)
1973-01-01
An electrodeless lamp circuit with a coil surrounding a krypton lamp is driven by an RF input source. A coil surrounding a mercury lamp is tapped across the connection of the input central to the krypton-lamp coil. Each coil is connected in parallel with separate capacitors which form resonant circuits at the input frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poljak, M.D.
1985-08-12
This abstract discloses an improved battery tester for determining the acceptability of a Lithium Sulfur Dioxide (LiSO/sub 2/) storage battery at a given temperature and with one or more cells therein. The tester is generally made up of a first-comparison circuit having a series of series-interconnected components, namely a comparator, first and second flip-flops, and an AND gate. A first resistor is parallel connected to the first-comparison circuit. A second comparison circuit is also parallel connected to the first-comparison circuit and is generally made up of series-interconnected components, namely a second resistor, a capacitor, a buffer, and a second-comparator. Amore » first switch is connected to the first resistor and a second switch is parallel connected to the second-comparison circuit between the capacitor and the buffer. A logic control arrangement controls the operation of both switches, both comparators, and both flip-flops for testing a battery as to its start-up voltage and performance voltage characteristics all in a relatively short time period. In another embodiment of the tester, it is provided with an analog-to-digital converter, a memory, and a sensor arrangement for enhancing the versatility and reliability of the tester in determining the acceptability of a LiSO/sub 2/ battery.« less
Mantle flow through a tear in the Nazca slab inferred from shear wave splitting
NASA Astrophysics Data System (ADS)
Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh
2017-07-01
A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.
NASA Astrophysics Data System (ADS)
Han, Qiguo; Zhu, Kai; Shi, Wenming; Wu, Kuayu; Chen, Kai
2018-02-01
In order to solve the problem of low voltage ride through(LVRT) of the major auxiliary equipment’s variable-frequency drive (VFD) in thermal power plant, the scheme of supercapacitor paralleled in the DC link of VFD is put forward, furthermore, two solutions of direct parallel support and voltage boost parallel support of supercapacitor are proposed. The capacitor values for the relevant motor loads are calculated according to the law of energy conservation, and they are verified by Matlab simulation. At last, a set of test prototype is set up, and the test results prove the feasibility of the proposed schemes.
Wheelock, C.W.; Baumeister, E.B.
1961-09-01
A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.
A Better Criterion for the Discharging Time in an RC Circuit
ERIC Educational Resources Information Center
Lima, Fabio M. S.
2015-01-01
When all parts of an electric circuit are at the same potential, no electric current flows and it is said to be in "equilibrium." Otherwise, a current will flow from the higher potential parts to the lower ones, as when we make contact between the plates of a charged capacitor. The resulting discharging process towards equilibrium is a…
MEMS for vibration energy harvesting
NASA Astrophysics Data System (ADS)
Li, Lin; Zhang, Yangjian; San, Haisheng; Guo, Yinbiao; Chen, Xuyuan
2008-03-01
In this paper, a capacitive vibration-to-electrical energy harvester was designed. An integrated process flow for fabricating the designed capacitive harvester is presented. For overcoming the disadvantage of depending on external power source in capacitive energy harvester, two parallel electrodes with different work functions are used as the two electrodes of the capacitor to generate a build-in voltage for initially charging the capacitor. The device is a sandwich structure of silicon layer in two glass layers with area of about 1 cm2. The silicon structure is fabricated by using silicon-on-insulator (SOI) wafer. The glass wafers are anodic bonded on to both sides of the SOI wafer to create a vacuum sealed package.
Students’ conceptions analysis on several electricity concepts
NASA Astrophysics Data System (ADS)
Saputro, D. E.; Sarwanto, S.; Sukarmin, S.; Ratnasari, D.
2018-05-01
This research is aimed to analyse students’ conceptions on several electricity concept. This is a descriptive research with the subjects of new students of Sebelas Maret University. The numbers of the subject were 279 students that consisted of several departments such as science education, physics education, chemistry education, biology education and mathematics education in the academic year of 2017/2018. The instrument used in this research was the multiple-choice test with arguments. Based on the result of the research and analysis, it can be concluded that most of the students still find misconceptions and do not understand electricity concept on sub-topics such as electric current characteristic in the series and parallel arrangement, the value of capacitor capacitance, the influence of the capacitor charge and discharge towards the loads, and the amount of capacitor series arrangement. For the future research, it is suggested to improve students’ conceptual understanding with appropriate learning method and assessment instrument because electricity is one of physics material that closely related with students’ daily life.
West, J.M.; Schumar, J.F.
1958-06-10
Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.
Parallel-plate heat pipe apparatus having a shaped wick structure
Rightley, Michael J.; Adkins, Douglas R.; Mulhall, James J.; Robino, Charles V.; Reece, Mark; Smith, Paul M.; Tigges, Chris P.
2004-12-07
A parallel-plate heat pipe is disclosed that utilizes a plurality of evaporator regions at locations where heat sources (e.g. semiconductor chips) are to be provided. A plurality of curvilinear capillary grooves are formed on one or both major inner surfaces of the heat pipe to provide an independent flow of a liquid working fluid to the evaporator regions to optimize heat removal from different-size heat sources and to mitigate the possibility of heat-source shadowing. The parallel-plate heat pipe has applications for heat removal from high-density microelectronics and laptop computers.
Petrini, Paula A; Silva, Ricardo M L; de Oliveira, Rafael F; Merces, Leandro; Bof Bufon, Carlos C
2018-06-29
Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc ) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al 2 O 3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al 2 O 3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.
NASA Astrophysics Data System (ADS)
Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.
2018-06-01
Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.
Electronic zero-point fluctuation forces inside circuit components
Leonhardt, Ulf
2018-01-01
One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863
Environmentally friendly power generator based on moving liquid dielectric and double layer effect
Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.
2016-01-01
An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577
Suganuma, Y; Dhirani, A-A
2011-04-01
The present study explores a novel apertured microchip conductance detector (AMCD) that is sensitive to dielectric constant. Fashioned on silicon oxide/silicon using optical microlithography, the detector has novel parallel-plate geometry with a top mesh electrode, a middle apertured insulator, and a bottom conducting electrode. This monolithic apertured architecture is planar and may be provided with a thin insulator layer enabling large capacitances, while the top mesh electrode and middle apertured-insulator enable access to regions of the capacitor where electric fields are strong. Hence, the detector is sensitive yet mechanically robust. To test its response, the AMCD was immersed in various solvents, namely water, methanol, acetonitrile, and hexanes. Its response was found to vary in proportion to the solvents' respective dielectric constants. The AMCD was also able to distinguish quantitatively the presence of various molecules in solution, including molecules with chromophores [such as acetylsalicylic acid (ASA)] in methanol and those without chrompohores [such as polyethylene glycol 200 Daltons (PEG200)] in methanol or water. The universal nature of dielectric constant and the microchip detector's sensitivity point to a wide range of potential applications. © 2011 American Institute of Physics
An Alternative Approach to Capacitors in Complex Arrangements
ERIC Educational Resources Information Center
Atkin, Keith
2012-01-01
Examples of capacitive circuits easily reducible to series and parallel combinations abound in the textbooks but students are rarely exposed to examples where such simple procedures are apparently impossible. This paper extends that of a previous contributor by showing how the delta-star theorem of network theory can resolve such difficulties.…
Su, Xiaoshi; Norris, Andrew N
2016-06-01
Gradient index (GRIN), refractive, and asymmetric transmission devices for elastic waves are designed using a solid with aligned parallel gaps. The gaps are assumed to be thin so that they can be considered as parallel cracks separating elastic plate waveguides. The plates do not interact with one another directly, only at their ends where they connect to the exterior solid. To formulate the transmission and reflection coefficients for SV- and P-waves, an analytical model is established using thin plate theory that couples the waveguide modes with the waves in the exterior body. The GRIN lens is designed by varying the thickness of the plates to achieve different flexural wave speeds. The refractive effect of SV-waves is achieved by designing the slope of the edge of the plate array, and keeping the ratio between plate length and flexural wavelength fixed. The asymmetric transmission of P-waves is achieved by sending an incident P-wave at a critical angle, at which total conversion to SV-wave occurs. An array of parallel gaps perpendicular to the propagation direction of the reflected waves stop the SV-wave but let P-waves travel through. Examples of focusing, steering, and asymmetric transmission devices are discussed.
True Shear Parallel Plate Viscometer
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2010-01-01
This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.
Stress-Dependent Voltage Offsets From Polymer Insulators Used in Rock Mechanics and Material Testing
NASA Technical Reports Server (NTRS)
Carlson, G. G.; Dahlgren, Robert; Gray, Amber; Vanderbilt, V. C.; Freund, F.; Johnston, M. J.; Dunson, C.
2013-01-01
Dielectric insulators are used in a variety of laboratory settings when performing experiments in rock mechanics, petrology, and electromagnetic studies of rocks in the fields of geophysics,material science, and civil engineering. These components may be used to electrically isolate geological samples from the experimental equipment, to perform a mechanical compliance function between brittle samples and the loading equipment, to match ultrasonic transducers, or perform other functions. In manyexperimental configurations the insulators bear the full brunt of force applied to the sample but do not need to withstand high voltages, therefore the insulators are often thin sheets of mechanically tough polymers. From an instrument perspective, transduction from various types of mechanical perturbation has beenqualitatively compared for a number of polymers [1, 2] and these error sources are readily apparent duringhigh-impedance measurements if not mitigated. However even when following best practices, a force dependent voltage signal still remains and its behavior is explored in this presentation. In this experimenttwo thin sheets (0.25 mm) of high-density polyethylene (HDPE) were set up in a stack, held alternatelybetween three aluminum bars; this stack was placed on the platen of a 60T capacity hydraulic testingmachine. The surface area, A, over which the force is applied to the PE sheets in this sandwich is roughly 40 square cm, each sheet forming a parallel-plate capacitor having roughly 320 pF [3], assuming therelative dielectric permittivity of PE is approximately 2.3. The outer two aluminum bars were connected to the LO input ofthe electrometer and the central aluminum bar was connected to the HI input of a Keithley model 617 electrometer. Once the stack is mechanically well-seated with no air gaps, the voltage offset is observed tobe a linear function of the baseline voltage for a given change in applied force. For a periodically appliedforce of 66.7 kN the voltage offsets were measured as a function of initial voltage, and these data were fitwith a linear function that was constrained to pass through the origin. The best fit solution had a correlation coefficient of R=0.85 and a slope of approximately -0.0228 volts/volt. The voltage offset when normalizedis demonstrated to be constant -2.28% for both positive and negative polarities over nearly 3 orders ofbaseline voltage magnitude. From this, the voltage-force coefficient is derived to be -0.34 ppm/N. Thiscorrelates well to a first-order parallel plate capacitor model that assumes constant area, and smalldeformation such that the polymer may be mechanically modeled by a spring that obeys Hookes law. Thissimple model predicts that the coefficient of proportionality is a function of Youngs modulus E= 0.8 GPaand surface area of the insulator, theoretically -1EA= -0.31 ppm/N. The outcome of this work is animproved insulator made from ultra-high molecular weight (UHMW) polyethylene and other approachestoward the minimization of and compensation for these experimental artifacts.
Capacitance of a highly ordered array of nanocapacitors: Model and microscopy
NASA Astrophysics Data System (ADS)
Cortés, A.; Celedón, C.; Ulloa, P.; Kepaptsoglou, D.; Häberle, P.
2011-11-01
This manuscript describes briefly the process used to build an ordered porous array in an anodic aluminum oxide (AAO) membrane, filled with multiwall carbon nanotubes (MWCNTs). The MWCNTs were grown directly inside the membrane through chemical vapor deposition (CVD). The role of the CNTs is to provide narrow metal electrodes contact with a dielectric surface barrier, hence, forming a capacitor. This procedure allows the construction of an array of 1010 parallel nano-spherical capacitors/cm2. A central part of this contribution is the use of physical parameters obtained from processing transmission electron microscopy (TEM) images, to predict the specific capacitance of the AAOs arrays. Electrical parameters were obtained by solving Laplace's equation through finite element methods (FEMs).
Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil
NASA Astrophysics Data System (ADS)
Yuan, Xiaoxia; Zhong, Jiayong; Zhang, Zhe; Zhou, Weimin; Teng, Jian; Li, Yutong; Han, Bo; Yuan, Dawei; Lin, Jun; Liu, Chang; Li, Yanfei; Zhu, Baojun; Wei, Huigang; Liang, Guiyun; Hong, Wei; He, Shukai; Yang, Siqian; Zhao, Yongqiang; Deng, Zhigang; Lu, Feng; Zhang, Zhimeng; Zhu, Bin; Zhou, Kainan; Su, Jingqin; Zhao, Zongqing; Gu, Yuqiu; Zhao, Gang; Zhang, Jie
2018-06-01
A double-turn capacitor-coil is used to produce a magnetic field (38.5 T) and construct a topology of magnetic reconnection in a low-β (β < 1) plasma environment. The device is constructed with two metallic U-turn coils connecting two parallel metallic disks. High energy lasers are employed to ablate one disk spontaneously driving two currents in the two coils, which produces an interactive magnetic field topology. We demonstrated through experiments and numerical simulations that the reconnection process takes place between two non-uniform magnetic fields created by the coils, and that the plasma state and the associated magnetic topology in the process can be seen via the technology of the optical probe beam and the proton backlight.
Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.
2004-06-08
A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.
Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.
2003-05-27
A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.
Trench-parallel flow beneath the nazca plate from seismic anisotropy.
Russo, R M; Silver, P G
1994-02-25
Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.
NASA Astrophysics Data System (ADS)
Krishna, M. Veera; Swarnalathamma, B. V.
2017-07-01
We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.
Mbonye, Marx; Mendis, Rajind; Mittleman, Daniel M
2012-12-03
We present numerical and experimental results on inhibiting diffraction losses associated with the lowest order transverse electric (TE1) mode of a terahertz (THz) parallel-plate waveguide (PPWG) via the use of slightly concave plates. We find that there is an optimal radius of curvature that inhibits the diffraction for a given waveguide operating at a given frequency. We also find that introducing this curvature does not introduce any additional group-velocity dispersion. These results support the possibility of realizing long range transport of THz radiation using the TE1 mode of the PPWG.
Distributed Capacitive Sensor for Sample Mass Measurement
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey
2011-01-01
Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass substrate. The fabricated proof-of-concept devices have successfully demonstrated tens to hundreds of picofarads of capacitance change when a simulated sample (100 g to 500 g) is placed on the membrane.
A clamped rectangular plate containing a crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1985-01-01
The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.
A comparison of parallel and diverging screw angles in the stability of locked plate constructs.
Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K
2011-09-01
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
Patel, Ankur; Nagesh, K V; Kolge, Tanmay; Chakravarthy, D P
2011-04-01
LCL resonant converter based repetitive capacitor charging power supply (CCPS) is designed and developed in the division. The LCL converter acts as a constant current source when switching frequency is equal to the resonant frequency. When both resonant inductors' values of LCL converter are same, it results in inherent zero current switching (ZCS) in switches. In this paper, ac analysis with fundamental frequency approximation of LCL resonant tank circuit, frequency dependent of current gain converter followed by design, development, simulation, and practical result is described. Effect of change in switching frequency and resonant frequency and change in resonant inductors ratio on CCPS will be discussed. An efficient CCPS of average output power of 1.2 kJ/s, output voltage 3 kV, and 300 Hz repetition rate is developed in the division. The performance of this CCPS has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. These results indicate that this design is very feasible for use in capacitor-charging applications. © 2011 American Institute of Physics
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
ERIC Educational Resources Information Center
Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.
2012-01-01
A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…
FUEL ASSEMBLY FOR A NEUTRONIC REACTOR
Wigner, E.P.
1958-04-29
A fuel assembly for a nuclear reactor of the type wherein liquid coolant is circulated through the core of the reactor in contact with the external surface of the fuel elements is described. In this design a plurality of parallel plates containing fissionable material are spaced about one-tenth of an inch apart and are supported between a pair of spaced parallel side members generally perpendicular to the plates. The plates all have a small continuous and equal curvature in the same direction between the side members.
Electrically-induced stresses and deflection in multiple plates
NASA Astrophysics Data System (ADS)
Hu, Jih-Perng; Tichler, P. R.
1992-04-01
Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.
Ultrasonically-assisted Thermal Stir Welding System
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2014-01-01
A welding head assembly has a work piece disposed between its containment plates' opposing surfaces with the work piece being maintained in a plastic state thereof at least in a vicinity of the welding head assembly's stir rod as the rod is rotated about its longitudinal axis. The welding head assembly and the work piece experience relative movement there between in a direction perpendicular to the rod's longitudinal axis as the work piece is subjected to a compressive force applied by the containment plates. A first source coupled to the first containment plate applies a first ultrasonic wave thereto such that the first ultrasonic wave propagates parallel to the direction of relative movement. A second source coupled to the second containment plate applies a second ultrasonic wave thereto such that the second ultrasonic wave propagates parallel to the direction of relative movement.propagates parallel to the direction of relative movement.
Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling
NASA Astrophysics Data System (ADS)
Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei
2017-07-01
Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.
Numerical Simulation of Flow Field Within Parallel Plate Plastometer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
2002-01-01
Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.
Astley, Victoria; Reichel, Kimberly S; Jones, Jonathan; Mendis, Rajind; Mittleman, Daniel M
2012-09-10
We use the mode-matching technique to study parallel-plate waveguide resonant cavities that are filled with a dielectric. We apply the generalized scattering matrix theory to calculate the power transmission through the waveguide-cavities. We compare the analytical results to experimental data to confirm the validity of this approach.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
We describe an inexpensive, compact parallel plate diffusion denuder coupled capillary IC system for the determination of soluble ionogenic atmospheric trace gases. The active sampling area (0.6×10 cm) of the denuder is formed in a novel manner by thermally bonding silica ge...
Anderson, Louis W.; Fitzsimmons, William A.
1978-01-01
A pulsed gas laser is constituted by Blumlein circuits wherein space metal plates function both as capacitors and transmission lines coupling high frequency oscillations to a gas filled laser tube. The tube itself is formed by spaced metal side walls which function as connections to the electrodes to provide for a high frequency, high voltage discharge in the tube to cause the gas to lase. Also shown is a spark gap switch having structural features permitting a long life.
1995-06-01
solid body resistors have been chosen for Atlas. For the series damping resistors, reticulated vitreous carbon (RVC) foam plate resistors will be...utilized. RVC resistors are available as a foam like glassy carbon material available with various pore size, ligament density, and ligament diameter...contact louvers used at the current joint interface. This mitigates the necessity of high torque and critical alignment connections. Carbon rod style
Carbon Film Electrodes For Super Capacitor Applications
Tan, Ming X.
1999-07-20
A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
Wilson, Richard M. (Compiler)
1996-01-01
Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor.
Two independent measurements of Debye lengths in doped nonpolar liquids.
Prieve, D C; Hoggard, J D; Fu, R; Sides, P J; Bethea, R
2008-02-19
Electric current measurements were performed between 2.5 cm x 7.5 cm parallel-plate electrodes separated by 1.2 mm of heptane doped with 0-15% w/w poly(isobutylene succinimide) (PIBS) having a molecular weight of about 1700. The rapid (microsecond) initial charging of the capacitor can be used to infer the dielectric constant of the solution. The much slower decay of current arising from the polarization of electrodes depends on the differential capacitance of the diffuse clouds of charge carriers accumulating next to each electrode and on the ohmic resistance of the fluid. Using the Gouy-Chapman model for the differential capacitance, Debye lengths of 80-600 nm were deduced that decrease with increasing concentration of PIBS. Values of the Debye lengths were confirmed by performing independent measurements of double-layer repulsion between a 6 microm polystyrene (PS) latex sphere and a PS-coated glass plate using total internal reflection microscopy in the same solutions. The charge carriers appear to be inverted PIBS micelles having apparent Stokes diameters of 20-40 nm. Dynamic light scattering reveals a broad distribution of sizes having an intensity-averaged diameter of 15 nm. This smaller size might arise (1) from overestimating the electrophoretic mobility of micelles by treating them as point charges or (2) because charged micelles are larger on average than uncharged micelles. When Faradaic reactions and zeta potentials on the electrodes can be neglected, such current versus time experiments yield values for the Debye length and ionic strength with less effort than force measurements. To obtain the concentration of charge carriers from measurements of conductivity, the mobility of the charge carriers must be known.
NASA Astrophysics Data System (ADS)
Aguilar-Marín, Pablo; Chavez-Bacilio, Mario; Jáuregui-Rosas, Segundo
2018-05-01
Tracker is a piece of freeware software, designed to use video recorded images of the motion of objects as input data, and has been mostly applied in physics education to analyse and simulate physical phenomena in mechanics. In this work we report the application of Tracker to the study of experiments in electricity and magnetism using analog instruments for electrical signal measurements. As we are unable to directly video-track the motion of electrons in electric circuits, the angular deflections of the instruments’ pointers were video captured instead. The kinematic variables (angular position as a function of time) had to be related to the electrical ones (voltages and currents as a function of time). Two well-known experiments in physics teaching, the RC circuit for charging and discharging a capacitor and Faraday electromagnetic induction, were chosen to illustrate the procedures. The third experiment analysed and modeled with Tracker was the rather well-known electromagnetic retardation of disk- or cylinder-shaped magnets falling inside non-magnetic metallic pipes. Instead of metallic pipes we used an aluminum plate with an arrangement of a couple of parallelepiped-shaped magnets falling parallel to the plate. In the three cases studied, the experimental and the Tracker simulation results were in very good agreement. These outcomes show that it is possible to exploit the potential of Tracker software in areas other than mechanics, in areas where electrical signals are involved. The experiments are inexpensive and simple to perform, and are suitable for high school and introductory undergraduate courses in electricity, magnetism and electronics. We propose the use of Tracker combined with analog measuring devices to explore further its applications in electricity, magnetism, electronics and in other experimental sciences where electrical signals are involved.
Electrically-induced stresses and deflection in multiple plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jih-Perng; Tichler, P.R.
Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less
NASA Astrophysics Data System (ADS)
Tatsuura, Satoshi; Wada, Osamu; Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun
2001-04-01
In this study, we introduce a new concept of all-optical two-dimensional serial-to-parallel pulse converters. Femtosecond optical pulses can be understood as thin plates of light traveling in space. When a femtosecond signal-pulse train and a single gate pulse were fed onto a material with a finite incident angle, each signal-pulse plate met the gate-pulse plate at different locations in the material due to the time-of-flight effect. Meeting points can be made two-dimensional by adding a partial time delay to the gate pulse. By placing a nonlinear optical material at an appropriate position, two-dimensional serial-to-parallel conversion of a signal-pulse train can be achieved with a single gate pulse. We demonstrated the detection of parallel outputs from a 1-Tb/s optical-pulse train through the use of a BaB2O4 crystal. We also succeeded in demonstrating 1-Tb/s serial-to-parallel operation through the use of a novel organic nonlinear optical material, squarylium-dye J-aggregate film, which exhibits ultrafast recovery of bleached absorption.
A simple capacitive method to evaluate ethanol fuel samples
NASA Astrophysics Data System (ADS)
Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.
2017-02-01
Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.
Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices
Zhang, Wen-Ming; Meng, Guang; Chen, Di
2007-01-01
Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semaltianos, N. G., E-mail: nsemaltianos@yahoo.com; Friedt, J.-M.; Blondeau-Patissier, V.
2016-05-28
Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter inmore » the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.« less
NASA Astrophysics Data System (ADS)
Tran, Lauren Christine
The Extraordinary Electroconductance (EEC) sensor has been previously demonstrated to have an electric field sensitivity of 3.05V/cm in a mesoscopic-scale structure fabricated at the center of a parallel plate capacitor. In this thesis, we demonstrate the first successful application of EEC sensors as electrochemical detectors of protein binding and biological molecule concentration. Using the avidin derivative, captavidin, in complex with the vitamin biotin, the change in four-point measured resistance with fluid protein concentration of bare EEC sensors was shown to increase by a factor of four in the presence of biomolecular binding as compared to baseline. Calculations for approximate field strengths introduced by a bound captavidin molecule are also presented. The development of Inverse-Extraordinary Optoconductance (I-EOC), an effect which occurs in nanoscale sensors, is also discussed. In the I-EOC effect, electron transport transitions from ballistic to diffusive with increasing light intensity. In these novel, room temperature optical detectors, the resistance is low at low light intensity and resistance increases by 9462% in a 250nm device mesa upon full illumination with a 5 mW HeNe laser. This is the inverse of bulk and mesoscopic device behavior, in which resistance decreases with increasing photon density.
NASA Technical Reports Server (NTRS)
Einstein, Thomas H.
1961-01-01
Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.
High precision refractometry based on Fresnel diffraction from phase plates.
Tavassoly, M Taghi; Naraghi, Roxana Rezvani; Nahal, Arashmid; Hassani, Khosrow
2012-05-01
When a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic parallel beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. The visibility of the diffraction fringes varies periodically with changes in incident angle. The visibility period depends on the plate thickness and the refractive indices of the plate and the surrounding medium. Plotting the phase change versus incident angle or counting the visibility repetition in an incident-angle interval provides, for a given plate thickness, the refractive index of the plate very accurately. It is shown here that the refractive index of a plate can be determined without knowing the plate thickness. Therefore, the technique can be utilized for measuring plate thickness with high precision. In addition, by installing a plate with known refractive index in a rectangular cell filled with a liquid and following the described procedures, the refractive index of the liquid is obtained. The technique is applied to measure the refractive indices of a glass slide, distilled water, and ethanol. The potential and merits of the technique are also discussed.
Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers
NASA Astrophysics Data System (ADS)
Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.
2007-04-01
In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique
NASA Astrophysics Data System (ADS)
Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.
2018-06-01
The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.
Focused terahertz waves generated by a phase velocity gradient in a parallel-plate waveguide.
McKinney, Robert W; Monnai, Yasuaki; Mendis, Rajind; Mittleman, Daniel
2015-10-19
We demonstrate the focusing of a free-space THz beam emerging from a leaky parallel-plate waveguide (PPWG). Focusing is accomplished by grading the launch angle of the leaky wave using a PPWG with gradient plate separation. Inside the PPWG, the phase velocity of the guided TE1 mode exceeds the vacuum light speed, allowing the wave to leak into free space from a slit cut along the top plate. Since the leaky wave angle changes as the plate separation decreases, the beam divergence can be controlled by grading the plate separation along the propagation axis. We experimentally demonstrate focusing of the leaky wave at a selected location at frequencies of 100 GHz and 170 GHz, and compare our measurements with numerical simulations. The proposed concept can be valuable for implementing a flat and wide-aperture beam-former for THz communications systems.
Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry
NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-01-01
The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.
Three-Point Gear/Lead Screw Positioning
NASA Technical Reports Server (NTRS)
Calco, Frank S.
1993-01-01
Triple-ganged-lead-screw positioning mechanism drives movable plate toward or away from fixed plate and keeps plates parallel to each other. Designed for use in tuning microwave resonant cavity. Other potential applications include adjustable bed plates and cantilever tail stocks in machine tools, adjustable platforms for optical equipment, and lifting platforms.
Facile fabrication of plate-shaped hydrohausmannite as electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Liang, Jun; Chai, Yao; Li, Deli; Li, Meng; Lu, Jiaxue; Li, Li; Luo, Min
2017-08-01
A simple and one-step solvothermal synthesis method has been developed to prepare two-dimensional (2-D) hydrohausmannite ((Mn4-2xMnx)Mn8O16-x(OH)x) nanoplates with radial length of 300 nm and thickness of about 25 nm in a binary ethanediamine/water solvent system. The formation mechanism of hydrohausmannite is suggested. As an anode material for electrochemical capacitors, the plate-shaped hydrohausmannite not only displays a high specific capacity (215 at 0.1 A g-1) and good rate capability, but also shows good stable performance along with 94% specific capacity retained after 3000 cycle tests. The method can be easily controlled and expected to be applicable for the large-scale preparation of the 2-D hydrohausmannite.
Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar
2017-01-01
Introduction The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. Aim To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. Materials and Methods A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. Results In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Conclusion Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques. PMID:28384948
Govindasamy, Ramachandran; Shekhawat, Vishal; Banshiwal, Ramesh Chandra; Verma, Rajender Kumar
2017-02-01
The distal humeral fractures are common fractures of upper limb and are difficult to treat. These fractures, if left untreated or inadequately treated, leads to poor outcomes. Management of distal humeral fractures are pertained to many controversies and one among them is position of plates. To compare the clinical and radiological outcomes in patients with intra-articular distal humerus fractures, treated using parallel and perpendicular double plating methods. A total of 38 patients with distal humerus fractures, 20 in perpendicular plating group (group A) and 18 in parallel plating group (group B), were included in this prospective randomised study. At each follow up patients were evaluated clinically and radiologically for union and the outcomes were measured in terms of Mayo Elbow Performance Score (MEPS) consisting of pain intensity, range of motion, stability and function. MEP score greater than 90 is considered as excellent; Score 75 to 89 is good; Score 60 to 74 is fair and Score less than 60 is poor. In our study, 15 patients (75%) in group A, and 13 patients (72.22%) in group B achieved excellent results. Two patients (10%) in group A and 4 patients (22.22%) in group B attained good results. Complications developed in 2 patients in each groups. No significant differences were found between the clinical outcomes of the two plating methods. Neither of the plating techniques are superior to the other, as inferred from the insignificant differences in bony union, elbow function and complications between the two plating techniques.
Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.
1997-01-01
A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.
Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.
1997-06-24
A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.
Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram
2018-05-01
This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.
NASA Technical Reports Server (NTRS)
Radloff, H. D., II; Hyer, M. W.; Nemeth, M. P.
1994-01-01
The focus of this work is the buckling response of symmetrically laminated composite plates having a planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply supported boundary conditions, while the parallel ends are assumed to have either simply supported or clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of-plane displacement is approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters representing geometric properties. For comparison purposes, a number of specific plate geometry, ply orientation, and stacking sequence combinations are investigated using the general purpose finite element code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the finite element model show agreement within 5 percent, in general, and within 15 percent for the worst cases. In order to verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation system, and experimental technique are described. Experimental results for the buckling load, the buckled mode shape, and the prebuckling plate stiffness are presented and show good agreement with the analytical results regarding the buckling load and the prebuckling plate stiffness. However, the experimental results show that for some cases the analysis underpredicts the number of halfwaves in the buckled mode shape. In the context of the definitions of taper ratio and aspect ratio used in this study, it is concluded that the buckling load always increases as taper ratio increases for a given aspect ratio for plates having simply supported boundary conditions on the parallel ends. There are combinations of plate geometry and ply stackling sequences, however, that reverse this trend for plates having clamped boundary conditions on the parallel ends such that an increase in the taper ratio causes a decrease in the buckling load. The clamped boundary conditions on the parallel ends of the plate are shown to increase the buckling load compared to simply supported boundary conditions. Also, anisotropy (the D16 and D26 terms) is shown to decrease the buckling load and skew the buckled mode shape for both the simply supported and clamped boundary conditions.
Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu
2016-04-01
The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.
NASA Astrophysics Data System (ADS)
Palade, C.; Lepadatu, A. M.; Slav, A.; Lazanu, S.; Teodorescu, V. S.; Stoica, T.; Ciurea, M. L.
2018-01-01
Trilayer memory capacitors with Ge nanocrystals (NCs) floating gate in HfO2 were obtained by magnetron sputtering deposition on p-type Si substrate followed by rapid thermal annealing at relatively low temperature of 600 °C. The frequency dispersion of capacitance and resistance was measured in accumulation regime of Al/HfO2 gate oxide/Ge NCs in HfO2 floating gate/HfO2 tunnel oxide/SiOx/p-Si/Al memory capacitors. For simulation of the frequency dispersion a complex circuit model was used considering an equivalent parallel RC circuit for each layer of the trilayer structure. A series resistance due to metallic contacts and Si substrate was necessary to be included in the model. A very good fit to the experimental data was obtained and the parameters of each layer in the memory capacitor, i.e. capacitances and resistances were determined and in turn the intrinsic material parameters, i.e. dielectric constants and resistivities of layers were evaluated. The results are very important for the study and optimization of the hysteresis behaviour of floating gate memories based on NCs embedded in oxide.
Design and Calibration of a X-Ray Millibeam
2005-12-01
developed for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride thermoluminescent dosimetry ( TLD ), and EBT GafChromic...thermoluminescent dosimetry ( TLD ), and EBT GafChromic film to characterize the spatial distribution and accuracy of the doses produced by the Faxitron. A...absorbed dose calibration factors for use in Fricke dosimetry , parallel-plate ionization chambers, Lithium Fluoride (LiF) TLD , and EBT GafChromic film. The
Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong
2016-12-28
In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.
NASA Astrophysics Data System (ADS)
Dong, Jingtao; Lu, Rongsheng
2018-04-01
The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.
Binary zone-plate array for a parallel joint transform correlator applied to face recognition.
Kodate, K; Hashimoto, A; Thapliya, R
1999-05-10
Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.
2003-04-01
range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly
Particle-in-cell simulations of magnetically driven reconnection using laser-powered capacitor coils
NASA Astrophysics Data System (ADS)
Huang, Kai; Lu, Quanming; Gao, Lan; Ji, Hantao; Wang, Xueyi; Fan, Feibin
2018-05-01
In this paper, we propose an experimental scheme to fulfill magnetically driven reconnections. Here, two laser beams are focused on a capacitor-coil target and then strong currents are wired in two parallel circular coils. Magnetic reconnection occurs between the two magnetic bubbles created by the currents in the two parallel circular coils. A two-dimensional particle-in-cell simulation model in the cylindrical coordinate is used to investigate such a process, and the simulations are performed in the (r ,z ) plane. The results show that with the increase of the currents in the two coils, the associated magnetic bubbles expand and a current sheet is formed between the two bubbles. Magnetic reconnection occurs when the current sheet is sufficiently thin. A quadrupole structure of the magnetic field in the θ direction ( Bθ ) is generated in the diffusion region and a strong electron current along the r direction ( Je r ) is also formed due to the existence of the high-speed electron flow away from the X line in the center of the outflow region. Because the X line is a circle along the θ direction, the convergence of the plasma flow around r =0 will lead to the asymmetry of Je r and Bθ between the two outflow regions of magnetic reconnection.
Electromagnetic pulse coupling through an aperture into a two-parallel-plate region
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1978-01-01
Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.
A scheme for solving the plane-plane challenge in force measurements at the nanoscale.
Siria, Alessandro; Huant, Serge; Auvert, Geoffroy; Comin, Fabio; Chevrier, Joel
2010-05-19
Non-contact interaction between two parallel flat surfaces is a central paradigm in sciences. This situation is the starting point for a wealth of different models: the capacitor description in electrostatics, hydrodynamic flow, thermal exchange, the Casimir force, direct contact study, third body confinement such as liquids or films of soft condensed matter. The control of parallelism is so demanding that no versatile single force machine in this geometry has been proposed so far. Using a combination of nanopositioning based on inertial motors, of microcrystal shaping with a focused-ion beam (FIB) and of accurate in situ and real-time control of surface parallelism with X-ray diffraction, we propose here a "gedanken" surface-force machine that should enable one to measure interactions between movable surfaces separated by gaps in the micrometer and nanometer ranges.
Finite Element Analysis of Magnetoelastic Plate Problems.
1981-08-01
deformation and in the incremental large deformation analysis, respectively. The classical Kirchhoff assumption of the undeformable normal to the midsurface is...current density , is constant across the thickness of the plate and is parallel to the midsurface of the plate; (2) the normal component of the
Aperture-based antihydrogen gravity experiment: Parallel plate geometry
NASA Astrophysics Data System (ADS)
Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A.
2013-10-01
An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a "shadow" region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.
Design of capacitive sensor for water level measurement
NASA Astrophysics Data System (ADS)
Qurthobi, A.; Iskandar, R. F.; Krisnatal, A.; Weldzikarvina
2016-11-01
Capacitive sensor for water level detection has been fabricated. It has, typically, high-impedance sensor, particularly at low frequencies, as clear from the impedance (reactance) expression for a capacitor. Also, capacitive sensor is a noncontacting device in the common usage. In this research, water level sensor based on capacitive principal created using two copper plates with height (h), width (b), and distance (l) between two plates, respectively, 0.040 m, 0.015 m, and 0.010 m. 5 V pp 3 kHz AC signal is used as input signal for the system. Dielectric constant between two plates is proportional to water level. Hence, it can be used to determine water level from electrical characteristic as it inversely proportional to sensor impedance. Linearization, inverting amplifier, and rectifier circuits are used as signal conditioning for the system. Based on conducted experiment, the relationship between water level (x), capacitance (C), and output voltage (Vdc ) can be expressed as C(x) = 2.756x + 0.333 nF and Vdc (x) = 15.755 + 0.316 V.
NASA Astrophysics Data System (ADS)
Golwala, Sunil
Prospective future PCOS (Inflation Probe) and COR (Origins Space Telescope, FIR Interferometer) missions require large arrays of highly sensitive millimeter-wave and submillimeter (mm/submm) detectors, including spectroscopic detectors. A number of technology developments in superconducting sensors for these applications require lowloss dielectric thin films. Examples include: Microstrip-coupled superconducting mm/submm detectors, which rely on superconductor-dielectric-superconductor microstrip transmission line to transmit optical power from a coherent reception element (feed horn, lens coupled antenna, phased-array antenna) to detectors; Superconducting spectrometers (SuperSpec, TIME, MicroSpec), which use such microstrip to route optical power to detectors and to define spectral channels; Kinetic inductance detectors (KIDs), which use capacitors. In the above, the dielectric loss, quantified by the loss tangent (tan delta), is critical: it determines the optical loss in the microstrip, the resolution of spectral channels, and the two-level-system (TLS) dielectric fluctuation noise of the KID capacitor. Currently, the amorphous dielectrics SiO2 and SiNx are used because they are most convenient for fabrication. They have tan delta 1e-3. This loss tangent is acceptable for microstripline but severely limits the possible architectures and spectral resolving power, and it is too large for KID capacitors. Lower loss dielectric would result in a quantum leap in capability, opening up design space heretofore inaccessible and enabling design innovations. Specific impacts on the above technologies would be: For phased-array antennas, lower optical loss would allow the detectors to be moved away from the antenna, allowing them to be shielded from absorption of light that has not been spatially or spectrally filtered and also obviating long wiring busses. More sophisticated antenna designs, such as multiscale antennas covering a decade of spectral bandwidth, could be entertained; For superconducting spectrometers, lower loss would improve the spectral resolution limit, Rmax = (1/tan delta), from 1e3 to 2e5, sufficient for resolved extragalactic mm/submm spectroscopy, where intrinsic line widths are dnu/nu 1e-4 to 1e-3; For KIDs, the interdigitated capacitors (IDC) currently used could be replaced by parallel-plate capacitors 40 times smaller in area, presenting a number of advantages over IDCs in properties such as focal plane fill factor and mounting architecture, direct absorption, and inter-KID coupling. There exist two paths in the literature to lower loss: hydrogenated amorphous silicon (aSi:H) and crystalline silicon (cSi). Crystalline silicon intrinsically has tan delta < 5e-6, 200 times lower than SiO2 and SiNx. a-Si:H has been demonstrated with tan delta < 5e5, not as good as cSi but still 20 times better than SiO2 and SiNx. We will pursue the development of both options due their complementary advantages and challenges. While a process has already been demonstrated for 5 um cSi with delta < 1e-4 and consistent with other design/fabrication constraints, it has not been shown yet that this can be extended to more convenient 1 um and 2 um thicknesses. a-Si:H has been demonstrated to have tan delta < 1e-4, but the fabrication recipe is almost certainly machine-specific and may not be compatible with focal plane array fabrication due to adhesion or stress issues. Given the uncertainties and different constraints imposed by the two processes, it is sensible to pursue both. This development would contribute to filling the Critical Technology Gaps identified in the 2016 PCOS and COR Program Annual Technology Reports, specifically the PCOS “Advanced millimeter-wave focal plane arrays for CMB polarimetry” gap and the COR “Large-format, low-noise far-infrared and ultralow noise (FIR) direct detectors” and “Compact, Integrated Spectrometers for 100 to 1000 um” gaps.
Mask aligner for ultrahigh vacuum with capacitive distance control
NASA Astrophysics Data System (ADS)
Bhaskar, Priyamvada; Mathioudakis, Simon; Olschewski, Tim; Muckel, Florian; Bindel, Jan Raphael; Pratzer, Marco; Liebmann, Marcus; Morgenstern, Markus
2018-04-01
We present a mask aligner driven by three piezomotors which guides and aligns a SiN shadow mask under capacitive control towards a sample surface. The three capacitors for read out are located at the backside of the thin mask such that the mask can be placed at a μm distance from the sample surface, while keeping it parallel to the surface, without touching the sample by the mask a priori. Samples and masks can be exchanged in-situ and the mask can additionally be displaced parallel to the surface. We demonstrate an edge sharpness of the deposited structures below 100 nm, which is likely limited by the diffusion of the deposited Au on Si(111).
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
NASA Astrophysics Data System (ADS)
Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory
2017-10-01
The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.
NASA Astrophysics Data System (ADS)
Nakhostin, M.; Baba, M.
2014-06-01
Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.
Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner
NASA Technical Reports Server (NTRS)
Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2017-01-01
The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.
Aerial ultrasound source with a circular vibrating plate attached to a rigid circumferential wall
NASA Astrophysics Data System (ADS)
Kuratomi, Ryo; Asami, Takuya; Miura, Hikaru
2018-07-01
We fabricate a transverse vibrating plate attached to a rigid wall integrated at the circumference of a circular vibrating plate that allows a strong sound wave field to be formed in the area encoded by the vibrating plate and rigid wall by installing a wall such as a reflective plate on the rigid wall. The design method for the circular vibrating plate attached to a rigid circumferential wall is investigated. A method of forming a strong standing wave field in an enclosed area constructed with a vibrating plate, cylindrical reflective plate, and parallel reflective plate is developed.
Printable Organic Nanoelectronics for Memory, Sensors and Display
2014-02-01
central ion but associated with ring- based processes during oxidation and reduction. The electrochromic behaviour of the film was examined by cyclic...Fluorine-doped tin oxide 12 satDI Saturation current 9 scI Short circuit current 10 LiClO4 Lithium perchlorate 14 NADH reduced nicotinamide...resistor R and capacitor C , connected in parallel. The net current I is the sum of the circulating current and displacement components in the form
Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert
2012-04-13
Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8-210 μA/cm²) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm -2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8-15 μC/cm². When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10 -2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10 -3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.
Reynolds, Glyn J.; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert
2012-01-01
Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities. PMID:28817001
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems
NASA Technical Reports Server (NTRS)
Chen, Hsin-Chu; He, Ai-Fang
1993-01-01
The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Li, Y.
2015-02-03
This paper analyzes the longitudinal space charge impedances of a round uniform beam inside a rectangular and parallel plate chambers using the image charge method. This analysis is valid for arbitrary wavelengths, and the calculations converge rapidly. The research shows that only a few of the image beams are needed to obtain a relative error less than 0.1%. The beam offset effect is also discussed in the analysis.
2008-05-30
Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel . Tribo. Lett., 19(2):119-125, 2005. D-2 ...with a stainless steel parallel plate configuration as shown in figure 1. Due to the radial variation of the local shear stress T in the parallel...using a force transducer that is mounted below the surface. B-1 Exploded View Stainless Steel Plate Lower Fixture Microscale View Figure 1:
NASA Astrophysics Data System (ADS)
Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed
2017-04-01
This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.
NASA Astrophysics Data System (ADS)
Bao, Dechun; Luo, Lichuan; Zhang, Zhaohua; Ren, Tianling
2017-09-01
Recently, triboelectric nanogenerators (TENGs), as a collection technology with characteristics of high reliability, high energy density and low cost, has attracted more and more attention. However, the energy coming from TENGs needs to be stored in a storage unit effectively due to its unstable ac output. The traditional energy storage circuit has an extremely low energy storage efficiency for TENGs because of their high internal impedance. This paper presents a new power management circuit used to optimize the energy using efficiency of TENGs, and realize large load capacity. The power management circuit mainly includes rectification storage circuit and DC-DC management circuit. A rotating TENG with maximal energy output of 106 mW at 170 rpm based on PCB is used for the experimental verification. Experimental results show that the power energy transforming to the storage capacitor reach up to 53 mW and the energy using efficiency is calculated as 50%. When different loading resistances range from 0.82 to 34.5 k {{Ω }} are connected to the storage capacitor in parallel, the power energy stored in the storage capacitor is all about 52.5 mW. Getting through the circuit, the power energy coming from the TENGs can be used to drive numerous conventional electronics, such as wearable watches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing
2016-04-15
The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less
Channel plate for DNA sequencing
Douthart, R.J.; Crowell, S.L.
1998-01-13
This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.
Magnetophoretic circuits for digital control of single particles and cells
NASA Astrophysics Data System (ADS)
Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi
2014-05-01
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Performance-related test for asphalt emulsions.
DOT National Transportation Integrated Search
2004-10-01
Yield stress was investigated as a potential quality control parameter for asphalt emulsions. Viscometric data were determined using the concentric cylinder, parallel plate, and cone and plate geometries with rotational rheometers. We also investigat...
Collimator of multiple plates with axially aligned identical random arrays of apertures
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Underwood, J. H. (Inventor)
1973-01-01
A collimator is disclosed for examining the spatial location of distant sources of radiation and for imaging by projection, small, near sources of radiation. The collimator consists of a plurality of plates, all of which are pierced with an identical random array of apertures. The plates are mounted perpendicular to a common axis, with like apertures on consecutive plates axially aligned so as to form radiation channels parallel to the common axis. For near sources, the collimator is interposed between the source and a radiation detector and is translated perpendicular to the common axis so as to project radiation traveling parallel to the common axis incident to the detector. For far sources the collimator is scanned by rotating it in elevation and azimuth with a detector to determine the angular distribution of the radiation from the source.
Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc
2003-01-01
To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.
Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M
2011-02-10
The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.
Atomic Oxygen Lamp Cleaning Facility Fabricated and Tested
NASA Technical Reports Server (NTRS)
Sechkar, Edward A.; Stueber, Thomas J.
1999-01-01
NASA Lewis Research Center's Atomic Oxygen Lamp Cleaning Facility was designed to produce an atomic oxygen plasma within a metal halide lamp to remove carbon-based contamination. It is believed that these contaminants contribute to the high failure rate realized during the production of these lamps. The facility is designed to evacuate a metal halide lamp and produce a radio frequency generated atomic oxygen plasma within it. Oxygen gas, with a purity of 0.9999 percent and in the pressure range of 150 to 250 mtorr, is used in the lamp for plasma generation while the lamp is being cleaned. After cleaning is complete, the lamp can be backfilled with 0.9999-percent pure nitrogen and torch sealed. The facility comprises various vacuum components connected to a radiation-shielded box that encloses the bulb during operation. Radiofrequency power is applied to the two parallel plates of a capacitor, which are on either side of the lamp. The vacuum pump used, a Leybold Trivac Type D4B, has a pumping speed of 4-m3/hr, has an ultimate pressure of <8x10-4, and is specially adapted for pure oxygen service. The electronic power supply, matching network, and controller (500-W, 13.56-MHz) used to supply the radiofrequency power were purchased from RF Power Products Inc. Initial test results revealed that this facility could remove the carbon-based contamination from within bulbs.
Large-scale trench-perpendicular mantle flow beneath northern Chile
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rumpker, G.; Woelbern, I.
2017-12-01
We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.
Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.
Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M
2010-04-26
We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Wyatt, Madison; Nave, Gillian
2017-01-01
We evaluated the use of a commercial flatbed scanner for digitizing photographic plates used for spectroscopy. The scanner has a bed size of 420 mm by 310 mm and a pixel size of about 0.0106 mm. Our tests show that the closest line pairs that can be resolved with the scanner are 0.024 mm apart, only slightly larger than the Nyquist resolution of 0.021 mm expected by the 0.0106 mm pixel size. We measured periodic errors in the scanner using both a calibrated length scale and a photographic plate. We find no noticeable periodic errors in the direction parallel to the linear detector in the scanner, but errors with an amplitude of 0.03 mm to 0.05 mm in the direction perpendicular to the detector. We conclude that large periodic errors in measurements of spectroscopic plates using flatbed scanners can be eliminated by scanning the plates with the dispersion direction parallel to the linear detector by placing the plate along the short side of the scanner. PMID:28463262
NASA Astrophysics Data System (ADS)
Liu, Lei; Wang, Xu
2017-12-01
Three-dimensional analytical solutions are derived for the structural instability of a parallel array of mutually attracting identical simply supported orthotropic piezoelectric rectangular microplates by means of a linear perturbation analysis. The two surfaces of each plate can be either insulating or conducting. By considering the fact that the shear stresses and the normal electric displacement (or electric potential) are zero on the two surfaces of each plate, a 2 × 2 transfer matrix for a plate can be obtained directly from the 8 × 8 fundamental piezoelectricity matrix without resolving the original Stroh eigenrelation. The critical interaction coefficient can be determined by solving the resulting generalized eigenvalue problem for the piezoelectric plate array. Also considered in our analysis is the in-plane uniform edge compression acting on the four sides of each piezoelectric plate. Our results indicate that the stabilizing influence of the piezoelectric effect on the structural instability is unignorable; the edge compression always plays a destabilizing role in the structural instability of the plate array with interactions.
Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors
NASA Astrophysics Data System (ADS)
Baniecki, John David
This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form expression, and BSTO thin film electrical characteristics, the charge loss due to dielectric relaxation is estimated to be 6--12% of the initial charge stored on the capacitor plates for MOCVD BSTO thin films with Pt electrodes after a post top electrode anneal in oxygen. In contrast, it is shown that the charge loss due to steady state leakage is only 0.0125--0.125% of the initial charge stored on the capacitor plates. Charge retention is shown to depend strongly on the annealing conditions. Annealing MOCVD BSTO thin films with Pt electrodes in forming gas (95% Ar 5% H2) increases charge loss due to dielectric relaxation to as much as 60%. Ion implantation is used to dope BSTO thin films with Mn. X-ray diffraction and transmission electron microscopy (TEM) shows ion implantation significantly damages the film leaving only short-range order, but post-implant annealing heals the damage. Capacitance recovery after post-implant annealing is as high as 94% for 15 nm BSTO films. At low implant doses, the Mn doped films have substantially lower leakage (up to a factor of ten lower) and only slightly higher relaxation currents and dielectric loss indicating that ion implantation may be a potentially viable way of introducing dopants into high dielectric constant thin films for future DRAM applications.
NASA Astrophysics Data System (ADS)
Karson, J. A.
2017-11-01
Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.
Parallel-plate transmission line type of EMP simulators: Systematic review and recommendations
NASA Astrophysics Data System (ADS)
Giri, D. V.; Liu, T. K.; Tesche, F. M.; King, R. W. P.
1980-05-01
This report presents various aspects of the two-parallel-plate transmission line type of EMP simulator. Much of the work is the result of research efforts conducted during the last two decades at the Air Force Weapons Laboratory, and in industries/universities as well. The principal features of individual simulator components are discussed. The report also emphasizes that it is imperative to hybridize our understanding of individual components so that we can draw meaningful conclusions of simulator performance as a whole.
Module-Level Power Converters For Parallel Connected Photovoltaic Arrays
2012-01-01
These are EEE -FP1V101AP and EEE -FP1C331AP, respectively, aluminum electrolytic capacitors from Panasonic. The diode D1 was chosen to be a surface...54 Figure A .1. Sheet 1 of Printed C ircuit B oard Schem atic ee H9 y~ \\ 11 .. 1 I "’ I .... ’- I I "’ I 0 I J£3 D. C2 "’ ~ T I 2 11oou
Scalar Casimir densities and forces for parallel plates in cosmic string spacetime
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Abajyan, S. V.
2018-04-01
We analyze the Green function, the Casimir densities and forces associated with a massive scalar quantum field confined between two parallel plates in a higher dimensional cosmic string spacetime. The plates are placed orthogonal to the string, and the field obeys the Robin boundary conditions on them. The boundary-induced contributions are explicitly extracted in the vacuum expectation values (VEVs) of the field squared and of the energy-momentum tensor for both the single plate and two plates geometries. The VEV of the energy-momentum tensor, in additional to the diagonal components, contains an off diagonal component corresponding to the shear stress. The latter vanishes on the plates in special cases of Dirichlet and Neumann boundary conditions. For points outside the string core the topological contributions in the VEVs are finite on the plates. Near the string the VEVs are dominated by the boundary-free part, whereas at large distances the boundary-induced contributions dominate. Due to the nonzero off diagonal component of the vacuum energy-momentum tensor, in addition to the normal component, the Casimir forces have nonzero component parallel to the boundary (shear force). Unlike the problem on the Minkowski bulk, the normal forces acting on the separate plates, in general, do not coincide if the corresponding Robin coefficients are different. Another difference is that in the presence of the cosmic string the Casimir forces for Dirichlet and Neumann boundary conditions differ. For Dirichlet boundary condition the normal Casimir force does not depend on the curvature coupling parameter. This is not the case for other boundary conditions. A new qualitative feature induced by the cosmic string is the appearance of the shear stress acting on the plates. The corresponding force is directed along the radial coordinate and vanishes for Dirichlet and Neumann boundary conditions. Depending on the parameters of the problem, the radial component of the shear force can be either positive or negative.
Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate
Wang, K.; He, J.; Davis, E.E.
1997-01-01
The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.
Delta connected resonant snubber circuit
Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.
1998-01-20
A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.
Delta connected resonant snubber circuit
Lai, Jih-Sheng; Peng, Fang Zheng; Young, Sr., Robert W.; Ott, Jr., George W.
1998-01-01
A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.
NASA Technical Reports Server (NTRS)
Moore, J. A.
1976-01-01
A parallel-rail arc-discharge system to heat and pressurize the initial helium driver gas of the Langley 6-inch expansion tube is described. This system was designed for a 2.44-m-long driver vessel rated at 138 MPa, with a distance between rails of 20.3 cm. Electric energy was obtained from a capacitor storage system rated at 12,000 V with a maximum energy of 5 MJ. Tests were performed over a range of energy from 1.74 MJ to the maximum value. The operating experience and system performance are discussed, along with results from a limited number of expansion-tube tests with air and carbon dioxide as test gases.
NASA Technical Reports Server (NTRS)
Robertson, Glen A. (Inventor)
1990-01-01
A piezoelectrostatic generator includes a plurality of elongated piezoelectric elements having first and second ends, with the first ends fixedly mounted in a cylindrical housing and the second extending radially inwardly toward an axis. A shaft movable along the axis is connected to the inner ends of the elements to produce bending forces in piezoelectric strips within the elements. Each element includes a pair of strips mounted in surface contact and in electrical series to produce a potential upon bending. Electrodes spaced from the strips by a solid dielectric material act as capacitor plates to collect the potential charge.
Electric field measuring and display system. [for cloud formations
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Lovall, D. D. (Inventor)
1974-01-01
An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.
Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout
2007-10-01
We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.
Parallelism measurement for base plate of standard artifact with multiple tactile approaches
NASA Astrophysics Data System (ADS)
Ye, Xiuling; Zhao, Yan; Wang, Yiwen; Wang, Zhong; Fu, Luhua; Liu, Changjie
2018-01-01
Nowadays, as workpieces become more precise and more specialized which results in more sophisticated structures and higher accuracy for the artifacts, higher requirements have been put forward for measuring accuracy and measuring methods. As an important method to obtain the size of workpieces, coordinate measuring machine (CMM) has been widely used in many industries. In order to achieve the calibration of a self-developed CMM, it is found that the parallelism of the base plate used for fixing the standard artifact is an important factor which affects the measurement accuracy in the process of studying self-made high-precision standard artifact. And aimed to measure the parallelism of the base plate, by using the existing high-precision CMM, gauge blocks, dial gauge and marble platform with the tactile approach, three methods for parallelism measurement of workpieces are employed, and comparisons are made within the measurement results. The results of experiments show that the final accuracy of all the three methods is able to reach micron level and meets the measurement requirements. Simultaneously, these three approaches are suitable for different measurement conditions which provide a basis for rapid and high-precision measurement under different equipment conditions.
Wegner, Adam M; Wolinsky, Philip R; Robbins, Michael A; Garcia, Tanya C; Amanatullah, Derek F
2018-05-01
Horizontal fractures of the medial malleolus occur through application of valgus or abduction force through the ankle that creates a tension failure of the medial malleolus. The authors hypothesize that mini-fragment T-plates may offer improved fixation, but the optimal fixation construct for these fractures remains unclear. Forty synthetic distal tibiae with identical osteotomies were randomized into 4 fixation constructs: (1) two parallel unicortical cancellous screws; (2) two parallel bicortical cortical screws; (3) a contoured mini-fragment T-plate with 2 unicortical screws in the fragment and 2 bicortical screws in the shaft; and (4) a contoured mini-fragment T-plate with 2 bicortical screws in the fragment and 2 unicortical screws in the shaft. Specimens were subjected to offset axial tension loading on a servohydraulic testing system and tracked using high-resolution video. Failure was defined as 2 mm of articular displacement. Analysis of variance followed by a Tukey-Kramer post hoc test was used to assess for differences between groups, with significance defined as P<.05. The mean stiffness (±SD) values of both mini-fragment T-plate constructs (239±83 N/mm and 190±37 N/mm) and the bicortical screw construct (240±17 N/mm) were not statistically different. The mean stiffness values of both mini-fragment T-plate constructs and the bicortical screw construct were higher than that of a parallel unicortical screw construct (102±20 N/mm). Contoured T-plate constructs provide stiffer initial fixation than a unicortical cancellous screw construct. The T-plate is biomechanically equivalent to a bicortical screw construct, but may be superior in capturing small fragments of bone. [Orthopedics. 2018; 41(3):e395-e399.]. Copyright 2018, SLACK Incorporated.
A seismic reflection image for the base of a tectonic plate.
Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T
2015-02-05
Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.
Determination of crack depth in aluminum using eddy currents and GMR sensors
NASA Astrophysics Data System (ADS)
Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.
2015-03-01
In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.
1984-12-01
currents are assumed to flow parallel to midsurface of the plate. 6. The normal component of the induced magnetic field does not vary across the...is coincident with the midsurface of the plate. The relationship between the two coordinates is given by: X = x(a, B) ^ y = y(c’, e) Z
Light refraction in sapphire plates with a variable angle of crystal optical axis to the surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vetrov, V. N., E-mail: vasvetrov@mail.ru; Ignatenkov, B. A.
2013-05-15
The modification of sapphire by inhomogeneous plastic deformation makes it possible to obtain plates with a variable angle of inclination of the crystal optical axis to the plate surface. The refraction of light in this plate at perpendicular and oblique incidence of a parallel beam of rays is considered. The algorithm of calculating the refractive index of extraordinary ray and the birefringence is proposed.
Titanium plate supported MoS2 nanosheet arrays for supercapacitor application
NASA Astrophysics Data System (ADS)
Wang, Lina; Ma, Ying; Yang, Min; Qi, Yanxing
2017-02-01
A promising new concept is to apply binder-free supercapacitor electrode by directly growing active materials on current collectors. However, there are many challenges to be solved, such as fabrication of well quality electronic contact and good mechanical stability films through a simple and feasible method. In this study, MoS2 nanosheet arrays supported on titanium plate has been synthesized by a hydrothermal method without other additives, surface active agents and toxic reagents. As the supercapacitor electrode, a good capacitance of 133 F g-1 is attained at a discharge current density of 1 A g-1. The specific energy density is 11.11 Wh kg-1 at a power density of 0.53 kW kg-1. Moreover, the electrode shows an excellent cyclic stability. The loss of capacity is only 7% even after 1000 cycles. In addition, the formation mechanism is proposed. The facile method of fabricating MoS2 nanosheet arrays on titanium plate affords an green and effective way to prepare other metal sulfides for the application in electrochemical capacitors.
Kadota, Michio; Tanaka, Shuji
2015-05-01
A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.
Robust synchronization of spin-torque oscillators with an LCR load.
Pikovsky, Arkady
2013-09-01
We study dynamics of a serial array of spin-torque oscillators with a parallel inductor-capacitor-resistor (LCR) load. In a large range of parameters the fully synchronous regime, where all the oscillators have the same state and the output field is maximal, is shown to be stable. However, not always such a robust complete synchronization develops from a random initial state; in many cases nontrivial clustering is observed, with a partial synchronization resulting in a quasiperiodic or chaotic mean-field dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milkov, Mihail M.
A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.
Tectonics and Current Plate Motions of Northern Vancouver Island and the Adjacent Mainland
NASA Astrophysics Data System (ADS)
Jiang, Y.; Leonard, L. J.; Henton, J.; Hyndman, R. D.
2016-12-01
Northern Vancouver Island comprises a complex transition zone along the western margin of the North America plate, between the subducting Juan de Fuca plate to the south and the transcurrent Queen Charlotte Fault to the north off Haida Gwaii. The tectonic history and seismic potential for this region are unclear. Here we present current plate motions for northern Vancouver Island and the adjacent mainland, determined from continuous and campaign GPS measurements processed in a consistent manner. Immediately to the north of the mid-Vancouver Island Nootka Fault Zone, the northern limit of Juan de Fuca plate subduction, GPS velocity vectors show slower Explorer plate subduction than the Juan de Fuca Plate. Off northernmost Vancouver Island, the Winona Block is possibly converging at a slow rate that decreases northward to zero. We find a constant northward margin-parallel translation of up to 5 mm/year from northern Vancouver Island extending to Alaska. The southern limit of this translation coincides with areas of high heat flow that may reflect extension and the northern limit of episodic tremor and slip (ETS) on the Cascadia megathrust. The origin of the northward translation is poorly understood. We find a mainland coastal shear zone extends as far south as northern Vancouver Island where the offshore plate boundary is likely subduction. The pattern of the observed coastal shear cannot reflect interseismic locking on a major offshore transcurrent fault. The geodetically determined mainland coastal zone velocities decrease landward from 5 to 0 mm/yr across a region where no active faults have been identified and there is very little current seismicity. In Haida Gwaii, oblique convergence is apparent in the GPS data, consistent with partitioning between margin-parallel and margin-perpendicular strain. After removing the margin parallel translation from the data, we determine an average maximum locking depth of 15 km for the Queen Charlotte transcurrent fault, consistent with seismicity and seismic structure data.
Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver
NASA Technical Reports Server (NTRS)
Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)
2002-01-01
The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.
2011-01-01
Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).
A Wearable Hydration Sensor with Conformal Nanowire Electrodes.
Yao, Shanshan; Myers, Amanda; Malhotra, Abhishek; Lin, Feiyan; Bozkurt, Alper; Muth, John F; Zhu, Yong
2017-03-01
A wearable skin hydration sensor in the form of a capacitor is demonstrated based on skin impedance measurement. The capacitor consists of two interdigitated or parallel electrodes that are made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix. The flexible and stretchable nature of the AgNW/PDMS electrode allows conformal contact to the skin. The hydration sensor is insensitive to the external humidity change and is calibrated against a commercial skin hydration system on an artificial skin over a wide hydration range. The hydration sensor is packaged into a flexible wristband, together with a network analyzer chip, a button cell battery, and an ultralow power microprocessor with Bluetooth. In addition, a chest patch consisting of a strain sensor, three electrocardiography electrodes, and a skin hydration sensor is developed for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless, and continuous monitoring of skin hydration and other health parameters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W
2007-11-08
Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.
Kaminski, K; Wlodarczyk, P; Paluch, M
2011-10-28
Very recently Kwon et al. [H.-J. Kwon, J.-A. Seo, H. K. Kim, and Y. H. Hwang, J. Chem. Phys. 134, 014508 (2011)] published an article on the study of dielectric relaxation in trehalose and maltose glasses. They carried out broadband dielectric measurements at very wide range of temperatures covering supercooled liquid as well as glassy state of both saccharides. It is worth to mention that authors have also applied a new method for obtaining anhydrous glasses of trehalose and maltose that enables avoiding their caramelization. Four relaxation processes were identified in dielectric spectra of both saccharides. The slower one was identified as structural relaxation process the next one, not observed by the others, was assigned as Johari-Goldstein (JG) β-relaxation, while the last two secondary modes were of the same nature as found by Kaminski et al. [K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, and K. L. Ngai, J. Phys. Chem. B 112, 12816 (2008)]. In this comment we show that the authors mistakenly assigned the slowest relaxation process as structural mode of disaccharides. We have proven that this relaxation process is an effect of formation of thin layer of air or water between plate of capacitor and sample. The same effect can be observed if plates of capacitor are oxidized. Thus, we concluded that their slowest mode is connected to the dc conduction process while their β JG process is primary relaxation of trehalose and maltose.
Analysis of series resonant converter with series-parallel connection
NASA Astrophysics Data System (ADS)
Lin, Bor-Ren; Huang, Chien-Lan
2011-02-01
In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.
Morphology of Proeutectoid Ferrite
NASA Astrophysics Data System (ADS)
Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika
2017-03-01
The morphology of grain boundary nucleated ferrite particles in iron alloys with 0.3 mass pct carbon has been classified according to the presence of facets. Several kinds of particles extend into both grains of austenite and have facets to both. It is proposed that they all belong to a continuous series of shapes. Ferrite plates can nucleate directly on the grain boundary but can also develop from edges on many kinds of particles. Feathery structures of parallel plates on both sides of a grain boundary can thus form. In sections, parallel to their main growth direction, plates have been seen to extend the whole way from the nucleation site at the grain boundary and to the growth front. This happens in the whole temperature range studied from 973 K to 673 K (700 °C to 400 °C). The plates thus grow continuously and not by subunits stopping at limited length and continuing the growth by new ones nucleating. Sometimes, the plates have ridges and in oblique sections they could be mistaken for the start of new plates. No morphological signs were observed indicating a transition between Widmanstätten ferrite and bainitic ferrite. It is proposed that there is only one kind of acicular ferrite.
Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades
NASA Astrophysics Data System (ADS)
Downey, Austin; Pisello, Anna Laura; Fortunati, Elena; Fabiani, Claudia; Luzi, Francesca; Torre, Luigi; Ubertini, Filippo; Laflamme, Simon
2018-03-01
Renewable energy production has become a key research driver during the last decade. Wind energy represents a ready technology for large-scale implementation in locations all around the world. While important research is conducted to optimize wind energy production efficiency, a critical issue consists of monitoring the structural integrity and functionality of these large structures during their operational life cycle. This paper investigates the durability of a soft elastomeric capacitor strain sensing membrane, designed for structural health monitoring of wind turbines, when exposed to aggressive environmental conditions. The sensor is a capacitor made of three thin layers of an SEBS polymer in a sandwich configuration. The inner layer is doped with titania and acts as the dielectric, while the external layers are filled with carbon black and work as the conductive plates. Here, a variety of samples, not limited to the sensor configuration but also including its dielectric layer, were fabricated and tested within an accelerated weathering chamber (QUV) by simulating thermal, humidity, and UV radiation cycles. A variety of other tests were performed in order to characterize their mechanical, thermal, and electrical performance in addition to their solar reflectance. These tests were carried out before and after the QUV exposures of 1, 7, 15, and 30 days. The tests showed that titania inclusions improved the sensor durability against weathering. These findings contribute to better understanding the field behavior of these skin sensors, while future developments will concern the analysis of the sensing properties of the skin after aging.
Vertical counterflow evaporative cooler
Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan
2005-01-25
An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.
Flexure Based Linear and Rotary Bearings
NASA Technical Reports Server (NTRS)
Voellmer, George M. (Inventor)
2016-01-01
A flexure based linear bearing includes top and bottom parallel rigid plates; first and second flexures connecting the top and bottom plates and constraining exactly four degrees of freedom of relative motion of the plates, the four degrees of freedom being X and Y axis translation and rotation about the X and Y axes; and a strut connecting the top and bottom plates and further constraining exactly one degree of freedom of the plates, the one degree of freedom being one of Z axis translation and rotation about the Z axis.
System for Suppressing Vibration in Turbomachine Components
NASA Technical Reports Server (NTRS)
Morrison, Carlos R. (Inventor); Provenza, Andrew J. (Inventor); Choi, Benjamin B. (Inventor); Bakhle, Milind A. (Inventor); Min, James B (Inventor); Stefko, George L. (Inventor); Kussmann, John A (Inventor); Fougere, Alan J (Inventor)
2013-01-01
Disclosed is a system for suppressing vibration and noise mitigation in structures such as blades in turbomachinery. The system includes flexible piezoelectric patches which are secured on or imbedded in turbomachinery blades which, in one embodiment, comprises eight (8) fan blades. The system further includes a capacitor plate coupler and a power transfer apparatus, which may both be arranged into one assembly, that respectively transfer data and power. Each of the capacitive plate coupler and power transfer apparatus is configured so that one part is attached to a fixed member while another part is attached to a rotatable member with an air gap there between. The system still further includes a processor that has 16 channels, eight of which serve as sensor channels, and the remaining eight, serving as actuation channels. The processor collects and analyzes the sensor signals and, in turn, outputs corrective signals for vibration/noise suppression of the turbine blades.
Solid-state fractional capacitor using MWCNT-epoxy nanocomposite
NASA Astrophysics Data System (ADS)
John, Dina A.; Banerjee, Susanta; Bohannan, Gary W.; Biswas, Karabi
2017-04-01
Here, we propose the fabrication of a solid state fractional capacitor for which constant phase (CP) angles were attained in different frequency zones: 110 Hz-1.1 kHz, 10 kHz-118 kHz, and 230 kHz-20 MHz. The configuration makes use of epoxy resin as the matrix in which multi-walled carbon nanotubes (MWCNTs) are dispersed. Adhesive nature of the epoxy resin is utilized for binding the electrodes, which avoids the extra step for packaging. The fractional capacitive behavior is contributed by the distribution of time constants for the electron to travel from one electrode to the other. The distributive nature of the time constant is ensured by inserting a middle plate which is coated with a porous film of polymethyl-methacrylate in between the two electrodes. The phase angle trend for the configuration is studied in detail, and it is observed that as the % of carbon nanotubes (CNTs) loading increases, the CP angle increases from - 85 ° to - 45 ° in the frequency zones above 100 Hz. The developed device is compact and it can be easily integrated with the electronic circuits.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
Static analysis of the hull plate using the finite element method
NASA Astrophysics Data System (ADS)
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
Casimir force in a Lorentz violating theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Mariana; Turan, Ismail
2006-08-01
We study the effects of the minimal extension of the standard model including Lorentz violation on the Casimir force between two parallel conducting plates in the vacuum. We provide explicit solutions for the electromagnetic field using scalar field analogy, for both the cases in which the Lorentz violating terms come from the CPT-even or CPT-odd terms. We also calculate the effects of the Lorentz violating terms for a fermion field between two parallel conducting plates and analyze the modifications of the Casimir force due to the modifications of the Dirac equation. In all cases under consideration, the standard formulas formore » the Casimir force are modified by either multiplicative or additive correction factors, the latter case exhibiting different dependence on the distance between the plates.« less
Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry
NASA Astrophysics Data System (ADS)
Zink, K.; Wulff, J.
2012-04-01
Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.
The Poisson-Boltzmann theory for the two-plates problem: some exact results.
Xing, Xiang-Jun
2011-12-01
The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.
2015-06-01
environmental test chamber attachment to control temperature and disposable parallel plates . The experiment can be stopped when the sample...is auto-stopping when its torque limit is reached and to prevent too high of an extent of cure that could make removal of the disposable plates from...separated by a 0.025-mm-thick Teflon spacer (International Crystal Labs) or pressed with potassium bromide (KBr) powder into pellets. The salt plate
Millsap, K; Reid, G; van der Mei, H C; Busscher, H J
1994-01-01
The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082
Vibration energy harvesting using a piezoelectric circular diaphragm array.
Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi
2012-09-01
This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.
Dispersive dielectric and conductive effects in 2D resistor-capacitor networks.
Hamou, R F; Macdonald, J R; Tuncer, E
2009-01-14
How to predict and better understand the effective properties of disordered material mixtures has been a long-standing problem in different research fields, especially in condensed matter physics. In order to address this subject and achieve a better understanding of the frequency-dependent properties of these systems, a large 2D L × L square structure of resistors and capacitors was used to calculate the immittance response of a network formed by random filling of binary conductor/insulator phases with 1000 Ω resistors and 10 nF capacitors. The effects of percolating clusters on the immittance response were studied statistically through the generation of 10 000 different random network samples at the percolation threshold. The scattering of the imaginary part of the immittance near the dc limit shows a clear separation between the responses of percolating and non-percolating samples, with the gap between their distributions dependent on both network size and applied frequency. These results could be used to monitor connectivity in composite materials. The effects of the content and structure of the percolating path on the nature of the observed dispersion were investigated, with special attention paid to the geometrical fractal concept of the backbone and its influence on the behavior of relaxation-time distributions. For three different resistor-capacitor proportions, the appropriateness of many fitting models was investigated for modeling and analyzing individual resistor-capacitor network dispersed frequency responses using complex-nonlinear-least-squares fitting. Several remarkable new features were identified, including a useful duality relationship and the need for composite fitting models rather than either a simple power law or a single Davidson-Cole one. Good fits of data for fully percolating random networks required two dispersive fitting models in parallel or series, with a cutoff at short times of the distribution of relaxation times of one of them. In addition, such fits surprisingly led to cutoff parameters, including a primitive relaxation or crossover time, with estimated values comparable to those found for real dispersive materials.
APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS
Neidigh, R.V.
1963-07-01
An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)
NASA Astrophysics Data System (ADS)
Carbotte, S. M.; Canales, J.; Carton, H. D.; Nedimovic, M. R.; Han, S.; Marjanovic, M.; Gibson, J. C.; Janiszewski, H. A.; Horning, G.; Delescluse, M.; Watremez, L.; Farkas, A.; Biescas Gorriz, B.; Bornstein, G.; Childress, L. B.; Parker, B.
2012-12-01
The evolution of oceanic lithosphere involves incorporation of water into the physical and chemical structure of the crust and shallow mantle through fluid circulation, which initiates at the mid-ocean ridge and continues on the ridge flanks long after crustal formation. At subduction zones, water stored and transported with the descending plate is gradually released at depth, strongly influencing subduction zone processes. Cascadia is a young-lithosphere end member of the global subduction system where relatively little hydration of the downgoing Juan de Fuca (JdF) plate is expected due to its young age and presumed warm thermal state. However, numerous observations support the abundant presence of water within the subduction zone, suggesting that the JdF plate is significantly hydrated prior to subduction. Knowledge of the state of hydration of the JdF plate is limited, with few constraints on crustal and upper mantle structure. During the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 over 4000 km of active source seismic data were acquired as part of a study of the evolution and state of hydration of the crust and shallow mantle of the JdF plate prior to subduction at the Cascadia margin. Coincident long-streamer (8 km) multi-channel seismic (MCS) and wide-angle ocean bottom seismometer (OBS) data were acquired in a two-ship program with the R/V Langseth (MGL1211), and R/V Oceanus (OC1206A). Our survey included two ridge-perpendicular transects across the full width of the JdF plate, a long trench-parallel line ~10 km seaward of the Cascadia deformation front, as well as three fan lines to study mantle anisotropy. The plate transects were chosen to provide reference sections of JdF plate evolution over the maximum range of JdF plate ages (8-9 Ma), offshore two contrasting regions of the Cascadia Subduction zone, and provide the first continuous ridge-to-trench images acquired at any oceanic plate. The trench-parallel line was designed to characterize variations in plate structure and hydration linked to JdF plate segmentation for over 450 km along the margin. Shipboard brute stacks of the MCS data reveal evidence for reactivation of abyssal hill faulting in the plate interior far from the trench. Ridgeward-dipping lower crustal reflectors are observed, similar to those observed in mature Pacific crust elsewhere, as well as conjugate reflectivity near the deformation front along the Oregon transect. Bright intracrustal reflectivity is also observed along the trench-parallel transect with marked changes in reflectivity along the Oregon and Washington margins. Initial inspection of the OBS record sections indicate good quality data with the expected oceanic crustal and upper mantle P-wave arrivals: Ps and Pg refractions through sedimentary and igneous layers, respectively, PmP wide-angle reflections from the crust-mantle transition zone, and Pn upper mantle refractions. The Pg-PmP-Pn triplication is typically observed at 40-50 km source-receiver offsets. Pn characteristics show evidence for upper mantle azimuthal anisotropic propagation: along the plate transects Pn is typically weaker and difficult to observe beyond ~80 km offsets, while along the trench-parallel transect Pn arrivals have higher amplitude and are easily observed up to source-receiver offsets of 160-180 km. An overview on the Cascadia Ridge to Trench data acquisition program and preliminary results will be presented.
3D dynamics of crustal deformation driven by oblique subduction: Northern and Central Andes
NASA Astrophysics Data System (ADS)
Schütt, Jorina M.; Whipp, David M., Jr.
2017-04-01
The geometry and relative motion of colliding plates will affect how and where they deform. In oblique subduction systems, factors such as the dip angle of the subducting plate and the convergence obliquity, as well as the presence of weak zones in the overriding plate, all influence how oblique convergence is partitioned onto various fault systems in the overriding plate. The partitioning of strain into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the margin is mainly controlled by the margin-parallel shear forces acting on the plate interface and the strength of the continental crust. While these plate interface forces are influenced by the dip angle of the subducting plate (i.e., the length of plate interface in the frictional domain) and the obliquity angle between the normal to the plate margin and the plate convergence vector, the strength of the continental crust in the upper plate is strongly affected by the presence or absence of weak zones such as regions of arc volcanism, pre-existing fault systems, or boundaries of stronger crustal blocks. In order to investigate which of these factors are most important in controlling how the overriding continental plate deforms, we compare results of lithospheric-scale 3D numerical geodynamic experiments from two regions in the north-central Andes: the Northern Volcanic Zone (NVZ; 5°N - 3°S) and adjacent Peruvian Flat Slab Segment (PFSS; 3°S -14°S). The NVZ is characterized by a 35° subduction dip angle with an obliquity angle of about 40°, extensive volcanism and significant strain partitioning in the continental crust. In contrast, the PFSS is characterized by flat subduction (the slab flattens beneath the continent at around 100 km depth for several hundred kilometers), an obliquity angle of about 20°, no volcanism and minimal strain partitioning. The plate geometry and convergence obliquity for these regions are incorporated in 3D (1600 x 1600 x 160 km) numerical experiments of oceanic subduction beneath a continent, focusing on the conditions under which strain partitioning occurs in the continental plate. In addition to different slab geometries and obliquity angles, we consider the effect of a continental crustal of uniform strength (friction angle Φ=15^°) versus one including a weak zone in the continental crust (Φ=4^°) that runs parallel to the margin. Results of our experiments show that the obliquity angle has the largest effect on initiating strain partitioning, as expected based on strain partitioning theory, but strain partitioning is clearly enhanced by the presence of a continental weakness. Margin-parallel mass transport velocities in the continental sliver are similar to the values observed in the NVZ (about 1 cm/year) in models with a continental weakness and twice as high as those without. In addition, a shallower subduction angle results in formation of a wider continental sliver. Based upon our results, the lack of strain partitioning observed in the PFSS results from both a low convergence obliquity and lack of a weak zone in the continent, even though the shallow subduction should make strain partitioning more favorable.
Capacitor assembly and related method of forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.
A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radialmore » direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramanian, B; Kraemer, KL; Valloppilly, SR
2011-09-13
The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) moleculesmore » using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.« less
Characterization of the ScAlMgO4 cleaving layer by X-ray crystal truncation rod scattering
NASA Astrophysics Data System (ADS)
Hanada, Takashi; Tajiri, Hiroo; Sakata, Osami; Fukuda, Tsuguo; Matsuoka, Takashi
2018-05-01
ScAlMgO4—easily cleaved in c-plane—forms a natural superlattice structure of a ScO2 layer and two Al0.5Mg0.5O layers stacking along c-axis. ScAlMgO4 is one of the RAMO4-type layered multicomponent oxides and a promising lattice-matching substrate material for InGaN and ZnO. Identification of the topmost layer and the surface atomic structure of the cleaved ScAlMgO4 (0001) are investigated by the X-ray crystal truncation rod scattering method. It is confirmed that ScAlMgO4 is cleaved between the two Al0.5Mg0.5O layers. The two parts separated at this interlayer are inversion symmetric to each other and without surface charge. This prevents parallel-plate-capacitor-like electrostatic force during the cleavage. Two different mechanisms are proposed for the two types of cleavage caused by the impact of a wedge and by the in-plane stress due to an overgrown thick GaN film. It is also revealed that about 10%-20% of the topmost O atoms are desorbed during a surface cleaning at 600 °C in ultra-high vacuum. Surface observations using reflection high-energy electron diffraction are possible only after the high-temperature cleaning because the electrical conduction caused by the oxygen deficiency prevents the charge-up of the insulating sample.
A physics-based model of the electrical impedance of ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Cha, Youngsu; Aureli, Matteo; Porfiri, Maurizio
2012-06-01
In this paper, we analyze the chemoelectrical behavior of ionic polymer metal composites (IPMCs) in the small voltage range with a novel hypothesis on the charge dynamics in proximity of the electrodes. In particular, we homogenize the microscopic properties of the interfacial region through a so-called composite layer which extends between the polymer membrane and the metal electrode. This layer accounts for the dissimilar properties of its constituents by describing the charge distribution via two species of charge carriers, that is, electrons and mobile counterions. We model the charge dynamics in the IPMC by adapting the multiphysics formulation based on the Poisson-Nernst-Planck (PNP) framework, which is enriched through an additional term to capture the electron transport in the composite layer. Under the hypothesis of small voltage input, we use the linearized PNP model to derive an equivalent IPMC circuit model with lumped elements. The equivalent model comprises a resistor connected in series with the parallel of a capacitor and a Warburg impedance element. These elements idealize the phenomena of charge build up in the double layer region and the faradaic impedance related to mass transfer, respectively. We validate the equivalent model through measurements on in-house fabricated samples addressing both IPMC step response and impedance, while assessing the influence of repeated plating cycles on the electrical properties of IPMCs. Experimental results are compared with theoretical findings to identify the equivalent circuit parameters. Findings from this study are compared with alternative impedance models proposed in the literature.
Development of Individually Addressable Micro-Mirror-Arrays for Space Applications
NASA Technical Reports Server (NTRS)
Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent
2000-01-01
We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
de Jong, J A; Wijnant, Y H; de Boer, A
2014-03-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.
Design and analysis of all-dielectric broadband nonpolarizing parallel-plate beam splitters.
Wang, Wenliang; Xiong, Shengming; Zhang, Yundong
2007-06-01
Past research on the all-dielectric nonpolarizing beam splitter is reviewed. With the aid of the needle thin-film synthesis method and the conjugate graduate refine method, three different split ratio nonpolarizing parallel-plate beam splitters over a 200 nm spectral range centered at 550 nm with incidence angles of 45 degrees are designed. The chosen materials component and the initial stack are based on the Costich and Thelen theories. The results of design and analysis show that the designs maintain a very low polarization ratio in the working range of the spectrum and has a reasonable angular field.
All-dielectric broadband non-polarizing parallel plate beam splitter operating between 450-650nm
NASA Astrophysics Data System (ADS)
Wang, Wenliang; Xiong, Shenming; Zhang, Yundong
2007-12-01
Past research on all-dielectric non-polarizing beam splitter is reviewed. With the aid of needle thin film synthesis method and conjugate graduate refining method, three non-polarizing parallel plate beam splitters with different split ratios over a 200nm spectral range centered at 550nm with incidence angle 45° are designed. Selection of material components and initial stack are based on Costich and Thelen's theory. The results of design and analysis show that it maintains a very low polarization ratio in the working range of spectrum and has a reasonable angular field.
NASA Astrophysics Data System (ADS)
Delhi Babu, R.; Ganesh, S.
2018-04-01
The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.
NASA Astrophysics Data System (ADS)
Tian, Yuan; Decker, Trevor K.; McClellan, Joshua S.; Wu, Qinghao; De la Cruz, Abraham; Hawkins, Aaron R.; Austin, Daniel E.
2018-04-01
The performance of miniaturized ion trap mass analyzers is limited, in part, by the accuracy with which electrodes can be fabricated and positioned relative to each other. Alignment of plates in a two-plate planar LIT is ideal to characterize misalignment effects, as it represents the simplest possible case, having only six degrees of freedom (DOF) (three translational and three rotational). High-precision motorized actuators were used to vary the alignment between the two ion trap plates in five DOFs—x, y, z, pitch, and yaw. A comparison between the experiment and previous simulations shows reasonable agreement. Pitch, or the degree to which the plates are parallel along the axial direction, has the largest and sharpest impact to resolving power, with resolving power dropping noticeably with pitch misalignment of a fraction of a degree. Lateral displacement (x) and yaw (rotation of one plate, but plates remain parallel) both have a strong impact on ion ejection efficiency, but little effect on resolving power. The effects of plate spacing (y-displacement) on both resolving power and ion ejection efficiency are attributable to higher-order terms in the trapping field. Varying the DC (axial) trapping potential can elucidate the effects where more misalignments in more than one DOF affect performance. Implications of these results for miniaturized ion traps are discussed. [Figure not available: see fulltext.
Multiscale modeling and simulation for polymer melt flows between parallel plates
NASA Astrophysics Data System (ADS)
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).
Multiscale modeling and simulation for polymer melt flows between parallel plates.
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).
Lighting system with heat distribution face plate
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri
2013-09-10
Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.
Means for the focusing and acceleration of parallel beams of charged particles. [Patent application
Maschke, A.W.
1980-09-23
Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.
Heat transfer optimization for air-mist cooling between a stack of parallel plates
NASA Astrophysics Data System (ADS)
Issa, Roy J.
2010-06-01
A theoretical model is developed to predict the upper limit heat transfer between a stack of parallel plates subject to multiphase cooling by air-mist flow. The model predicts the optimal separation distance between the plates based on the development of the boundary layers for small and large separation distances, and for dilute mist conditions. Simulation results show the optimal separation distance to be strongly dependent on the liquid-to-air mass flow rate loading ratio, and reach a limit for a critical loading. For these dilute spray conditions, complete evaporation of the droplets takes place. Simulation results also show the optimal separation distance decreases with the increase in the mist flow rate. The proposed theoretical model shall lead to a better understanding of the design of fins spacing in heat exchangers where multiphase spray cooling is used.
Constrained ceramic-filled polymer armor
Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.
1990-01-01
An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.
Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets
NASA Technical Reports Server (NTRS)
Siegel, R.
1975-01-01
A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.
Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich
2006-01-01
The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.
The dynamics of plate tectonics and mantle flow: from local to global scales.
Stadler, Georg; Gurnis, Michael; Burstedde, Carsten; Wilcox, Lucas C; Alisic, Laura; Ghattas, Omar
2010-08-27
Plate tectonics is regulated by driving and resisting forces concentrated at plate boundaries, but observationally constrained high-resolution models of global mantle flow remain a computational challenge. We capitalized on advances in adaptive mesh refinement algorithms on parallel computers to simulate global mantle flow by incorporating plate motions, with individual plate margins resolved down to a scale of 1 kilometer. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. Cold thermal anomalies within the lower mantle couple into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Viscous dissipation within the bending lithosphere at trenches amounts to approximately 5 to 20% of the total dissipation through the entire lithosphere and mantle.
Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.
Shim, Youngseon; Kim, Hyung J; Jung, Younjoon
2012-01-01
Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.
Multiplexed neural recording along a single optical fiber via optical reflectometry
Rodriques, Samuel G.; Marblestone, Adam H.; Scholvin, Jorg; Dapello, Joel; Sarkar, Deblina; Mankin, Max; Gao, Ruixuan; Wood, Lowell; Boyden, Edward S.
2016-01-01
Abstract. We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording without contrast agents, which transduces neural electrical signals into a multiplexed optical readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive index of a waveguide by applying a voltage across an electro-optic core material. We estimate that this design would allow recording of the activities of individual neurons located at points along a 10-cm length of optical fiber with 40-μm axial resolution and sensitivity down to 100 μV using commercially available optical reflectometers as readout devices. Neural recording sites detect a potential difference against a reference and apply this potential to a capacitor. The waveguide serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in an optical effect. A key concept of the design is that the sensitivity can be improved by increasing the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high relative permittivity. If suitable materials can be found—possessing high capacitance per unit area as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron cross-sections for minimally invasive neural interfacing. We study these material requirements and propose potential material choices. Custom-designed multimaterial optical fibers, probed using a reflectometric readout, may, therefore, provide a powerful platform for neural sensing. PMID:27194640
Summary of the 2012 Inductive Pulsed Plasma Thruster Development and Testing Program
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Martin, A. K.; Eskridge, R. H.; Kimberlin, A. C.; Addona, B. M.; Devineni, A. P.; Dugal-Whitehead, N. R.; Hallock, A. K.
2013-01-01
Inductive pulsed plasma thrusters are spacecraft propulsion devices in which energy is capacitively stored and then discharged through an inductive coil. While these devices have shown promise for operation at high efficiency on a range of propellants, many technical issues remain before they can be used in flight applications. A conical theta-pinch thruster geometry was fabricated and tested to investigate potential improvements in propellant utilization relative to more common, flat-plate planar coil designs. A capacitor charging system is used to permit repetitive discharging of thrusters at multiple cycles per second, with successful testing accomplished at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The conical theta-pinch thruster geometry was tested at cone angles of 20deg, 38deg, and 60deg, with single-pulse operation at 500 J/pulse and repetitionrate operation with the 38deg model quantified through direct thrust measurement using a hanging pendulum thrust stand. A long-lifetime valve was designed and fabricated, and initial testing was performed to measure the valve response and quantify the leak rate at beginning-of-life. Subscale design and testing of a capacitor charging system required for operation on a spacecraft is reported, providing insights into the types of components needed in the circuit topology employed. On a spacecraft, this system would accept as input a lower voltage from the spacecraft DC bus and boost the output to the high voltage required to charge the capacitors of the thruster.
Thermal Creep Force: Analysis And Application
2016-06-01
University Press, 1952. [18] Y. H. Kuo, “On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers,” The Journal of...observed [19]. Thus, for uniform flow past a flat plate the Stokes drag force on both sides of the plate is 212 5.91 , 2D D F U C LW U Lρ µ...immersed bodies,” A.I.Ch.E. Journal , vol. 7, no. 1, pp. 20–25, 1961. [20] Z. Janour, Resistance of a Plate in Parallel Flow at Low Reynolds Numbers
NASA Technical Reports Server (NTRS)
Siconolfi, Steven F. (Inventor)
2000-01-01
Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.
Frequency dispersion analysis of thin dielectric MOS capacitor in a five-element model
NASA Astrophysics Data System (ADS)
Zhang, Xizhen; Zhang, Sujuan; Zhu, Huichao; Pan, Xiuyu; Cheng, Chuanhui; Yu, Tao; Li, Xiangping; Cheng, Yi; Xing, Guichao; Zhang, Daming; Luo, Xixian; Chen, Baojiu
2018-02-01
An Al/ZrO2/IL/n-Si (IL: interface layer) MOS capacitor has been fabricated by metal organic decomposition of ZrO2 and thermal deposition Al. We have measured parallel capacitance (C m) and parallel resistance (R m) versus bias voltage curves (C m, R m-V) at different AC signal frequency (f), and C m, R m-f curves at different bias voltage. The curves of C m, R m-f measurements show obvious frequency dispersion in the range of 100 kHz-2 MHz. The energy band profile shows that a large voltage is applied on the ZrO2 layer and IL at accumulation, which suggests possible dielectric polarization processes by some traps in ZrO2 and IL. C m, R m-f data are used for frequency dispersion analysis. To exclude external frequency dispersion, we have extracted the parameters of C (real MOS capacitance), R p (parallel resistance), C IL (IL capacitance), R IL (IL resistance) and R s (Si resistance) in a five-element model by using a three-frequency method. We have analyzed intrinsic frequency dispersion of C, R p, C IL, R IL and R s by studying the dielectric characteristics and Si surface layer characteristics. At accumulation, the dispersion of C and R p is attributed to dielectric polarization such as dipolar orientation and oxide traps. The serious dispersion of C IL and R IL are relative to other dielectric polarization, such as border traps and fixed oxide traps. The dispersion of R s is mainly attributed to contact capacitance (C c) and contact resistance (R c). At depletion and inversion, the frequency dispersion of C, R p, C IL, R IL, and R s are mainly attributed to the depletion layer capacitance (C D). The interface trap capacitance (C it) and interface trap resistance (R it) are not dominant for the dispersion of C, R p, C IL, R IL, and R s.
NASA Technical Reports Server (NTRS)
Herr, Joel L.
1993-01-01
The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.
The transference of heat from a hot plate to an air stream
NASA Technical Reports Server (NTRS)
Elias, Franz
1931-01-01
The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.
Omnidirectional antenna having constant phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Matthew
Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less
Modeling of composite beams and plates for static and dynamic analysis
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Atilgan, Ali R.; Lee, Bok Woo
1990-01-01
A rigorous theory and corresponding computational algorithms was developed for a variety of problems regarding the analysis of composite beams and plates. The modeling approach is intended to be applicable to both static and dynamic analysis of generally anisotropic, nonhomogeneous beams and plates. Development of a theory for analysis of the local deformation of plates was the major focus. Some work was performed on global deformation of beams. Because of the strong parallel between beams and plates, the two were treated together as thin bodies, especially in cases where it will clarify the meaning of certain terminology and the motivation behind certain mathematical operations.
Generation and investigation of terahertz Airy beam realized using parallel-plate waveguides
NASA Astrophysics Data System (ADS)
Wu, Mengru; Lang, Tingting; Shi, Guohua; Han, Zhanghua
2018-03-01
In this paper, the launching of Airy beam in the terahertz region using waveguiding structures was proposed, designed and numerically characterized. By properly designing the waveguide slit width and the packing number in different sections of parallel-plate waveguides (PPWGs) array, arbitrary phase delay and lateral position-dependent amplitude transmission through the structure, required to realize the target Airy beam profile, can be easily fulfilled. Airy beams working at the frequency of 0.3 THz with good non-diffracting, self-bending, and self-healing features are demonstrated. This study represents a new alternative to scattering-based metasurface structures, and can be utilized in many modern applications.
NASA Astrophysics Data System (ADS)
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Rapid viscosity measurements of powdered thermosetting resins
NASA Technical Reports Server (NTRS)
Price, H. L.; Burks, H. D.; Dalal, S. K.
1978-01-01
A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Wakefield computations for a corrugated pipe as a beam dechirper for FEL applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C. K.; Bane, K. L.F.
A beam “dechirper” based on a corrugated, metallic vacuum chamber has been proposed recently to cancel residual energy chirp in a beam before it enters the undulator in a linac-based X-ray FEL. Rather than the round geometry that was originally proposed, we consider a pipe composed of two parallel plates with corrugations. The advantage is that the strength of the wake effect can be tuned by adjusting the separation of the plates. The separation of the plates is on the order of millimeters, and the corrugations are fractions of a millimeter in size. The dechirper needs to be meters longmore » in order to provide sufficient longitudinal wakefield to cancel the beam chirp. Considerable computation resources are required to determine accurately the wakefield for such a long structure with small corrugation gaps. Combining the moving window technique and parallel computing using multiple processors, the time domain module in the parallel finite-element electromagnetic suite ACE3P allows efficient determination of the wakefield through convergence studies. In this paper, we will calculate the longitudinal, dipole and quadrupole wakefields for the dechirper and compare the results with those of analytical and field matching approaches.« less
NASA Astrophysics Data System (ADS)
Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad
2018-06-01
The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.
Lambda Probe Measurements of Laboratory Spheromaks
NASA Astrophysics Data System (ADS)
Jorne, E.; Bellan, P. M.; Hsu, S. C.; Moynihan, C.
2003-10-01
A combined current and magnetic probe (lambda probe) has been constructed and is being tested for the purpose of investigating the behavior of spheromaks formed by the Caltech planar spheromak gun. The probe consists of a 1.5cm diameter, 52 turn Rogowski coil and a single loop magnetic coil, housed in a ceramic shell attached to a 95cm long hollow, steel shaft. A high voltage power supply was used to test the probe's ability to measure pulsed currents with submicrosecond rise times. A calibrated current pulse was provided by a 1μF capacitor discharged by a krytron switch to a low inductance circuit. Magnetic calibration was obtained by using the capacitor bank to power a 16cm diameter Helmholtz coil. Both magnetic and current calibration were in good agreement with estimates based on geometry. An existing steel shaft will be replaced by a ceramic shaft in order to minimize undesired effects on the plasma by a conductor. Once sealed with epoxy, the probe will be ready for insertion into the vacuum chamber and used to measure the magnetic field and parallel current during spheromak formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, W. J.; Zheng, Yue, E-mail: zhengy35@mail.sysu.edu.cn; Wu, C. M.
Thermodynamic calculation and phase-field simulation have been conducted to investigate the misfit strain-temperature phase diagrams, dielectric property, and domain stability of asymmetric ferroelectric capacitors (FCs), with considering the effects of dissimilar screening properties and work function steps at the two interfaces. The distinct features of asymmetric FCs from their symmetric counterparts have been revealed and discussed. Polar states with nonzero out-of-plane polarization in parallel with the built-in field are found preferential to form in asymmetric FCs. Meanwhile, the built-in field breaks the degeneracy of states with out-of-plane polarization in anti-directions. This leads to the necessity of redefining phases according tomore » the bistability of out-of-plane polarization. Moreover, the phase stability as well as the dielectric behavior can be significantly controlled by the properties of electrodes, misfit strain, and temperature. The phase-field simulation result also shows that polydomain instability would happen in asymmetric FCs as the equivalence of domain stability in anti-directions is destroyed.« less
Encarnação, João M; Stallinga, Peter; Ferreira, Guilherme N M
2007-02-15
In this work we demonstrate that the presence of electrolytes in solution generates desorption-like transients when the resonance frequency is measured. Using impedance spectroscopy analysis and Butterworth-Van Dyke (BVD) equivalent electrical circuit modeling we demonstrate that non-Kanazawa responses are obtained in the presence of electrolytes mainly due to the formation of a diffuse electric double layer (DDL) at the sensor surface, which also causes a capacitor like signal. We extend the BVD equivalent circuit by including additional parallel capacitances in order to account for such capacitor like signal. Interfering signals from electrolytes and DDL perturbations were this way discriminated. We further quantified as 8.0+/-0.5 Hz pF-1 the influence of electrolytes to the sensor resonance frequency and we used this factor to correct the data obtained by frequency counting measurements. The applicability of this approach is demonstrated by the detection of oligonucleotide sequences. After applying the corrective factor to the frequency counting data, the mass contribution to the sensor signal yields identical values when estimated by impedance analysis and frequency counting.
Carbide Derived Carbon Super Capacitor Application
NASA Astrophysics Data System (ADS)
Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.
2010-02-01
Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )
Tunable THz notch filter with a single groove inside parallel-plate waveguides.
Lee, Eui Su; Jeon, Tae-In
2012-12-31
A single groove in a parallel-plate waveguide (PPWG) has been applied to a tunable terahertz (THz) notch filter with a transverse-electromagnetic (TEM) mode. When the air gap between the metal plates of the PPWG is controlled from 60 to 240 μm using a motor controlled translation stage or a piezo-actuator, the resonant frequency of the notch filter is changed from 1.75 up to 0.62 THz, respectively. Therefore, the measured tunable sensitivity of the notch filter increases to 6.28 GHz/μm. The measured resonant frequencies were found to be in good agreement with the calculation using an effective groove depth. Using a finite-difference time-domain (FDTD) simulation, we also demonstrate that the sensitivity of a THz microfluidic sensor can be increased via a small air gap, a narrow groove width, and a deep groove depth.
Constrained ceramic-filled polymer armor
Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.
1990-11-13
An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.
Casimir effect for parallel plates in a Friedmann-Robertson-Walker universe
NASA Astrophysics Data System (ADS)
Bezerra de Mello, E. R.; Saharian, A. A.; Setare, M. R.
2017-03-01
We evaluate the Hadamard function, the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor for a massive scalar field with a general curvature coupling parameter in the geometry of two parallel plates on a spatially flat Friedmann-Robertson-Walker background with a general scale factor. On the plates, the field operator obeys the Robin boundary conditions with the coefficients depending on the scale factor. In all the spatial regions, the VEVs are decomposed into the boundary-free and boundary-induced contributions. Unlike the problem with the Minkowski bulk, in the region between the plates, the normal stress is not homogeneous and does not vanish in the geometry of a single plate. Near the plates, it has different signs for accelerated and decelerated expansions of the Universe. The VEV of the energy-momentum tensor, in addition to the diagonal components, has a nonzero off-diagonal component describing an energy flux along the direction normal to the boundaries. Expressions are derived for the Casimir forces acting on the plates. Depending on the Robin coefficients and on the vacuum state, these forces can be either attractive or repulsive. An important difference from the corresponding result in the Minkowski bulk is that the forces on the separate plates, in general, are different if the corresponding Robin coefficients differ. We give the applications of general results for the class of α vacua in the de Sitter bulk. It is shown that, compared with the Bunch-Davies vacuum state, the Casimir forces for a given α vacuum may change the sign.
NASA Astrophysics Data System (ADS)
Cao, L.; Kao, H.; Wang, K.; Wang, Z.
2016-12-01
Haida Gwaii is located along the transpressive Queen Charlotte margin between the Pacific (PA) and North America (NA) plates. The highly oblique relative plate motion is partitioned, with the strike-slip component accommodated by the Queen Charlotte Fault (QCF) and the convergent component by a thrust fault offshore. To understand how the presence of a obliquely subducting slab influences shear deformation of the plate boundary, we investigate mantle anisotropy by analyzing shear-wave splitting of teleseismic SKS phases recorded at 17 seismic stations in and around Haida Gwaii. We used the MFAST program to determine the polarization direction of the fast wave (φ) and the delay time (δt) between the fast and slow phases. The fast directions derived from stations on Haida Gwaii and two stations to the north on the Alaska Panhandle are predominantly margin-parallel (NNW). However, away from the plate boundary, the fast direction transitions to WSW-trending, very oblique or perpendicular to the plate boundary. Because the average delay time of 0.6-2.45 s is much larger than values based on an associated local S phase splitting analysis in the same study area, it is reasonable to infer that most of the anisotropy from our SKS analysis originates from the upper mantle and is associated with lattice-preferred orientation of anisotropic minerals. The margin-parallel fast direction within about 100 km of the QCF (average φ = -40º and δt = 1.2 s) is likely induced by the PA-NA shear motion. The roughly margin-normal fast directions farther away, although more scatterd, are consistent with that previously observed in the NA continent and are attributed to the absolute motion of the NA plate. However, the transition between the two regimes based on our SKS analysis appears to be gradual, suggesting that the plate boundary shear influences a much broader region at mantle depths than would be inferred from the surface trace of the QCF. We think this is due to the presence of a subducted portion of the Pacific plate. Because the slab travels mostly in the strike direction, it is expected to induce margin-parallel shear deformation of the mantle material. This result has importance implications to the geodynamics of transpressive plate margins.
NASA Technical Reports Server (NTRS)
Liu, David (Donghang)
2011-01-01
This paper reports reliability evaluation of BME ceramic capacitors for possible high reliability space-level applications. The study is focused on the construction and microstructure of BME capacitors and their impacts on the capacitor life reliability. First, the examinations of the construction and microstructure of commercial-off-the-shelf (COTS) BME capacitors show great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and approximately 0.5 micrometers, which is much less than that of most PME capacitors. The primary reasons that a BME capacitor can be fabricated with more internal electrode layers and less dielectric layer thickness is that it has a fine-grained microstructure and does not shrink much during ceramic sintering. This results in the BME capacitors a very high volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT) and regular life testing as per MIL-PRF-123. Most BME capacitors were found to fail· with an early dielectric wearout, followed by a rapid wearout failure mode during the HALT test. When most of the early wearout failures were removed, BME capacitors exhibited a minimum mean time-to-failure of more than 10(exp 5) years. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically between 10 and 20. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. Since BME capacitors have a much smaller grain size than PME capacitors, it is reasonable to predict that BME capacitors with thinner dielectric layers may have an equivalent life expectancy to that of PME capacitors with thicker dielectric layers.
Seismicity of the Earth 1900-2007, Japan and Vicinity
Rhea, Susan; Tarr, Arthur C.; Hayes, Gavin P.; Villaseñor, Antonio; Benz, Harley
2010-01-01
This map shows details of Japan and vicinity not visible in an earlier publication, U.S. Geological Survey Scientific Investigations Map 3064. Japan and its island possessions lie across four major tectonic plates: Pacific plate, North America plate; Eurasia plate; and Philippine Sea plate. The Pacific plate is subducted into the mantle, beneath Hokkaido and northern Honshu, along the eastern margin of the Okhotsk microplate, a proposed subdivision of the North America plate (Bird, 2003). Farther south, the pacific plate is subducted beneath volcanic islands along the eastern margin of the Philippine Sea plate. This 2,200 km-long zone of subduction of the Pacific plate is responsible for the creation of the deep offshore Ogasawara and Japan trenches as well as parallel chains of islands and volcanoes, typical of the Circumpacific island arcs. Similarly, the Philippine Sea plate is itself subducting under the Eurasia plate along a zone, extending from Taiwan to southern Honshu, that comprises the Ryuku Islands and the Nansei-Shonto trench.
Evanescent wave coupling in terahertz waveguide arrays.
Reichel, K S; Sakoda, N; Mendis, R; Mittleman, D M
2013-07-15
We study energy transfer among an array of identical finite-width parallel-plate waveguides in close proximity, via evanescent wave coupling of broadband terahertz waves. We observe stronger coupling with larger plate separations and longer propagation paths. This work establishes a platform to investigate new opportunities for THz components and devices based on evanescent wave coupling.
46 CFR 54.05-15 - Weldment toughness tests-procedure qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Plate for which Charpy V-notch impact testing is required in the parent material and for which V-notch minima are specified shall similarly have welding procedures qualified for toughness by Charpy V-notch testing. For these tests, the test plates shall be oriented with their final rolling direction parallel to...
Interaction of a Rectangular Jet with a Flat-Plate Placed Parallel to the Flow
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Brown, C. A.; Bridges, J. A.
2013-01-01
An experimental study is carried out addressing the flowfield and radiated noise from the interaction of a large aspect ratio rectangular jet with a flat plate placed parallel to but away from the direct path of the jet. Sound pressure level spectra exhibit an increase in the noise levels for both the 'reflected' and 'shielded' sides of the plate relative to the free-jet case. Detailed cross-sectional distributions of flowfield properties obtained by hot-wire anemometry are documented for a low subsonic condition. Corresponding mean Mach number distributions obtained by Pitot-probe surveys are presented for high subsonic conditions. In the latter flow regime and for certain relative locations of the plate, a flow resonance accompanied by audible tones is encountered. Under the resonant condition the jet cross-section experiences an 'axis-switching' and flow visualization indicates the presence of an organized 'vortex street'. The trends of the resonant frequency variation with flow parameters exhibit some similarities to, but also marked differences with, corresponding trends of the well-known edgetone phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, H. Y.; Kavuri, V. C., E-mail: venk@physics.up
Purpose: The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. Methods: The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source–detector pairs (10{sup 6}). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittalmore » breast measurements. Results: The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. Conclusions: Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.« less
Fuel cell separator plate with bellows-type sealing flanges
Louis, G.A.
1984-05-29
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Fuel cell separator plate with bellows-type sealing flanges
Louis, George A.
1986-08-05
A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which stops just short of the plate, these side walls affording resilient compressibility to the sealing flange in a directiongenerally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.
Properties of large nearly perfect crystals at very low temperatures
NASA Technical Reports Server (NTRS)
Davis, W.; Krack, K. R.; Richard, J. P.; Weber, J.
1983-01-01
A liquid helium cryostat of a size and construction unavailable commercially, was built for use in measuring the Q of several materials at milli-Kelvin temperatures. The design and testing of the cryostat is described as well as the design of the experiment vacuum chamber and adaptor for the dilution refrigerator insert. Theory, design, and testing are also discussed for the magnetic coils built to levitate the materials so as to isolate them and increase the measured Q. A four point suspension with capacitor end plates as the transducer was used to obtain preliminary Q measurements of 6061 aluminum alloy and single crystal silicon. Results are tabulated.
Physical and Electrical Characterization of Aluminum Polymer Capacitors
NASA Technical Reports Server (NTRS)
Liu, David (Donghang)
2010-01-01
Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no impact on the electrical characteristics of the capacitors. The breakdown voltage of polymer capacitors has been evaluated using a steady step surge test. Initial results show the uniform distribution in the breakdown voltage for polymer aluminum capacitors. Polymer aluminum capacitors with a combination of very high capacitance, extraordinary low ESR, excellent frequency stability, and non-ignite benign failure mode make it a niche fit in space applications for both today and future. Polymer capacitors are apparently also the best substitutes of the currently used MnO2-based tantalum capacitors in the low voltage range. However, some critical aspects are still to be addressed in the next phase of the investigation for PA capacitors. These include the long term reliability test of 125 C dry life and 85 C/85%RH humidity, the failure mechanism and de-rating, the radiation tolerance, and the high temperature performance. All of the above requires the continuous NEPP funding and support.
Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force
2012-01-01
Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069
Utility of Squeeze Flow in the Food Industry
NASA Astrophysics Data System (ADS)
Huang, T. A.
2008-07-01
Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.
Partial Arc Curvilinear Direct Drive Servomotor
NASA Technical Reports Server (NTRS)
Sun, Xiuhong (Inventor)
2014-01-01
A partial arc servomotor assembly having a curvilinear U-channel with two parallel rare earth permanent magnet plates facing each other and a pivoted ironless three phase coil armature winding moves between the plates. An encoder read head is fixed to a mounting plate above the coil armature winding and a curvilinear encoder scale is curved to be co-axis with the curvilinear U-channel permanent magnet track formed by the permanent magnet plates. Driven by a set of miniaturized power electronics devices closely looped with a positioning feedback encoder, the angular position and velocity of the pivoted payload is programmable and precisely controlled.
High loading uranium fuel plate
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.
York, H.F.
1959-07-01
A receiver construction is presented for calutrons having two or more ion sources and an individual receiver unit for each source. Design requirements dictate that the face plate defining the receiver entrance slots be placed at an angle to the approaching beam, which means that ions striking the face plate are likely to be scattcred into the entrance slots of other receivers. According to the present invention, the face plate has a surface provided with parallel ridges so disposed that one side only of each ridge's exposed directly to the ion beam. The scattered ions are directed away from adjacent receivers by the ridges on the lace plate.
Capacitor-Chain Successive-Approximation ADC
NASA Technical Reports Server (NTRS)
Cunningham, Thomas
2003-01-01
A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.
Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.
2005-01-01
Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.
Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth
NASA Astrophysics Data System (ADS)
Stock, J. M.; Smrekar, S. E.
2016-12-01
We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.
Infant-mortality testing of high-energy-density capacitors used on Nova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, B.T.; Whitham, K.
1983-01-01
Nova is a solid-state large laser for inertial-confinement fusion research. Its flashlamps are driven by a 60-MJ capacitor bank. Part of this bank is being built with high-energy-density capacitors, 52-..mu..F, 22 kV, 12.5 kJ. A total of 2645 of these capacitors have been purchased from two manufacturers. Each capacitor was infant-mortality tested. The first test consisted of a high-potential test, bushing-to-case, since these capacitors have dual bushings. Then the capacitors were discharged 500 times with circuit conditions approximating the capacitors normal flashlamp load. Failure of either of these tests or if the capacitor was leaking was cause for rejection.
Transient response of a laminated composite plate
NASA Technical Reports Server (NTRS)
Datta, S. K.; Ju, T. H.; Bratton, R. L.; Shah, A. H.
1992-01-01
Results are presented from an investigation of the effect of layering on transient wave propagation in a laminated cross-ply plate, giving attention to the case of 2D plane strain in the case where a line vertical force is applied on a free surface of the plate; the line may be either parallel or perpendicular to the fibers in a ply. The results are in both the time and frequency domains for the normal stress component in the x direction, at a point on the surface of the plate on which the force is applied. Comparative results are also presented for a homogeneous plate whose properties are the static effective ones, when the number of plies is large.
NASA Astrophysics Data System (ADS)
Kobayashi, Kiyoshi; Suzuki, Tohru S.
2018-03-01
A new algorithm for the automatic estimation of an equivalent circuit and the subsequent parameter optimization is developed by combining the data-mining concept and complex least-squares method. In this algorithm, the program generates an initial equivalent-circuit model based on the sampling data and then attempts to optimize the parameters. The basic hypothesis is that the measured impedance spectrum can be reproduced by the sum of the partial-impedance spectra presented by the resistor, inductor, resistor connected in parallel to a capacitor, and resistor connected in parallel to an inductor. The adequacy of the model is determined by using a simple artificial-intelligence function, which is applied to the output function of the Levenberg-Marquardt module. From the iteration of model modifications, the program finds an adequate equivalent-circuit model without any user input to the equivalent-circuit model.
Number Codes Readable by Magnetic-Field-Response Recorders
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor,Bryant D.
2009-01-01
A method of encoding and reading numbers incorporates some of the features of conventional optical bar coding and radio-frequency identification (RFID) tagging, but overcomes some of the disadvantages of both: (1) Unlike in conventional optical bar coding, numbers can be read without having a line of sight to a tag; and (2) the tag circuitry is simpler than the circuitry used in conventional RFID. The method is based largely on the principles described in Magnetic-Field-Response Measurement-Acquisition System (LAR-16908), NASA Tech Briefs, Vol. 30, No. 6 (June 2006) page 28. To recapitulate: A noncontact system includes a monitoring unit that acquires measurements from sensors at distances of the order of several meters. Each sensor is a passive radio-frequency (RF) resonant circuit in the form of one or more inductor(s) and capacitor(s). The monitoring unit a handheld unit denoted a magnetic field response recorder (MFRR) generates an RF magnetic field that excites oscillations in the resonant circuits resulting in the sensors responding with their own radiated magnetic field. The resonance frequency of each sensor is made to differ significantly from that of the other sensors to facilitate distinction among the responses of different sensors. The MFRR measures selected aspects of the sensor responses: in a typical application, the sensors are designed so that their resonance frequencies vary somewhat with the sensed physical quantities and, accordingly, the MFRR measures the resonance frequencies and variations thereof as indications of those quantities. In the present method, the resonance circuits are not used as sensors. Instead, the circuits are made to resonate at fixed frequencies that correspond to digits to be encoded. The number-encoding scheme is best explained by means of examples in which each resonant circuit consists of a spiral trace inductor electrically connected to a set of parallel-connected capacitors in the form of interdigitated electrode pairs (see figure). The inductor and capacitor(s) in each resonant circuit can be fabricated as a patterned thin metal film by means of established metal-deposition and -patterning techniques. The capacitance and, hence, the resonance frequency, depends on the number of interdigitated electrodes connected to the inductor. In a similar manner, sets of electrodes could be used.
Large volume flow-through scintillating detector
Gritzo, Russ E.; Fowler, Malcolm M.
1995-01-01
A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less
Large-scale trench-normal mantle flow beneath central South America
NASA Astrophysics Data System (ADS)
Reiss, M. C.; Rümpker, G.; Wölbern, I.
2018-01-01
We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.
Differential capacitance probe for process control involving aqueous dielectric fluids
Svoboda, John M.; Morrison, John L.
2002-10-08
A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.
Eddy-Current Monitoring Of Composite Layups
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1993-01-01
Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.
Field effect in an n-GaAs metal-anodic oxide-film injunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhov, S.V.; Karpovich, I.A.; Martynov, V.V.
1986-10-01
In this paper the authors present results attained in parallel investigations of mobility ..mu../sub F/ in the field effect, capacitance C, and the active conductance component G for a wide range of frequencies and controlling voltages, as well as of the capacitor saturation photoelectron-motive force phi/sub sat/(V) in an n-GaAs metal-AO-epitaxial film structure. A new combined method is offered for the determination of separation-boundary parameters, based on an analysis of the relationships between ..mu../sub F/, C, and G and the controlling voltage and the test frequency
Memcomputing with membrane memcapacitive systems
NASA Astrophysics Data System (ADS)
Pershin, Y. V.; Traversa, F. L.; Di Ventra, M.
2015-06-01
We show theoretically that networks of membrane memcapacitive systems—capacitors with memory made out of membrane materials—can be used to perform a complete set of logic gates in a massively parallel way by simply changing the external input amplitudes, but not the topology of the network. This polymorphism is an important characteristic of memcomputing (computing with memories) that closely reproduces one of the main features of the brain. A practical realization of these membrane memcapacitive systems, using, e.g., graphene or other 2D materials, would be a step forward towards a solid-state realization of memcomputing with passive devices.
NASA Astrophysics Data System (ADS)
Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi
2013-03-01
Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.
No spreading across the southern Juan de Fuca ridge axial cleft during 1994-1996
Chadwell, C.D.; Hildebrand, J.A.; Spiess, Fred N.; Morton, J.L.; Normark, W.R.; Reiss, C.A.
1999-01-01
Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40' N and 130??20' W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (~1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5??7 mm/yr) between the 1994 and 1996 surveys.Direct-path acoustic measurements between seafloor transponders observed no significant extension (-10 ?? 14 mm/yr) from August 1994 to September 1996 at the southern Juan de Fuca Ridge (44??40 minutes N and 130??20 minutes W). The acoustic path for the measurement is a 691-m baseline straddling the axial cleft, which bounds the Pacific and Juan de Fuca plates. Given an expected full-spreading rate of 56 mm/yr, these data suggest that extension across this plate boundary occurs episodically within the narrow (approx. 1 km) region of the axial valley floor, and that active deformation is occurring between the axial cleft and the plate interior. A cleft-parallel 714-m baseline located 300 m to the west of the cleft on the Pacific plate monitored system performance and, as expected, observed no motion (+5 ?? 7 mm/yr) between the 1994 and 1996 surveys.
Failure Modes in Capacitors When Tested Under a Time-Varying Stress
NASA Technical Reports Server (NTRS)
Liu, David (Donhang)
2011-01-01
Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism [1]. But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown voltages much higher than the rated voltage and that the breakdown field is inversely proportional to the dielectric layer thickness. The SSST data can also be used to comparatively evaluate the voltage robustness of capacitors for decoupling applications.
Application of coordinate transform on ball plate calibration
NASA Astrophysics Data System (ADS)
Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei
2015-02-01
For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.
Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes
NASA Astrophysics Data System (ADS)
Wölbern, I.; Löbl, U.; Rümpker, G.
2014-04-01
In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.
NASA Technical Reports Server (NTRS)
Liu, David (Donhang); Sampson, Michael J.
2011-01-01
Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. The leakage current characterization and the failure analysis results suggest that most of these early avalanche failures are due to the extrinsic minor construction defects introduced during fabrication of BME capacitors. The concentration of the extrinsic defects must be reduced if the BME capacitors are considered for high reliability applications. There are two approaches that can reduce or prevent the occurrence of early failure in BME capacitors: (1) to reduce the defect concentration with improved processing control; (2) to prevent the use of BME capacitors under harsh external stress levels so that the extrinsic defects will never be triggered for a failure. In order to do so appropriate dielectric layer thickness must be determined for a given rated voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brize, Virginie; STMicroelectronics, 16 rue P and M Curie, 37001 Tours; Autret-Lambert, Cecile, E-mail: cecile.autret-lambert@univ-tours.fr
2011-10-15
CaCu{sub 3}Ru{sub 4}O{sub 12} (CCRO) is a conductive oxide having the same structure as CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO{sub 4} substrate. Structural and physical properties of bulkmore » CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation. - Graphical Abstract: Structure of CaCu{sub 3}Ru{sub 4}O{sub 12} showing the RuO{sub 6} octahedra and the square planar environment for Cu{sup 2+}. Highlights: > In this study, we investigate the structural properties and microstructure of ceramics CaCu{sub 3}Ru{sub 4}O{sub 12}. > We study the conduction properties of polycrystalline material. > Then we synthesize the conductive thin film which is deposited on a high K material with the same structure (CaCu{sub 3}Ti{sub 4}O{sub 12}).« less
Failure Modes in Capacitors When Tested Under a Time-Varying Stress
NASA Technical Reports Server (NTRS)
Liu, David (Donhang)
2011-01-01
Steady step surge testing (SSST) is widely applied to screen out potential power-on failures in solid tantalum capacitors. The test simulates the power supply's on and off characteristics. Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors for decoupling applications. On the other hand, the SSST can also be reviewed as an electrically destructive test under a time-varying stress. It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. Highly accelerated life testing (HALT) is usually a time-efficient method for determining the failure mechanism in capacitors; however, a destructive test under a time-varying stress like SSST is even more effective. It normally takes days to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating specific time-varying stress into a statistical model is significant in providing an alternative life test method for quickly revealing the failure modes in capacitors. In this paper, a time-varying stress has been incorporated into the Weibull model to characterize the failure modes. The SSST circuit and transient conditions to correctly test the capacitors is discussed. Finally, the SSST was applied for testing polymer aluminum capacitors (PA capacitors), Ta capacitors, and multi-layer ceramic capacitors with both precious metal electrode (PME) and base-metal-electrodes (BME). It appears that testing results are directly associated to the dielectric layer breakdown in PA and Ta capacitors and are independent on the capacitor values, the way the capacitors being built, and the manufactures. The testing results also reveal that ceramic capacitors exhibit breakdown voltages more than 20 times the rated voltage, and the breakdown voltages are inverse proportional to the dielectric layer thickness. The possibility of ceramic capacitors in front-end decoupling applications to block the surge noise from a power supply is also discussed.
Darwich, Mhd Ayham; Albogha, Mhd Hassan; Abdelmajeed, Adnan; Darwich, Khaldoun
2016-04-01
The aim of this study was to compare the performances of 5 plating techniques for fixation of unilateral mandibular subcondylar fracture. Five titanium plating techniques for fixation of condylar fracture were analyzed using the finite element method. The modeled techniques were 1) 1 straight plate, 2) 2 parallel straight plates, 3) 2 angulated straight plates, 4) 1 trapezoidal plate, and 5) 1 square plate. Three-dimensional models were generated using patient-specific geometry for the mandible obtained from a computerized tomographic image of a healthy living man. Plates were designed and combined with the mandible and analyzed under a 500-N load. The single straight plate presented the most inferior performance; it presented maximum displacement and strain on cortical bone. The trapezoidal plate induced the least amount of strain on cortical bone and was best at resisting displacement. The trapezoidal plate is recommended for fixation of subcondylar fracture. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-01-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514
Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen
2013-06-01
The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Trotter, Donald M., Jr.
1988-01-01
Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)
Discrimination of portraits using a hybrid parallel joint transform correlator system
NASA Astrophysics Data System (ADS)
Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko
1999-05-01
A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.
Electric alignment of plate shaped clay aggregates in oils
NASA Astrophysics Data System (ADS)
Castberg, Rene; Rozynek, Zbigniew; Måløy, Knut Jørgen; Flekkøy, Eirik
2016-01-01
We experimentally investigate the rotation of plate shaped aggregates of clay mineral particles immersed in silicone oil. The rotation is induced by an external electric field. The rotation time is measured as a function of the following parameters: electric field strength, the plate geometry (length and width) and the dielectric properties of the plates. We find that the plates always align with their longest axis parallel to the direction of the electric field (E), independently of the arrangement of individual clay -2 mineral particles within the plate. The rotation time is found to scale as E and is proportional to the viscosity (μ), which coincides well with a model that describes orientation of dipoles in electric fields. As the length of the plate is increased we quantify a difference between the longitudinal and transverse polarisability. Finally, we show that moist plates align faster. We attribute this to the change of the dielectric properties of the plate due to the presence of water.
Seismicity of the Earth 1900-2010 Aleutian arc and vicinity
Benz, Harley M.; Herman, Matthew; Tarr, Arthur C.; Hayes, Gavin P.; Furlong, Kevin P.; Villaseñor, Antonio; Dart, Richard L.; Rhea, Susan
2011-01-01
This map shows details of the Aleutian arc not visible in an earlier publication. The Aleutian arc extends about 3,000 km from the Gulf of Alaska to the Kamchatka Peninsula. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from about 55 mm per year at the arc's eastern edge to 75 mm per year near its western terminus. In the east, the convergence of the plates is nearly perpendicular to the plate boundary. However, because of the boundary's curvature, as one travels westward along the arc, the subduction becomes more and more oblique to the boundary until the relative plate motion becomes parallel to the arc at the Near Islands near its western edge. Subduction zones such as the Aleutian arc are geologically complex and produce numerous earthquakes from multiple sources. Deformation of the overriding North America plate generates shallow crustal earthquakes, whereas slip at the interface of the plates generates interplate earthquakes that extend from near the base of the trench to depths of 40 to 60 km. At greater depths, Aleutian arc earthquakes occur within the subducting Pacific plate and can reach depths of 300 km. Since 1900, six great earthquakes have occurred along the Aleutian Trench, Alaska Peninsula, and Gulf of Alaska: M8.4 1906 Rat Islands; M8.6 1938 Shumagin Islands; M8.6 1946 Unimak Island; M8.6 1957 Andreanof Islands; M9.2 1964 Prince William Sound; and M8.7 1965 Rat Islands. Several relevant tectonic elements (plate boundaries and active volcanoes) provide a context for the seismicity presented on the main map panel. The plate boundaries are most accurate along the axis of the Aleutian Trench and more diffuse or speculative in extreme northeastern Russia. The active volcanoes parallel the Aleutian Trench from the Gulf of Alaska to the Rat Islands.
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35-μm 4-metal 2-poly standard CMOS process in 2.1 mm2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μF capacitors up to ±2 V in 420 μs, achieving a high measured charging efficiency of 82%. PMID:24678284
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.
Lee, Hyung-Min; Ghovanloo, Maysam
2013-10-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35- μ m 4-metal 2-poly standard CMOS process in 2.1 mm 2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μ F capacitors up to ±2 V in 420 μ s, achieving a high measured charging efficiency of 82%.
High Temperature DC Bus Capacitor Cost Reduction & Performance Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yializis, Angelo; Taylor, Ralph S.
The goal of this DOE program is to develop high temperature, high energy density, lower cost DC- Link capacitors, for inverters used in electric drive vehicles. Most electric motors in Hybrid Electric Vehicles (“HEVs”), Plug-in Hybrid Vehicles (“PHVs”) and Electric Vehicles (“EVs”) are driven with variable AC voltage supplied by an inverter/converter power module that converts the DC battery voltage to three-phase AC voltage. A key component of the inverter circuit is the DC- Link capacitor used to minimize ripple current, voltage fluctuation, and transient suppression. The DC-Link capacitor is one of the largest, costliest, and most failure-prone components inmore » today’s electric drive invertersystems. The principal weakness of present day DC- Link capacitors is their reliance on a low temperature thermoplastic polypropylene (“PP”) film dielectric. PP is the dielectric of choice for inverter capacitor applications due to its high breakdown strength and low dissipation factor. Major limitations of metallized PP film capacitors include volumetric efficiency, performance under high thermal loads and cost. The latter is especially effectual at lower voltage applications (400V) where PP films with a thickness of about 2.5 m are required that are costly to process. Metallized PP capacitors also do not meet the traditional “under-the-hood” requirements for automotive electronics. The standard temperature requirement for most passive components in the automotive industry has been 125ºC and it is evolving to 140°C. The industry has addressed this problem by reducing the ambient temperature specification for PP capacitors from 125ºC to 105ºC, and also by placing the capacitors on a water-cooled bus bar to extend their life and reliably. The supply chain for the production of PP capacitors is, for the most part, horizontally integrated. It includes the producer of the PP film, the toll metallizer, that deposits a patterned aluminum conductor onto the PP film, and the capacitor producer that winds the metallized film, forms electrical connections, and packages the capacitor (some large capacitor OEMs also metallize their films). The horizontal nature of the supply chain is principally due to the very high capital costs required to integrate the film production process as well as the corresponding depreciation costs. The result is that hundreds of capacitor OEMs use the same base films and capacitor products vary mainly in the way they are wound, formed and packaged, with little or no ability to innovate. Sigma Technologies (“Sigma”) has developed a disruptive process for producing polymer dielectric capacitors that overcome the limitations of PP film capacitors. Metallized self-supported films are replaced with deposited polymer dielectrics, metallized in-line with the polymer deposition process. Highly cross linked, high temperature polymers are formed, that have a thickness as low as 0.1μm, a wide range of dielectric constants and breakdown strength higher than that of PP. The supply chain for producing such capacitors is reduced to a single step performed by the capacitor OEM, in which aluminum wire and a liquid monomer are introduced into a machine to create a large area bulk capacitor material. Polymer Multi-Layer (PML) capacitors are produced by depositing 1000s of dielectric and aluminum electrode on a rotating process drum, forming a nanolaminate “mother capacitor” material, that is segmented and processed into individual capacitor elements. The PML process combines the conventional stepsof a) polymer dielectric formation, b) electrode deposition, and c) winding the capacitor, into a single continuous process performed in a single machine. This allows for complete vertical integration of the capacitor production process, where the capacitor OEM has complete control the dielectric chemistry, the polymer thickness and the electrode metallization process. Sigma partnered with Delphi Automotive Systems (“Delphi”) and Oak Ridge National Labs (“ORNL”) to respond to a DOE Vehicle Technologies Office solicitation to develop a DC-Link capacitor with reduced cost, lower volume and superior thermal properties. The major objectives of the development program included: • Optimization of the polymer dielectric to meet an 140ºC operating environment • Improvements to Sigma’s PML capacitor pilot line to allow the production of sample quantities of DC-Link capacitors • Evaluation of the thermal properties of the PML capacitors • Development of a thermal model to predict capacitor performance under various operating conditions • Electrical and environmental evaluation of PML capacitors based on AEC Q200 standard • Development of a package for PML capacitors • Development of a business plan to transition the PML capacitor technology into production.« less
Adapter plate assembly for adjustable mounting of objects
Blackburn, R.S.
1986-05-02
An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.
Adapter plate assembly for adjustable mounting of objects
Blackburn, Robert S.
1987-01-01
An adapter plate and two locking discs are together affixed to an optic table with machine screws or bolts threaded into a fixed array of internally threaded holes provided in the table surface. The adapter plate preferably has two, and preferably parallel, elongated locating slots each freely receiving a portion of one of the locking discs for secure affixation of the adapter plate to the optic table. A plurality of threaded apertures provided in the adapter plate are available to attach optical mounts or other devices onto the adapter plate in an orientation not limited by the disposition of the array of threaded holes in the table surface. An axially aligned but radially offset hole through each locking disc receives a screw that tightens onto the table, such that prior to tightening of the screw the locking disc may rotate and translate within each locating slot of the adapter plate for maximum flexibility of the orientation thereof.
Salinity transfer in double diffusive convection bounded by two parallel plates
NASA Astrophysics Data System (ADS)
Yang, Yantao; van der Poel, Erwin P.; Ostilla-Monico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef
2014-11-01
The double diffusive convection (DDC) is the convection flow with the fluid density affected by two different components. In this study we numerically investigate DDC between two parallel plates with no-slip boundary conditions. The top plate has higher salinity and temperature than the lower one. Thus the flow is driven by the salinity difference and stabilised by the temperature difference. Our simulations are compared with the experiments by Hage and Tilgner (Phys. Fluids 22, 076603 (2010)) for several sets of parameters. Reasonable agreement is achieved for the salinity flux and its dependence on the salinity Rayleigh number. For all parameters considered, salt fingers emerge and extend through the entire domain height. The thermal Rayleigh number shows minor influence on the salinity flux although it does affect the Reynolds number. We apply the Grossmann-Lohse theory for Rayleigh-Bénard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux with respect to the scaling for both the numerical and experimental results.
Parallel Fin ORU Thermal Interface for space applications. [Orbital Replaceable Unit
NASA Technical Reports Server (NTRS)
Stobb, C. A.; Limardo, Jose G.
1992-01-01
The Parallel Fin Thermal Interface has been developed as an Orbital Replaceable Unit (ORU) interface. The interface transfers heat from an ORU baseplate to a Heat Acquisition Plate (HAP) through pairs of fins sandwiched between insert plates that press against the fins with uniform pressure. The insert plates are spread apart for ORU baseplate separation and replacement. Two prototype interfaces with different fin dimensions were built (Model 140 and 380). Interfacing surface samples were found to have roughnesses of 56 to 89 nm. Conductance values of 267 to 420 W/sq m C were obtained for the 140 model in vacuum with interface pressures of 131 to 262 kPa (19 to 38 psi). Vacuum conductances ranging from 176 to 267 W/sq m F were obtained for the 380 model at interface pressures of 97 to 152 kPa (14 and 22 psi). Correlations from several sources were found to agree with test data within 20 percent using thermal math models of the interfaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any hazard...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any hazard...
Physical and Electrical Characterization of Aluminum Polymer Capacitors
NASA Technical Reports Server (NTRS)
Liu, David; Sampson, Michael J.
2010-01-01
Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.
Physical and Electrical Characterization of Polymer Aluminum Capacitors
NASA Technical Reports Server (NTRS)
Liu, David; Sampson, Michael J.
2010-01-01
Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.
PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS
Hemmendinger, A.; Helmer, R.J.
1961-10-24
An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)
Mendis, Rajind; Mittleman, Daniel M
2009-08-17
We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America
Minimizing Concentration Effects in Water-Based, Laminar-Flow Condensation Particle Counters
Lewis, Gregory S.; Hering, Susanne V.
2013-01-01
Concentration effects in water condensation systems, such as used in the water-based condensation particle counter, are explored through numeric modeling and direct measurements. Modeling shows that the condensation heat release and vapor depletion associated with particle activation and growth lowers the peak supersaturation. At higher number concentrations, the diameter of the droplets formed is smaller, and the threshold particle size for activation is higher. This occurs in both cylindrical and parallel plate geometries. For water-based systems we find that condensational heat release is more important than is vapor depletion. We also find that concentration effects can be minimized through use of smaller tube diameters, or more closely spaced parallel plates. Experimental measurements of droplet diameter confirm modeling results. PMID:24436507
Unsteady MHD blood flow through porous medium in a parallel plate channel
NASA Astrophysics Data System (ADS)
Latha, R.; Rushi Kumar, B.
2017-11-01
In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.
A proposed experimental search for chameleons using asymmetric parallel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk
2016-08-01
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less
Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch
NASA Astrophysics Data System (ADS)
Richardson, R. A.; Cravey, W. R.; Goerz, D. A.
We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.
Profiling of Current Transients in Capacitor Type Diamond Sensors.
Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai
2015-06-08
The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo's theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μ(e) = 4000 cm2/Vs and holes μ(h) = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion D(a) = 97 cm2/s and the carrier recombination lifetime τ(R,CVD) ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond.
Modeling of electrochemical flow capacitors using Stokesian dynamics
NASA Astrophysics Data System (ADS)
Karzar Jeddi, Mehdi; Luo, Haoxiang; Cummings, Peter; Hatzell, Kelsey
2017-11-01
Electrochemical flow capacitors (EFCs) are supercapacitors designed to store electrical energy in the form of electrical double layer (EDL) near the surface of porous carbon particles. During its operation, a slurry of activated carbon beads and smaller carbon black particles is pumped between two flat and parallel electrodes. In the charging phase, ions in the electrolyte diffuse to the EDL, and electrical charges percolate through the dynamic network of particles from the flat electrodes; during the discharging phase, the process is reversed with the ions released to the bulk fluid and electrical charges percolating back through the network. In these processes, the relative motion and contact of particle of different sizes affect not only the rheology of the slurry but also charge transfer of the percolation network. In this study, we use Stoekesian dynamics simulation to investigate the role of hydrodynamic interactions of packed carbon particles in the charging/discharging behaviors of EFCs. We derived mobility functions for polydisperse spheres near a no-slip wall. A code is implemented and validated, and a simple charging model has been incorporated to represent charge transfer. Theoretical formulation and results demonstration will be presented in this talk.
A mathematical model for an integrated self priming dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Illenberger, Patrin K.; Wilson, Katherine E.; Henke, E.-F. Markus; Madawala, Udaya K.; Anderson, Iain A.
2017-04-01
Dielectric Elastomer Generators (DEG) can capture energy from natural movement sources such as wind, the tides and human locomotion. The harvested energy can be used for low power devices such as wireless sensor nodes and wearable electronics. A challenge for low power DEG is overcoming the losses associated with charge management. A circuit which can do this exists: the Self Priming Circuit (SPC) which consists of diodes and capacitors. The SPC is connected in parallel to the DEG where it transfers charge onto/o_ the DEG based on changes in the DEG capacitance. Modelling and experimental validation of the SPC have been performed in the past, allowing design and implementation of effective SPCs which match a particular DEG. While the SPC is effective, it is still an external circuit which adds additional mass and cost to the DEG. By splitting the DEG into separate capacitors and using them to build an SPC, the Integrated SPC (I-SPC) can be realized. This reduces the components required to build a SPC/DEG and improves the performance. This paper presents a mathematical model with experimental data of a first order I-SPC. Additionally, comparisons between the SPC and I-SPC are drawn.
Isolated and soft-switched power converter
Peng, Fang Zheng; Adams, Donald Joe
2002-01-01
An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.
NASA Astrophysics Data System (ADS)
Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique
2003-11-01
We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.
NASA Technical Reports Server (NTRS)
Williams, J. F.; Wiedeman, D. H.
1973-01-01
This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.
High Temperature Evaluation of Tantalum Capacitors - Test 1
Cieslewski, Grzegorz
2014-09-28
Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.
Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2012-01-01
Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.
Seismic anisotropy beneath South China Sea: using SKS splitting to constrain mantle flow
NASA Astrophysics Data System (ADS)
Xue, M.; Le, K.; Yang, T.
2011-12-01
The evolution of South China Sea is under debate and several hypotheses have been proposed: (1) The collision of India plate and Eurasia plate; (2) the backward movement of the Pacific subduction plate; (3) mantle upwelling; and (4) combinations of above hypotheses. All these causal mechanisms emphasize the contributions of deep structures to the evolution of South China Sea. In this study we use earthquake data recorded by seismic stations surrounding South China Sea to constrain mantle flow beneath. To fill the vacancy of seismic data in Viet Nam, we deployed 4 seismic stations (VT01-VT04) in a roughly north - south orientation in Viet Nam in Nov. 2009. We combine the VT dataset with the AD and MY datasets from IRIS and select 81 events for SKS splitting analysis. Measurements were made at 11 stations using Wolfe and Silver (1998)'s multi-event stacking procedure. Our observed splitting directions in Vietnam are generally consistent with those of Bai et. al. (2009) . In northern Vietnam, the splitting times are around 1 sec and the fast directions are NWW-SEE, parallel to the absolute plate motion as well as the motion of the Earth surface, implying the crust and the mantle are coupled in this region and is moving as a result of the collision of India and China. While in southern Vietnam and Malaya, the fast directions are NE-SW, almost perpendicular to the absolute plate motion as well as the surface motion of Eurasia plate. However, the observed NE-SW is parallel to the subduction direction of the Australian plate, which might be caused by the mantle flow along NE-SW induced by the subduction.
NASA Astrophysics Data System (ADS)
Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.
2018-03-01
According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.
Method for controlling protein crystallization
NASA Technical Reports Server (NTRS)
Noever, David A. (Inventor)
1993-01-01
A method and apparatus for controlling the crystallization of protein by solvent evaporation including placing a drop of protein solution between and in contact with a pair of parallel plates and driving one of the plates toward and away from the other plate in a controlled manner to adjust the spacing between the plates is presented. The drop of solution forms a liquid cylinder having a height dependent upon the plate spacing thereby effecting the surface area available for solvent evaporation. When the spacing is close, evaporation is slow. Evaporation is increased by increasing the spacing between the plates until the breaking point of the liquid cylinder. One plate is mounted upon a fixed post while the other plate is carried by a receptacle movable relative to the post and driven by a belt driven screw drive. The temperature and humidity of the drop of protein solution are controlled by sealing the drop within the receptacle and mounting a heater and dessicant within the receptacle.
Kaufman, Arthur; Werth, John
1986-01-01
A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.
Pulsed ultrasonic stir welding system
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey (Inventor)
2013-01-01
An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.
A combination dielectric and acoustic laboratory instrument for petrophysics
NASA Astrophysics Data System (ADS)
Josh, Matthew
2017-12-01
Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric permittivity and P-wave velocity with saturation consistent with the Gassmann-Hill prediction. Both the dielectric permittivity and P-wave velocity are faster parallel to the bedding plane than orthogonal to the bedding plane in a shale from the Cooper Basin, Australia.
The Anisotropic Structure of South China Sea: Using OBS Data to Constrain Mantle Flow
NASA Astrophysics Data System (ADS)
Li, L.; Xue, M.; Yang, T.; Liu, C.; Hua, Q.; Xia, S.; Huang, H.; Le, B. M.; Huo, D.; Pan, M.
2015-12-01
The dynamic mechanism of the formation of South China Sea (SCS) has been debated for decades. The anisotropic structure can provide useful insight into the complex evolution of SCS by indicating its mantle flow direction and strength. In this study, we employ shear wave splitting methods on two half-year seismic data collected from 10 and 6 passive source Ocean Bottom Seismometers (OBS) respectively. These OBSs were deployed along both sides of the extinct ridge in the central basin of SCS by Tongji University in 2012 and 2013 respectively, which were then successfully recovered in 2013 and 2015 respectively. Through processing and inspecting the global and regional earthquakes (with local events being processing) of the 2012 dataset, measurements are made for 2 global events and 24 regional events at 5 OBSs using the tangential energy minimization, the smallest eigenvalue minimization, as well as the correlation methods. We also implement cluster analysis on the splitting results obtained for different time windows as well as filtered at different frequency bands. For teleseismic core phases like SKS and PKS, we find the fast polarization direction beneath the central basin is approximately NE-SW, nearly parallel to the extinct ridge in the central basin of SCS. Whereas for regional events, the splitting analysis on S, PS and ScS phases shows much more complicated fast directions as the ray path varies for different phases. The fast directions observed can be divided into three groups: (1) for the events from the Eurasia plate, a gradual rotation of the fast polarization direction from NNE-SSW to NEE-SWW along the path from the inner Eurasia plate to the central SCS is observed, implying the mantle flow is controlled by the India-Eurasia collision; (2) for the events located at the junction of Pacific plate and Philippine plate, the dominant fast direction is NW-SE, almost perpendicular to Ryukyu Trench as well as sub-parallel to the absolute direction of Philippine plate; (3) for the events occurred in the SE direction near the Philippine Fault zone, the observed NE-SW fast direction is sub-parallel to the subduction direction of the Philippine plate.
Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC-DC conversion
NASA Astrophysics Data System (ADS)
Bayik, B.; Aghakhani, A.; Basdogan, I.; Erturk, A.
2016-05-01
As an alternative to beam-like structures, piezoelectric patch-based energy harvesters attached to thin plates can be readily integrated to plate-like structures in automotive, marine, and aerospace applications, in order to directly exploit structural vibration modes of the host system without mass loading and volumetric occupancy of cantilever attachments. In this paper, a multi-mode equivalent circuit model of a piezo-patch energy harvester integrated to a thin plate is developed and coupled with a standard AC-DC conversion circuit. Equivalent circuit parameters are obtained in two different ways: (1) from the modal analysis solution of a distributed-parameter analytical model and (2) from the finite-element numerical model of the harvester by accounting for two-way coupling. After the analytical modeling effort, multi-mode equivalent circuit representation of the harvester is obtained via electronic circuit simulation software SPICE. Using the SPICE software, electromechanical response of the piezoelectric energy harvester connected to linear and nonlinear circuit elements are computed. Simulation results are validated for the standard AC-AC and AC-DC configurations. For the AC input-AC output problem, voltage frequency response functions are calculated for various resistive loads, and they show excellent agreement with modal analysis-based analytical closed-form solution and with the finite-element model. For the standard ideal AC input-DC output case, a full-wave rectifier and a smoothing capacitor are added to the harvester circuit for conversion of the AC voltage to a stable DC voltage, which is also validated against an existing solution by treating the single-mode plate dynamics as a single-degree-of-freedom system.
2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.
NASA Technical Reports Server (NTRS)
Nevin, J. H.
1983-01-01
Construction, capacitance and dissipation factor, and electrode materials for single layer capacitors are discussed. Basic construction, phosphosilicate glass, ten layer capacitors, twenty layer capacitors, stress measurements, buffered oxide layers, and 30 layer capacitors are also discussed. Spin-on phosphosilicate glass is addressed. Polymers as dielectric materials are also considered.
A 800 kV compact peaking capacitor for nanosecond generator.
Jia, Wei; Chen, Zhiqiang; Tang, Junping; Chen, Weiqing; Guo, Fan; Sun, Fengrong; Li, Junna; Qiu, Aici
2014-09-01
An extremely compact high voltage peaking capacitor is developed. The capacitor has a pancake structure with a diameter of 315 mm, a thickness of 59 mm, and a mass of 6.1 kg. The novel structural design endows the capacitor with a better mechanical stability and reliability under hundreds of kilovolts pulse voltage and an inner gas pressure of more than 1.5 MPa. The theoretical value of the capacitor self-inductance is near to 17 nH. Proved by series of electrical experiments, the capacitor can endure a high-voltage pulse with a rise time of about 20 ns, a half-width duration of around 25 ns, and an amplitude of up to 800 kV in a single shot model. When the capacitor was used in an electromagnetic pulse simulator as a peaking capacitor, the rise time of the voltage pulse can be reduced from 20 ns to less than 3 ns. The practical value of the capacitor's inductance deduced from the experimental date is no more than 25 nH.
Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Gerya, Taras
2010-08-01
Transform faults at mid-ocean ridges—one of the most striking, yet enigmatic features of terrestrial plate tectonics—are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.
Humidity Testing of PME and BME Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.; Herzberger, Jaemi
2014-01-01
Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.
A new method for achieving enhanced dielectric response over a wide temperature range
Maurya, Deepam; Sun, Fu -Chang; Pamir Alpay, S.; ...
2015-10-19
We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.
A new method for achieving enhanced dielectric response over a wide temperature range
Maurya, Deepam; Sun, Fu-Chang; Pamir Alpay, S.; Priya, Shashank
2015-01-01
We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (TC) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors. PMID:26477391
Impedance characterization of AlGaN/GaN Schottky diodes with metal contacts
NASA Astrophysics Data System (ADS)
Donahue, M.; Lübbers, B.; Kittler, M.; Mai, P.; Schober, A.
2013-04-01
To obtain detailed information on structural and electrical properties of AlGaN/GaN Schottky diodes and to determine an appropriate equivalent circuit, impedance spectroscopy and impedance voltage profiling are employed over a frequency range of 1 MHz-1 Hz. In contrast to the commonly assumed parallel connection of capacitive and resistive elements, an equivalent circuit is derived from impedance spectra which utilizes the constant phase element and accounts for frequency dispersion and trap states. The trap density is estimated and is in good agreement with the literature values. The resulting reduced equivalent circuit consists of a capacitor and resistor connected in series.
The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids
NASA Astrophysics Data System (ADS)
Dotsenko, O. A.; Pavlova, A. A.; Dotsenko, V. S.
2018-03-01
Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
The design and implementation of on-line monitoring system for UHV compact shunt capacitors
NASA Astrophysics Data System (ADS)
Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao
2017-08-01
Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
Polyvinylidene fluoride film as a capacitor dielectric
NASA Technical Reports Server (NTRS)
Dematos, H. V.
1981-01-01
Thin strips of polyvinylidene fluoride film (PVDF) with vacuum deposited electrodes were made into capacitors by conventional winding and fabrication techniques. These devices were used to identify and evaluate the performance characteristics offered by the PVDF in metallized film capacitors. Variations in capacitor parameters with temperature and frequence were evaluated and compared with other dielectric films. Their impact on capacitor applications is discussed.
Kim, Steven; Heller, James; Iqbal, Zohora; Kant, Rishi; Kim, Eun Jung; Durack, Jeremy; Saeed, Maythem; Do, Loi; Hetts, Steven; Wilson, Mark; Brakeman, Paul; Fissell, William H.; Roy, Shuvo
2015-01-01
Silicon nanopore membranes (SNM) with compact geometry and uniform pore size distribution have demonstrated a remarkable capacity for hemofiltration. These advantages could potentially be used for hemodialysis. Here we present an initial evaluation of the SNM’s mechanical robustness, diffusive clearance, and hemocompatibility in a parallel plate configuration. Mechanical robustness of the SNM was demonstrated by exposing membranes to high flows (200ml/min) and pressures (1,448mmHg). Diffusive clearance was performed in an albumin solution and whole blood with blood and dialysate flow rates of 25ml/min. Hemocompatibility was evaluated using scanning electron microscopy and immunohistochemistry after 4-hours in an extra-corporeal porcine model. The pressure drop across the flow cell was 4.6mmHg at 200ml/min. Mechanical testing showed that SNM could withstand up to 775.7mmHg without fracture. Urea clearance did not show an appreciable decline in blood versus albumin solution. Extra-corporeal studies showed blood was successfully driven via the arterial-venous pressure differential without thrombus formation. Bare silicon showed increased cell adhesion with a 4.1 fold increase and 1.8 fold increase over polyethylene-glycol (PEG)-coated surfaces for tissue plasminogen factor (t-PA) and platelet adhesion (CD-41), respectively. These initial results warrant further design and development of a fully scaled SNM-based parallel plate dialyzer for renal replacement therapy. PMID:26692401