Science.gov

Sample records for parallel propagating alfven

  1. A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu

    2013-08-10

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.

  2. On the dispersion relations for parametric instabilities of parallel-propagating Alfven waves

    NASA Technical Reports Server (NTRS)

    Yajanti, Venku; Hollweg, Joseph V.

    1993-01-01

    We consider the dispersion relation for the parametric instabilities of large-amplitude circularly polarized Alfven waves propagating parallel to the ambient magnetic field. A linear perturbation analysis is employed, and the perturbations are taken to propagate along the ambient field. We present an analysis based on Floquet's theorem. The result is a hierarchy of dispersion relations. However, all the dispersion relations are found to be equivalent to the one obtained via the standard analysis; the differences between them are due only to how ca and k are defined. Thus we conclude that physically there is really only one dispersion relation, namely the 'electrostatic dispersion relation', which is in agreement with earlier works. However, we disagree with Vinas and Goldstein (1991), who obtained additional dispersion relations which they have called the 'electromagnetic dispersion relations'. Their additional dispersion relations are a consequence of first truncating the dispersion relation for obliquely propagating perturbations and then taking the limit of parallel-propagating perturbations.

  3. Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma

    SciTech Connect

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2007-12-15

    Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.

  4. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-15

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  5. Observation of Counter Propagating Alfven Waves with Perpendicular Polarizations and the Associated Proton Kinetics

    NASA Astrophysics Data System (ADS)

    He, J.; Pei, Z. T.; Wang, L.; Tu, C. Y.; Marsch, E.; Yao, S.

    2014-12-01

    It is believed that MHD turbulence cascading is mainly caused by the collisions between Alfven waves, which propagate oppositely and are polarized perpendicularly to each other. Nonlinear interaction will vanish if the counter-propagating Alfven waves have their polarization aligned with each other. However, the Alfven waves satisfying these collision criteria have not yet been found in the solar wind observations. Here we report the existence of Alfven waves with opposite propagation and non-aligned polarization in the solar wind. In one case of anti-sunward magnetic sector, with RTN as the coordinates, the magnetic fluctuations in T-component (BT) are anti-correlated with the velocity fluctuations in T-component (VT), while BR and BN fluctuations are in positive correlation with VR and VN fluctuations, respectively. These features suggest a possible nonlinear interaction between outward propagating Alfven wave with polarization in T-direction and inward propagating Alfven wave with polarization in R&N-directions. Moreover, the associated proton kinetics shows the existence of field-aligned sunward beam rather than anti-sunward beam, which may indicate a parallel Landau heating by sunward kinetic Alfven waves. A statistical study including more cases is also conducted.

  6. The effect of random Alfven waves on the propagation of hydromagnetic waves in a finite-beta plasma

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu

    1990-01-01

    Using first-order smoothing theory, Fourier analysis and perturbation methods, the evolution equation of the wave spectrum as well as the nonlinear forces generated by random Alfven waves in a finite-beta plasma with phenomenological Landau-damping effects are obtained. The effect of microscale random Alfven waves on the propagation of large-scale hydromagnetic waves is also investigated by solving the mean-field equations. It is shown that parallel-propagating random Alfven waves are modulationally stable and that obliquely propagating random Alfven waves can be modulationally unstable when the energy of random waves is converted to slow magnetoacoustic waves that can be Landau-damped, providing a dissipation mechanism for the Alfven waves.

  7. Propagation and Damping of Kinetic Alfven Waves Generated During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.

    2015-12-01

    Magnetospheric waves have the potential to convert to Kinetic Alfven Waves (KAW) at scales close to the ion larmor radius and the electron inertial length. At this length scale, it is observed that KAW generated at reconnection propagates super-Alfvenically and the wave is responsible for the parallel propagation of the Hall magnetic field near the separatrice from the magnetotial region. The pointing flux associated with this Hall magnetic field is also consistent with observed Cluster data observations [1]. An important question is whether this KAW energy will be able to propagate all the way to the Earth, creating aurora associated with a substorm. If this KAW propagation can be well understood, then this will provide valuable insight as to the relative timing of substorm onset versus reconnection onset in the magnetotail. The difficulty currently is that the nonlinear damping of KAW is not well understood even in a homogenous system, let alone more realistic magnetotail geometries including changes to density, magnetic field strength, and magnetic orientation. We study the propagation, dispersion, and damping of these KAWs using P3D, a kinetic particle-in-cell (PIC) simulation code. Travelling waves are initialized based on a fluid model and allowed to propagate for substantial time periods. Damping of the waves are compared with Landau damping predictions. The waves are simulated in both homogenous and varying equilibrium meant to determine the effect on propagation. Implications for energetic electron production and Poynting flux input into the ionosphere are discussed. [1] Shay, M. A., J. F. Drake, J. P. Eastwood, and T. D. Phan, Super-Alfvenic propagation of substorm reconnection signatures and Poynting flux,, Physics Review Letters, Vol. 107, 065001, 2011.

  8. A Study of Alfven Wave Propagation and Heating the Chromosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2013-12-01

    Alfven wave propagation, reflection and heating of the solar atmosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma and neutral fluid equations and Maxwell's equations with incorporation of the Hall effect, strong electron-neutral, electron-ion, and ion-neutral collisions. The governing equations are very stiff because of the strong coupling between the charged and neutral fluids. We have developed a numerical model based on an implicit backward difference formula (BDF2) of second order accuracy both in time and space to overcome the stiffness. A non-reflecting boundary condition is applied to the top boundary of the simulation domain so that the wave reflection within the domain due to the density gradient can be unambiguously determined. It is shown that the Alfven waves are partially reflected throughout the chromosphere. The reflection is increasingly stronger at higher altitudes and the strongest reflection occurs at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation due to electron collisions with neutrals and ions. The heating resulting from the wave damping is strong enough to balance the radiation energy loss for the quiet chromosphere. The collisional dissipation of the Alfven waves in the weakly collisional corona is negligible. The heating rates are larger for weaker background magnetic fields. In addition, higher frequency waves are subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the waves may be strongly reflected at the transition region. The reflected waves interacting with the upward propagating waves may produce power at their double frequencies, which leads to more damping. Due to the reflection and damping, the energy flux of the waves transmitted to the corona is one order of

  9. Effect of two ion species on the propagation of shear Alfven waves of small transverse scale

    SciTech Connect

    Vincena, S. T.; Morales, G. J.; Maggs, J. E.

    2010-05-15

    The results of a theoretical modeling study and experimental investigation of the propagation properties of shear Alfven waves of small transverse scale in a plasma with two ion species are reported. In the two ion plasma, depending on the mass of the heavier species, ion kinetic effects can become prominent, and significant parallel electric fields result in electron acceleration. The theory predicts the appearance of frequency propagation gaps at the ion-ion hybrid frequency and between harmonics of the lower cyclotron frequency. Within these frequency bands spatial structures arise that mix the cone-propagation characteristics of Alfven waves with radially expanding ion Bernstein modes. The experiments, performed at the Basic Plasma Science Facility (BaPSF) at UCLA, consist of the spatial mapping of shear waves launched by a loop antenna. Although a variety of two ion-species combinations were explored, only results from a helium-neon mix are reported. A clear signature of a shear wave propagation gap, as well as propagation between multiple harmonics, is found for this gas combination. The evanescence of shear waves beyond the reflection point at the ion-ion hybrid frequency in the presence of an axial magnetic field gradient is also documented.

  10. KINETIC ALFVEN TURBULENCE AND PARALLEL ELECTRIC FIELDS IN FLARE LOOPS

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Lu, J. Y.

    2013-04-20

    This study investigates the spectral structure of the kinetic Alfven turbulence in the low-beta plasmas. We consider a strong turbulence resulting from collisions between counterpropagating wavepackets with equal energy. Our results show that (1) the spectra of the magnetic and electric field fluctuations display a transition at the electron inertial length scale, (2) the turbulence cascades mainly toward the magnetic field direction as the cascade scale is smaller than the electron inertial length, and (3) the parallel electric field increases as the turbulent scale decreases. We also show that the parallel electric field in the solar flare loops can be 10{sup 2}-10{sup 4} times the Dreicer field as the turbulence reaches the electron inertial length scale.

  11. PROPAGATING COUPLED ALFVEN AND KINK OSCILLATIONS IN AN ARBITRARY INHOMOGENEOUS CORONA

    SciTech Connect

    Pascoe, D. J.; Wright, A. N.; De Moortel, I.

    2011-04-10

    Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. We perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low {beta} plasma. We consider the cases of distorted cylindrical flux tubes and a randomly generated inhomogeneous medium. When density structuring is present, mode coupling in inhomogeneous regions leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave is observed as energy is transferred to the local Alfven mode. In all cases considered, modest changes in density were capable of efficiently converting energy from the driving footpoint motion to localized Alfven modes. We have demonstrated that mode coupling efficiently couples propagating kink perturbations to Alfven modes in an arbitrary inhomogeneous medium. This has the consequence that transverse footpoint motions at the base of the corona will deposit energy to Alfven modes in the corona.

  12. Destabilisation of shear flows by counter-propagating Alfven waves at localised magnetic fields

    NASA Astrophysics Data System (ADS)

    Griffiths, Stephen

    2016-04-01

    The instability of shear flows in the presence of magnetic fields is fundamental to understanding a wide range of geophysical and astrophysical phenomena. We investigate the simplest paradigm problem of interest, which is the linear instability of a plane parallel shear flow with aligned field, to two-dimensional disturbances. We focus on cases where the shear flow has no inflexion points and is thus hydrodynamically stable, and show how such flows can be destabilised by the addition of two thin regions of magnetic field. An explicit analytical solution is presented for the case of a flow with uniform shear and where the magnetic fields are of infinitesimal width, showing that there is always instability for some range of along-stream wavenumbers. The strength of the instability is reduced for the more realistic case of magnetic fields of finite width, which can be investigated numerically, or analytically using matched-asymptotic expansions. The instability can be unambiguously attributed to the mutual amplification of a pair of counter-propagating Alfven waves, and should therefore be viewed as an extension to astrophysical fluid dynamics of various classical shear instabilities in geophysical fluid dynamics involving counter-propagating Rossby waves or gravity waves.

  13. Propagation velocity of Alfven wave packets in a dissipative plasma

    SciTech Connect

    Amagishi, Y.; Nakagawa, H. ); Tanaka, M. )

    1994-09-01

    We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.

  14. Theory of Generation of Alfvenic Non-Propagating Electromagnetic Plasma Structures and Acceleration of Charged Particles in Cosmic Plasmas

    NASA Astrophysics Data System (ADS)

    Song, Yan; Lysak, Robert

    2015-04-01

    In Earth's auroral acceleration regions, the nonlinear interaction of incident and reflected Alfven wave packets can collectively create non-propagating electromagnetic plasma structures, such as the Transverse Alfvenic Double Layer (TA-DL) and Charge Hole (TA-CH). These structures, such as TA-DL, encompass localized strong electrostatic electric fields, nested in low density cavities and surrounded by a local dynamo. Such structures constitute powerful high energy particle accelerators causing auroral particle acceleration and creating both Alfvenic and quasi-static discrete auroras. Similar electromagnetic plasma structures should also be generated by Alfvenic interaction in other inhomogenous cosmic plasma regions, and would constitute effective high energy particle accelerators.

  15. On the angle between the average interplanetary magnetic field and the propagation direction of plane large amplitude Alfven waves

    NASA Technical Reports Server (NTRS)

    Lichtenstein, B. R.; Sonett, C. P.

    1979-01-01

    The paper shows that the experimentally observed close alignment of magnetic field minimum variance direction with the average magnetic field for Alfven waves in the solar wind is consistent with theoretically predicted properties of plane large amplitude Alfven waves in the MHD approximation. The theoretical properties of these Alfven waves constrain the time averaged magnetic field to cluster around the direction of minimum variance, which is aligned with the wave normal. Thus, spacecraft magnetometer observations in the solar wind of minimum variance directions strongly peaked about the average magnetic field direction are consistent with plane large amplitude Alfven waves which have wave normals aligned with the directions of minimum variance. This does not imply that geometrical hydromagnetic calculations for Alfven wave propagation direction in the solar wind are incorrect, but there is a discrepancy between geometrical hydromagnetics theory and observations that IMF minimum variance directions tend to be aligned with the ideal Parker spiral instead of the radial direction.

  16. Generation of Non-Propagating Electromagnetic-Plasma Structures and Formation of Quasi-Static and Alfvenic Discrete Auroras

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2013-12-01

    The nonlinear interaction of incident and reflected Alfven wave packets in auroral acceleration regions can create non-propagating electromagnetic-plasma structures, such as transverse Alfvenic double layers and charge holes. These dynamical structures are often characterized by localized strong electrostatic electric fields, localized density cavities and enhanced magnetic or mechanical stresses, and are responsible for auroral particle acceleration and the formation of both Alfvenic and quasi-static inverted-V discrete auroras. Similar electromagnetic-plasma structures should also be generated in other cosmic plasmas, and would constitute effective high energy accelerators of charged particles in cosmic plasmas.

  17. Propagation of large amplitude Alfven waves in the solar wind neutral sheet

    NASA Technical Reports Server (NTRS)

    Malara, F.; Primavera, L.; Veltri, P.

    1995-01-01

    Analysis of solar wind fluctuation data show that the correlation between velocity and magnetic field fluctuations decreases when going farther away from the Sun. This decorrelation can be attributed either to the time evolution of the fluctuations, carried away by the solar wind, or to the interaction between the solar wind neutral sheet and Alfven waves. To check this second hypothesis we have numerically studied the propagation of Alfven waves in the solar wind neutral sheet. The initial conditions have been set up in order to guarantee B(exp 2) = const, so that the following numerical evolution is only due to the inhomogeneity in the background magnetic field. The analysis of the results shows that compressive structures are formed, mainly in the neutral sheet where they have been identified as pressure balanced structures, i.e., tangential discontinuities. Fast perturbations, which are also produced, have a tendency to leave the simulation domain, propagating also perpendicularly to the mean magnetic field. For this reason the level of fast perturbations is always smaller with respect to the previously cited plasma balanced structures, which are slow mode perturbations. A comparison between the numerical results and some particular observational issues is also presented.

  18. Non-WKB Alfven waves in the solar wind: Propagation and reflection of pulses

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1995-01-01

    The non-WKB propagation of Alfven waves has been studied either for harmonic waves, or in terms of the evolution of power spectra. Here we present analytical and numerical solutions for the propagation of pulses, the goal being to understand how waves reflect in a smoothly varying medium. We here limit our discussion to a radial magnetic field. If we launch an outward-propagating delta function, it leaves behind an inward-propagaing signal which is roughly a square wave whose amplitude is proportional to the area under the initial pulse. The inward-propagating signal also reflects, producing an outward propagating pulse which is roughly triangular in shape and which grows with time. These signals also oscillate if v is less than v(A), but they grow if v is greater than v(A). The result reported by us earlier, that the 'ingoing Elsasser variable' can have outgoing phase, is now understood to be a consequence of interference. The inward-propagating signal depends to lowest order on the integral of the outgoing waves which have preceded it. Thus the ingoing signal can be expected to develop as a random walk. This will affect the radial evolution of cross-helicity in the solar wind.

  19. Drift-Alfven turbulence of a parallel shearing flow of the finite beta plasma with warm ions

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-09-01

    It was predicted [Mikhailenko et al., Phys. Plasmas 23, 020701 (2016)] that two distinct drift-Alfven instabilities may be developed in the parallel shearing flow of finite beta plasmas ( 1 ≫β≫me/mi ) with comparable ion and electron temperatures. The first one is the shear-flow-modified drift-Alfven instability, which develops due to the inverse electron Landau damping and exists in the shearless plasma as well. The second one is the shear-flow-driven drift-Alfven instability, which develops due to the combined effect of the velocity shear and ion Landau damping and is absent in the shearless plasma flows. In the present paper, these drift-Alfven instabilities are examined numerically and analytically by including the electromagnetic response of the ions. The levels of the drift-Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of ion scattering by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same nonlinear effect of ion scattering, is derived and employed for the analysis of the ion viscosity and ions heating resulting from the interactions of ions with drift-Alfven turbulence.

  20. NONLINEAR PROPAGATION OF ALFVEN WAVES DRIVEN BY OBSERVED PHOTOSPHERIC MOTIONS: APPLICATION TO THE CORONAL HEATING AND SPICULE FORMATION

    SciTech Connect

    Matsumoto, Takuma; Shibata, Kazunari

    2010-02-20

    We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/Solar Optical Telescope. It is shown that the total energy flux at the corona becomes larger and the transition region's height becomes higher in the case when we use the observed spectrum rather than the white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3, and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explain the dynamics of the spicules and the sufficient energy flux to heat the corona.

  1. Propagation characteristics of waves upstream and downstream of quasi-parallel shocks

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.

    1993-01-01

    The propagation characteristics of waves upstream and downstream of quasi-parallel shocks are investigated by using 2D hybrid simulations. At low Alfven Mach numbers, M(A) below about 2, the shock is initially associated with upstream phase-standing whistlers. At later times, backstreaming ions excite longer-wavelength whistlers via the right-hand resonant ion/ion instability. These waves propagate along the magnetic field at a group velocity no smaller than the upstream flow speed, so that the waves remain in the upstream region. At higher MA (above about 3), these waves are convected back into the shock, causing its reformation and downstream perturbations. Shock transmitted waves mode-convert into Alfven/ion-cyclotron waves which have a wave vector along the shock normal (pointing upstream) and convect downstream. The 2D simulation results confirm our earlier suggestion that the upstream waves should be field aligned, and that their convection into the downstream is associated with linear mode conversion into the Alfven/ion-cyclotron branch.

  2. Alfven wave transport effects in the time evolution of parallel cosmic-ray modified shocks

    NASA Technical Reports Server (NTRS)

    Jones, T. W.

    1993-01-01

    Some of the issues associated with a more complete treatment of Alfven transport in cosmic ray shocks are explored qualitatively. The treatment is simplified in some important respects, but some new issues are examined and for the first time a nonlinear, time dependent study of plane cosmic ray mediated shocks with both the entropy producing effects of wave dissipation and effects due to the Alfven wave advection of the cosmic ray relative to the gas is included. Examination of the direct consequences of including the pressure and energy of the Alfven waves in the formalism began.

  3. Satellite and Ground Signatures of Kinetic and Inertial Scale ULF Alfven Waves Propagating in Warm Plasma in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Sydorenko, D.

    2015-12-01

    Results from a 3D global numerical model of Alfven wave propagation in a warm multi-species plasma in Earth's magnetosphere are presented. The model uses spherical coordinates, accounts for a non-dipole magnetic field, vertical structure of the ionosphere, and an air gap below the ionosphere. A realistic density model is used. Below the exobase altitude (2000 km) the densities and the temperatures of electrons, ions, and neutrals are obtained from the IRI and MSIS models. Above the exobase, ballistic (originating from the ionosphere and returning to ionosphere) and trapped (bouncing between two reflection points above the ionosphere) electron populations are considered similar to [Pierrard and Stegen (2008), JGR, v.113, A10209]. Plasma parameters at the exobase provided by the IRI are the boundary conditions for the ballistic electrons while the [Carpenter and Anderson (1992), JGR, v.97, p.1097] model of equatorial electron density defines parameters of the trapped electron population. In the simulations that are presented, Alfven waves with frequencies from 1 Hz to 0.01 Hz and finite azimuthal wavenumbers are excited in the magnetosphere and compared with Van Allen Probes data and ground-based observations from the CARISMA array of ground magnetometers. When short perpendicular scale waves reflect form the ionosphere, compressional Alfven waves are observed to propagate across the geomagnetic field in the ionospheric waveguide [e.g., Lysak (1999), JGR, v.104, p.10017]. Signals produced by the waves on the ground are discussed. The wave model is also applied to interpret recent Van Allen Probes observations of kinetic scale ULF waves that are associated with radiation belt electron dynamics and energetic particle injections.

  4. On apparent temperature in low-frequency Alfvenic turbulence

    SciTech Connect

    Nariyuki, Yasuhiro

    2012-08-15

    Low-frequency, parallel propagating Alfvenic turbulence in collisionless plasmas is theoretically studied. Alfvenic turbulence is derived as an equilibrium state (Beltrami field) in the magnetohydrodynamic equations with the pressure anisotropy and multi-species of ions. It is shown that the conservation of the total 'apparent temperature' corresponds to the Bernoulli law. A simple model of the radially expanding solar wind including Alfvenic turbulence is also discussed. The conversion of the wave energy in the 'apparent temperature' into the 'real temperature' is facilitated with increasing radial distance.

  5. REPRODUCTION OF THE OBSERVED TWO-COMPONENT MAGNETIC HELICITY IN SOLAR WIND TURBULENCE BY A SUPERPOSITION OF PARALLEL AND OBLIQUE ALFVEN WAVES

    SciTech Connect

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-04-10

    The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.

  6. Propagation of the shear Alfven wave from a skin-depth- scale source into nonuniform plasmas

    NASA Astrophysics Data System (ADS)

    Vincena, Stephen Thomas

    Experiments are performed in the LArge Plasma Device (LAPD) at UCLA to study the propagation of the shear Alfvén wave into two spatial nonuniformities: a parallel gradient in the background magnetic field, and a perpendicular gradient in both electron temperature and density. The waves are excited by modulating an electron current drawn to a disk antenna with a radius on the order of the electron skin-depth, d=c/wpe . In the first experiment, the wave is launched with frequency w equal to one- half the local ion-cyclotron frequency, wci and propagates along a slowly decreasing background field to where w=wci . The measured wavelength decreases in accord with WKB solutions of the dispersion relation including finite ion temperature. Wave damping is also observed, and the best agreement with theory requires the inclusion of electron dissipation. Using this best-fit model, theory is used to identify the damping contributions of both species: within one wavelength of the antenna w equals 0.94wci and 51% of the launched energy is dissipated by the electrons (equally by Landau damping and Coulomb collisions). Above 0.94wci , ion-cyclotron damping dominates. Within the next wavelength, w equals wci by which point the ions have absorbed 45% of the initial energy, and the electrons an additional 3%, for a total of 99% dissipated. The wave is also observed to develop an axial component, with the maximum ratio: B∥/B⊥~0.5 at w~0.85wci . The axial component is also studied with experiment and theory in a uniform magnetic field. In the second experiment, the wave is launched in the center of the plasma column where the Alfvén speed, vA is one-half the electron thermal speed, ve . The wave propagates radially outward to the point where vA=ve . Two deviations from the expected radial energy distribution in a uniform plasma are observed: a peak at the plasma edge near vA=ve which grows and decays within two wave periods of the respective turn on and turn off of the antenna; a

  7. PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

    SciTech Connect

    Russell, A. J. B.; Fletcher, L.

    2013-03-10

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

  8. Electron acceleration by inertial Alfven waves

    SciTech Connect

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when the transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.

  9. Dynamical Generation of Quasi-Stationary Alfvenic Double Layers and Charge Holes and Unified Theory of Quasi-Static and Alfvenic Auroral Arc Formation

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2015-12-01

    Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.

  10. Radiation from accelerated Alfven solitons in inhomogeneous plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.

    1990-01-01

    In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.

  11. Electromagnetic fluctuation spectrum associated with the drift Alfven-cyclotron instability

    SciTech Connect

    Rha, Kicheol; Ryu, Chang-Mo; Yoon, Peter H.

    2012-07-15

    The present paper investigates the electromagnetic fluctuation spectrum associated with the drift Alfven-cyclotron instability by means of a two-dimensional particle-in-cell simulation, which may be plausibly associated with a current disruption event. The current disruption event shows localized high-amplitude electromagnetic fluctuations. In recent theories, these fluctuation characteristics are shown to correspond to the drift Alfven-cyclotron instability. A simulation is carried out to clarify this instability. The simulation shows that the drift Alfven-cyclotron instabilities are excited in two frequency regimes, a relatively low frequency mode propagating in a quasi-perpendicular direction while the second high-frequency branch propagating in a predominantly parallel propagation direction, consistent with observations as well as with a recent theory.

  12. Kinetic Alfven eigenmodes in JET and DIII-D

    SciTech Connect

    Jaun, A.; Hellsten, T.; Heidbrink, W.W.; Carolipio, E.

    1996-12-31

    Kinetic effects are studied for global Alfven eigenmodes in realistic tokamak equilibria with finite aspect ratio and plasmas, comparing calculations from the full wave code PENN with experimental measurements. The kinetic plasma model is based on a Larmor radius expansion in toroidal geometry and takes into account the gradients in the equilibrium density and temperatures. It allows for a consistent description of the mode conversion to the kinetic Alfven wave (KAW) and the effect of diamagnetic drifts on electromagnetic waves. Comparisons axe first carried out for a JET discharge, showing that multiple peeks measured in the low frequency Alfven spectrum are the signature of kinetic Alfven eigenmodes (KAE) induced through coupling between a global ellipticity Alfven eigenmode (EAE) and the KAW. In general, series of modes appear in the proximity of global fluid modes, some with a regular spacing in frequency and a very weak Landau damping of {vert_bar}{gamma}/{omega}{vert_bar} {approx_equal} 0.0007. A kinetic analysis of a DIII-D discharge shows that TAE mode wavefields reach the plasma core through electromagnetic drift waves which propagate because of finite temperature gradients in the regions of small k{sub {parallel}}. They can lead to particle diffusion and may explain the large losses of beam ions observed during the TAE instabilities. Comparisons of frequency and eigenmode structure axe carried out for resistive and kinetic models, between the theoretical calculations using the PENN code and the experimental measurements from magnetic probes.

  13. Kinetic theory of turbulence for parallel propagation revisited: Formal results

    SciTech Connect

    Yoon, Peter H.

    2015-08-15

    In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis by considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.

  14. Uncertainty Propagation in Calibration of Parallel Kinematic Machines

    SciTech Connect

    JOKIEL JR.,BERNHARD; ZIERGERT,JOHN C.

    1999-11-02

    Over the last decade, multi-axis machine tools and robots based on parallel kinematic mechanisms (PKMs) have been developed and marketed worldwide. Positional accuracy in these machines is controlled by accurate knowledge of the kinematic parameters which consists of the joint center locations and distances between joint pairs. Since these machines tend to be rather large in size, the kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. Work recently completed by the University of Florida and Sandia National Laboratories has yielded a method for determining all of the kinematic parameters of an assembled parallel kinematic device. This paper contains a brief synopsis of the calibration method created, an error budget, an uncertainty analysis for the recovered kinematic parameters and the propagation of these uncertainties to the tool tip.

  15. Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing

    2013-07-15

    Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.

  16. Magnetic Helicity of Alfven Simple Waves

    NASA Technical Reports Server (NTRS)

    Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-01-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.

  17. Magnetic Helicity of Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-12-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase \\varphi=k0(z-λ t), where k0 is the wave number and λ is the group velocity of the wave, and (b) the generalized Barnes (1976) simple Alfvén wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.

  18. Do interplanetary Alfven waves cause auroral activity?

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron; Goldstein, Melvyn L.

    1990-01-01

    A recent theory holds that high-intensity, long-duration, continuous auroral activity (HILDCAA) is caused by interplanetary Alfven waves propagating outward from the sun. A survey of Alfvenic intervals in over a year of ISEE 3 data shows that while Alfvenic intervals often accompany HILDCAAs, the reverse is often not true. There are many Alfvenic intervals during which auroral activity (measured by high values of the AE index) is very low, as well as times of high auroral activity that are not highly Alfvenic. This analysis supports the common conclusion that large AE values are associated with a southward interplanetary field of sufficient strength and duration. This field configuration is independent of the presence of Alfven waves (whether solar generated or not) and is expected to occur at random intervals in the large-amplitude stochastic fluctuations in the solar wind.

  19. Formation of quasiparallel Alfven solitons

    NASA Technical Reports Server (NTRS)

    Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.

    1992-01-01

    The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.

  20. Kinetic Alfven waves and plasma transport at the magnetopause

    SciTech Connect

    Johnson, J.R.; Cheng, C.Z.

    1997-05-01

    Large amplitude compressional type waves, with frequencies ranging from 10--500 mHz, are nearly always found in the magnetosheath near the magnetopause where there are large gradients in density, pressure and magnetic field. As compressional waves propagation to the magnetopause, there gradients efficiently couple them with shear/kinetic Alfven waves near the Alfven field-line resonance location ({omega} = k{sub {parallel}} v{sub A}). The authors present a solution of the kinetic-MHD wave equations for this process using a realistic equilibrium profile including full ion Larmor radius effects and wave-particle resonance interactions for electrons and ions to model the dissipation. For northward IMF a KAW propagates backward to the magnetosheath. For southward IMF the wave remains in the magnetopause but can propagate through the k{sub {parallel}} = 0 location. The quasi-linear theory predicts that KAWs produce plasma transport with a diffusion coefficient D{sub {perpendicular}} {approximately} 10{sup 9} m{sup 2}/s and plasma convection on the order of 1 km/s. However, for southward IMF additional transport can occur because magnetic islands form at the k{sub {parallel}} = 0 location. Due to the broadband nature of the observed waves these islands can overlap leading to stochastic transport which is much larger than that due to quasilinear effects.

  1. Damping of long-wavelength kinetic alfven fluctuations: linear theory

    SciTech Connect

    Gary, S Peter; Borovsky, Joseph E

    2008-01-01

    The full electromagnetic linear dispersion equation for kinetic Alfven fluctuations in a homogeneous, isotropic, Maxwellian electron-proton plasma is solved numerically in the long wavelength limit. The solutions are summarized by an analytic expression for the damping rate of such modes at propagation sufficiently oblique to the background magnetic field B{sub o} which scales as k{sub {perpendicular}}{sup 2} k{sub {parallel}} where the subscripts denote directions relative to B{sub o}. This damping progressively (although not monotonically) increases with increasing electron {beta}, corresponding to four distinct damping regimes: nonresonant, electron Landau, proton Landau, and proton transit-time damping.

  2. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  3. Stress Wave Propagation Across a Rock Mass with Two Non-parallel Joints

    NASA Astrophysics Data System (ADS)

    Chai, S. B.; Li, J. C.; Zhang, Q. B.; Li, H. B.; Li, N. N.

    2016-10-01

    A rock mass includes a number of joints, which govern the mechanical behavior of the rock mass and greatly affect stress wave propagation. Generally, joints do not parallel with each other, resulting in multiple wave reflections between joints and complex wave propagation process in rock masses. The present study presents an approach to analyze stress wave propagation through a rock mass with two non-parallel joints when the angle between the two joints is <10°. For incident P-wave impinging on this kind of rock mass, multiple reflections take place between the two joints. Meanwhile, transmitted waves are generated and propagate successively away from the joints. The mathematical expressions for P-wave propagation across the two joints are established in time domain by analyzing the wave field in the rock mass. By comparing with the result from numerical simulation, the new approach is proved to be effective to analyze wave propagation across two non-parallel joints, where the influence of joint tips on wave propagation is neglected. Parametric studies show that the joint stiffness, joint angle and frequency of incident wave have different effects on transmission and reflection coefficients.

  4. Monte Carlo simulation of light propagation in skin tissue phantoms using a parallel computing method

    NASA Astrophysics Data System (ADS)

    Wu, Di M.; Zhao, S. S.; Lu, Jun Q.; Hu, Xin-Hua

    2000-06-01

    In Monte Carlo simulations of light propagating in biological tissues, photons propagating in the media are described as classic particles being scattered and absorbed randomly in the media, and their path are tracked individually. To obtain any statistically significant results, however, a large number of photons is needed in the simulations and the calculations are time consuming and sometime impossible with existing computing resource, especially when considering the inhomogeneous boundary conditions. To overcome this difficulty, we have implemented a parallel computing technique into our Monte Carlo simulations. And this moment is well justified due to the nature of the Monte Carlo simulation. Utilizing the PVM (Parallel Virtual Machine, a parallel computing software package), parallel codes in both C and Fortran have been developed on the massive parallel computer of Cray T3E and a local PC-network running Unix/Sun Solaris. Our results show that parallel computing can significantly reduce the running time and make efficient usage of low cost personal computers. In this report, we present a numerical study of light propagation in a slab phantom of skin tissue using the parallel computing technique.

  5. Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards

    NASA Astrophysics Data System (ADS)

    Paćko, P.; Bielak, T.; Spencer, A. B.; Staszewski, W. J.; Uhl, T.; Worden, K.

    2012-07-01

    This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering.

  6. On the dimensionally correct kinetic theory of turbulence for parallel propagation

    SciTech Connect

    Gaelzer, R. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Kim, Sunjung E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br

    2015-03-15

    Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectively emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.

  7. Monte Carlo simulations of converging laser beam propagating in turbid media with parallel computing

    NASA Astrophysics Data System (ADS)

    Wu, Di; Lu, Jun Q.; Hu, Xin H.; Zhao, S. S.

    1999-11-01

    Due to its flexibility and simplicity, Monte Carlo method is often used to study light propagation in turbid medium where the photons are treated like classic particles being scattered and absorbed randomly based on a radiative transfer theory. However, due to the need of large number of photons to produce statistically significance results, this type of calculations requires large computing resources. To overcome such difficulty, we implemented parallel computing technique into our Monte Carlo simulations. The algorithm is based on the fact that the classic particles are uncorrelated, and the trajectories of multiple photons can be tracked simultaneously. When a beam of focused light incident to the medium, the incident photons are divided into groups according to the available processes on a parallel machine and the calculations are carried out in parallel. Utilizing PVM (Parallel Virtual Machine, a parallel computing software), the parallel programs in both C and FORTRAN are developed on the massive parallel computer Cray T3E at the North Carolina Supercomputer Center and a local PC-cluster network running UNIX/Sun Solaris. The parallel performances of our codes have been excellent on both Cray T3E and the PC clusters. In this paper, we present results on a focusing laser beam propagating through a highly scattering and diluted solution of intralipid. The dependence of the spatial distribution of light near the focal point on the concentration of intralipid solution is studied and its significance is discussed.

  8. Nonlinear Landau damping and Alfven wave dissipation

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  9. Generation of kinetic Alfven waves by beam-plasma interaction in non-uniform plasma

    SciTech Connect

    Hong, M. H.; Lin, Y.; Wang, X. Y.

    2012-07-15

    This work reports a novel mechanism of the generation of kinetic Alfven waves (KAWs) using a two-dimensional hybrid simulation: the KAWs are generated by ion beam-plasma interaction in a non-uniform plasma boundary layer, in which the bulk velocity of the ion beam is assumed to be parallel to the ambient magnetic field. As a result of the beam-plasma interaction, strong shear Alfven waves as well as fast mode compressional waves are first generated on the side of the boundary layer with a high density and thus a low Alfven speed, propagating along the background magnetic field. Later, Alfven waves also form inside the boundary layer with a continuous spectrum. As the perpendicular wave number k{sub Up-Tack} of these unstably excited waves increases with time, large-amplitude, short wavelength KAWs with k{sub Up-Tack } Much-Greater-Than k{sub ||} clearly form in the boundary layer. The physics for the generation of KAWs is discussed.

  10. Cusp Dynamics-Particle Acceleration by Alfven Waves

    NASA Technical Reports Server (NTRS)

    Ergun, Robert E.; Parker, Scott A.

    2005-01-01

    Successful results were obtained from this research project. This investigation answered and/or made progresses on each of the four important questions that were proposed: (1) How do Alfven waves propagate on dayside open field lines? (2) How are precipitating electrons influenced by propagating Alfven waves? (3) How are various cusp electron distributions generated? (4) How are Alfven waves modified by electrons? During the first year of this investigation, the input parameters, such as density and temperature altitude profiles, of the gyrofluid code on the cusp field lines were constructed based on 3-point satellite observations. The initial gyrofluid result was presented at the GEM meeting by Dr. Samuel Jones.

  11. Riemann solvers and Alfven waves in black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip

    2016-09-01

    In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.

  12. NUMERICAL SIMULATIONS OF CONVERSION TO ALFVEN WAVES IN SUNSPOTS

    SciTech Connect

    Khomenko, E.; Cally, P. S. E-mail: paul.cally@monash.edu

    2012-02-10

    We study the conversion of fast magnetoacoustic waves to Alfven waves by means of 2.5D numerical simulations in a sunspot-like magnetic configuration. A fast, essentially acoustic, wave of a given frequency and wave number is generated below the surface and propagates upward through the Alfven/acoustic equipartition layer where it splits into upgoing slow (acoustic) and fast (magnetic) waves. The fast wave quickly reflects off the steep Alfven speed gradient, but around and above this reflection height it partially converts to Alfven waves, depending on the local relative inclinations of the background magnetic field and the wavevector. To measure the efficiency of this conversion to Alfven waves we calculate acoustic and magnetic energy fluxes. The particular amplitude and phase relations between the magnetic field and velocity oscillations help us to demonstrate that the waves produced are indeed Alfven waves. We find that the conversion to Alfven waves is particularly important for strongly inclined fields like those existing in sunspot penumbrae. Equally important is the magnetic field orientation with respect to the vertical plane of wave propagation, which we refer to as 'field azimuth'. For a field azimuth less than 90 Degree-Sign the generated Alfven waves continue upward, but above 90 Degree-Sign downgoing Alfven waves are preferentially produced. This yields negative Alfven energy flux for azimuths between 90 Degree-Sign and 180 Degree-Sign . Alfven energy fluxes may be comparable to or exceed acoustic fluxes, depending upon geometry, though computational exigencies limit their magnitude in our simulations.

  13. Instabilities of low frequency, parallel propagating electromagnetic waves in the earth's foreshock region

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.; Edmiston, J. P.; Frank, L. A.

    1981-01-01

    An instability analysis is presented for parallel and antiparallel propagating electromagnetic waves generated by reflected and diffuse suprathermal ions upstream of the earth's bow shock. Calculations are performed on the basis of upstream particle observations made by the ISEE 1 Quadrispheric Lepedea instrument and low-energy electron measurements made by the ISEE 1 electron spectrometer for a single period. The electromagnetic dispersion relation is computed and the unstable modes and growth times of the fastest growing waves are determined. It is found that the reflected ions destabilize the plasma most strongly at a wave frequency 0.1 that of the ion gyrofrequency by a resonant ion beam instability for waves propagating upstream and by a nonresonant firehose-like instability for waves propagating downstream. The diffuse ions also destabilize the plasma most strongly at the same frequency by means of resonant instabilities of both right- and left-hand polarized waves propagating away from the bow shock.

  14. Ducted kinetic Alfven waves in plasma with steep density gradients

    SciTech Connect

    Houshmandyar, Saeid; Scime, Earl E.

    2011-11-15

    Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

  15. Lunar electromagnetic scattering. 1: Propagation parallel to the diamagnetic cavity axis

    NASA Technical Reports Server (NTRS)

    Schwartz, K.; Schubert, G.

    1972-01-01

    An analytic theory is developed for the time dependent magnetic fields inside the Moon and the diamagnetic cavity when the interplanetary electromagnetic field fluctuation propagates parallel to the cavity axis. The Moon model has an electrical conductivity which is an arbitrary function of radius. The lunar cavity is modelled by a nonconducting cylinder extending infinitely far downstream. For frequencies less than about 50 Hz, the cavity is a cylindrical waveguide below cutoff. Thus, cavity field perturbations due to the Moon do not propagate down the cavity, but are instead attenuated with distance downstream from the Moon.

  16. Macroscale particle simulation of kinetic Alfven waves

    NASA Technical Reports Server (NTRS)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, Akira

    1987-01-01

    Two types of simulations of the kinetic Alfven wave are presented using a macroscale particle simulation code (Tanaka and Sato, 1986) which enables individual particle dynamics to be followed in the MHD scales. In this code, low frequency electromagnetic fields are solved by eliminating high frequency oscillations such as the light modes, and the scalar potential electric field is solved by eliminating Lagrangian oscillations. The dependences of the frequency and the Landau damping on the perpendicular wavenumber were studied, and good agreement was found between simulation and theoretical predictions. Some fundamental nonlinear interactions of the kinetic Alfven wave with the particles (parallel acceleration of the electrons) were also noted.

  17. Formation of electron kappa distributions due to interactions with parallel propagating whistler waves

    SciTech Connect

    Tao, X. Lu, Q.

    2014-02-15

    In space plasmas, charged particles are frequently observed to possess a high-energy tail, which is often modeled by a kappa-type distribution function. In this work, the formation of the electron kappa distribution in generation of parallel propagating whistler waves is investigated using fully nonlinear particle-in-cell (PIC) simulations. A previous research concluded that the bi-Maxwellian character of electron distributions is preserved in PIC simulations. We now demonstrate that for interactions between electrons and parallel propagating whistler waves, a non-Maxwellian high-energy tail can be formed, and a kappa distribution can be used to fit the electron distribution in time-asymptotic limit. The κ-parameter is found to decrease with increasing initial temperature anisotropy or decreasing ratio of electron plasma frequency to cyclotron frequency. The results might be helpful to understanding the origin of electron kappa distributions observed in space plasmas.

  18. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    SciTech Connect

    Kim, S.

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  19. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  20. Stochastic heating and acceleration of minor ions by turbulent Alfven waves

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, B.; Yoon, P. H.; Wu, C. S.

    2011-12-01

    The heating and acceleration of ions in the solar corona and the solar wind is a longstanding topic in solar-terrestrial physics. SOHO observations show that minor heavy ions have higher perpendicular temperature anisotropy and their outflow velocities are significantly higher than that of protons in the solar corona. It is also known that heavy ions, with mass-proportional temperatures, flow faster than the protons by approximately the local Alfven speed in the fast solar wind. The present work addresses the stochastic heating of minor ions by obliquely-propagating low-frequency Alfven waves. An important characteristic of the stochastic heating is unearthed by means of test particle simulation. That is, when the wave amplitude exceeds some threshold condition for stochasticity, the quasi-asymptotic kinetic temperature associated with the minor ions becomes independent of the wave amplitude and proportional to the ion mass, and it always approaches the value dictated by the Alfven speed, to wit, Tkin≈mivA2/2. During the course of the heating process the minor ions gain a net average parallel speed, v||˜vA in the laboratory frame. The physical mechanism for the asymptotically independent heating is the pickup process that involves the formation of spherical shell velocity distribution function via the pitch-angle scattering. These results are generally consistent with observational properties of minor ions. In the corona, minor ions may be not fully picked up and just a partial shell velocity distribution is formed. Thus, the minor ion temperature is highly anisotropic, and flow faster than protons by a fraction of the local Alfven speed. On the other hand, in the interplanetary space, the fully spherical shell velocity distribution may have been nearly formed, so the minor ion temperature is proportional to their mass, and flow faster than protons by about the local Alfven speed.

  1. Kinetic theory of turbulence for parallel propagation revisited: Low-to-intermediate frequency regime

    SciTech Connect

    Yoon, Peter H.

    2015-09-15

    A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.

  2. Nonlinear evolution of Alfven waves in a finite beta plasma

    SciTech Connect

    Som, B.K. ); Dasgupta, B.; Patel, V.L. ); Gupta, M.R. )

    1989-12-01

    A general form of the derivative nonlinear Schroedinger (DNLS) equation, describing the nonlinear evolution of Alfven waves propagating parallel to the magnetic field, is derived by using two-fluid equations with electron and ion pressure tensors obtained from Braginskii (in {ital Reviews} {ital of} {ital Plasma Physics} (Consultants Bureau, New York, 1965), Vol. 1, p. 218). This equation is a mixed version of the nonlinear Schroedinger (NLS) equation and the DNLS, as it contains an additional cubic nonlinear term that is of the same order as the derivative of the nonlinear terms, a term containing the product of a quadratic term, and a first-order derivative. It incorporates the effects of finite beta, which is an important characteristic of space and laboratory plasmas.

  3. Emission of radiation induced by pervading Alfven waves

    SciTech Connect

    Zhao, G. Q.; Wu, C. S.

    2013-03-15

    It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.

  4. Nonlinear standing Alfven wave current system at Io: Theory

    SciTech Connect

    Neubauer, F.M.

    1980-03-01

    We present a nonlinear analytical model of the Alfven current tubes continuing the currents through Io (or rather its ionosphere) generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. We thereby extend the linear work by Drell et al. (1965) to the fully nonlinear, sub-Alfvenic situation also including flow which is not perpendicular to the background magnetic field. The following principal results have been obtained: (1) The portion of the currents feeding Io is aligned with the Alfven characteristics at an angle theta/sub A/ is the Alfven Mach number. (2) The Alfven tubes act like an external conductance ..sigma../sub A/=1/(..mu../sub 0/V/sub A/(1+M/sub A//sup 2/+2M/sub A/ sin theta)/sup 1/2/ where V/sub A/ is the Alfven wave propagation. Hence the Jovian ionospheric conductivity is not necessary for current closure. (3) In addition, the Alfven tubes may be reflected from either the torus boundary or the Jovian ionosphere. The efficiency of the resulting interaction with these boundaries varies with Io position. The interaction is particularly strong at extreme magnetic latitudes, thereby suggesting a mechanism for the Io control of decametric emissions. (4) The reflected Alfven waves may heat both the torus plasma and the Jovian ionosphere as well as produce increased diffusion of high-energy particles in the torus. (5) From the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites for several reasons: these include its ionosphere arising from ionized volcanic gases, a high external Alfvenic conductance ..sigma../sub A/, and a high corotational voltage in addition to the interaction phenomenon with a boundary. (6) We find that Amalthea is probably strongly coupled to Jupiter's ionosphere while the outer Galilean satellites may occasionally experience super-Alfvenic conditions.

  5. The many faces of shear Alfven waves

    SciTech Connect

    Gekelman, W.; Vincena, S.; Van Compernolle, B.; Morales, G. J.; Maggs, J. E.; Pribyl, P.; Carter, T. A.

    2011-05-15

    One of the fundamental waves in magnetized plasmas is the shear Alfven wave. This wave is responsible for rearranging current systems and, in fact all low frequency currents in magnetized plasmas are shear waves. It has become apparent that Alfven waves are important in a wide variety of physical environments. Shear waves of various forms have been a topic of experimental research for more than fifteen years in the large plasma device (LAPD) at UCLA. The waves were first studied in both the kinetic and inertial regimes when excited by fluctuating currents with transverse dimension on the order of the collisionless skin depth. Theory and experiment on wave propagation in these regimes is presented, and the morphology of the wave is illustrated to be dependent on the generation mechanism. Three-dimensional currents associated with the waves have been mapped. The ion motion, which closes the current across the magnetic field, has been studied using laser induced fluorescence. The wave propagation in inhomogeneous magnetic fields and density gradients is presented as well as effects of collisions and reflections from boundaries. Reflections may result in Alfvenic field line resonances and in the right conditions maser action. The waves occur spontaneously on temperature and density gradients as hybrids with drift waves. These have been seen to affect cross-field heat and plasma transport. Although the waves are easily launched with antennas, they may also be generated by secondary processes, such as Cherenkov radiation. This is the case when intense shear Alfven waves in a background magnetoplasma are produced by an exploding laser-produced plasma. Time varying magnetic flux ropes can be considered to be low frequency shear waves. Studies of the interaction of multiple ropes and the link between magnetic field line reconnection and rope dynamics are revealed. This manuscript gives us an overview of the major results from these experiments and provides a modern

  6. Steepening of parallel propagating hydromagnetic waves into magnetic pulsations - A simulation study

    NASA Technical Reports Server (NTRS)

    Akimoto, K.; Winske, D.; Onsager, T. G.; Thomsen, M. F.; Gary, S. P.

    1991-01-01

    The steepening mechanism of parallel propagating low-frequency MHD-like waves observed upstream of the earth's quasi-parallel bow shock has been investigated by means of electromagnetic hybrid simulations. It is shown that an ion beam through the resonant electromagnetic ion/ion instability excites large-amplitude waves, which consequently pitch angle scatter, decelerate, and eventually magnetically trap beam ions in regions where the wave amplitudes are largest. As a result, the beam ions become bunched in both space and gyrophase. As these higher-density, nongyrotropic beam segments are formed, the hydromagnetic waves rapidly steepen, resulting in magnetic pulsations, with properties generally in agreement with observations. This steepening process operates on the scale of the linear growth time of the resonant ion/ion instability. Many of the pulsations generated by this mechanism are left-hand polarized in the spacecraft frame.

  7. Characteristics of Short Wavelength Compressional Alfven Eigenmodes

    SciTech Connect

    Fredrickson, E D; Podesta, M; Bortolon, A; Crocker, N A; Gerhardt, S P; Bell, R E; Diallo, A; LeBlanc, B; Levinton, F M

    2012-12-19

    Most Alfvenic activity in the frequency range between Toroidal Alfven Eigenmodes and roughly one half of the ion cyclotron frequency on NSTX [M. Ono, et al., Nucl. Fusion 40 (2000) 557], that is, approximately 0.3 MHz up to ≈ 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n=1 kink-like mode. In this paper we present measurements of the spectrum of these high frequency CAE (hfCAE), and their mode structure. We compare those measurements to a simple model of CAE and present evidence of a curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  8. Systematic effects of Alfv'en waves on whistler mode transmission

    NASA Astrophysics Data System (ADS)

    Skiff, Fred; Schroeder, J.; Drake, J. D.; Howes, G. G.; Kletzing, C. A.; Carter, T. A.; Dorfman, S.; Auerbach, D.

    2012-10-01

    We study the systematic effects on whistler mode transmission measurements caused by shear Alfv'en waves in the LAPD plasma device with the goal of detecting the plasma dielectric response and electron acceleration along the magnetic field. Alfv'en waves with δB/B˜ 10-5 are generated using an arbitrary spatial waveform antenna adjusted to produce plane waves in the central region of the plasma with a perpendicular wavelength comparable to the collisionless skin depth. In the overdense (φp/φc˜ 2-3) LAPD plasma with B=1800 G, the whistler mode is the only wave propagating parallel to the magnetic field just below the electron cyclotron frequency. Whistler mode absorption has previously been used successfully to measure the electron temperature, but here we observe systematic changes to the whistler transmission signal caused by the Alfv'en wave. We will discuss the problems of separating out the effect of changes in the plasma density (including ducting) with measurements of the perturbed electron velocity distribution.

  9. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    SciTech Connect

    Desjouy, C. Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  10. Particle simulation of Alfven waves excited at a boundary

    SciTech Connect

    Tsung, F.S.; Tonge, J.W.; Morales, G.J.

    2005-01-01

    A particle-in-cell (PIC) code has been developed that is capable of describing the propagation of compressional and shear Alfven waves excited from a boundary. The code is used to elucidate the properties of Alfven wave cones radiated from sources having transverse scale comparable to the electron skin depth. Good agreement between theoretical predictions and simulation results is found over a wide range of frequencies. An investigation has been undertaken of the effect of hot ions on the Alfven wave cones. The PIC simulations demonstrate that as the ion temperature is increased there is a reversal in the cone angle. The reversal implies that there is a cross-field focusing of the shear Alfven waves. This is a feature which is presently being considered in studies of field-line resonances in the earth's magnetic field. The PIC results also illustrate the damping of shear modes due to the Doppler-shifted cyclotron resonance with hot ions.

  11. Propagation In Matter Of Currents Of Relativistic Electrons Beyond The Alfven Limit, Produced In Ultra-High-Intensity Short-Pulse Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Batani, D.; Baton, S. D.; Manclossi, M.; Amiranoff, F.; Koenig, M.; Santos, J. J.; Martinolli, E.; Gremillet, L.; Popescu, H.; Antonicci, A.; Rousseaux, C.; Rabec Le Gloahec, M.; Hall, T.; Malka, V.; Cowan, T. E.; Stephens, R.; Key, M.; King, J.; Freeman, R.

    2004-12-01

    This paper reports the results of several experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic currents in matter from ultra-high-intensity laser pulse interaction with target. We present our results according to the type of diagnostics used in the experiments: 1) Kα emission and Kα imaging, 2) study of target rear side emission in the visible region, 3) time resolved optical shadowgraphy.

  12. Conventional and nonconventional global Alfven eigenmodes in stellarators

    SciTech Connect

    Kolesnichenko, Ya. I.; Lutsenko, V. V.; Weller, A.; Werner, A.; Yakovenko, Yu. V.; Geiger, J.; Fesenyuk, O. P.

    2007-10-15

    Conditions of the existence of the Global Alfven Eigenmodes (GAE) and Nonconventional Global Alfven Eigenmodes (NGAE) predicted for stellarators by Ya. I. Kolesnichenko et al. [Phys. Rev. Lett. 94, 165004 (2005)] have been obtained. It is found that they depend on the nature of the rotational transform and that conditions for NGAE can be most easily satisfied in currentless stellarators. It is shown that the plasma compressibility may play an important role for the modes with the frequency about or less than that of the Toroidicity-induced Alfven Eigenmodes. It is found that features of the Alfven continuum in the vicinity of the k{sub parallel}=0 radius (k{sub parallel}) is the longitudinal wave number) can be very different, depending on a parameter which we refer to as 'the sound parameter'. Specific calculations modeling low-frequency Alfven instabilities in the stellarator Wendelstein 7-AS [A. Weller et al., Phys. Plasmas 8, 931 (2001)] are carried out, which are in reasonable agreement with the observations. It is emphasized that experimental data on low-frequency Alfvenic activity can be used for the reconstruction of the profile of the rotational transform. The mentioned results are obtained with the use of the equations derived in this paper for the GAE/NGAE modes and of the codes COBRAS and BOA-fe.

  13. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  14. The transmission of Alfven waves through the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Wright, A. N.; Schwartz, S. J.

    1989-04-01

    The nature of Alfven wave propagation through the Io plasma torus was investigated using a one-dimensional model with uniform magnetic field and an exponential density decrease to a constant value. The solution was interpreted in terms of a wave that is incident upon the torus, a reflected wave, and a wave that is transmitted through the torus. The results obtained indicate that Io's Alfven waves may not propagate completely through the plasma torus, and, thus, the WKB theory and ray tracing may not provide meaningful estimates of the energy transport.

  15. Enhanced damping of Alfven waves in the solar corona by a turbulent wave spectrum

    NASA Technical Reports Server (NTRS)

    Kleva, Robert G.; Drake, J. F.

    1992-01-01

    The effect of a background spectrum of Alfven waves on the rate of dissipation of a test shear Alfven wave is numerically calculated. The results demonstrate that as the classical resistivity eta and classical viscosity mu become small, the damping rate of the Alfven wave remains large and depends only on the amplitude for the scalar potential of the wave spectrum and the wavenumber of the Alfven wave. The damping rate is virtually independent of eta and mu. The wave spectrum need not be turbulent or stochastic to affect the damping rate. The dissipation rate is nonlinear enhanced by nonstochastic spectra as well as by stochastic spectra if two conditions are met. First, the perpendicular magnetic field associated with Alfven wave spectrum must exceed a certain collision-frequency threshold and second, for nonstochastic spectra only, the magnetic field must exceed a threshold proportional to the parallel wavenumber of the shear Alfven wave. These conditions can be easily satisfied in the solar corona.

  16. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Goldstein, M. L.

    1994-01-01

    The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.

  17. Conversion of compressional Alfven waves into ion-cyclotron waves in inhomogeneous magnetic fields

    SciTech Connect

    Amagishi, Y.; Tsushima, A.; Inutake, M.

    1982-04-26

    Axisymmetric compressional Alfven (fast) waves, which propagate into a region of an increasing magnetic field in a cylindrical plasma, are observed to be converted into ion-cyclotron (slow) waves via ion-cyclotron resonances.

  18. COUPLED ALFVEN AND KINK OSCILLATIONS IN CORONAL LOOPS

    SciTech Connect

    Pascoe, D. J.; Wright, A. N.; De Moortel, I.

    2010-03-10

    Observations have revealed ubiquitous transverse velocity perturbation waves propagating in the solar corona. However, there is ongoing discussion regarding their interpretation as kink or Alfven waves. To investigate the nature of transverse waves propagating in the solar corona and their potential for use as a coronal diagnostic in MHD seismology, we perform three-dimensional numerical simulations of footpoint-driven transverse waves propagating in a low beta plasma. We consider the cases of both a uniform medium and one with loop-like density structure and perform a parametric study for our structuring parameters. When density structuring is present, resonant absorption in inhomogeneous layers leads to the coupling of the kink mode to the Alfven mode. The decay of the propagating kink wave as energy is transferred to the local Alfven mode is in good agreement with a modified interpretation of the analysis of Ruderman and Roberts for standing kink modes. Numerical simulations support the most general interpretation of the observed loop oscillations as a coupling of the kink and Alfven modes. This coupling may account for the observed predominance of outward wave power in longer coronal loops since the observed damping length is comparable to our estimate based on an assumption of resonant absorption as the damping mechanism.

  19. Remarks on the parallel propagation of small-amplitude dispersive Alfvénic waves

    NASA Astrophysics Data System (ADS)

    Champeaux, S.; Laveder, D.; Passot, T.; Sulem, P. L.

    The envelope formalism for the description of a small-amplitude parallel-propagating Alfvén wave train is tested against direct numerical simulations of the Hall-MHD equations in one space dimension where kinetic effects are neglected. It turns out that the magnetosonic-wave dynamics departs from the adiabatic approximation not only near the resonance between the speed of sound and the Alfvén wave group velocity, but also when the speed of sound lies between the group and phase velocities of the Alfvén wave. The modulational instability then does not anymore affect asymptotically large scales and strong nonlinear effects can develop even in the absence of the decay instability. When the Hall-MHD equations are considered in the long-wavelength limit, the weakly nonlinear dynamics is accurately reproduced by the derivative nonlinear Schrödinger equation on the expected time scale, provided no decay instabilities are present. The stronger nonlinear regime which develops at later time is captured by including the coupling to the nonlinear dynamics of the magnetosonic waves.

  20. Measurement and Characterization of Terahertz Radiation Propagating Through a Parallel Plate Waveguide

    NASA Astrophysics Data System (ADS)

    Wachsmuth, Matthew George

    As the amount of study into the terahertz (THz) region of the electromagnetic spectrum steadily increases, the parallel plate waveguide has emerged as a simple and effective fixture to perform many experiments. The ability to concentrate THz radiation into a small area or volume enables us to analyze smaller samples and perform more repeatable measurements, which is essential for future research. While the fundamental physics of PPW transmission are understood mathematically, the practical knowledge of building such a fixture for the THz domain and taking measurements on it with a real system needs to be built up through experience. In this thesis, multiple PPW configurations are built and tested. These include waveguides of different lengths and opening heights, using lenses and antennas to focus and collect radiation from the input and output, and different amounts of polish on the waveguide surface. A basic resonator structure is also built and measured as a proof of concept for future research. The two most useful propagation modes through the waveguide, the lowest order transverse magnetic (TEM) and transverse electric (TE) modes, were characterized on all of the setups. Additionally, a flexible fixture was designed and measured which will allow future work in the THz field to be much more reliable and repeatable.

  1. On reflection of Alfven waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F.

    1993-01-01

    We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7) cm(exp -3). In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the

  2. Reflection of Alfven waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L.

    1994-01-01

    We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare Wentzel-Kramers-Brillouin (WKB) and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer and that non-WKB Alfven waves are no more effective in accelerating the solar wind than in WKB waves. There are several recently published papers that seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purposse of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinimann and Olbert, namely, calculate the efficieny of Alfven wave reflection by using the reflection coefficient and identfy the region of strongest wave reflection in different wind models. To achieve these goals, we investigate the influence of temperature, electron desity distribution, wind velocity, and magnetic field strength on te waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 10(exp 6) K and with the base densities lower than 7 x 10(exp 7)/cu cm. In these models as well as in the models with lower temperatures and higher densities Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective

  3. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1994-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.

  4. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1995-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.

  5. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    NASA Astrophysics Data System (ADS)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  6. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    SciTech Connect

    Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  7. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  8. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  9. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  10. Drift-Kinetic Alfven Waves Observed near a Reconnection X Line in the Earth's Magnetopause

    SciTech Connect

    Chaston, C.C.; Phan, T.D.; Bonnell, J.W.; Mozer, F.S.; Acuna, M.; Goldstein, M.L.; Balogh, A.; Andre, M.; Reme, H.; Fazakerley, A.

    2005-08-05

    We identify drift-kinetic Alfven waves in the vicinity of a reconnection X line on the Earth's magnetopause. The dispersive properties of these waves have been determined using wavelet interferometric techniques applied to multipoint observations from the Cluster spacecraft. Comparison of the observed wave dispersion with that expected for drift-kinetic Alfven waves shows close agreement. The waves propagate outwards from the X line suggesting that reconnection is a kinetic Alfven wave source. Energetic O{sup +} ions observed in these waves indicate that reconnection is a driver of auroral ion outflow.

  11. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells.

    PubMed

    Tsukamoto, Akira; Hayashida, Yasunori; Furukawa, Katsuko S; Ushida, Takashi

    2010-03-01

    Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.

  12. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  13. Effects of propagation parallel to the magnetic field on the type 1 electrojet irregularity instability

    NASA Technical Reports Server (NTRS)

    Lee, K.; Kennel, C. F.

    1972-01-01

    A simple analysis is presented which indicates that Type 1 irregularities which have a slight component of propagation along the magnetic field may be more unstable than those which propagate across the field. It was found that significant irregularity amplitudes may occur at the northern or southern extremities of the equatorial electrojet from those modes with large north-south group velocity, and they could significantly change our understanding of nonlinear solutions of the electrojet instability.

  14. THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF FAST-TO-ALFVEN CONVERSION IN SUNSPOTS

    SciTech Connect

    Felipe, T.

    2012-10-20

    The conversion of fast waves to the Alfven mode in a realistic sunspot atmosphere is studied through three-dimensional numerical simulations. An upward propagating fast acoustic wave is excited in the high-{beta} region of the model. The new wave modes generated at the conversion layer are analyzed from the projections of the velocity and magnetic field in their characteristic directions, and the computation of their wave energy and fluxes. The analysis reveals that the maximum efficiency of the conversion to the slow mode is obtained for inclinations of 25 Degree-Sign and low azimuths, while the Alfven wave conversions peak at high inclinations and azimuths between 50 Degree-Sign and 120 Degree-Sign . Downward propagating Alfven waves appear at the regions of the sunspot where the orientation of the magnetic field is in the direction opposite to the wave propagation, since at these locations the Alfven wave couples better with the downgoing fast magnetic wave which is reflected due to the gradients of the Alfven speed. The simulations show that the Alfven energy at the chromosphere is comparable to the acoustic energy of the slow mode, being even higher at high inclined magnetic fields.

  15. Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material

    NASA Astrophysics Data System (ADS)

    Burhan, Zamir; Rashid, Ali

    2011-01-01

    A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.

  16. Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method

    NASA Astrophysics Data System (ADS)

    Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi

    2015-06-01

    We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.

  17. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the

  18. Toroidal Alfven wave stability in ignited tokamaks

    SciTech Connect

    Cheng, C.Z.; Fu, G.Y.; Van Dam, J.W.

    1989-01-01

    The effects of fusion-product alpha particles on the stability of global-type shear Alfven waves in an ignited tokamak plasma are investigated in toroidal geometry. Finite toroidicity can lead to stabilization of the global Alfven eigenmodes, but it induces a new global shear Alfven eigenmodes, which is strongly destabilized via transit resonance with alpha particles. 8 refs., 2 figs.

  19. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations

    NASA Technical Reports Server (NTRS)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.

    2014-01-01

    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  20. Non-linear modulation of short wavelength compressional Alfven eigenmodes

    SciTech Connect

    Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.

    2013-04-15

    Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  1. BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MAGNETOHYDRODYNAMIC PLASMA

    SciTech Connect

    Cally, Paul S.; Hansen, Shelley C. E-mail: shelley.hansen@monash.edu

    2011-09-10

    Alfven waves may be generated via mode conversion from fast magnetoacoustic waves near their reflection level in the solar atmosphere, with implications both for coronal oscillations and for active region helioseismology. In active regions this reflection typically occurs high enough that the Alfven speed a greatly exceeds the sound speed c, well above the a = c level where the fast and slow modes interact. In order to focus on the fundamental characteristics of fast/Alfven conversion, stripped of unnecessary detail, it is therefore useful to freeze out the slow mode by adopting the gravitationally stratified cold magnetohydrodynamic model c {yields} 0. This provides a benchmark for fast-to-Alfven mode conversion in more complex atmospheres. Assuming a uniform inclined magnetic field and an exponential Alfven speed profile with density scale height h, the Alfven conversion coefficient depends on three variables only: the dimensionless transverse-to-the-stratification wavenumber {kappa} = kh, the magnetic field inclination from the stratification direction {theta}, and the polarization angle {phi} of the wavevector relative to the plane containing the stratification and magnetic field directions. We present an extensive exploration of mode conversion in this parameter space and conclude that near-total conversion to outward-propagating Alfven waves typically occurs for small {theta} and large {phi} (80{sup 0}-90{sup 0}), though it is absent entirely when {theta} is exactly zero (vertical field). For wavenumbers of helioseismic interest, the conversion region is broad enough to encompass the whole chromosphere.

  2. Nonlinear, dispersive, elliptically polarized Alfven wavaes

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.

    1988-01-01

    The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.

  3. Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes

    SciTech Connect

    Kubiznak, David; Frolov, Valeri P.; Connell, Patrick; Krtous, Pavel

    2009-01-15

    In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along timelike (spacelike) geodesics in a spacetime admitting a nondegenerate principal conformal Killing-Yano 2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-form F obtained as a projection of h along the geodesic trajectory. In this paper we demonstrate that, although slightly modified, a similar construction is possible also in the case of null geodesics. In particular, we explicitly construct the parallel-transported frames along null geodesics in D=4, 5, 6 Kerr-NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor. Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the 4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.

  4. Surface/interface effects on the effective propagation constants of coherent waves in composites with random parallel nanofibers.

    PubMed

    Kong, Zhi; Wei, Peijun; Jiao, Fengyu

    2016-07-01

    The effective propagation constants of elastic waves in an inhomogeneous medium with randomly distributed parallel cylindrical nanofibers are studied. First, the surface energy theory proposed by Huang and Wang (Handbook of Micromechanics and Nanomechanics, 2013) is used to derive the nontraditional boundary conditions on the surfaces of the nanoholes and the interfaces between the nanofibers and the host. Then, the scattering matrix of individual scatterer (cylindrical hole or nanofiber) is derived from the nontraditional boundary condition. The total wave field is obtained by considering the multiple scattering processes among the dispersive scatterers. The configuration average of the total wave field results in the coherent waves or the averaged waves. By using the corrected Linton-Martin formula, the effective propagation constants (effective speed and effective attenuation) of the coherent waves are estimated. The in-plane waves (P and SV waves) and the anti-plane waves (SH wave) are considered, respectively, and the numerical results are shown graphically. Apart from the effects of surface elasticity, the effects of inertia of surface/interface and the effects of residual surface tension (which are often ignored in the previous literature) are also considered. Moreover, the influences of the nonsymmetric parts of in-plane surface stress and the out-of-plane parts of the surface stress are both discussed first based on the numerical examples. These investigations show the underestimation and overestimation of effective propagation constants caused by various simplifications.

  5. Surface/interface effects on the effective propagation constants of coherent waves in composites with random parallel nanofibers.

    PubMed

    Kong, Zhi; Wei, Peijun; Jiao, Fengyu

    2016-07-01

    The effective propagation constants of elastic waves in an inhomogeneous medium with randomly distributed parallel cylindrical nanofibers are studied. First, the surface energy theory proposed by Huang and Wang (Handbook of Micromechanics and Nanomechanics, 2013) is used to derive the nontraditional boundary conditions on the surfaces of the nanoholes and the interfaces between the nanofibers and the host. Then, the scattering matrix of individual scatterer (cylindrical hole or nanofiber) is derived from the nontraditional boundary condition. The total wave field is obtained by considering the multiple scattering processes among the dispersive scatterers. The configuration average of the total wave field results in the coherent waves or the averaged waves. By using the corrected Linton-Martin formula, the effective propagation constants (effective speed and effective attenuation) of the coherent waves are estimated. The in-plane waves (P and SV waves) and the anti-plane waves (SH wave) are considered, respectively, and the numerical results are shown graphically. Apart from the effects of surface elasticity, the effects of inertia of surface/interface and the effects of residual surface tension (which are often ignored in the previous literature) are also considered. Moreover, the influences of the nonsymmetric parts of in-plane surface stress and the out-of-plane parts of the surface stress are both discussed first based on the numerical examples. These investigations show the underestimation and overestimation of effective propagation constants caused by various simplifications. PMID:27475172

  6. Magnetohydrodynamic plasma instability driven by Alfven waves excited by cosmic rays

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Webb, G. M.

    1984-04-01

    Hydrodynamical equations describing the mutual interaction of cosmic rays, thermal plasma, magnetic field, and Alfven waves scattering the cosmic rays used in cosmic ray shock acceleration theory are analyzed for long-wavelength linear compressible instabilities. It is shown that the backward propagating slow magnetoacoustic mode is driven convectively unstable by the wave pressure of self-excited Alfven waves. The marginal stability curve is derived and the stabilizing effects of a preexisting wave field and propagation oblique to the magnetic field are discussed along with the dependence of the growth rates of the instability on the various parameters. A similar analysis is performed for a plasma which does not behave adiabatically, being dissipatively heated by the self-excited Alfven field. This system is found to be unstale to compressions associated with both backward and forward propagating slow magnetoacoustic waves.

  7. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  8. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    PubMed

    García-Grajales, Julián A; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  9. The propagation of the shock wave from a strong explosion in a plane-parallel stratified medium: the Kompaneets approximation

    NASA Astrophysics Data System (ADS)

    Olano, C. A.

    2009-11-01

    Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced

  10. Weakening of magnetohydrodynamic interchange instabilities by Alfven waves

    SciTech Connect

    Benilov, E. S.; Hassam, A. B.

    2008-02-15

    Alfven waves, made to propagate along an ambient magnetic field and polarized transverse to a gravitational field g, with wave amplitude stratified along g, are shown to reduce the growth rate of interchange instability by increasing the effective inertia by a factor of 1+(B{sub y}{sup '}/B{sub z}k{sub z}){sup 2}, where B{sub z} is the ambient magnetic field, k{sub z} is the wavenumber, and B{sub y}{sup '} is the wave amplitude shear. Appropriately placed Alfven wave power could thus be used to enhance the stability of interchange and ballooning modes in tokamaks and other interchange-limited magnetically confined plasmas.

  11. The interaction of Io's Alfven waves with the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Wright, A. N.

    1987-09-01

    A numerical solution for the propagation of the Alfven waves produced by Io is presented. The waves are shown to interact strongly with the torus and magnetic-field inhomogeneities. Substantial reflection occurs from the magnetospheric medium, and only about a quarter of the wave power will reach the ionosphere on its first pass. It is concluded that both WKB and ray-tracing arguments are inappropriate, contrary to previous studies. A more realistic picture may be that of a whole field line or L shell resonating in an eigenmode. The Alfven structure behind Io and some possible features that it may exhibit are discussed. In particular, it may be possible to produce decametric arcs that are more closely spaced than ray tracing permits by exciting higher-harmonic eigenmodes of Io's L shell.

  12. Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation.

    PubMed

    Zhang, Site; Asoubar, Daniel; Hellmann, Christian; Wyrowski, Frank

    2016-01-20

    The propagation of electromagnetic fields between non-parallel planes based on a spectrum-of-plane-wave analysis is discussed and formulations for an efficient numerical implementation are presented in detail. It is shown that with the help of interpolation techniques, the numerical implementation can be done with the standard uniform fast Fourier transform (FFT) of easy access. Different interpolation techniques are numerically examined, and it turns out that the use of cubic interpolation, together with the uniform FFT, brings both significantly increased computational efficiency and high simulation accuracy. Apart from the aspect of computational efficiency, all formulations in this work are generalized in a fully vectorial manner in comparison to previous works. PMID:26835928

  13. Propagation of electromagnetic fields between non-parallel planes: a fully vectorial formulation and an efficient implementation.

    PubMed

    Zhang, Site; Asoubar, Daniel; Hellmann, Christian; Wyrowski, Frank

    2016-01-20

    The propagation of electromagnetic fields between non-parallel planes based on a spectrum-of-plane-wave analysis is discussed and formulations for an efficient numerical implementation are presented in detail. It is shown that with the help of interpolation techniques, the numerical implementation can be done with the standard uniform fast Fourier transform (FFT) of easy access. Different interpolation techniques are numerically examined, and it turns out that the use of cubic interpolation, together with the uniform FFT, brings both significantly increased computational efficiency and high simulation accuracy. Apart from the aspect of computational efficiency, all formulations in this work are generalized in a fully vectorial manner in comparison to previous works.

  14. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    SciTech Connect

    Chan, A.A. . Dept. of Physics and Astronomy); Xia, Mengfen . Dept. of Physics); Chen, Liu . Plasma Physics Lab.)

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P[perpendicular] > P[parallel]. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value [beta][sub o][sup B] [approx] 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P[parallel] > P[perpendicular], or due to increased ballooning-mirror destabilization when P[perpendicular] > P[parallel]. We use a [beta]-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters [bar [beta

  15. He2+ Heating via Parametric Instabilities of Parallel Propagating Alfvén Waves with an Incoherent Spectrum

    NASA Astrophysics Data System (ADS)

    He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2016-08-01

    The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He2+ particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He2+ particles occurs. This is caused by the cyclotron resonance between He2+ particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He2+ particles and the density fluctuations leads to the parallel heating of He2+ particles. The influence of the drift velocity between the protons and the He2+ particles on the heating of He2+ particles is also discussed in this paper.

  16. Propagating structure of alzheimer's {beta}-amyloid is parallel {beta}-sheet with residues in exact register.

    SciTech Connect

    Benzinger, T. L. S.; Gregory, D. M.; Burkoth, T. S.; Miller-Auer, H.; Lynn, D. G.; Botto, R. E.; Meredith, S. C.; Chemistry; Univ. of Chicago

    1998-11-10

    The pathognomonic plaques of Alzheimer's disease are composed primarily of the 39- to 43-aa {beta}-amyloid (A{beta}) peptide. Crosslinking of A{beta} peptides by tissue transglutaminase (tTg) indicates that Gln15 of one peptide is proximate to Lys16 of another in aggregated A{beta}. Here we report how the fibril structure is resolved by mapping interstrand distances in this core region of the A{beta} peptide chain with solid-state NMR. Isotopic substitution provides the source points for measuring distances in aggregated A{beta}. Peptides containing a single carbonyl 13C label at Gln15, Lys16, Leu17, or Val18 were synthesized and evaluated by NMR dipolar recoupling methods for the measurement of interpeptide distances to a resolution of 0.2 Angstrom. Analysis of these data establish that this central core of A{beta} consists of a parallel {beta}-sheet structure in which identical residues on adjacent chains are aligned directly, i.e., in register. Our data, in conjunction with existing structural data, establish that the A{beta} fibril is a hydrogen-bonded, parallel {beta}-sheet defining the long axis of the A{beta} fibril propagation.

  17. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  18. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  19. Spectral gap of shear Alfven waves in a periodic array of magnetic mirrors

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Chen, Guangye; Breizman, B. N.; Vincena, S.; Carter, T.; Leneman, D.; Gekelman, W.; Pribyl, P.; Brugman, B.

    2008-01-15

    A multiple magnetic mirror array is formed at the Large Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)] to study axial periodicity-influenced Alfven spectra. Shear Alfven waves (SAW) are launched by antennas inserted in the LAPD plasma and diagnosed by B-dot probes at many axial locations. Alfven wave spectral gaps and continua are formed similar to wave propagation in other periodic media due to the Bragg effect. The measured width of the propagation gap increases with the modulation amplitude as predicted by the solutions to Mathieu's equation. A two-dimensional finite-difference code modeling SAW in a mirror array configuration shows similar spectral features. Machine end-reflection conditions and damping mechanisms including electron-ion Coulomb collision and electron Landau damping are important for simulation.

  20. Alfven Continuum and Alfven Eigenmodes in the National Compact Stellarator Experiment

    SciTech Connect

    Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; White, R. B.; Yakovenko, Yu. V.

    2004-09-17

    The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) is investigated with the AC code COBRA. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gaps of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E.

  1. Alfven cascades with downward frequency sweeping

    SciTech Connect

    Marchenko, V. S.; Reznik, S. N.

    2011-04-15

    It is suggested that relatively rare, but challenging for the existing theory Alfven cascades with downward frequency sweeping are actually the infernal Alfven eigenmodes (IAEs). Such modes exist in discharges with flat or weakly reversed q-profile in the broad central region, when the value of the safety factor in this region is slightly above the integer or low-order rational. Similar to the toroidal Alfven eigenmode, but in contrast to the ''conventional'' Alfven cascade with upward frequency sweeping, the spectrum of IAE is almost degenerate with respect to the mode numbers. Both features mentioned above are consistent with experimental observations.

  2. Numerical Study of the Transverse Stability of Compressive and Rarefactive Alfven Solitons

    NASA Astrophysics Data System (ADS)

    Hamilton, R.; Haneberg, C.

    2015-12-01

    A numerical study of the stability of DNLS bright and dark solitons subject to oblique perturbations is reported. The DNLS equation is a weakly nonlinear, weakly dispersive and one dimensional limiting form of MHD with the inclusion of Hall dispersion which has been shown to remain valid for plane wave propagation parallel, as well as quasiparallel, to the ambient magnetic field. Related analytic work has dealt with the transverse stability of circularly polarized Alfven waves [E. Mjolhus, T. Hada, J. Plasma Phys., 43, 257 - 268 (1990)] describing stability in relation to the propagation angle of the perturbation and the wave's amplitude and wavenumber. The amplitude and wavenumber relation for transverse stability has a striking similarity to the criterion for modulational instability. A prior analytic work [M. S. Ruderman, Fluid Dyn. 22, 299, (1987)] found the dark soliton to be unstable. Our numerical results are established in the context of these analytic results. Additionally, the transverse stability properties of dark solitons will be addressed as they relate to their role in representing magnetic decreases observed in interplanetary space.

  3. HEATING OF THE SOLAR CHROMOSPHERE AND CORONA BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.; Asgari-Targhi, M.

    2011-07-20

    A three-dimensional magnetohydrodynamic (MHD) model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) inside the kilogauss flux elements in the photosphere. The model describes the nonlinear interactions between Alfven waves using the reduced MHD approximation. The increase of Alfven speed with height in the chromosphere and transition region (TR) causes strong wave reflection, which leads to counter-propagating waves and turbulence in the photospheric and chromospheric parts of the flux tube. Part of the wave energy is transmitted through the TR and produces turbulence in the corona. We find that the hot coronal loops typically found in active regions can be explained in terms of Alfven wave turbulence, provided that the small-scale footpoint motions have velocities of 1-2 km s{sup -1} and timescales of 60-200 s. The heating rate per unit volume in the chromosphere is two to three orders of magnitude larger than that in the corona. We construct a series of models with different values of the model parameters, and find that the coronal heating rate increases with coronal field strength and decreases with loop length. We conclude that coronal loops and the underlying chromosphere may both be heated by Alfvenic turbulence.

  4. Alfven Waves in the Solar Wind, Magnetosheath, and Outer Magnetosphere

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    2007-01-01

    Alfven waves Propagating outward from the Sun are ubiquitous in the solar wind and play a major role in the solar wind-magnetosphere interaction. The passage of the waves generally occurs in the form of a series of discrete steepened discontinuities, each of which results in an abrupt change in the interplanetary magnetic field direction. Some orientations of the magnetic field permit particles energized at the Earth's bow shock to gain access to the foreshock region immediately upstream from the Earth's bow shock. The thermal pressure associated with these particles can greatly perturb solar wind plasma and magnetic field parameters shortly prior to their interaction with the Earth's bow shock and magnetosphere. The corresponding dynamic pressure variations batter the magnetosphere, driving magnetopause motion and transient compressions of the magnetospheric magnetic field. Alfven waves transmit information concerning the dynamic pressure variations applied to the magnetosphere to the ionosphere, where they generate the traveling convection vortices (TCVs) seen in high-latitude ground magnetograms. Finally, the sense of Alfvenic perturbations transmitted into the magnetosheath reverses across local noon because magnetosheath magnetic field lines drape against the magnetopause. The corresponding change in velocity perturbations must apply a weak torque to the Earth's magnetosphere.

  5. Plasma turbulence driven by transversely large-scale standing shear Alfven waves

    SciTech Connect

    Singh, Nagendra; Rao, Sathyanarayan

    2012-12-15

    Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfven and electrostatic waves when plasma is driven by a large-scale standing shear Alfven wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k{sub Up-Tack }) lying in the range d{sub e}{sup -1}-6d{sub e}{sup -1}, d{sub e} being the electron inertial length, suggesting non-local parametric decay from small to large k{sub Up-Tack }. The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k{sub ||}). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k{sub Up-Tack }) = |E{sub Up-Tack }(k{sub Up-Tack })/|B{sub Up-Tack }(k{sub Up-Tack })| Much-Less-Than V{sub A} for k{sub Up-Tack }d{sub e} < 0.5, where V{sub A} is the Alfven velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.

  6. Compressibility and cyclotron damping in the oblique Alfven wave

    SciTech Connect

    Harmon, J.K. )

    1989-11-01

    Compressibility, magnetic compressibility, and damping rate are calculated for the obliquely propagating Alfven shear wave in high- and low-beta Vlasov plasmas. There is an overall increase in compressibility as beta is reduced from {beta} = 1 to {beta}{much lt}1. For high obliquity {theta} and low frequency ({omega} {much lt} {Omega}{sub p}) the compressibility C follows a k{sup 2} wave number dependence; for high {theta} and low {beta} the approximation C(k) {approx} k{sub n}{sup 2} {identical to} (kV{sub A}/{Omega}{sub p}){sup 2} holds for wave numbers up to the proton cyclotron resonance, where {Omega}{sub p} is the proton cyclotron frequency and V{sub A} is the Alfven velocity. Strong proton cyclotron damping sets in at k{sub n} of the order of unity; the precise k{sub n} position of the damping cutoff increases with decreasing {beta} and increasing {theta}. Hence compressibility can exceed unity near the damping cutoff for high-{theta} waves in a low-{beta} plasma. The magnetic compressibility of the oblique Alfven wave also has a k{sup 2} dependence and can reach a maximum value of the order of 10% at high wave number. It is shown that Alfven compressibility could be the dominant contributor to the near-Sun solar wind density fluctuation spectrum for k>10{sup {minus}2} km{sup {minus}1} and hence might cause some of the flattening at high wave number seen in radio scintillation measurements. This would also be consistent with the notion that the observed density spectrum inner scale is a signature of cyclotron damping.

  7. Solitary kinetic Alfven waves in dusty plasmas

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-08-15

    Solitary kinetic Alfven waves in dusty plasmas are studied by considering the dust charge variation. The effect of the dust charge-to-mass ratio on the soliton solution is discussed. The Sagdeev potential is derived analytically with constant dust charge and then calculated numerically by taking the dust charge variation into account. We show that the dust charge-to-mass ratio plays an important role in the soliton properties. The soliton solutions are comprised of two branches. One branch is sub-Alfvenic and the soliton velocity is obviously smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocity is very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist. For the sub-Alfvenic branch, the rarefactive soliton is bell-shaped and it is much narrower than the compressive one. However, for the super-Alfvenic branch, the compressive soliton is bell-shaped and narrower, and the rarefactive one is broadened. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton, in the super-Alfvenic branch, will broaden extremely and a electron depletion will be observed. It is also shown that the bell-shaped soliton can transition to a cusped structure when the velocity is sufficiently high.

  8. Nonlinear absorption of Alfven wave in dissipative plasma

    SciTech Connect

    Taiurskii, A. A. Gavrikov, M. B.

    2015-10-28

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.

  9. Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Sridhar, S.

    1995-01-01

    We continue to investigate the possibility that interstellar turbulence is caused by nonlinear interactions among shear Alfven waves. Here, we restrict attention to the symmetric case where the oppositely directed waves carry equal energy fluxes. This precludes application to the solar wind in which the outward flux significantly exceeds the ingoing one. All our detailed calculations are carried out for an incompressible magnetized fluid. In incompressible magnetohydrodynamics (MHD), nonlinear interactions only occur between oppositely direct waves. We present a theory for the strong turbulence of shear Alfven waves. It has the following main characteristics. (1) The inertial-stage energy spectrum exhibits a critical balance between linear wave periods and nonlinear turnover timescales. (2) The 'eddies' are elongated in the direction of the field on small spatial scales; the parallel and perpendicular components of the wave vector, k(sub z) and k(perpendicular) are related by k(sub z) approximately equals k(sub perpendicular to)(exp 2/3) L(exp -1/3), where L is the outer scale of the turbulence. (3) The 'one-dimensional' energy spectrum is proportional to k(sub perpendicular)(exp -5/3)-an anisotropic Kolmogorov energy spectrum. Shear Alfvenic turbulence mixes specific entropy as a passive contaminant. This gives rise to an electron density power spectrum whose form mimics the energy spectrum of the turbulence. Radio wave scattering by these electron density fluctuations produces anisotropic scatter-broadened images. Damping by ion-neutral collisions restricts Alfvenic turbulence to highly ionized regions of the interstellar medium.

  10. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  11. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  12. Klein-Gordon equation and reflection of Alfven waves in nonuniform media

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Fontenla, J. M.; Moore, R. L.

    1992-01-01

    A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off.

  13. Modulational and decay instabilities of Alfven waves - Effects of streaming He(2+). [solar wind application

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.; Esser, R.; Jayanti, V.

    1993-01-01

    The parametric instability of a circularly polarized Alfven wave propagating along the background magnetic field are considered, with emphasis on the effects of a second ion species, He(2+), which drifts relative to the protons. Even though its abundance is small, the He(2+) modifies the dispersion relation of the 'pump' Alfven wave and introduces a new sound wave (alpha sound) in addition to the usual sound wave carried primarily by the electrons and protons. Instabilities which are close to the He(2+) gyroresonance are found. This may provide a means of directly transferring Alfven wave energy to the alpha particles, if the alphas are able to resonantly extract energy from the unstable waves without quenching the instability altogether. Instabilities which are close to the alpha particle sound speed are also found.

  14. Effects of ion-neutral collisions on Alfven waves: The presence of forbidden zone and heavy damping zone

    SciTech Connect

    Weng, C. J.; Lee, L. C.; Kuo, C. L.; Wang, C. B.

    2013-03-15

    Alfven waves are low-frequency transverse waves propagating in a magnetized plasma. We define the Alfven frequency {omega}{sub 0} as {omega}{sub 0}=kV{sub A}cos{theta}, where k is the wave number, V{sub A} is the Alfven speed, and {theta} is the angle between the wave vector and the ambient magnetic field. There are partially ionized plasmas in laboratory, space, and astrophysical plasma systems, such as in the solar chromosphere, interstellar clouds, and the earth ionosphere. The presence of neutral particles may modify the wave frequency and cause damping of Alfven waves. The effects on Alfven waves depend on two parameters: (1) {alpha}=n{sub n}/n{sub i}, the ratio of neutral density (n{sub n}), and ion density (n{sub i}); (2) {beta}={nu}{sub ni}/{omega}{sub 0}, the ratio of neutral collisional frequency by ions {nu}{sub ni} to the Alfven frequency {omega}{sub 0}. Most of the previous studies examined only the limiting case with a relatively large neutral collisional frequency or {beta} Much-Greater-Than 1. In the present paper, the dispersion relation for Alfven waves is solved for all values of {alpha} and {beta}. Approximate solutions in the limit {beta} Much-Greater-Than 1 as well as {beta} Much-Less-Than 1 are obtained. It is found for the first time that there is a 'forbidden zone (FZ)' in the {alpha}-{beta} parameter space, where the real frequency of Alfven waves becomes zero. We also solve the wavenumber k from the dispersion equation for a fixed frequency and find the existence of a 'heavy damping zone (HDZ).' We then examine the presence of FZ and HDZ for Alfven waves in the ionosphere and in the solar chromosphere.

  15. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    SciTech Connect

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T.; Arregui, I.; Terradas, J.

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  16. Stellar winds with non-WKB Alfven waves 1: Wind models for solar coronal conditions

    NASA Astrophysics Data System (ADS)

    MacGregor, K. B.; Charbonneau, P.

    1994-07-01

    We have constructed numerical models for stationary, wind-type outflows that include treatment of the force produced by propagating Alfven waves. We make no assumptions regarding the relative sizes of the wavelengths of such disturbances and the scale lengths that characterize the variation of the physical properties of the expanding stellar atmosphere. Consequently, our models take account the process of Alfven wave reflection, and provide for dynamical effects arising from the simultaneous presence of outward and inward traveling waves in the wind. For physical conditions like those prevailing in the outer solar corona and wind, we find that even relatively high frequency, short wavelength waves can suffer some reflection from the gradient in Alfven speed at the vase of the flow. Among the consequences of the interaction between outward and inward directed perturbations in the sub-Alfvenic portion of the wind is a reduction in the magnitude of the time-averaged wave force relative to its value in the Wentzel-Kramer-Brillouin (WKB) (i.e., short-wavelenght) limit. As a result, the flow velocities of our models interior to the Alfven radius are smaller than those of corresponding WKB models. For models containing very low frequency, long wavelength waves, a substantial amount of wave reflection can also take place in the super-Alvenic portion of the wind. The resulting modifications to the spatial dependences of the eave magnetic and velocity amplitudes can lead to a wave force whose magnitude at large distances exceeds that of an equivalent WKB solution.

  17. MODEL FOR ALFVEN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.

    2012-02-10

    It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.

  18. Parallel parametric amplification of coherently excited propagating spin waves in a microscopic Ni{sub 81}Fe{sub 19} waveguide

    SciTech Connect

    Brächer, T.; Pirro, P.; Meyer, T.; Heussner, F.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2014-05-19

    We present parallel parametric amplification of coherently excited, propagating spin waves in a microstructured magnonic Ni{sub 81}Fe{sub 19} waveguide. Amplification is achieved by the pumping field generated by a microwave current flowing through a Cu micro-stripline underneath the waveguide. By employing microfocussed Brillouin light scattering spectroscopy, we investigate the spatial decay of the propagating spin waves and their amplification by means of parallel pumping. We analyze the dependence of the intensity of the amplified spin waves on the spin-wave excitation power, pumping power, and pumping duration, revealing the most efficient working point for a noise-free amplification. This paves the way for a frequency selective amplification of spin waves in microstructured magnonic circuits.

  19. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  20. Heating of coronal holes by the resonant absorption and dissipation of Alfven waves and its relation to solar wind acceleration

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.

    1995-01-01

    Coronal hole regions are well known sources of high-speed solar wind, however to account for the observed properties of the solar wind a source of momentum and heat must be included. Alfven waves were suggested as the possible source of heating that accelerates the solar wind. We investigate the propagation of the Alfven waves in coronal holes via numerical solution of the linearized 2-D resistive MHD equations in slab geometry. The Alfven waves are driven at the lower boundary of the coronal hole and propagate into the corona. The waves are reflected at the coronal hole boundary and part of the wave energy leaks out of the coronal hole. We compare the calculated wavelengths and the attenuation rate of the fast mode Alfven waves in the leaky waveguide formed by the coronal hole with the analytical ideal MHD solutions. The formation of resonance heating layers is found to occur when shear Alfven waves propagate in an inhomogeneous coronal hole. The heating is enhanced when fast mode waves couple to the shear Alfven waves. The narrow heating layers are formed near the location of the ideal resonance, which might occur near the coronal hole boundary for a nearly constant density coronal hole, surrounded by a higher density plasma. We investigate the dependence of the heating on the driver frequency, the Lundquist number, and on the heliocentric distance. and find that the low frequency Alfven waves can be an efficient source of heating at large distances from the Sun. We discuss the relation of our results to the observed properties of high-speed solar wind and coronal holes.

  1. Global Alfven modes: Theory and experiment

    SciTech Connect

    Turnbull, A.D.; Strait, E.J.; Heidbrink, W.W.; Chu, M.S.; Duong, H.H.; Greene, J.M.; Lao, L.L.; Taylor, T.S.; Thompson, S.J. )

    1993-07-01

    It is shown that the theoretical predictions and experimental observations of toroidicity-induced Alfven eigenmodes (TAE's) are now in good agreement, with particularly detailed agreement in the mode frequencies. Calculations of the driving and damping rates predict the importance of continuum damping for low toroidal mode numbers and this is confirmed experimentally. However, theoretical calculations in finite-[beta], shaped discharges predict the existence of other global Alfven modes, in particular the ellipticity-induced Alfven eigenmode (EAE) and a new mode, the beta-induced Alfven eigenmode (BAE). The BAE mode is calculated to be in or below the same frequency range as the TAE mode and may contribute to the experimental observations at high [beta]. Experimental evidence and complementary analyses are presented confirming the presence of the EAE mode at higher frequencies.

  2. On the possibility for laboratory simulation of generation of Alfven disturbances in magnetic tubes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar

    2016-03-01

    The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.

  3. Alfven wave. DOE Critical Review Series

    SciTech Connect

    Hasegawa, A.; Uberoi, C.

    1982-01-01

    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)

  4. Beam distribution modification by Alfven modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2010-05-15

    Modification of a deuterium beam distribution in the presence of low amplitude toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes in a toroidal magnetic confinement device is examined. Comparison to experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.

  5. Excitation of Alfven waves by a spiraling ion beam in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William; Carter, Troy

    2013-10-01

    A hydrogen ion beam (15 kV, 10 A) has been obliquely injected from the end of the Large Plasma Device (LAPD) into a large magnetoplasma (n ~1012 cm-3, Te ~ 4 eV, B = 1.0 - 1.8 kG, 19 m long, 0.6 m diam) for performing fusion-relevant fast-ion studies. The beam was produced using a recently upgraded ion source that utilizes a hot-cathode LaB6 plasma source and a multi-aperture three-grid beam-extractor. Measurements of the beam profiles at multiple axial locations (up to 18 m distance from the source) have evinced a spiraling ion-beam (current-density ~ 60 mA/cm2, pitch angle in the plasma ~ 53°) that propagates with an Alfvenic speed (beam speed/Alfven speed = 0.5 - 1.2). Although the beam generates other waves, we will focus on the spontaneous generation of shear Alfven waves by the beam. To investigate the role of the resonant wave-particle interaction, an Alfven wave in the direction of the beam propagation was launched from an antenna. The ratio of beam-speed to wave phase-speed was varied. Initial results demonstrate spatial growth of the launched wave under suitable conditions for the resonant wave particle interaction. Work supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  6. Parametric coupling of low frequency whistler to Alfven wave in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-12-15

    The parametric decay of a large amplitude electromagnetic wave in the ion cyclotron range of frequency into a compressional Alfven wave and an electromagnetic sideband wave in a magnetized plasma is investigated. The pump wave propagates in the direction of ambient magnetic field whereas the decay waves propagate at oblique angles. When the pump wave is left circularly polarized the decay is not permitted kinematically as the momentum of pump photon always exceeds the sum of momenta of the decay wave photons. For the right circularly polarized whistler mode pump the decay is permitted with sideband nearly right circularly polarized. The density perturbation associated with the Alfven wave couples with the pump driven oscillatory velocities of ions and electrons to produce a current driving the sideband. The sideband and the pump exert pondermotive force on ions and electrons that drive the Alfven wave. The frequency and growth rate of the Alfven wave increase with the normalized pump frequency. The threshold power density, determined by the collisional damping rates of the decay waves is rather modest.

  7. Alfvenic waves in solar spicules

    NASA Astrophysics Data System (ADS)

    Ebadi, Hossein

    2016-07-01

    We analyzed O VI (1031.93 A) and O VI (1037.61 A line profiles from the time series of SOHO/SUMER data. The wavelet analysis is used to determine the fundamental mode and its first harmonic periods and their ratio. The period ratio, P_1/P_2 is obtained as 2.1 based on our calculations. To model the spicule oscillations, we consider an equilibrium configuration in the form of an expanding straight magnetic flux tube with varying density along tube. We used cylindrical coordinates r, phi, and z with the z-axis along tube axis. Standing Alfvenic waves with steady flows are studied. More realistic background magnetic field, plasma density, and spicule radios inferred from the actual magnetoseismology of observations are used. It is found that the oscillation periods and their ratio are shifted because of the steady flows. The observational values are reached in P_1/P_2, when the steady flows are 0.2-0.3, the values which are reported for classical spicules.

  8. Phenomenology of Compressional Alfven Eigenmodes

    SciTech Connect

    E.D. Fredrickson; N.N. Gorelenkov; J. Menard

    2004-05-13

    Coherent oscillations with frequency 0.3 {le} {omega}/{omega}{sub ci} {le} 1, are seen in the National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y-K.M. Peng, et al., Nucl. Fusion 40, 557 (2000)]. This paper presents new data and analysis comparing characteristics of the observed modes to the model of compressional Alfven eigenmodes (CAE). The toroidal mode number has been measured and is typically between 7 < n < 9. The polarization of the modes, measured using an array of four Mirnov coils, is found to be compressional. The frequency scaling of the modes agrees with the predictions of a numerical 2-D code, but the detailed structure of the spectrum is not captured with the simple model. The fast ion distribution function, as calculated with the beam deposition code in TRANSP [R.V. Budny, Nucl. Fusion 34, 1247 (1994)], is shown to be qualitatively consistent with the constraints of the Doppler-shifted cyclotron resonance drive model. This model also predicts the observed scaling of the low frequency limit for CAE.

  9. Emission of Alfven Waves by Planets in Close Orbits

    NASA Astrophysics Data System (ADS)

    MacGregor, Keith B.; Pinsonneault, M. H.

    2011-01-01

    We examine the electrodynamics of a conducting planet orbiting within a magnetized wind that emanates from its parent star. When the orbital motion differs from corotation with the star, an electric field exists in the rest frame of the planet, inducing a charge separation in its ionosphere. Because the planet is immersed in a plasma, this charge can flow away from it along the stellar magnetic field lines it successively contacts in its orbit. For sufficiently rapid orbital motion, a current system can be formed that is closed by Alfvenic disturbances that propagate along field lines away from the planet. Using a simple model for the wind from a Sun-like star, we survey the conditions under which Alfven wave emission can occur, and estimate the power radiated in the form of linear waves for a range of stellar, planetary, and wind properties. For a Jupiter-like planet in a close (a < 0.10 AU) orbit about a solar-type star, the emitted wave power can be as large as 1027 erg/s. While only a small influence on the planet's orbit, a wave power of this magnitude may have consequences for wind dynamics and localized heating of the stellar atmosphere. NCAR is sponsored by the NSF.

  10. Alfven waves and associated energetic ions downstream from Uranus

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Belcher, J. W.; Richardson, J. D.; Smith, C. W.

    1991-02-01

    Low-frequency waves have been observed in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  11. ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2013-01-20

    A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.

  12. Investigation of an ion-ion hybrid Alfven wave resonator

    SciTech Connect

    Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J.

    2013-01-15

    A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.

  13. Beam Distribution Modification by Alfven Modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2010-04-03

    Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.

  14. Beam Distribution Modification By Alfven Modes

    SciTech Connect

    White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.

    2010-01-25

    Modification of a deuterium beam distribution in the presence of low amplitude Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes in a toroidal magnetic confinement device is examined. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution.

  15. Shear-Alfven Waves in Gyrokinetic Plasmas

    SciTech Connect

    W.W.Lee; J.L.V.Lewandowski; T.S. Hahm; Z. Lin

    2000-10-18

    It is found that the thermal fluctuation level of the shear-Alfven waves in a gyrokinetic plasma decreases with plasma b(* cs2/uA2), where cs is the ion acoustic speed and uA is the Alfven velocity. This unique thermodynamic property based on the fluctuation-dissipation theorem is verified in this paper using a new gyrokinetic particle simulation scheme, which splits the particle distribution function into the equilibrium part as well as the adiabatic and nonadiabatic parts.

  16. Solar Coronal Heating via Alfven Wave Turbulence

    SciTech Connect

    Bigot, B.; Galtier, S.; Politano, H.

    2010-03-25

    A short review is given about the self-consistent MHD model of solar coronal heating recently proposed by Bigot et al.(2008) in which the dynamical effect of the background magnetic field along a coronal structure is taken into account through exact results from Alfven wave turbulence. The main properties of the model are given as well as the heating rate and the microturbulent velocity obtained in the case of coronal loops. The conclusion is that Alfven wave turbulence may produce an efficient background heating for the solar corona.

  17. Sawtooth Stabilization and Onset of Alfvenic Instabilities

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Cheng, C. Z.

    2011-10-01

    Tokamak sawtooth instabilities can be stabilized by high energy particles as a consequence of conservation of the third adiabatic invariant.On the other hand, termination of the stabilized period is reported due to the onset of Alfvenic instabilities (and thus the absence of the stabilizing mechanism). In this work, employing a kinetic-fluid model, the interaction of m=1 resistive kink mode and high energy particles is investigated. The onset of Alfvenic instabilities is examined as a function of the inversion radius location. D.J. Campbell et al., Phys. Rev. Lett. 60, 2148 (1988); F. Porcelli, Plasma Phys. Controlled Fusion 33, 1601 (1991).

  18. Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2009-01-01

    In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.

  19. Cherenkov radiation of shear Alfven waves in plasmas with two ion species

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2012-09-15

    A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.

  20. Superdiffusion versus Alfvenic collapse: plasma flow bounding and penetration

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, A.; Zelenyi, L.; Budaev, V.; Kuznetsov, E. A.; Consolini, G.; Blecki, J.; Buechner, J.; Rauch, J. L.

    2009-04-01

    A geophysical flow is the solar plasma one around the Earth's magnetosphere. We discuss an anomalous MHD plasma mixing with concentrated kinetic energy bursts - ‘plasma jets' - in view of common features of the geophysical flows, along with the laboratory and astrophysical plasma ones. While the plasma flows are quite dilute, they probably can lead to electric power system collapses on the ground, radiation hazards in space, including geostationary spacecraft faults, and communication interrupts etc. We would like to concentrate on a unique case of plasma mixing by the jets in the streamlining flow with quite effective transport barrier , most probably, due to Alfvenic collapse of the magnetic field at the interface of their streaming and stagnant plasma ahead the Earth magnetopause on February 2, 2003 from the Cluster spacecraft data. On the basis of outer magnetospheric spacecraft observations in the magnetosheath (MSH) we provide evidence for the temporary existence of the anomalously concentrated plasma jets as well in the region close to the bow shock (BS) as near the magnetopause (MP). Disturbed zones of duration of up to 2 hours are regularly detected in the MSH, preferably downstream of the quasi-parallel and oblique BS with average energy density well above that of the un-shocked solar wind (SW). These zones are similar to high-latitude MSH near the MP, known as the ‘turbulent boundary layer' (TBL), which is the result of the interaction of the MSH flow with the throat of the cusp. In both these disturbed zones the field and plasma fluctuations have comparable intensity and similar spectral properties. Determination of the structure functions of the magnetic field and ion flux also reveals similar multifractal and intermittent properties. The same holds for fitting a Log-Poisson cascade model. A new phenomenon - Alfvenic collapse - is discussed as a ‘tool' for separating of the MHD flows: in the MHD limit it predicts infinite field rising due to

  1. Mechanisms for the Dissipation of Alfven Waves in Near-Earth Space Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Krivorutsky, E. N.; Davis, John M. (Technical Monitor)

    2002-01-01

    Alfven waves are a major mechanism for the transport of electromagnetic energy from the distant part of the magnetosphere to the near-Earth space. This is especially true for the auroral and polar regions of the Earth. However, the mechanisms for their dissipation have remained illusive. One of the mechanisms is the formation of double layers when the current associated with Alfven waves in the inertial regime interact with density cavities, which either are generated nonlinearly by the waves themselves or are a part of the ambient plasma turbulence. Depending on the strength of the cavities, weak and strong double layers could form. Such double layers are transient; their lifetimes depend on that of the cavities. Thus they impulsively accelerate ions and electrons. Another mechanism is the resonant absorption of broadband Alfven- wave noise by the ions at the ion cyclotron frequencies. But this resonant absorption may not be possible for the very low frequency waves, and it may be more suited for electromagnetic ion cyclotron waves. A third mechanism is the excitation of secondary waves by the drifts of electrons and ions in the Alfven wave fields. It is found that under suitable conditions, the relative drifts between different ion species and/or between electrons and ions are large enough to drive lower hybrid waves, which could cause transverse accelerations of ions and parallel accelerations of electrons. This mechanism is being further studied by means of kinetic simulations using 2.5- and 3-D particle-in-cell codes. The ongoing modeling efforts on space weather require quantitative estimates of energy inputs of various kinds, including the electromagnetic energy. Our studies described here contribute to the methods of determining the estimates of the input from ubiquitous Alfven waves.

  2. Excitation of Alfven eigenmodes by low energy beam ions in the DIII-D and JET tokamaks

    SciTech Connect

    Nazikian, R.; Gorelenkov, N. N.; Budny, R. V.; Fu, G. Y.; Kramer, G. J.; Solomon, W. M.; White, R. B.; Alper, B.; Pinches, S. D.; Sharapov, S. E.; Borba, D.; Makowski, M. A.; Strait, E. J.; Van Zeeland, M. A.

    2008-05-15

    Core localized Alfven eigenmodes in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and Joint European Torus (JET) [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] plasmas are driven by deuterium neutral beam ions traveling well below the Alfven speed. Modes are observed in reverse magnetic shear discharges with deuterium ion velocities as low as 0.23 and 0.16 of the Alfven speed parallel to the magnetic field in DIII-D and JET plasmas, respectively. Ellipticity-induced Alfven eigenmodes in DIII-D and toroidicity-induced Alfven eigenmodes in JET are excited by deuterium ions traveling well below the fundamental passing ion resonance condition, indicating the role of high-order resonances in driving these modes. NOVA-K analysis reveals many high-order resonances as contributing to the mode drive at high central safety factor due to the correspondingly large poloidal orbit width and the decrease in the perpendicular scale length of the modes.

  3. Stochastic propagation of an array of parallel cracks: Exploratory work on matrix fatigue damage in composite laminates

    SciTech Connect

    Williford, R.E.

    1989-09-01

    Transverse cracking of polymeric matrix materials is an important fatigue damage mechanism in continuous-fiber composite laminates. The propagation of an array of these cracks is a stochastic problem usually treated by Monte Carlo methods. However, this exploratory work proposes an alternative approach wherein the Monte Carlo method is replaced by a more closed-form recursion relation based on fractional Brownian motion.'' A fractal scaling equation is also proposed as a substitute for the more empirical Paris equation describing individual crack growth in this approach. Preliminary calculations indicate that the new recursion relation is capable of reproducing the primary features of transverse matrix fatigue cracking behavior. Although not yet fully tested or verified, this cursion relation may eventually be useful for real-time applications such as monitoring damage in aircraft structures.

  4. A global 3-D MHD model of the solar wind with Alfven waves

    NASA Technical Reports Server (NTRS)

    Usmanov, A. V.

    1995-01-01

    A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.

  5. The Application of a Massively Parallel Computer to the Simulation of Electrical Wave Propagation Phenomena in the Heart Muscle Using Simplified Models

    NASA Technical Reports Server (NTRS)

    Karpoukhin, Mikhii G.; Kogan, Boris Y.; Karplus, Walter J.

    1995-01-01

    The simulation of heart arrhythmia and fibrillation are very important and challenging tasks. The solution of these problems using sophisticated mathematical models is beyond the capabilities of modern super computers. To overcome these difficulties it is proposed to break the whole simulation problem into two tightly coupled stages: generation of the action potential using sophisticated models. and propagation of the action potential using simplified models. The well known simplified models are compared and modified to bring the rate of depolarization and action potential duration restitution closer to reality. The modified method of lines is used to parallelize the computational process. The conditions for the appearance of 2D spiral waves after the application of a premature beat and the subsequent traveling of the spiral wave inside the simulated tissue are studied.

  6. Alfven waves and associated energetic ions downstream from Uranus

    SciTech Connect

    Zhang, Ming; Belcher, J.W.; Richardson, J.D. ); Smith, C.W. )

    1991-02-01

    The authors report the observation of low-frequency waves in the solar wind downstream from Uranus. These waves are observed by the Voyager spacecraft for more than 2 weeks after the encounter with Uranus and are present during this period whenever the interplanetary magnetic field is oriented such that the field lines intersect the Uranian bow shock. The magnetic field and velocity components transverse to the background field are strongly correlated, consistent with the interpretation that these waves are Alfvenic and/or fast-mode waves. The waves have a spacecraft frame frequency of about 10{sup {minus}3} Hz, and when first observed near the bow shock have an amplitude comparable to the background field. As the spacecraft moves farther from Uranus, the amplitude decays. The waves appear to propagate along the magnetic field lines outward from Uranus and are right-hand polarized. Theory suggests that these waves are generated in the upstream region by a resonant instability with a proton beam streaming along the magnetic field lines. The solar wind subsequently carries these waves downstream to the spacecraft location. These waves are associated with the presence of energetic (> 28 keV) ions observed by the low-energy charged particle instrument. These ions appear two days after the start of the wave activity and occur thereafter whenever the Alfven waves occur, increasing in intensity away from Uranus. The ions are argued to originate in the Uranian magnetosphere, but pitch-angle scattering in the upstream region is required to bring them downstream to the spacecraft location.

  7. Linear and non-linear numerical simulations of poloidal Alfven waves

    NASA Astrophysics Data System (ADS)

    Ribeiro, A.

    2013-05-01

    Among the many of numerical simulations of MHD turbulence, few studies had been made of Alfven waves interacting with realistic boundaries. Thus, we have developed a novel hybrid spectral/finite element code, which is capable of simulate properly realistic boundaries properties. Our model is based on a Fourier decompositions of all variables in the azimuthal direction and on a finite element projection in the meridian plan. In order to simulate realistic boundary conditions for the magnetic field we solve the induction equation enforcing continuity of the magnetic field H at the interface with the external insulating medium through a Interior Penalty Galerkin method (IPG) [1]. I will present the results of our investigation of Alfven waves propagating in a cylinder filled of liquid metal submitted to an axial magnetic field. Poloidal Alfven waves are excited magnetically by imposing an azimuthal current pulse at the bottom of the cylinder. In the linear axisymmetric model we find a good agreement with previous experiments in liquid metals by Lundquist and by Lenhert and more recently by Alboussiere et al [2]. This axisymmetric study is extended to the non linear regime, where the amplitudes of the perturbations are comparable to the external applied magnetic field,in this conditions a complex response is found due to waves waves interactions. [1] J. L. Guermond, J.L Leorat, F. Luddens, C. Nore, A. Ribeiro. Effects of discontinuous magnetic permeability on magnetodynamic problems, Journal of Computational Physics Volume 230, Issue 16, 10 July 2011, Pages 6299 -- 6319. [2] T. Alboussiere, P. Cardin, F. Debray, H. C. Nataf, F. Plunian, A. Ribeiro, D. Schmitt, Experimental evidence of Alfven wave propagation in a Gallium alloy, Physics of fluids, 2011, vol. 23, nb 9.

  8. The making of an Alfvenic fluctuation: The resolution of a second-order analysis

    NASA Technical Reports Server (NTRS)

    Vasquez, Bernard J.; Hollweg, Joseph V.

    1995-01-01

    Ulysses observations of the high speed polar streams show that they are largely occupied by very large amplitude Alfvenic fluctuations accompanied by many rotational discontinuities. These fluctuations have a nearly constant magnetic intensity or amplitude, and the magnetic field direction per wave cycle sweeps only through a limited arc, much as a car wiperblade would do. Barnes and Hollweg (JGR, 79, 2302, 1974) suggested that this unusual waveform could arise from an obliquely propagating and linearly polarized Alfven wave of finite amplitude. From a second-order analysis, they showed that the existence of a particular solution with a constant amplitude but could not resolve the outcome of the homogeneous solution which consisted of fast waves. They suggested that Landau damping of these fast waves may be needed to get the observed waveform. We present a 1 1/2 D hybrid simulation which is fully nonlinear and correctly describes the ion kinetics for an initially monochromatic and linearly polarized Alfven wave propagating obliquely to the background magnetic field. The wave has a large amplitude and a wavelength so long that it can be considered dispersionless for simulation times. At early times, the second harmonic in density and in magnetic field transverse to the initial wave magnetic field are generated and have more power than other harmonics. Steepening is observed with a weak fast shock emerging, but no rotational discontinuity is left behind, and instead a constant amplitude and an arc-shaped waveform is made. The compressional component which develops after the shocks have dissipated is to zeroth order better described as a pure acoustic wave than as a fast wave. This might be explained by the relaxing of the Alfven wave to a state where its ponderomotive force vanishes so that the compressional component can travel almost independently of it.

  9. Effects of the parallel electron dynamics and finite ion temperature on the plasma blob propagation in the scrape-off layer

    SciTech Connect

    Jovanovic, D.; Shukla, P. K.; Pegoraro, F.

    2008-11-15

    A new three-dimensional model for the warm-ion turbulence at the tokamak edge plasma and in the scrape-off layer is proposed, and used to study the dynamics of plasma blobs in the scrape-off layer. The model is based on the nonlinear interchange mode, coupled with the nonlinear resistive drift mode, in the presence of the magnetic curvature drive, the density inhomogeneity, the electron dynamics along the open magnetic field lines, and the electron-ion and electron-neutral collisions. Within the present model, the effect of the sheath resistivity decreases with the distance from the wall, resulting in the bending and the break up of the plasma blob structure. Numerical solutions exhibit the coupling of interchange modes with nonlinear drift modes, causing the collapse of the blob in the lateral direction, followed by a clockwise rotation and radial propagation. The symmetry breaking, caused both by the parallel resistivity and the finite ion temperature, introduces a poloidal component in the plasma blob propagation, while the overall stability properties and the speed are not affected qualitatively.

  10. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.

    1994-01-01

    The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.

  11. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    SciTech Connect

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

  12. Multiplicity of low-shear toroidal Alfven eigenmodes

    SciTech Connect

    Candy, J.; Breizman, B.N. |; Van Dam, J.W.; Ozeki, T.

    1996-01-01

    An enlarged spectrum of ideal toroidal Alfven eigenmodes is demonstrated to exist within a toroidicity-induced Alfven gap when the inverse aspect ratio is comparable to or larger than the value of the magnetic shear. This limit is appropriate for the low-shear region in most tokamaks, especially those with low aspect ratio. The new modes may be destabilized by fusion-product alpha particles more easily than the standard toroidal Alfven eigenmodes.

  13. Alfven continuum and Alfven eigenmodes in the National Compact Stellarator Experiment

    SciTech Connect

    Fesenyuk, O.P.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; White, R.B.; Yakovenko, Yu.V.

    2004-12-01

    The Alfven continuum (AC) in the National Compact Stellarator Experiment (NCSX) [G. H. Neilson et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94/IC-1] is investigated with the AC code COBRA [Ya. I. Kolesnichenko et al., Phys. Plasmas 8, 491 (2001)]. The resonant interaction of Alfven eigenmodes and the fast ions produced by neutral beam injection is analyzed. Alfven eigenmodes residing in one of the widest gap of the NCSX AC, the ellipticity-induced gap, are studied with the code BOA-E [V. V. Lutsenko et al., in Fusion Energy 2002, 19th Conference Proceedings, Lyon, 2002 (International Atomic Energy Agency, Vienna, 2003), Report IAEA-CN-94-TH/P3-16].

  14. Effect of Dust Grains on Solitary Kinetic Alfven Wave

    SciTech Connect

    Li Yangfang; Wu, D. J.; Morfill, G. E.

    2008-09-07

    Solitary kinetic Alfven wave has been studied in dusty plasmas. The effect of the dust charge-to-mass ratio is considered. We derive the Sagdeev potential for the soliton solutions based on the hydrodynamic equations. A singularity in the Sagdeev potential is found and this singularity results in a bell-shaped soliton. The soliton solutions comprise two branches. One branch is sub-Alfvenic and the soliton velocities are much smaller than the Alfven speed. The other branch is super-Alfvenic and the soliton velocities are very close to or greater than the Alfven speed. Both compressive and rarefactive solitons can exist in each branch. For the sub-Alfvenic branch, the rarefactive soliton is a bell shape curve which is much narrower than the compressive one. In the super-Alfvenic branch, however, the compressive soliton is bell-shaped and the rarefactive one is broadened. We also found that the super-Alfvenic solitons can develop to other structures. When the charge-to-mass ratio of the dust grains is sufficiently high, the width of the rarefactive soliton will increase extremely and an electron density depletion will be observed. When the velocity is much higher than the Alfven speed, the bell-shaped soliton will transit to a cusped structure.

  15. Finite orbit energetic particle linear response to toroidal Alfven eigenmodes

    SciTech Connect

    Berk, H.L.; Ye, Huanchun . Inst. for Fusion Studies); Breizman, B.N. . Inst. Yadernoj Fiziki)

    1991-07-01

    The linear response of energetic particles to the TAE modes is calculated taking into account their finite orbit excursion from the flux surfaces. The general expression reproduces the previously derived theory for small banana width: when the banana width {triangle}{sub b} is much larger than the mode thickness {triangle}{sub m}, we obtain a new compact expression for the linear power transfer. When {triangle}{sub m}/{triangle}{sub b} {much lt} 1, the banana orbit effect reduces the power transfer by a factor of {triangle}{sub m}/{triangle}{sub b} from that predicted by the narrow orbit theory. A comparison is made of the contribution to the TAE growth rate of energetic particles with a slowing-down distribution arising from an isotropic source, and a balance-injected beam source when the source speed is close to the Alfven speed. For the same stored energy density, the contribution from the principal resonances ({vert bar}{upsilon}{sub {parallel}}{vert bar} = {upsilon}{sub A} is substantially enhanced in the beam case compared to the isotropic case, while the contribution at the higher sidebands ({vert bar}{upsilon}{sub {parallel}}{vert bar}) = {upsilon}{sub A}/(2{ell} {minus} 1) with {ell} {ge} 2) is substantially reduced. 10 refs.

  16. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  17. POSSIBLE EVIDENCE OF ALFVEN-CYCLOTRON WAVES IN THE ANGLE DISTRIBUTION OF MAGNETIC HELICITY OF SOLAR WIND TURBULENCE

    SciTech Connect

    He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart

    2011-04-20

    The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.

  18. Alfven Waves in Interstellar Gasdynamics

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.; Zweibel, Ellen G.

    1995-02-01

    Magnetohydrodynamic (MHD) waves contribute a significant pressure in both the diffuse interstellar medium and in molecular clouds. Alfvén waves are subject to less damping than compressive MHD waves and are therefore likely to be the dominant mode in astrophysical environments. Provided that the medium in which the waves are propagating is slowly varying, the dynamical effects of ideal MHD waves are governed by equations derived by Dewar. We show that these equations are similar in form to the equations of radiation hydrodynamics to order υ/c, provided that the radiation is nearly isotropic. For the case of Alfvén waves, the pressure due the waves, Pw, is isotropic. Furthermore, Pw is directly observable through the non- thermal line width σnt; for a randomly oriented field, Pw = (3/2)ρσ2nt. In several simple cases, including that in which the Alfvén waves are isotropic, that in which the density is spatially uniform, and that in which the medium undergoes a self-similar contraction or expansion, undamped Alfvén waves behave like a gas with a ratio of specific heats of 3/2; i.e., pressure variations are related to density variations by Δ ln Pw = γwΔ ln ρ with γw = 3/2. In a spatially nonuniform cloud, γw generally depends on position; an explicit expression is given. In the opposite limit of rapid variations, such as in a strong shock, the wave magnetic field behaves like a static field and the wave pressure can increase as fast as ρ2, depending on the orientation of the shock and the polarization of the waves. The jump conditions for a shock in a medium containing MHD waves are given. For strong nonradiative shocks, neither the wave pressure nor the static magnetic field pressure is significant downstream, but for radiative shocks these two pressures can become dominant. Alfvén waves are essential in supporting molecular clouds against gravitational collapse. In a static cloud with a nonuniform density ρ(r), the spatial variation of the wave

  19. Detection of Ionospheric Alfven Resonator Signatures Onboard C/NOFS: Implications for IRI Modeling

    NASA Technical Reports Server (NTRS)

    Simoes, F.; Klenzing, J.; Ivanov, S.; Pfaff, R.; Rowland, D.; Bilitza, D.

    2011-01-01

    The 2008-2009 long-lasting solar minimum activity has been the one of its kind since the dawn of space age, offering exceptional conditions for investigating space weather in the near-Earth environment. First ever detection of Ionospheric Alfven Resonator (IAR) signatures in orbit offers new means for investigating ionospheric electrodynamics, namely MHD (MagnetoHydroDynamics) wave propagation, aeronomy processes, ionospheric dynamics, and Sun-Earth connection mechanisms at a local scale. Local and global plasma density heterogeneities in the ionosphere and magnetosphere allow for formation of waveguides and resonators where magnetosonic and shear Alfven waves propagate. The ionospheric magnetosonic waveguide results from complete magnetosonic wave reflection about the ionospheric F-region peak, where the Alfven index of refraction presents a maximum. MHD waves can also be partially trapped in the vertical direction between the lower boundary of the ionosphere and the magnetosphere, a resonance mechanism known as IAR. In this work we present C/NOFS (Communications/Navigation Outage Forecasting System) Extremely Low Frequency (ELF) electric field measurements related to IAR signatures, discuss the resonance and wave propagation mechanisms in the ionosphere, and address the electromagnetic inverse problem from which electron/ion distributions can be derived. These peculiar IAR electric field measurements provide new, complementary methodologies for inferring ionospheric electron and ion density profiles, and also contribute for the investigation of ionosphere dynamics and space weather monitoring. Specifically, IAR spectral signatures measured by C/NOFS contribute for improving the International Reference Ionosphere (IRI) model, namely electron density and ion composition.

  20. Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments

    SciTech Connect

    Boldyrev, Stanislav; Perez, Jean Carlos

    2013-11-29

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the

  1. Ulysses Observations of Alfven and Magnetosonic Waves at High Latitude

    NASA Technical Reports Server (NTRS)

    Smith, Edward J.

    1997-01-01

    Ulysses observations provide a unique opportunity to study diverse problems related to Alfven and magnetosonic waves. The large amplitude of the Alfven waves influences the distribution functions of the spiral angle, the azimuthal field component and, possibly, the radial component such that their averages are not equal to their most probable values.

  2. Anisotropic Alfven-ballooning modes in the Earth`s magnetosphere

    SciTech Connect

    Chan, A.A.; Xia, Mengfen; Chen, Liu

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth`s inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P{perpendicular} > P{parallel}. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value {beta}{sub o}{sup B} {approx} 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P{parallel} > P{perpendicular}, or due to increased ballooning-mirror destabilization when P{perpendicular} > P{parallel}. We use a ``{beta}-6 stability diagram`` to display the regions of instability with respect to the equatorial values of the parameters {bar {beta}} and {delta}, where {bar {beta}} = (1/3)({beta}{sub {parallel}} + 2 {beta}{perpendicular}) is an average beta value and {delta} = 1 - P{parallel}/P{perpendicular} is a measure of the plasma anisotropy.

  3. Nonlinear standing Alfven wave current system at Io - Theory

    NASA Astrophysics Data System (ADS)

    Neubauer, F. M.

    1980-03-01

    A nonlinear analytical model is presented of the Alfven current tubes continuing the currents through Io generated by the unipolar inductor effect due to Io's motion relative to the magnetospheric plasma. It was shown that: (1) the portion of the currents needing Io is aligned with the Alfven characteristics at a specific angle to the magnetic field for the special case of perpendicular flow; (2) the Alfven tubes act like an external conductance; (3) the Alfven tubes may be reflected from the torus boundary or the Jovian atmosphere; and (4) from the point of view of the electrodynamic interaction, Io is unique among the Jovian satellites because of its ionosphere arising from ionized volcanic gases and a high external Alfvenic conductance.

  4. Drift-Alfven eigenmodes in inhomogeneous plasma

    SciTech Connect

    Vranjes, J.; Poedts, S.

    2006-03-15

    A set of three nonlinear equations describing drift-Alfven waves in a nonuniform magnetized plasma is derived and discussed both in linear and nonlinear limits. In the case of a cylindric radially bounded plasma with a Gaussian density distribution in the radial direction the linearized equations are solved exactly yielding general solutions for modes with quantized frequencies and with radially dependent amplitudes. The full set of nonlinear equations is also solved yielding particular solutions in the form of rotating radially limited structures. The results should be applicable to the description of electromagnetic perturbations in solar magnetic structures and in astrophysical column-like objects including cosmic tornados.

  5. Interplanetary Alfven waves and auroral (substorm) activity: IMP 8

    SciTech Connect

    Tsurutani, B.T.; Gould, T.; Goldstein, B.E. ); Gonzalez, W.D. ); Sugiura, Masahisa )

    1990-03-01

    Almost year of IMP 8 interplanetary magnetic field and plasma data (Days 1-312, 1979) have been examined to determine the interplanetary causes of geomagnetic AE activity. The nature of the interplanetary medium (Alfvenic or non-Alfvenic) and the B{sub 2} correlation with AE were examined over 12-hour increments throughout the study. It is found that Alfvenic wave intervals (defined as V{sub x}-B{sub x} cross-correlation coefficients of >0.6) are present over 60% of the time and the southward component of the Alfven waves is well correlated with AE (average peak correlation coefficient 0.62), with a median lag of 43 min. The most probable delay of AE from B{sub s} is considerably shorter, about 20-25 min. Southward magnetic fields during non-Alfvenic intervals (V{sub x}-B{sub x} cross-correlation coefficients of < 0.4) are equally effective in producing geomagnetic activity. Peak correlation coefficients and lags are similar to those of Alfvenic intervals. From this statistical study, no major differences in the magnetospheric response to Alfvenic and non-Alfvenic intervals were obvious. The high-intensity long-duration continuous AE activity (HILDCAA) events discussed previously by Tsurutani and Gonzalez (1987) are demosntrated to be caused by the southward components of the Alfven waves, presumably through the process of magnetic reconnection. The lag times of AE from B{sub s} were variable from event to event (and at different times within the Alfven wave train), ranging from 45 min to as little as 0 min. The cause of this variable delay is somewhat surprising and is not presently well understood.

  6. Investigation of global Alfven instabilities in TFTR

    SciTech Connect

    Wong, K.L.; Paul, S.F.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Synakowski, E.J.; Durst, R.; Fonck, R.J.; Roberts, D.R.; Sabbagh, S.

    1992-01-01

    Toroidal Alfven Eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into TFTR plasmas at low magnetic field such that the injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtooth-like behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization was investigated at various plasma current and magnetic field. The results indicate that the instability can effectively clamp the number of energetic ions in the plasma. The observed instability threshold is discussed in the light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high frequency oscillations do not have direct effect on the plasma neutron source strength.

  7. Coupling of global toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes in DIII-D

    SciTech Connect

    Van Zeeland, M. A.; Turnbull, A. D.; Austin, M. E.; Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.; Heidbrink, W. W.; Ruskov, E.; Makowski, M. A.; McKee, G. R.

    2007-05-15

    Reversed shear Alfven eigenmodes (RSAEs) are typically thought of as being localized near the minima in the magnetic safety factor profile, however, their spatial coupling to global toroidal Alfven eigenmodes (TAEs) has been observed in DIII-D discharges. For a decreasing minimum magnetic safety factor, the RSAE frequency chirps up through that of stable and unstable TAEs. Coupling creates a small gap at the frequency degeneracy point forming two distinct global modes. The core-localized RSAE mode structure changes and becomes temporarily global. Similarly, near the mode frequency crossing point, the global TAE extends deeper into the plasma core. The frequency splitting and spatial structure of the two modes throughout the various coupling stages, as measured by an array of internal fluctuation diagnostics, are in close agreement with linear ideal MHD calculations using the NOVA code. The implications of this coupling for eigenmode stability is also investigated and marked changes are noted throughout the coupling process.

  8. Alfvenic Turbulence from the Sun to 65 Solar Radii: Numerical predictions.

    NASA Astrophysics Data System (ADS)

    Perez, J. C.; Chandran, B. D. G.

    2015-12-01

    The upcoming NASA Solar Probe Plus (SPP) mission will fly to within 9 solar radii from the solar surface, about 7 times closer to the Sun than any previous spacecraft has ever reached. This historic mission will gather unprecedented remote-sensing data and the first in-situ measurements of the plasma in the solar atmosphere, which will revolutionize our knowledge and understanding of turbulence and other processes that heat the solar corona and accelerate the solar wind. This close to the Sun the background solar-wind properties are highly inhomogeneous. As a result, outward-propagating Alfven waves (AWs) arising from the random motions of the photospheric magnetic-field footpoints undergo strong non-WKB reflections and trigger a vigorous turbulent cascade. In this talk I will discuss recent progress in the understanding of reflection-driven Alfven turbulence in this scenario by means of high-resolution numerical simulations, with the goal of predicting the detailed nature of the velocity and magnetic field fluctuations that the SPP mission will measure. In particular, I will place special emphasis on relating the simulations to relevant physical mechanisms that might govern the radial evolution of the turbulence spectra of outward/inward-propagating fluctuations and discuss the conditions that lead to universal power-laws.

  9. Phase slips and dissipation of Alfvenic intermediate shocks and solitons

    SciTech Connect

    Laveder, D.; Passot, T.; Sulem, P. L.

    2012-09-15

    The time evolution of a rotational discontinuity, characterized by a change of the magnetic-field direction by an angle {Delta}{theta} such that {pi}<|{Delta}{theta}|<2{pi} and no amplitude variation, is considered in the framework of asymptotic models that, through reductive perturbative expansions, isolate the dynamics of parallel or quasi-parallel Alfven waves. In the presence of viscous and Ohmic dissipation, and for a zero or sufficiently weak dispersion (originating from the Hall effect), an intermediate shock rapidly forms, steepens and undergoes reconnection through a quasi gradient collapse, leading to a reduction of |{Delta}{theta}| by an amount of 2{pi}, which can be viewed as the breaking of a topological constraint. Afterwards, as |{Delta}{theta}|<{pi}, the intermediate shock broadens and slowly dissipates. In the case of a phase jump |{Delta}{theta}|>3{pi}, which corresponds to a wave train limited on both sides by uniform fields, a sequence of such reconnection processes takes place. Differently, in the presence of a strong enough dispersion, the rotational discontinuity evolves, depending on the sign of {Delta}{theta}, to a dark or bright soliton displaying a 2{pi} phase variation. The latter is then eliminated, directly by reconnection in the case of a dark soliton, or through a more complex process involving a quasi amplitude collapse in that of a bright soliton. Afterwards, the resulting structure is progressively damped. For a prescribed initial rotational discontinuity, both quasi gradient and amplitude collapses lead to a sizeable energy decay that in the collisional regime is independent of the diffusion coefficient {eta} but requires a time scaling like 1/{eta}. In the non-collisional regime where dissipation originates from Landau resonance, the amount of dissipated energy during the event is independent of the plasma {beta}, but the process becomes slower for smaller {beta}.

  10. James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves

    NASA Astrophysics Data System (ADS)

    Chen, Liu

    2012-10-01

    Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

  11. Ground observations of kinetic Alfven waves

    SciTech Connect

    Kloecker, N.; Luehr, H.; Robert, P.; Korth, A.

    1985-01-01

    Ground-based observations with the EISCAT magnetometer of locally confined intense drifting current systems and Geos-2 measurements during four events in November and December 1982 are examined. In the ground-based measurements near the Harang discontinuity, the events are characterized by strong pulsations with amplitudes in the horizontal component up to 1000 nT and periods of about 300 s and longer. They occur in the evening hours adjacent to the poleward side of the discontinuity with the onset of a substorm; at the same time, the inner edge of the plasma sheet passes the Geos-2 position, magnetically conjugate to ground stations. It is shown that the events can be explained in terms of kinetic Alfven waves. 8 references.

  12. Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma

    SciTech Connect

    Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas; Rudakov, Leonid

    2012-10-15

    It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

  13. Kinetic Alfven solitary waves in a magnetized plasma with superthermal electrons

    SciTech Connect

    Panwar, A. E-mail: ryu201@postech.ac.kr Ryu, C. M. E-mail: ryu201@postech.ac.kr; Bains, A. S. E-mail: ryu201@postech.ac.kr

    2015-09-15

    A study of the ion Larmor radius effects on the solitary kinetic Alfven waves (SKAWs) in a magnetized plasma with superthermal electrons is presented by employing the kinetic theory. The linear dispersion relation of SKAW is shown to depend on the superthermal parameter κ, ion to electron temperature ratio, and the angle of wave propagation. Using the Sagdeev potential approach, the energy balance equation has been derived to study the dynamics of SKAWs. The effects of various plasma parameters are investigated for the propagation of SKAWs. It is shown that only compressive solitons can exist and in the Maxwellian limit our results are in good agreement with previous studies. Further, the characteristics of small amplitude SKAWs are investigated. Present study could be useful for the understanding of SKAWs in a low β plasma in astrophysical environment, where particle distributions are superthermal in nature.

  14. Nonlinear interaction of kinetic Alfven wave and whistler: Turbulent spectra and anisotropic scaling

    SciTech Connect

    Kumar Dwivedi, Navin; Sharma, R. P.

    2013-04-15

    In this work, we are presenting the excitation of oblique propagating whistler wave as a consequence of nonlinear interaction between whistler wave and kinetic Alfven wave (KAW) in intermediate beta plasmas. Numerical simulation has been done to study the transient evolution of magnetic field structures of KAW when the nonlinearity arises due to ponderomotive effects by taking the adiabatic response of the background density. Weak oblique propagating whistler signals in these nonlinear plasma density filaments (produced by KAW localization) get amplified. The spectral indices of the power spectrum at different times are calculated with given initial conditions of the simulations. Anisotropic scaling laws for KAW and whistlers are presented. The relevance of the present investigation to solar wind turbulence and its acceleration is also pointed out.

  15. The Source of Alfven Waves That Heat the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  16. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-02-01

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum.

  17. Collisionless parallel shocks

    NASA Technical Reports Server (NTRS)

    Khabibrakhmanov, I. KH.; Galeev, A. A.; Galinskii, V. L.

    1993-01-01

    Consideration is given to a collisionless parallel shock based on solitary-type solutions of the modified derivative nonlinear Schroedinger equation (MDNLS) for parallel Alfven waves. The standard derivative nonlinear Schroedinger equation is generalized in order to include the possible anisotropy of the plasma distribution and higher-order Korteweg-de Vies-type dispersion. Stationary solutions of MDNLS are discussed. The anisotropic nature of 'adiabatic' reflections leads to the asymmetric particle distribution in the upstream as well as in the downstream regions of the shock. As a result, nonzero heat flux appears near the front of the shock. It is shown that this causes the stochastic behavior of the nonlinear waves, which can significantly contribute to the shock thermalization.

  18. KINETIC INSTABILITY OF DRIFT-ALFVEN WAVES IN SOLAR CORONA AND STOCHASTIC HEATING

    SciTech Connect

    Vranjes, J.; Poedts, S. E-mail: Stefaan.Poedts@wis.kuleuven.b

    2010-08-20

    The solar atmosphere is structured and inhomogeneous, both horizontally and vertically. The omnipresence of coronal magnetic loops implies gradients of the equilibrium plasma quantities such as the density, magnetic field, and temperature. These gradients are responsible for the excitation of drift waves that grow both within the two-component fluid description (both in the presence of collisions and without it) and within the two-component kinetic descriptions (due to purely kinetic effects). In this work, the effects of the density gradient in the direction perpendicular to the magnetic field vector are investigated within the kinetic theory, in both electrostatic (ES) and electromagnetic (EM) regimes. The EM regime implies the coupling of the gradient-driven drift wave with the Alfven wave. The growth rates for the two cases are calculated and compared. It is found that, in general, the ES regime is characterized by stronger growth rates, as compared with the EM perturbations. Also discussed is the stochastic heating associated with the drift wave. The released amount of energy density due to this heating should be more dependent on the magnitude of the background magnetic field than on the coupling of the drift and Alfven waves. The stochastic heating is expected to be much higher in regions with a stronger magnetic field. On the whole, the energy release rate caused by the stochastic heating can be several orders of magnitude above the value presently accepted as necessary for a sustainable coronal heating. The vertical stratification and the very long wavelengths along the magnetic loops imply that a drift-Alfven wave, propagating as a twisted structure along the loop, in fact occupies regions with different plasma-{beta} and, therefore, may have different (EM-ES) properties, resulting in different heating rates within just one or two wavelengths.

  19. Alfven wave filamentation and dispersive phase mixing

    SciTech Connect

    Sulem, P. L.; Passot, T.; Laveder, D.; Borgogno, D.

    2009-11-10

    The formation of three-dimensional magnetic structures from quasi-monochromatic left-hand polarized dispersive Alfven waves, under the effect of transverse collapse and/or the lensing effect of density channels aligned with the ambient magnetic field is discussed, both in the context of the usual Hall-MHD and using a fluid model retaining linear Landau damping and finite Larmor radius corrections. It is in particular shown that in a small-{beta} plasma (that is stable relatively to the filamentation instability in the absence of inhomogeneities), a moderate density enhancement leads the wave energy to concentrate into a filament whose transverse size is prescribed by the dimension of the channel, while for a strong density perturbation, this structure later on evolves to thin helical ribbons where the strong gradients permit dissipation processes to become efficient and heat the plasma. The outcome of this 'dispersive phase mixing' that leads to small-scale formation on relatively extended regions contrasts with the more localized oblique shocks formed in the absence of dispersion. Preliminary results on the effect of weak collisions that lead to an increase of the transverse ion temperature are also briefly mentioned.

  20. THE SPATIAL AND TEMPORAL DEPENDENCE OF CORONAL HEATING BY ALFVEN WAVE TURBULENCE

    SciTech Connect

    Asgari-Targhi, M.; Van Ballegooijen, A. A.; Cranmer, S. R.; DeLuca, E. E.

    2013-08-20

    The solar atmosphere may be heated by Alfven waves that propagate up from the convection zone and dissipate their energy in the chromosphere and corona. To further test this theory, we consider wave heating in an active region observed on 2012 March 7. A potential field model of the region is constructed, and 22 field lines representing observed coronal loops are traced through the model. Using a three-dimensional (3D) reduced magnetohydrodynamics code, we simulate the dynamics of Alfven waves in and near the observed loops. The results for different loops are combined into a single formula describing the average heating rate Q as a function of position within the observed active region. We suggest this expression may be approximately valid also for other active regions, and therefore may be used to construct 3D, time-dependent models of the coronal plasma. Such models are needed to understand the role of thermal non-equilibrium in the structuring and dynamics of the Sun's corona.

  1. Alfven waves, alpha particles, and pickup ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Neugebauer, M.; Smith, E. J.

    1995-01-01

    Past studies of the properties of Alfven waves in the solar wind have indicated that (1) the amplitude of the velocity fluctuations is almost always smaller than expected on the basis of the amplitude of the field fluctuations, even when the anisotropy of the plasma is taken into account, and (2) the alpha particles do not participate in the wave motions because they 'surf' on the waves carried by the proton fluid. Ulysses data are used to demonstrate that (1) the discrepancy between the velocity and field fluctuations is greater at high heliographic latitudes than in the ecliptic plane, and (2) the alphas do participate in the waves, being either in phase or out of phase with the proton motions depending on whether the differential flow speed between the alphas and protons is greater than or less than the 'observed' wave speed, B(sub o)(delta v squared / delta B squared)exp 1/2, as determined from the ratio of the amplitudes of the velocity and magnetic fluctuations. It is proposed that the modification of Alfven wave propagation speed is due to pressure anisotropies resulting from asymmetric distributions of interstellar pickup ions. If the proposed explanation is correct, it indicates that scattering of pickup ions onto a (bi)spherical shell may not be as complete as generally supposed.

  2. On the existence of finite amplitude, transverse Alfven waves in the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1977-01-01

    Interplanetary magnetic field data from the Mariner 10 spacecraft were examined for evidence of small and finite amplitude transverse Alfven waves, general finite amplitude Alfven waves, and magnetosonic waves. No evidence for transverse Alfven waves was found. Instead, the field fluctuations were found to be dominated by the general finite amplitude Alfven wave. Such wave modes correspond to non-plane-wave solutions of the nonlinear magnetohydrodynamic equations.

  3. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    NASA Astrophysics Data System (ADS)

    Guo, Zhifang; Hong, Minghua; Lin, Yu; Du, Aimin; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-02-01

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E ×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x ,z ) =(-10.5 RE,0.3 RE) , where RE is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k⊥≫k∥ are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δEz)/(δBy )˜ω/k∥ of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  4. Generation of kinetic Alfven waves in the high-latitude near-Earth magnetotail: A global hybrid simulation

    SciTech Connect

    Guo, Zhifang; Hong, Minghua; Du, Aimin; Lin, Yu; Wang, Xueyi; Wu, Mingyu; Lu, Quanming

    2015-02-15

    In this paper, effects of a fast flow in the tail plasma sheet on the generation of kinetic Alfven waves (KAWs) in the high-latitude of the near-Earth magnetotail are investigated by performing a two-dimensional (2-D) global-scale hybrid simulation, where the plasma flow is initialized by the E×B drift near the equatorial plane due to the existence of the dawn-dusk convection electric field. It is found that firstly, the plasma sheet becomes thinned and the dipolarization of magnetic field appears around (x,z)=(−10.5R{sub E},0.3R{sub E}), where R{sub E} is the radius of the Earth. Then, shear Alfven waves are excited in the plasma sheet, and the strong earthward flow is braked by the dipole-like magnetic field. These waves propagate along the magnetic field lines toward the polar regions later. Subsequently, KAWs with k{sub ⊥}≫k{sub ∥} are generated in the high-latitude magnetotail due to the existence of the non-uniformity of the magnetic field and density in the polar regions. The ratio of the electric field to the magnetic field in these waves is found to obey the relation (δE{sub z})/(δB{sub y} )∼ω/k{sub ∥} of KAWs. Our simulation provides a mechanism for the generation of the observed low-frequency shear Alfven waves in the plasma sheet and kinetic Alfven waves in the high-latitude near-Earth magnetotail, whose source is suggested to be the flow braking in the low-latitude plasma sheet.

  5. Neutral beam excitation of Alfven continua in the madison symmetric torus reversed field pinch

    NASA Astrophysics Data System (ADS)

    Koliner, Jonathan Jay

    Alfven continua and Alfven eigenmodes (AEs) have been generated for reversed-field pinch (RFP) plasma equilibria in Madison Symmetric Torus (MST). Data gathered from the extensive suite of diagnostics on MST was used to generate equilibria using MSTFIT and VMEC. Three dimensional equilibria for spontaneous helical states were generated using the equilibrium reconstruction code V3FIT. The reduced-MHD codes AE3D and STELLGAP were run on all generated equilibria to calculate the continua and AEs. All continuum solutions contain a toroidicity-induced Alfven gap at 200-400 kHz, within which AE solutions appear by coupling of m=0,1 at medium n. The first observation of beam-driven instabilities on the RFP was performed using MST magnetics during neutral beam injection (NBI). Spatially coherent bursts with n=5,m=1 were observed in plasmas with edge safety factor q_a=0. The bursts oscillate at 65 kHz, and reach maximum amplitude and decay away within 100 mus. These bursts persist for the duration of NBI. Secondary n=-1 and n=4 bursts are coupled in time, reaching maximum amplitude with 50 mus after the n=5 peak amplitude. While the n=5 bursts scale weakly with the electron density n_e and strongly with the beam velocity v_beam, the n=4 bursts scale with the Alfven speed v_A. The burst frequencies are well below those of the calculated AEs and the modes are driven even with v_ beam < v_A, suggesting that the bursting modes are EPMs exciting continuum resonances. Burst characteristics were examined in a variety of plasmas. In reversed plasmas, the temporally changing q profile changes the burst resonances, bringing n=6 into resonance halfway through the sawtooth cycle. The n=5 mode switches from its frequency in non-reversed plasmas to a higher frequency at the end of the sawtooth cycle. In deeply reversed plasmas, the bursts are weaker and display chirping behavior as the plasma reversal increases. During the transition to a helical state, the bursts increase in frequency

  6. Beam Anisotropy Effect on Alfven Eigenmode Stability in ITER-like Plasma

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R.V. Budny

    2004-08-18

    This work studies the stability of the toroidicity-induced Alfven Eigenmodes (TAE) in the proposed ITER burning plasma experiment, which can be driven unstable by two groups of energetic particles, the 3.5-MeV {alpha}-particle fusion products and the tangentially injected 1-MeV beam ions. Both species are super-Alfvenic but they have different pitch-angle distributions and the drive for the same pressure gradients is typically stronger from co-injected beam ions as compared with the isotropically distributed {alpha}-particles. This study includes the effect of anisotropy of the beam-ion distribution function on TAE growth rate directly via the additional velocity space drive and indirectly in terms of the enhanced effect of the resonant particle phase space density. For near parallel injection, TAEs are marginally unstable if the injection aims at the plasma center where the ion Landau damping is strong, whereas with the off-axis neutral-beam injection the instability is stronger with the growth rate near 0.5% of TAE mode frequency. In contrast, for perpendicular beam injection TAEs are predicted to be stabilized in nominal ITER discharges. In addition, the effect of TAEs on the fast-ion beta profiles is evaluated on the bases of a quasi-linear diffusion model which makes use of analytic expressions for the local growth and damping rates. These results illustrate the parameter window that is available for plasma burn when TAE modes are excited.

  7. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  8. Observation of mode conversion of m = minus 1 fast waves on the Alfven resonance layer

    SciTech Connect

    Amagishi, Y. )

    1990-03-12

    Fast waves or MHD surface waves of {ital m}={minus}1 (poloidal mode number of left-hand rotation) have been observed to be mode converted on the Alfven resonance layer. The converted waves are a quasielectrostatic form of the shear Alfven waves, i.e., kinetic Alfven wave and/or the resistive mode.

  9. Alfvenically driven slow shocks in the solar chromosphere and corona

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    The nonlinear evolution of an Alfvenic impulse launched from the photosphere and its dynamical effects on the chromosphere, transition region (TR), and corona are investigated using a simple 1D model. It is found that the leading edge of the torsional pulse can steepen into a fast shock in the chromosphere if the pulse is of sufficiently large amplitude and short duration. A slow shock which develops behind the Alfvenic pulse can reflect downgoing Alfven waves back up to the corona. The upgoing reflected wave can induce a significant upward ejection of the TR. Nonlinear dynamics are found to lead to very impulsive behavior at later times. It is suggested that impulsive events occurring in the TR or corona need not be interpreted in terms of reconnection-driven microflares. It is also found that B(0) in the chromosphere can be amplified when the TR and chromosphere fall.

  10. Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

    SciTech Connect

    Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.

    2012-08-15

    The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

  11. THE ROLE OF TORSIONAL ALFVEN WAVES IN CORONAL HEATING

    SciTech Connect

    Antolin, P.; Shibata, K. E-mail: shibata@kwasan.kyoto-u.ac.j

    2010-03-20

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfven waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfven waves in the solar corona. In order to assess the role of Alfven waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfven wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfven wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s{sup -1}) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several

  12. Gyrokinetic simulation of global and local Alfven eigenmodes driven by energetic particles in a DIII-D discharge

    SciTech Connect

    Bass, E. M.; Waltz, R. E.

    2013-01-15

    The unstable spectrum of Alfven eigenmodes (AEs) driven by neutral beam-sourced energetic particles (EPs) in a benchmark DIII-D discharge (142111) is calculated in a fully gyrokinetic model using the GYRO code's massively parallel linear eigenvalue solver. One cycle of the slow (equilibrium scale) frequency sweep of the reverse shear Alfven eigenmode (RSAE) at toroidal mode number n=3 is mapped. The RSAE second harmonic and an unstable beta-induced Alfven eigenmode (BAE) are simultaneously tracked alongside the primary RSAE. An observed twist in the eigenmode pattern, caused mostly by shear in the driving EP profile, is shown through artificially varying the E Multiplication-Sign B rotational velocity shear to depend generally on shear in the local wave phase velocity. Coupling to the BAE and to the toroidal Alfven eigenmode limit the RSAE frequency sweeps at the lower and upper end, respectively. While the present fully gyrokinetic model (including thermal ions and electrons) constitutes the best treatment of compressibility physics available, the BAE frequency is overpredicted by about 20% against experiment here and is found to be sensitive to energetic beam ion pressure. The RSAE frequency is more accurately matched except when it is limited by the BAE. Simulations suggest that the experiment is very close to marginal AE stability at points of RSAE-BAE coupling. A recipe for comparing the radial profile of quasilinear transport flux from local modes to that from global modes paves the way for the development of a stiff (critical gradient) local AE transport model based on local mode stability thresholds.

  13. Alfven Waves and Turbulence in the Solar Atmosphere and Solar Wind

    NASA Technical Reports Server (NTRS)

    Verdini, Andrea; Velli, Marco

    2007-01-01

    We solve the problem of propagation and dissipation of Alfvenic turbulence in a model solar atmosphere consisting of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-dependent variability of the lower atmospheric layer is introduced.

  14. Focusing of Alfvenic wave power in the context of gamma-ray burst emissivity

    NASA Technical Reports Server (NTRS)

    Fatuzzo, Marco; Melia, Fulvio

    1993-01-01

    Highly dynamic magnetospheric perturbations in neutron star environments can naturally account for the features observed in gamma-ray burst spectra. The source distribution, however, appears to be extragalactic. Although noncatastrophic isotropic emission mechanisms may be ruled out on energetic and timing arguments, MHD processes can produce strongly anisotropic gamma rays with an observable flux out to distances of about 1-2 Gpc. Here we show that sheared Alfven waves propagating along open magnetospheric field lines at the poles of magnetized neutron stars transfer their energy dissipationally to the current sustaining the field misalignment and thereby focus their power into a spatial region about 1000 times smaller than that of the crustal disturbance. This produces a strong (observable) flux enhancement along certain directions. We apply this model to a source population of 'turned-off' pulsars that have nonetheless retained their strong magnetic fields and have achieved alignment at a period of approximately greater than 5 sec.

  15. Finite Pressure Effects on Reversed Shear Alfven Eigenmodes

    SciTech Connect

    G.J. Kramer; N.N. Gorelenkov; R. Nazikian; C.Z. Cheng

    2004-09-03

    The inclusion of finite pressure in ideal-magnetohydrodynamic (MHD) theory can explain the Reversed magnetic Shear Alfven Eigenmodes (RSAE) (or Alfven cascades) that have been observed in several large tokamaks without the need to invoke the energetic particle mechanism for the existence of these modes. The chirping of the RSAEs is cased by changes in the minimum of the magnetic safety factor, q(sub)min, while finite pressure effects explains the observed non-zero minimum frequency of the RSAE when qmin has a rational value. Finite pressure effects also play a dominant role in the existence of the downward chirping RSAE branch.

  16. Ion-neutral collision effect on an Alfven wave

    SciTech Connect

    Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )

    1993-07-19

    This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.

  17. Resonant Alfven wave instabilities driven by streaming fast particles

    SciTech Connect

    Zachary, A.

    1987-05-08

    A plasma simulation code is used to study the resonant interactions between streaming ions and Alfven waves. The medium which supports the Alfven waves is treated as a single, one-dimensional, ideal MHD fluid, while the ions are treated as kinetic particles. The code is used to study three ion distributions: a cold beam; a monoenergetic shell; and a drifting distribution with a power-law dependence on momentum. These distributions represent: the field-aligned beams upstream of the earth's bow shock; the diffuse ions upstream of the bow shock; and the cosmic ray distribution function near a supernova remnant shock. 92 refs., 31 figs., 12 tabs.

  18. Ion temperature in plasmas with intrinsic Alfven waves

    SciTech Connect

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-15

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  19. First Results of PIC Modeling of Kinetic Alfven Wave Dissipation

    NASA Technical Reports Server (NTRS)

    Chulaki, Anna; Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.

  20. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  1. Anharmonicity of the Alfven resonances in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Guglielmi, A.; Potapov, A.

    2009-04-01

    The theory of ponderomotive forces predicts the anharmonicity of Alfven waves. The goal of our work is to find an experimental evidence of the anharmonicity of Alfven oscillations of the Earth's magnetosphere by using the ground based observation of the ULF waves in the Pc5 frequency band. The new techniques for search of the effects of anharmonicity are offered - the method of ULF range finding, the spectral-polarization method, the synchronous detection method, and the specific method the idea of which consists in the analysis of the amplitude dependence of the Alfven resonances by using the data of ULF observation along the meridian chain of the magnetic stations. The methods were employed for the study of anharmonicity of MHD oscillations with use of the networks of magnetometer stations IMAGE, the observatories Borok, Mondy and Uzur. The coefficients of nonlinearity of the magnetosphere are estimated by using the proposed methods. It is shown that the phenomenon of gigantic anharmonicity which is predicted by some theories is absent in fact. It is shown that the anharmonicity of the Alfven oscillations in combination with nonlocal boundary condition over the Earth's surface leads to the amplitude dependence of the surface impedance if it is calculated by using the classical magneto-telluric (MTS) method. This parasitic nonlinearity of the surface impedance may be especially pronounced at the condition that the global Pc5 oscillations are used for MTS. The work was partly supported by grants RFBR 07-05-00696, 09-05-00048.

  2. Gyrokinetic Particle Simulation of Alfven Eigenmodes with Zonal Fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhixuan

    2012-03-01

    Effects of collective Shear Alfven wave instabilities on the energetic particle confinement in tokamak depend ultimately on the nonlinear evolution of the turbulence with spontaneously generated zonal fields (zonal flows and zonal currents). In this work, we study nonlinear interaction of Alfv'en eigenmodes with zonal fields using global gyrokinetic toroidal code GTC. We choose to start from the simplest case, linear electrostatic eigenmodes in cylindrical geometry, and then gradually extend our study into electromagnetic eigenmode in toroidal geometry. We have verified GTC for linear simulation in cylindrical geometry with the ExB flow shear. Ion temperature gradient instability is observed to be suppressed when ExB flow shear is strong enough. A good agreement has also been achieved between our simulation result of kinetic Alfv'en wave and LAPD experimental result. Now we are doing TAE (torodicity-induced Alfv'en eigenmodes) simulation using the DIII-D equilibrium data. Linear simulation result agrees well with DIII-D data. Our next step is to include nonlinear effects to study the interaction between zonal fields and TAEs. Work supported by DOE SciDAC GSEP Center and Plasma Science Center.

  3. Quantum effects on compressional Alfven waves in compensated semiconductors

    SciTech Connect

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  4. Three-fluid solar wind model with Alfven waves

    NASA Technical Reports Server (NTRS)

    Esser, Ruth; Habbal, Shadia R.; Hu, You Q.

    1995-01-01

    We present a study of a three-fluid solar wind model. with continuity, momentum and separate energy equations for protons. alpha particles and electrons. Allowing separate coronal heat sources for all three species, we study the flow properties of the solar wind as a function of heat input, Alfven wave energy input, and alpha particle abundance.

  5. Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfven waves

    NASA Technical Reports Server (NTRS)

    Ng, C. K.; Reames, D. V.

    1994-01-01

    We present a model of the focused transport of approximately 1 MeV solar energetic protons through interplanetary Alfven waves that the protons themselves amplify or damp. It is based on the quasi-linear theory but with a phenomenological pitch angle diffusion coefficient in the 'resonance gap.' For initial Alfven wave distributions that give mean free paths greater than approximately 0.5 AU for approximately 1 MeV protons in the inner heliosphere, the model predicts greater than roughly an order of magnitude amplification (damping) in the outward (inward) propagating resonant Alfven waves at less than or approximately equal to o.3 AU heliocentric distance. As the strength of proton source is increased, the peak differential proton intensity at approximately 1 MeV at 1 AU increases to a maximum of approximately 250 particles (/(sq cm)(s)(sr)(MeV)) and then decreases slowly. It may be attenuated by a factor of 5 or more relative to the case without wave evolution, provided that the proton source is sufficiently intense that the resulting peak differential intensity of approximately 1 MeV protons at 1 AU exceeds approximately 200 particles (/(sq cm)(s)(sr)(MeV)). Therefore, in large solar proton events, (1) one may have to take into account self-amplified waves in studying solar particle propagation, (2) the number of accelerated protons escaping from a flare or interplanetary shock may have been underestimated in past studies by a significant factor, and (3) accelerated protons escaping from a traveling interplanetary shock at r less than or approximately equal to 0.3 AU should amplify the ambient hydromagnetic waves siginificantly to make the shock an efficient accelerator, even if initially the mean free path is greater than or approximately equal to 1 AU.

  6. Nonlinear interaction of kinetic Alfven wave with fast magnetosonic wave and turbulent spectrum

    SciTech Connect

    Modi, K. V.; Sharma, R. P.

    2013-03-15

    In the present paper, authors have investigated nonlinear interaction of kinetic Alfven wave (KAW) and fast magnetosonic wave for intermediate {beta}-plasma (m{sub e}/m{sub i} Much-Less-Than {beta} Much-Less-Than 1). Authors have developed the set of dimensionless equations in the presence of ponderomotive nonlinearity due to KAW in the dynamics of fast magnetosonic wave. Numerical simulation has been carried out to study the effect of nonlinear coupling and resulting turbulent/power spectrum for the different angles of propagation of fast magnetosonic wave applicable to solar wind at 1 AU. The localization of KAW has been found which becomes more complex as the angle of propagation of fast magnetosonic wave decreases. Results also reveal the steepening of power spectrum as the angle of propagation decreases which can be responsible for heating and acceleration of plasma particles in solar wind. Relevance of the obtained result is pointed out with observation received by Cluster spacecraft for the solar wind 1 AU.

  7. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    SciTech Connect

    Maneva, Y. G.; Ofman, L.; Vinas, A. F.

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  8. Wave Propagation Program

    SciTech Connect

    McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  9. Nonlinear Alfven waves in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Feldman, W. C.

    1977-01-01

    A nonlinear proton distribution function that is an exact stationary solution of the nonlinear Vlasov equation and Maxwell's equations and which supports a single nonlinear transverse Alfven (ion cyclotron) wave that is circularly polarized and nondispersive is proposed for most of the observations during high-speed solar wind streams. This nonlinear distribution removes the strong Alfven wave instability, inconsistent with the persistence of the observed proton distribution functions in high-speed streams, found by the linear stability analysis. Model temperature anisotropies and drift velocities of the two spatially inhomogeneous bi-Maxwellian components are consistent with typical proton velocity distributions measured in high-speed streams at 1 AU. Two derived relations for each of the wave number and the phase velocity of the wave are obeyed within experimental uncertainties by two typical proton measurements. Our model also predicts that the alpha particle bulk flow velocity exceeds the proton particle bulk flow velocity, as is observed.

  10. Filamentation instability of large-amplitude Alfven waves

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Whang, M. H.; Lee, M. C.

    1988-01-01

    An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. Their dependence on the filamentation spectrum, the plasma beta, and the pump frequency and intensity was examined for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability to some observations is discussed.

  11. Coronal heating by the resonant absorption of Alfven waves: Wavenumber scaling laws.

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Davila, J. M.; Steinolfson, R. S.

    1995-01-01

    The importance of global modes in coronal loop heating is well established. In the present work the scaling of the global-mode resonant heating rate with the perturbation wavenumbers is studied with the numerical solution of the linearized time-dependent MHD equations for a full compressible, low-beta, resistive plasma using an implicit integration scheme. The numerical simulations demonstrate that the dissipation on inhomogeneties in the background Alfven speed occurs in narrow resonant layer with the highest heating rate at the global-mode frequency. The global-mode heating rate H (sub r) was found to scale as H (Sub r) approximately k (sub y) (exp 1.03) when k (sub z) = 0.1, and as H (sub r) approximately k (sub y) (exp -1.93) when k (sub z) = 0.75, where k (sub y) and k (sub z) are the wavenumbers in the perpendicular and parallel to the magnetic field directions, respectively, while the dependence of H (sub r) on k (sub z) is more complex. The quality factor Q of the MHD resonance cavity scales as Q approximately k (sub y) (exp -1.8) for k (sub z) = 0.75 and as Q approximately k (sub y) (exp -1.46) for k (sub z) = 0.1. The numerically determined heating rate scaling, the global-mode fequency, and the quality factor are in good agreement with the analytical linear theory. The magnitude of the perturbed velocities was found to decrease with k (sub y). Assuming typical coronal loop parameters (B (sub 0) = 100-200 G, upsilon (sub A) = 2000-4000 km/s), the Alfven waves can supply the required heating to a low-Q loops.

  12. Alfven Eigenmode Stability with Beams in ITER-like Plasma

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R.V. Budny

    2004-07-16

    Toroidicity Alfven Eigenmodes (TAE) in ITER can be driven unstable by two groups of energetic particles, the 3.5 MeV {alpha}-particle fusion products and the tangentially injected 1MeV beam ions. Stability conditions are established using the perturbative NOVA/NOVA-K codes. A quasi-linear diffusion model is then used to assess the induced redistribution of energetic particles.

  13. Evolution of the alpha particle driven toroidicity induced Alfven mode

    SciTech Connect

    Wu, Y.; White, R.B.; Cheng, C.Z.

    1994-04-01

    The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.

  14. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE PAGESBeta

    Haut, T. S.; Babb, T.; Martinsson, P. G.; Wingate, B. A.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  15. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    SciTech Connect

    Haut, T. S.; Babb, T.; Martinsson, P. G.; Wingate, B. A.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existing methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.

  16. Observation of beta-induced Alfven eigenmodes in the DIII-D tokamak

    SciTech Connect

    Heidbrink, W.W.; Strait, E.J.; Chu, M.S.; Turnbull, A.D. General Atomics, P.O. Box 85608, San Diego, California 92186-9784 )

    1993-08-09

    Energetic ions can drive Alfven gap modes unstable, causing large losses of fast ions. Toroidicity-induced Alfven eigenmodes (TAE) were expected to disappear into the shear Alfven continuum and become stable as the plasma beta increased. Although TAE modes may disappear, another dangerous instability with similar properties but approximately half the TAE frequency appears in a spectral gap that is created by finite beta effects. The measured frequency of the new mode agrees with the theoretical frequency of beta-induced Alfven eigenmodes.

  17. Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves

    NASA Astrophysics Data System (ADS)

    Luk, Onnie

    The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When

  18. Toward a theory of interstellar turbulence. 1: Weak Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Goldreich, P.

    1994-01-01

    We study weak Alfvenic turbulence of an incompressible, magnetized fluid in some detail, with a view to developing a firm theoretical basis for the dynamics of small-scale turbulence in the interstellar medium. We prove that resonant 3-wave interactions are absent. We also show that the Iroshnikov-Kraichnan theory of incompressible, magnetohydrodynamic turbulence -- which is widely accepted -- describes weak 3-wave turbulence; consequently, it is incorrect. Physical arguments, as well as detailed calculations of the coupling coefficients are used to demonstrate that these interactions are empty. We then examine resonant 4-wave interactions, and show that the resonance relations forbid energy transport to small spatial scales along the direction of the mean magnetic field, for both the shear Alfven wave and the pseudo Alfven wave. The three-dimensional inertial-range energy spectrum of 4-wave shear Alfven turbulence guessed from physical arguments reads E(k(sub z), k(sub perpendicular)) approximately V(sub A)v(sub L)L(exp -1/3)k(sub perpendicular)(exp -10/3), where V(sub A) is the Alfven speed, and v(sub L) is the velocity difference across the outer scale L. Given this spectrum, the velocity difference across lambda(sub perpendicular) approximately k(sub perpendicular exp -1) is v(sub lambda (sub perpendicular)) is approximately v(sub L)(lambda(sub perpendicular)/L)(exp 2/3). We derive a kinetic equation, and prove that this energy spectrum is a stationary solution and that it implies a positive flux of energy in k-space, along directions perpendicular to the mean magnetic field. Using this energy spectrum, we deduce that 4-wave interactions strengthen as the energy cascades to small, perpendicular spatial scales; beyond an upper bound in perpendicular wavenumber, k(sub perpendicular)L is approximately (V(sub A)/v(sub L))(exp 3/2), weak turbulence theory ceases to be valid. Energy excitation amplitudes must be very small for the 4-wave inertial-range to be

  19. Hybrid simulation of wave propagation in the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Stauffer, B. H.; Delamere, P. A.; Damiano, P. A.

    2015-12-01

    The transmission of waves between Jupiter and Io is an excellent case study of magnetosphere/ionosphere (MI) coupling because the power generated by the interaction at Io and the auroral power emitted at Jupiter can be reasonably estimated. Wave formation begins with mass loading as Io passes through the plasma torus. A ring beam distribution of pickup ions and perturbation of the local flow by the conducting satellite generate electromagnetic ion cyclotron waves and Alfven waves. We investigate wave propagation through the torus and to higher latitudes using a hybrid plasma simulation with a physically realistic density gradient, assessing the transmission of Poynting flux and wave dispersion. We also analyze the propagation of kinetic Alfven waves through a density gradient in two dimensions.

  20. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  1. The dispersive Alfven wave in the time-stationary limit with a focus on collisional and warm-plasma effects

    SciTech Connect

    Finnegan, S. M.; Koepke, M. E.; Knudsen, D. J.

    2008-05-15

    A nonlinear, collisional, two-fluid model of uniform plasma convection across a field-aligned current (FAC) sheet, describing the stationary Alfven (StA) wave, is presented. In a previous work, Knudsen showed that, for cold, collisionless plasma [D. J. Knudsen, J. Geophys. Res. 101, 10761 (1996)], the stationary inertial Alfven (StIA) wave can accelerate electrons parallel to a background magnetic field and cause large, time-independent plasma-density variations having spatial periodicity in the direction of the convective flow over a broad range of spatial scales and energies. Knudsen suggested that these fundamental properties of the StIA wave may play a role in the formation of discrete auroral arcs. Here, Knudsen's model has been generalized for warm, collisional plasma. From this generalization, it is shown that nonzero ion-neutral and electron-ion collisional resistivity significantly alters the perpendicular ac and dc structure of magnetic-field-aligned electron drift, and can either dissipate or enhance the field-aligned electron energy depending on the initial value of field-aligned electron drift velocity. It is also shown that nonzero values of plasma pressure increase the dominant Fourier component of perpendicular wavenumber.

  2. Observations of High Frequency Harmonics of the Ionospheric Alfven Resonator

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Usanova, Maria; Bortnik, Jacob; Milling, David; Kale, Andy; Shao, Leo; Miles, David; Rae, I. Jonathan

    We present observations of high frequency harmonics of the ionospheric Alfven Resonator (IAR). These are seen in the form of spectral resonance structures (SRS) recorded by a ground-based search coil magnetometer sampling at 100 samples/s at the Ministik Lake station at L=4.2 within the expanded CARISMA magnetometer array. Previous observational studies have indicated that such SRS are typically confined to frequencies <~5 Hz with only several SRS harmonics being observed. We report the first observations of clear and discrete SRS, which we believe are harmonics of the IAR, and which extend to around 20 Hz in at least 10-12 clear SRS harmonics. We additionally demonstrate the utility of the Bortnik et al. (2007) auto-detection algorithm, designed for Pc1 wavepackets, for characterising the properties of the IAR. Our results also indicate that the cavity supporting SRS in the IAR at this time must be structured to support and trap much higher frequency IAR harmonics than previously assumed. This impacts the potential importance of the IAR for magnetosphere-ionosphere coupling, especially in relation to the impacts of incident Alfven waves on the ionosphere including Alfvenic aurora. Our observations also highlight the potential value of IAR observations for diagnosing the structure of the topside ionosphere, not least using the observed structure of the SRS. These are the first mid-latitude observations demonstrating that the IAR can extend to frequencies beyond those of the lowest few harmonics of the Schumann resonances - significantly suggesting the possibility that the Schumann resonance modes and the IAR may be coupled. The in-situ structure of the IAR is also examined by combining satellite data with conjugate measurements from the ground, and the impacts of the IAR for magnetosphere-ionosphere-thermosphere coupling examined.

  3. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    SciTech Connect

    Cheng, C.Z.

    1990-10-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.

  4. Nonlinear interaction of dispersive Alfven waves and magnetosonic waves in space plasma

    SciTech Connect

    Sharma, R. P.; Kumar, Sanjay; Singh, H. D.

    2009-03-15

    This paper presents the model equations governing the nonlinear interaction between dispersive Alfven wave (DAW) and magnetosonic wave in the low-{beta} plasmas ({beta}<Alfven waves) applicable to solar corona and intermediate-{beta} plasmas (m{sub e}/m{sub i}<<{beta}<<1; known as kinetic Alfven waves) applicable to solar wind in Earth's magnetosphere. When the ponderomotive nonlinearities are incorporated in the DAW dynamics, the model equations of DAW and magnetosonic wave turn out to be a modified Zakharov system of equations. Numerical solution of the problem has been obtained when the incident pump kinetic Alfven wave/inertial Alfven wave is having a small perturbation.

  5. Theoretical Studies of Drift-Alfven and Energetic Particle Physics

    SciTech Connect

    CHEN, L.

    2014-05-14

    The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.

  6. Heating of the Solar Corona by Dissipative Alfven Solitons

    SciTech Connect

    Stasiewicz, K.

    2006-05-05

    Solar photospheric convection drives myriads of dissipative Alfven solitons (hereinafter called alfvenons) capable of accelerating electrons and ions to energies of hundreds of keV and producing the x-ray corona. Alfvenons are exact solutions of two-fluid equations for a collisionless plasma and represent natural accelerators for conversion of the electromagnetic energy flux driven by convective flows into kinetic energy of charged particles in space and astrophysical plasmas. Their properties have been experimentally verified in the magnetosphere, where they accelerate auroral electrons to tens of keV.

  7. Stability of Alfven oscillations in a plane plasma slab

    SciTech Connect

    Patudin, V.M.; Sagalakov, A.M.

    1983-05-01

    The stability of the natural Alfven oscillations of a plane slab of a collisional, slightly nonequilibrium plasma in a uniform magnetic field is studied. An effective numerical method, a special version of the differential sweepout method, is proposed. A calculation procedure has been developed. The small-oscillation spectrum is analyzed for parabolic plasma density profiles, and neutral curves are plotted. The growth rates and critical parameters are determined. At a high plasma conductivity, both strongly and weakly localized perturbations near the axis can go unstable. For a density profile with an inflection point, weakly damped oscillations are observed near the inflection point. These oscillations can also be excited by an ion beam.

  8. The Jupiter-Io connection - An Alfven engine in space

    NASA Technical Reports Server (NTRS)

    Belcher, John W.

    1987-01-01

    Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.

  9. The Jupiter-Io connection - an Alfven engine in space

    NASA Astrophysics Data System (ADS)

    Belcher, J. W.

    1987-10-01

    Much has been learned about the electromagnetic interaction between Jupiter and its satellite Io from in situ observations. Io, in its motion through the Io plasma torus at Jupiter, continuously generates an Alfven wing that carries two billion kilowatts of power into the jovian ionosphere. Concurrently, Io is acted upon by a J x B force tending to propel it out of the jovian system. The energy source for these processes is the rotation of Jupiter. This unusual planet-satellite coupling serves as an archetype for the interaction of a large moving conductor with a magnetized plasma, a problem of general space and astrophysical interest.

  10. Proton Heating in the Extended Solar Corona Resulting From Kinetic Alfven Turbulence

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; van Ballegooijen, A. A.

    2002-12-01

    Spectroscopic observations of the solar corona have made it clear that the ``coronal heating problem'' comprises not only the local deposition of heat immediately above the transition region, but also extended heat deposition throughout the (collisionless) acceleration region of the solar wind. The dissipation of magnetohydrodynamic (MHD) waves and/or turbulence has been considered as a likely heating mechanism in the solar wind for several decades. However, it is still not well understood how MHD fluctuations are generated, how they evolve in frequency and wavenumber, or how their damping leads to the observed proton, electron, and ion properties of the fast wind. We present a model of MHD turbulence that specifically addresses the issue of kinetic dissipation and particle heating in the collisionless extended corona. The nonlinear cascade is modeled as a combination of advection and diffusion in wavenumber space, with the dominant cascade occurring in the direction perpendicular to the background magnetic field. This leads to a highly anisotropic fluctuation spectrum (as expected, based on many earlier simulations and scaling models) with a rapidly decreasing power-law tail in the parallel wavenumber direction. In the low-plasma-beta corona, the dominant oblique fluctuations (with dispersion properties of kinetic Alfven waves) are dissipated by electron Landau damping, with only a tiny fraction of the energy going to high-frequency ion cyclotron waves. This implies strong parallel electron heating and weak proton and ion heating, which is not what is observed. We discuss the probable nonlinear evolution of the electron velocity distributions into parallel beams and discrete phase-space holes (similar to those seen in the terrestrial magnetosphere) which can possibly heat protons via stochastic interactions.

  11. Conservation Laws: (a) Alfven Waves in the Solar Wind (b) MHD fluid Relabeling Symmetries

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; Dasgupta, B.; Zank, G. P.

    2012-12-01

    We discuss the use of Noether's first and second theorems in the derivation of conservation laws for fluid and plasma systems governed by a action principle. We apply Noether's first and second theorems to derive conservation laws for equations describing the interaction (wave mixing) of backward and forward (radially inward and outward) propagating Alfven waves in stellar winds, due to large scale gradients in the background flow. Noether's first theorem is used to derive the wave action, or canonical wave energy conservation equation which is associated with the linearity symmetry of the equations. More generally, this conservation law is a special case of the Green's theorem conservation law for the wave mixing system and the adjoint wave mixing system. The infinite class of conservation laws associated with Green's theorem, is a consequence of Noether's second theorem. A further conservation law associated with the time translation invariance of the action is also derived. In the latter case, the conserved density is the Hamiltonian density for the waves, which is distinct from the canonical wave energy density. As a second application of Noether's second theorem we revisit the formulation of the fluid relabeling symmetry for magnetohydrodynamics (MHD) and gas dynamics by using the Lagrange-multiplier approach to Noether's second theorem developed by Hydon and Mansfield (2011).

  12. Polarizations of coupling kinetic Alfven and slow waves

    SciTech Connect

    Chen, L.; Wu, D. J.

    2011-07-15

    Kinetic Alfven waves (KAWs) are dispersive Alfven waves with short perpendicular wavelengths and have been extensively applied to various energization phenomena of plasma particles. KAWs are coupled to slow magnetosonic waves in the case of a finite-{beta} plasma. In this paper, the electromagnetic polarization states of the coupling KAWs and slow waves are investigated. The results show that the polarization states of these waves depend sensitively on the local plasma parameters such as the ion-electron temperature ratio ({alpha}=T{sub i}/T{sub e}) and the plasma kinetic-magnetic pressure ratio ({beta}=2{mu}{sub 0}n(T{sub i}+T{sub e})/B{sup 2}) as well as their perpendicular wavenumber (k{sub perpendicular}){rho}{sub i}). The polarization states of waves play an important and key role in wave-particle interactions and hence have a great interest of understanding the physics of particle energization phenomena by these waves.

  13. Dispersion characteristics of kinetic Alfven waves in a multi-ion cometary plasma

    NASA Astrophysics Data System (ADS)

    Jayapal, R.; Abraham, Noble P.; Blesson, Jose; Antony, S.; Anilkumar, C. P.; Venugopal, Chandu

    We have studied the stability of the kinetic Alfven wave in a plasma composed of hydrogen and positively and negatively charged oxygen ions and electrons which approximates very well the plasma environment around comet Halley. In the direction parallel to the magnetic field, the electrons have been modelled by a drifting Maxwellian distribution. In the perpendicular direction, another ring simulated by a loss cone type distribution, obtained by subtracting two Maxwellians with different temperatures, model all the constituents of the plasma. The dispersion relation derived for KAWs is a generalisation of the pioneering dispersion relation of Hasegawa on two counts: it has been extended to a plasma described by a generalised distribution function and to a multi - ion plasma containing positively and negatively charged ions. We find that the dispersion characteristics of the KAW can be made independent of the heavy ion parameters by an appropriate choice of densities and temperatures. The source of free energy for the instability is the drift velocity of the electrons; the growth rate increases with increasing drift velocity of the electrons. The positively charged heavier ions enhance the instability while the negatively charged heavier ions tend to damp the wave.

  14. Parallel computers

    SciTech Connect

    Treveaven, P.

    1989-01-01

    This book presents an introduction to object-oriented, functional, and logic parallel computing on which the fifth generation of computer systems will be based. Coverage includes concepts for parallel computing languages, a parallel object-oriented system (DOOM) and its language (POOL), an object-oriented multilevel VLSI simulator using POOL, and implementation of lazy functional languages on parallel architectures.

  15. Radial evolution of power spectra of interplanetary Alfvenic turbulence

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N. F.

    1981-01-01

    The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed.

  16. Gamma-ray bursts from sheared Alfven waves

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    The physical process by which sheared Alfven waves can accelerate electrons to a Lorentz factor of 10,000 to 100,000 within 5 km of the stellar surface is applied to a study of gamma-ray bursts, taking both resonant and nonresonant scattering into account. Several very encouraging features of the model are discussed. Although the field is oscillatory, virtually all the charges are ejected from the system, resulting in very little backheating of the stellar surface. The particle number density is accounted for naturally in terms of BA0 and m, which in principle are known from the physical manifestation of the agent causing the crustal disturbance. The resulting gamma-ray spectrum compares very favorably with the observation. The model restricts the geometry of the emission region, in the sense that only the Compton upscattering of soft photons from a warm polar cap can produce the correct spectral shape.

  17. Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes

    SciTech Connect

    N.N. Gorelenkov, G.J. Kramer, and R. Nazikian

    2011-05-23

    A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.

  18. Sub-Alfvenic Reduced Equations for Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Sengupta, W.; Hassam, A. B.; Antonsen, T. M.

    2015-11-01

    We present a system of reduced resistive MHD equations which are sub-Alfvenic with respect to ideal ballooning in large aspect ratio tokamak geometry. The low beta system allows dynamic evolution of full profiles. The system has the advantage that it is 2-dimensional in the transverse to º, space variables. This allows significant analytical tractability as well as ease in numerical implementation. The linearized equations are shown to reproduce Mercier modes, resistive ballooning modes, tearing modes, sound waves, GAMs, the Stringer spinup, and Rosenbluth-Hinton zonal flows. The methodology developed allows extension to drift modes as well as to a hybrid system of moment and electromagnetic sub-gyro-drift-kinetic equations. Analytical and numerical benchmarks will be presented. We show that the system, which requires Laplace equation inversion to solve for electromagnetic potentials, is implementable numerically. Work supported by DOE.

  19. Evolution of toroidal Alfven eigenmode instability in TFTR

    SciTech Connect

    Wong, K.L.; Majeski, R.; Petrov, M.

    1996-07-01

    The nonlinear behavior of the Toroidal Alfven Eigenmode (TAE) driven unstable by energetic ions in TFTR is studied. The evolution of instabilities can take on several scenarios: a single mode or several modes can be driven unstable at the same time, the spectrum can be steady or pulsating and there can be negligible or anomalous loss associated with the instability. This paper presents a comparison between experimental results and recently developed nonlinear theory. The authors find many features observed in experiment are compatible with the consequences of the nonlinear theory. Examples include the structure of the saturated pulse that emerges from the onset of instability of a single mode and the decrease but persistence of TAE signals when the applied rf power is reduced or shut off.

  20. 3D magnetospheric parallel hybrid multi-grid method applied to planet-plasma interactions

    NASA Astrophysics Data System (ADS)

    Leclercq, L.; Modolo, R.; Leblanc, F.; Hess, S.; Mancini, M.

    2016-03-01

    We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet-plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order to conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.

  1. Ion and relativistic electron acceleration by Alfven and whistler turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.; Ramaty, Reuven

    1987-01-01

    A model is proposed in which turbulent Alfven and whistler waves simultaneously produce the proton and electron spectra implied by the gamma-ray observations noted during the impulsive phase of the June 3, 1982 flare. The results demonstrate that protons can be accelerated to several GeV in less than about 10 sec by Alfven turbulence whose energy density is greater than a few erg/cu cm. It is also found that electrons may be accelerated to tens of MeV on similar time scales by whistler and Alfven turbulence. A lower limit on the energy density of the Alfven turbulence is obtained which is small compared to the total magnetic energy density.

  2. Correction to the Alfven-Lawson criterion for relativistic electron beams

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2006-10-15

    The Alfven-Lawson criterion for relativistic electron beams is revised. The parameter range is found, in which a stationary beam can carry arbitrarily large current, regardless of its transverse structure.

  3. Hybrid Alfven resonant mode generation in the magnetosphere-ionosphere coupling system

    SciTech Connect

    Hiraki, Yasutaka; Watanabe, Tomo-Hiko

    2012-10-15

    Feedback unstable Alfven waves involving global field-line oscillations and the ionospheric Alfven resonator (IAR) were comprehensively studied to clarify their properties of frequency dispersion, growth rate, and eigenfunctions. It is discovered that a new mode called here the hybrid Alfven resonant (HAR) mode can be destabilized in the magnetosphere-ionosphere coupling system with a realistic Alfven velocity profile. The HAR mode found in a high frequency range over 0.3 Hz is caused by coupling of IAR modes with strong dispersion and magnetospheric cavity resonances. The harmonic relation of HAR eigenfrequencies is characterized by a constant frequency shift from those of IAR modes. The three modes are robustly found even if effects of two-fluid process and ionospheric collision are taken into account and thus are anticipated to be detected by magnetic field observations in a frequency range of 0.3-1 Hz in auroral and polar-cap regions.

  4. Inertial Alfven-Wave-Driven Convective Cells in Low-Density Plasmas

    SciTech Connect

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Stenflo, L.; Balikhin, M.A.

    2005-10-15

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained. The relevance of our theory to spacecraft measurements in the Earth's ionosphere is discussed.

  5. Generation of magnetoacoustic zonal flows by Alfven waves in a rotating plasma

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Tsypin, V. S.; Smolyakov, A. I.; Galvao, R. M. O.

    2007-08-15

    Analytical theory of nonlinear generation of magnetoacoustic zonal flows in a rotating plasma is developed. As the primary modes causing such a generation, a totality of the Alfven waves are considered, along with the kinetic, inertial, and rotational. It is shown that in all these cases of the Alfven waves the generation is possible if the double plasma rotation frequency exceeds the zonal flow frequency.

  6. Existence of Weakly Damped Kinetic Alfven Eigenmodes in Reversed Shear Tokamak

    SciTech Connect

    N. N. Gorelenkov

    2008-08-12

    A kinetic theory of weakly damped Alfven Eigenmode (AE) solutions strongly interacting with the continuum is developed for tokamak plasmas with reversed magnetic shear. We show that the ideal MHD model is not sufficient for the eigenmode solutions if the standard causality condition bypass rule is applied. Finite Larmor radius effects are required, which introduce multiple kinetic subeigenmodes and collisionless radiative damping. The theory explains the existence of experimentally observed Alfvenic instabilities with frequencies sweeping down and reaching their minimum (bottom).

  7. Alfven wave trapping, network microflaring, and heating in solar coronal holes

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Suess, S. T.; Musielak, Z. E.; An, C.-H.

    1991-01-01

    Fresh evidence that much of the heating in coronal holes is provided by Alfven waves is presented. This evidence comes from examining the reflection of Alfven waves in an isothermal hydrostatic model coronal hole with an open magnetic field. Reflection occurs if the wavelength is as long as the order of the scale height of the Alfven velocity. For Alfven waves with periods of about 5 min, and for realistic density, magnetic field strength, and magnetic field spreading in the model, the waves are reflected back down within the model hole if the coronal temperature is only slightly less than 1.0 x 10 to the 6th K, but are not reflected and escape out the top of the model if the coronal temperature is only slightly greater than 1.0 x 10 to the 6th K. Because the spectrum of Alfven waves in real coronal holes is expected to peak around 5 min and the temperature is observed to be close to 1.0 x 10 to the 6th K, the sensitive temperature dependence of the trapping suggests that the temperature in coronal holes is regulated by heating by the trapped Alfven waves.

  8. Alfven Wave Generation by a Rotating Magnetic Field Source: Theory, Modeling and Experimental Results

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Karavaev, A. V.; Gumerov, N.; Shao, X.; Papadopoulos, K.; Gekelman, W.; Wang, Y.; Vincena, S.; Pribyl, P.

    2010-11-01

    Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within ˜1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.

  9. Alfven Wave Generation by a Rotating Magnetic Field Source: Theory, Modeling and Experimental Results

    NASA Astrophysics Data System (ADS)

    Shao, X.; Karavaev, A. V.; Gumerov, N.; Sharma, A. S.; Papadopoulos, K.; Gekelman, W. N.; Wang, Y.; Vincena, S. T.; Pribyl, P.

    2010-12-01

    Recent experiments conducted in the Large Plasma Device (LAPD) located at UCLA demonstrated efficient excitation of whistler and shear Alfven waves by a Rotating Magnetic Field (RMF) source. We present analytical theory, computational modeling and experimental results of the shear Alfven wave excitation by RMF source created by a phased orthogonal two-loop antenna in a plasma. An analytical theory and simulations using a three-dimensional cold two-fluid model of Alfven wave excitation were developed and compared with experiments. These comparisons show good agreement on linear shear Alfven wave properties, namely, spatio-temporal wave structure, dispersion relation, and the dependence of wave magnitude on the wave frequency. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed among the kinetic energies of ions and electrons and the electromagnetic energy of the wave. The wave magnetic field power calculated from the experimental data and using a fluid model agrees within 1 percent. The RMF source is thus very efficient in generating shear Alfven waves. Work supported by ONR MURI grant.

  10. Alfven wave scattering and the secondary to primary ratio

    NASA Technical Reports Server (NTRS)

    Bretthorst, G. L.; Margolis, S. H.

    1985-01-01

    The cosmic ray abundances have traditionally been used to determine the elemental and isotopic nature of galactic ray sources and average measures of propagation conditions. Detailed studies of the physics of propagation are usually paired with relatively straightforward estimates of the secondary-to-primary (S/P) ratios. In the work reported here, calculations of elemental abundances are paired with a more careful treatment of the propagation process. It is shown that the physics of propagation does indeed leave specific traces of Galactic structure in cosmic ray abundances.

  11. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  12. A magnetized, spherical plasma expansion in an inhomogeneous plasma: The transition from super to sub-Alfvenic

    SciTech Connect

    Brecht, S H; Hewett, D W; Larson, D J

    2009-03-12

    In this letter the transition of a strong 3-D collisionless shock into sub-Alfvenic waves is examined numerically. The transition occurs because the Alfven speed eventually exceeds the shock speed, not because the shock runs out of energy. At this velocity transition, the shock disassembles into two types of waves: the usual compressional Alfven wave and a left-hand polarized electromagnetic shear Alfven wave. This later wave shows remarkable 3-D coherence, and preliminary analysis suggests that it is coupled to the strong electromagnetic waves that exist within the collisionless shock.

  13. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  14. Standing Alfven wave current system at Io - Voyager 1 observations

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.; Neubauer, F. M.

    1981-01-01

    The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.

  15. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.

    2009-01-01

    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  16. Radial Localization of Toroidal Alfven Eigenmode in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Zhixuan; Lin, Zhihong; Heidbrink, William; Tobias, Benjamin; van Zeeland, Michael

    2013-10-01

    Toroidal Alfven eigenmode (TAE) with radially extended structures can be driven unstable by pressure gradients of energetic particles (EP). These unstable Alfveneigenmodes (AE) have been routinely observed in fusion experiments to induce a large EP transport, whichcould degrade overall plasma confinement and damagefusion devices.In the well-accepted paradigm, the growth rate of the AEs can be calculated from a perturbative EP contribution to a fixedmode structure and real frequency given by magnetohydrodynamic (MHD) properties of thermal plasmas. However, linear and nonlinear kinetic effects of both EP and thermal plasmasare important and should be treated on the same footing. The gyrokinetic simulation has thus emerged as anecessary and powerful tool for studying the linear andnonlinear dynamics of AEs. In the current work, the gyrokinetic toroidal code(GTC) linear simulation of the tokamakexperiment finds a radial localization of the TAE dueto the non-perturbative EP contribution. The EP-drivenTAE has a radial mode width much smaller than thatpredicted by the MHD theory. The TAE radial positionpeaks at and moves with the location of the strongest EPpressure gradients. Experimental data confirms that the eigenfunction drifts quicklyoutward radially. The non-perturbativeEP contribution also breaks the radial symmetry of the mode structure and induces a TAE frequency dependence on the toroidal mode number, in excellent agreement with the experimental measurements.

  17. Standing Alfven wave current system at Io - Voyager 1 observations

    NASA Astrophysics Data System (ADS)

    Acuna, M. H.; Neubauer, F. M.; Ness, N. F.

    1981-09-01

    The enigmatic control of the occurrence frequency of Jupiter's decametric emissions by the satellite Io has been explained theoretically on the basis of its strong electrodynamic interaction with the corotating Jovian magnetosphere leading to field-aligned currents connecting Io with the Jovian ionosphere. Direct measurements of the perturbation magnetic fields due to this current system were obtained by the Goddard Space Flight Center magnetic field experiment on Voyager 1 on March 5, 1979, when it passed within 20,500 km south of Io. An interpretation in the framework of Alfven waves radiated by Io leads to current estimates of 2.8 x 10 to the 6th A. A mass density of 7400-13,600 proton mass units/cu cm is derived, which compares very favorably with independent observations of the torus composition characterized by 7-9 proton mass units per electron for a local electron density of 1050-1500/cu cm. The power dissipated in the current system may be important for heating the Io heavy ion torus, inner magnetosphere, Jovian ionosphere, and possibly the ionosphere or even the interior of Io.

  18. POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES

    SciTech Connect

    Hunana, P.; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2013-04-01

    It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.

  19. Chamber propagation

    SciTech Connect

    Langdon, B.

    1991-01-16

    Propagation of a heavy ion beam to the target appears possible under conditions thought to be realizable by several reactor designs. Beam quality at the lens is believed to provide adequate intensity at the target -- but the beam must pass through chamber debris and its self fields along the way. This paper reviews present consensus on propagation modes and presents recent results on the effects of photoionization of the beam ions by thermal x-rays from the heated target. Ballistic propagation through very low densities is a conservative mode. The more-speculative self-pinched mode, at 1 to 10 Torr, offers reactor advantages and is being re-examined by others. 13 refs.

  20. Measurements, modelling and electron cyclotron heating modification of Alfven eigenmode activity in DIII-D

    SciTech Connect

    Van Zeeland, Michael; Heidbrink, W.; Nazikian, Raffi; Austin, M. E.; Cheng, C Z; Chu, M. S.; Gorelenkov, Nikolai; Holcomb, C T; Hyatt, A. W.; Kramer, G.; Lohr, J.T.; Mckee, G. R.; Petty, C C.; Prater, R.; Solomon, W. M.; Spong, Donald A

    2009-01-01

    Neutral beam injection into reversed magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity and ellipticity induced Alfven eigenmodes (TAE/EAE, respectively) and reversed shear Alfven eigenmodes (RSAE) as well as their spatial coupling. These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and strong drive due to multiple higher order resonances. It is found that ideal MHD modelling of eigenmode spectral evolution, coupling and structure are in excellent agreement with experimental measurements. It is also found that higher radial envelope harmonic RSAEs are clearly observed and agree with modelling. Some discrepancies with modelling such as that due to up/down eigenmode asymmetries are also pointed out. Concomitant with the Alfvenic activity, fast ion (FIDA) spectroscopy shows large reductions in the central fast ion profile, the degree of which depends on the Alfven eigenmode amplitude. Interestingly, localized electron cyclotron heating (ECH) near the mode location stabilizes RSAE activity and results in significantly improved fast ion confinement relative to discharges with ECH deposition on axis. In these discharges, RSAE activity is suppressed when ECH is deposited near the radius of the shear reversal point and enhanced with deposition near the axis. The sensitivity of this effect to deposition power and current drive phasing as well as ECH modulation are presented.

  1. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVENIC JET: TEMPORAL PROPERTIES

    SciTech Connect

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2011-06-10

    We have investigated the influence of a velocity shear surface on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria in three dimensions. In this study, we follow the temporal development within a periodic computational box and concentrate on flows that are sub-Alfvenic on the cylindrical jet's axis. Displacement of the initial force-free helical magnetic field leads to the growth of CD kink instability. We find that helically distorted density structure propagates along the jet with speed and flow structure dependent on the radius of the velocity shear surface relative to the characteristic radius of the helically twisted force-free magnetic field. At small velocity shear surface radius, the plasma flows through the kink with minimal kink propagation speed. The kink propagation speed increases as the velocity shear radius increases and the kink becomes more embedded in the plasma flow. A decreasing magnetic pitch profile and faster flow enhance the influence of velocity shear. Simulations show continuous transverse growth in the nonlinear phase of the instability. The growth rate of the CD kink instability and the nonlinear behavior also depend on the velocity shear surface radius and flow speed, and the magnetic pitch radial profile. Larger velocity shear radius leads to slower linear growth, makes a later transition to the nonlinear stage, and with larger maximum amplitude than that occuring for a static plasma column. However, when the velocity shear radius is much greater than the characteristic radius of the helical magnetic field, linear and nonlinear development can be similar to the development of a static plasma column.

  2. Massively parallel visualization: Parallel rendering

    SciTech Connect

    Hansen, C.D.; Krogh, M.; White, W.

    1995-12-01

    This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume renderer use a MIMD approach. Implementations for these algorithms are presented for the Thinking Machines Corporation CM-5 MPP.

  3. Nonlinear effects associated with the dispersive Alfven waves in space plasmas

    SciTech Connect

    Kumar, Sanjay; Sharma, R. P.

    2010-03-15

    This paper presents the model equations governing the nonlinear dynamics of the dispersive Alfven wave (DAW) in the low-beta plasmas (beta<Alfven waves) applicable to solar corona and intermediate-beta plasmas (m{sub e}/m{sub i}<Alfven waves) applicable to solar wind in Earth's magnetosphere. The pump DAW is perturbed by a low-frequency fast wave (FW). When the ponderomotive nonlinearities are incorporated in the DAW and FW dynamics, the model equations of DAW and FW turn out to be the modified Zakharov system of equations. Growth rate and threshold field for modulational (filamentation) instability have been calculated. The dependence of the growth rate on the perturbation wave number and the pump wave parameters (such as perpendicular wave number) has also been presented.

  4. Plasma pressure effect on the multiple low-shear toroidal Alfven eigenmodes

    SciTech Connect

    Marchenko, V. S.

    2009-04-15

    It is shown that there is a critical thermal pressure gradient at which the polarizations of the multiple low-shear toroidal Alfven eigenmodes (TAEs) are reversed. Below the critical value, the TAE spectrum consists of two bands of the even (odd) modes located in the upper (lower) part of the toroidal Alfven gap, which is consistent with the zero-pressure limit [J. Candy, B. N. Breizman, J. W. Van Dam, and T. Ozeki, Phys. Lett. A 215, 299 (1996)]. Above the critical pressure, the odd (even) TAEs appear in the upper (lower) part of the gap.

  5. Basic principles approach for studying nonlinear Alfven wave-alpha particle dynamics

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1994-01-01

    An analytical model and a numerical procedure are presented which give a kinetic nonlinear description of the Alfven-wave instabilities driven by the source of energetic particles in a plasma. The steady-state and bursting nonlinear scenarios predicted by the analytical theory are verified in the test numerical simulation of the bump-on-tail instability. A mathematical similarity between the bump-on-tail problem for plasma waves and the Alfven wave problem gives a guideline for the interpretation of the bursts in the wave energy and fast particle losses observed in the tokamak experiments with neutral beam injection.

  6. Arbitrary amplitude double layers in warm dust kinetic Alfven wave plasmas

    SciTech Connect

    Gogoi, Runmoni; Devi, Nirupama

    2008-07-15

    Large amplitude electrostatic structures associated with low-frequency dust kinetic Alfvenic waves are investigated under the pressure (temperature) gradient indicative of dust dynamics. The set of equations governing the dust dynamics, Boltzmann electrons, ions and Maxwell's equation have been reduced to a single equation known as the Sagdeev potential equation. Parameter ranges for the existence of arbitrary amplitude double layers are observed. Exact analytical expressions for the energy integral is obtained and computed numerically through which sub-Alfvenic arbitrary amplitude rarefactive double layers are found to exist.

  7. Anomalous Flattening of the Fast-Ion Profile during Alfven-Eigenmode Activity

    SciTech Connect

    Heidbrink, W. W.; Luo, Y.; Gorelenkov, N. N.; White, R. B.; Kramer, G. J.; Nazikian, R.; Van Zeeland, M. A.; Burrell, K. H.; Austin, M. E.; Makowski, M. A.; McKee, G. R.

    2007-12-14

    Neutral-beam injection into plasmas with negative central shear produces a rich spectrum of toroidicity-induced and reversed-shear Alfven eigenmodes in the DIII-D tokamak. The first application of fast-ion D{sub {alpha}} (FIDA) spectroscopy to Alfven-eigenmode physics shows that the central fast-ion profile is anomalously flat in the inner half of the discharge. Neutron and equilibrium measurements corroborate the FIDA data. The current density driven by fast ions is also strongly modified. Calculations based on the measured mode amplitudes do not explain the observed fast-ion transport.

  8. A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence

    SciTech Connect

    Biglari, H.; Diamond, P.H.

    1992-01-01

    The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.

  9. BENCHMARKING FAST-TO-ALFVEN MODE CONVERSION IN A COLD MHD PLASMA. II. HOW TO GET ALFVEN WAVES THROUGH THE SOLAR TRANSITION REGION

    SciTech Connect

    Hansen, Shelley C.; Cally, Paul S. E-mail: paul.cally@monash.edu

    2012-05-20

    Alfven waves may be difficult to excite at the photosphere due to low-ionization fraction and suffer near-total reflection at the transition region (TR). Yet they are ubiquitous in the corona and heliosphere. To overcome these difficulties, we show that they may instead be generated high in the chromosphere by conversion from reflecting fast magnetohydrodynamic waves, and that Alfvenic TR reflection is greatly reduced if the fast reflection point is within a few scale heights of the TR. The influence of mode conversion on the phase of the reflected fast wave is also explored. This phase can potentially be misinterpreted as a travel speed perturbation with implications for the practical seismic probing of active regions.

  10. Parametric instabilities of a large-amplitude circularly polarized Alfven wave - Linear growth in two-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.

    1993-01-01

    The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using an MHD code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental's growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case.

  11. INCORPORATING KINETIC PHYSICS INTO A TWO-FLUID SOLAR-WIND MODEL WITH TEMPERATURE ANISOTROPY AND LOW-FREQUENCY ALFVEN-WAVE TURBULENCE

    SciTech Connect

    Chandran, Benjamin D. G.; Dennis, Timothy J.; Quataert, Eliot; Bale, Stuart D. E-mail: tim.dennis@unh.edu E-mail: bale@ssl.berkeley.edu

    2011-12-20

    We develop a one-dimensional solar-wind model that includes separate energy equations for the electrons and protons, proton temperature anisotropy, collisional and collisionless heat flux, and an analytical treatment of low-frequency, reflection-driven, Alfven-wave (AW) turbulence. To partition the turbulent heating between electron heating, parallel proton heating, and perpendicular proton heating, we employ results from the theories of linear wave damping and nonlinear stochastic heating. We account for mirror and oblique firehose instabilities by increasing the proton pitch-angle scattering rate when the proton temperature anisotropy exceeds the threshold for either instability. We numerically integrate the equations of the model forward in time until a steady state is reached, focusing on two fast-solar-wind-like solutions. These solutions are consistent with a number of observations, supporting the idea that AW turbulence plays an important role in the origin of the solar wind.

  12. Numerical experimentation on spherically symmetric one-dimensional magnetohydrodynamic /MHD/ wave propagation

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Nakagawa, Y.

    1982-01-01

    Radial propagation of one-dimensional magnetohydrodynamic (MHD) waves are analyzed numerically on the basis of the Implicit-Continuous-Fluid-Eulerian (ICE) scheme. Accuracy of the numerical method and other properties are tested through the study of MHD wave propagation. The three different modes of MHD waves (i.e., fast-, slow- and Alfven (transverse) mode) are generated by applying physically consistent boundary perturbations derived from MHD compatibility relations. It is shown that the resulting flow following these waves depend upon the relative configurations of the initial magnetic field and boundary perturbations.

  13. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  14. Arbitrary amplitude kinetic Alfven solitary waves in two temperature electron superthermal plasma

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Singh Saini, Nareshpal; Ghai, Yashika

    2016-07-01

    Through various satellite missions it is observed that superthermal velocity distribution for particles is more appropriate for describing space and astrophysical plasmas. So it is appropriate to use superthermal distribution, which in the limiting case when spectral index κ is very large ( i.e. κ→∞), shifts to Maxwellian distribution. Two temperature electron plasmas have been observed in auroral regions by FAST satellite mission, and also by GEOTAIL and POLAR satellite in the magnetosphere. Kinetic Alfven waves arise when finite Larmor radius effect modifies the dispersion relation or characteristic perpendicular wavelength is comparable to electron inertial length. We have studied the kinetic Alfven waves (KAWs) in a plasma comprising of positively charged ions, superthermal hot electrons and Maxwellian distributed cold electrons. Sagdeev pseudo-potential has been employed to derive an energy balance equation. The critical Mach number has been determined from the expression of Sagdeev pseudo-potential to see the existence of solitary structures. It is observed that sub-Alfvenic compressive solitons and super-Alfvenic rarefactive solitons exist in this plasma model. It is also observed that various parameters such as superthermality of hot electrons, relative concentration of cold and hot electron species, Mach number, plasma beta, ion to cold electron temperature ratio and ion to hot electron temperature ratio have significant effect on the amplitude and width of the KAWs. Findings of this investigation may be useful to understand the dynamics of coherent non-linear structures (i.e. KAWs) in space and astrophysical plasmas.

  15. Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations

    SciTech Connect

    Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.

    2011-03-15

    The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.

  16. Experimental aspects of effects of high-energy particles on Alfven modes

    SciTech Connect

    Heidbrink, W.W.

    1994-10-01

    Global Alfven modes are observed in a number of tokamaks, including DIII-D and TFTR. Instabilities occur during neutral-beam injection and during fast-wave ICRF heating, and may recently have been observed during alpha-particle heating. Identification of toroidicity-induced Alfven eigenmodes (TAE) is based primarily on the scaling of the real frequency of the mode. Other modes, including the beta-induced Alfven eigenmode (BAE), are also observed. The stability threshold of TAE modes agree (to within a factor of two) with theoretical predictions. Toroidal mode numbers of n = 2-6 are usually most unstable, as theoretically expected. Measurements of the poloidal and radial mode structure are consistent with theoretical predictions, but the uncertainties are large. Both TAE and BAE modes can cause large, concentrated losses of fast ions. Phenomenologically, beam-driven Alfven modes usually {open_quotes}saturate{close_quotes} through bursts that expel beam ions, while modes observed during ICPF heating approach a steady saturation amplitude.

  17. Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX

    DOE PAGESBeta

    Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J. -K.; Podesta, M.; et al

    2016-07-05

    Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less

  18. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    SciTech Connect

    Vukovic, M.; Harper, M.; Breun, R.; Wukitch, S.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode converted kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.

  19. CORONAL ALFVEN SPEED DETERMINATION: CONSISTENCY BETWEEN SEISMOLOGY USING AIA/SDO TRANSVERSE LOOP OSCILLATIONS AND MAGNETIC EXTRAPOLATION

    SciTech Connect

    Verwichte, E.; Foullon, C.; White, R. S.; Van Doorsselaere, T.

    2013-04-10

    Two transversely oscillating coronal loops are investigated in detail during a flare on the 2011 September 6 using data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We compare two independent methods to determine the Alfven speed inside these loops. Through the period of oscillation and loop length, information about the Alfven speed inside each loop is deduced seismologically. This is compared with the Alfven speed profiles deduced from magnetic extrapolation and spectral methods using AIA bandpass. We find that for both loops the two methods are consistent. Also, we find that the average Alfven speed based on loop travel time is not necessarily a good measure to compare with the seismological result, which explains earlier reported discrepancies. Instead, the effect of density and magnetic stratification on the wave mode has to be taken into account. We discuss the implications of combining seismological, extrapolation, and spectral methods in deducing the physical properties of coronal loops.

  20. Radial Structure of Alfven Eigenmodes in the DIII-D Tokamak through Electron-Cyclotron-Emission Measurements

    SciTech Connect

    Van Zeeland, M. A.; Kramer, G. J.; Nazikian, R.; Solomon, W. M.; Austin, M. E.; Boivin, R. L.; Heidbrink, W. W.; Makowski, M. A.; McKee, G. R.; Wang, G.

    2006-09-29

    The spatial structure of toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes in DIII-D is obtained from electron-cyclotron-emission measurements. Peak measured temperature perturbations are of similar magnitude for both toroidal Alfven eigenmodes and reversed shear Alfven eigenmodes and found to be {delta}T{sub e}/T{sub e}{approx_equal}0.5%. Simultaneous measurements of density fluctuations using beam-emission spectroscopy indicate {delta}n{sub e}/n{sub e}{approx_equal}0.25%. Predictions of the measured temperature and density perturbation profiles as well as {delta}T{sub e}/{delta}n{sub e} from the ideal magnetohydrodynamic code NOVA are in close agreement with experiment.

  1. Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas

    SciTech Connect

    Heidbrink, W. W.

    2008-05-15

    Superthermal energetic particles (EP) often drive shear Alfven waves unstable in magnetically confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfven instabilities are of practical importance, as the expulsion of energetic particles can damage the walls of a confinement device. Because of rapid dispersion, shear Alfven waves that are part of the continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating waves; the toroidal Alfven eigenmode is a prominent example. The second type is associated with an extremum of the continuous spectrum; the reversed shear Alfven eigenmode is an example of this type. In addition to these normal modes of the background plasma, when the energetic particle pressure is very large, energetic particle modes that adopt the frequency of the energetic particle population occur. Alfven instabilities of all three types occur in every toroidal magnetic confinement device with an intense energetic particle population. The energetic particles are most conveniently described by their constants of motion. Resonances occur between the orbital frequencies of the energetic particles and the wave phase velocity. If the wave resonance with the energetic particle population occurs where the gradient with respect to a constant of motion is inverted, the particles transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated with inversion of the toroidal canonical angular momentum P{sub {zeta}} is most important. Once a mode is driven unstable, a wide variety

  2. DO OBLIQUE ALFVEN/ION-CYCLOTRON OR FAST-MODE/WHISTLER WAVES DOMINATE THE DISSIPATION OF SOLAR WIND TURBULENCE NEAR THE PROTON INERTIAL LENGTH?

    SciTech Connect

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-01-20

    To determine the wave modes prevailing in solar wind turbulence at kinetic scales, we study the magnetic polarization of small-scale fluctuations in the plane perpendicular to the data sampling direction (namely, the solar wind flow direction, V{sub SW}) and analyze its orientation with respect to the local background magnetic field B{sub 0,local}. As an example, we take only measurements made in an outward magnetic sector. When B{sub 0,local} is quasi-perpendicular to V{sub SW}, we find that the small-scale magnetic-field fluctuations, which have periods from about 1 to 3 s and are extracted from a wavelet decomposition of the original time series, show a polarization ellipse with right-handed orientation. This is consistent with a positive reduced magnetic helicity, as previously reported. Moreover, for the first time we find that the major axis of the ellipse is perpendicular to B{sub 0,local}, a property that is characteristic of an oblique Alfven wave rather than oblique whistler wave. For an oblique whistler wave, the major axis of the magnetic ellipse is expected to be aligned with B{sub 0,local}, thus indicating significant magnetic compressibility, and the polarization turns from right to left handedness as the wave propagation angle ({theta}{sub kB}) increases toward 90 Degree-Sign . Therefore, we conclude that the observation of a right-handed polarization ellipse with orientation perpendicular to B{sub 0,local} seems to indicate that oblique Alfven/ion-cyclotron waves rather than oblique fast-mode/whistler waves dominate in the 'dissipation' range near the break of solar wind turbulence spectra occurring around the proton inertial length.

  3. The propagation of torsion along flux tubes subject to dynamical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1983-01-01

    It is noted that the dynamical nonequilibrium of close-packed flux tubes is driven by the torsion in the individual tubes. Because of this, whenever tubes with the same sense of twisting come into contact, there is reconnection of their azimuthal field components. The reconnection consumes the local torsion, and this causes the propagation of torsional Alfven waves into the region from elsewhere along the tubes. The formal problem of the propagation of the torsion along twisted flux tubes is presented, along with some of the basic physical properties worked out in the limit of small torsion. It is noted that in tubes with finite twisting the propagation of torsional Alfven waves can be a more complicated phenomenon. Application to the sun suggests that the propagation of torsion from below the visible surface up into the corona is an important energy supply to the corona for a period of perhaps 10-20 hours after the emergence of the flux tubes through the surface of the sun, bringing up torsion from depths of 10,000 km or more. Torsion is of course continually furnished by the manipulation and shuffling of the field by the convection.

  4. On entropy-maximized velocity distributions in circularly polarized finite amplitude Alfven waves

    SciTech Connect

    Nariyuki, Yasuhiro

    2011-05-15

    A special solution of the Vlasov-Maxwell system, which represents a circularly polarized Alfven wave, is derived as an entropy-maximized state. It is shown that Alfvenic correlation between transverse bulk motion and magnetic field given by the entropy-maximized distribution is consistent with the equilibrium point of the single particle system. We demonstrate that as far as the monochromatic, circularly polarized magnetic field is concerned, the resultant distribution may be a relaxed state corresponding to one in the Hall-magnetohydrodynamic system. Stability of the distribution function is numerically discussed by using an ion-hybrid simulation code. Numerical results suggest that the relaxed states in nonmonochromatic waves are different from those in monochromatic waves.

  5. Sagdeev potential approach for large amplitude compressional Alfvenic double layers in viscous plasmas

    SciTech Connect

    Panwar, Anuraj; Rizvi, H.; Ryu, C. M.

    2013-11-15

    Sagdeev’s technique is used to study the large amplitude compressional Alfvenic double layers in a magnetohydrodynamic plasma taking into account the small plasma β and small values of kinematic viscosity. Dispersive effect raised by non-ideal electron inertia currents perpendicular to the ambient magnetic field. The range of allowed values of the soliton speed, M (Mach number), plasma β (ratio of the plasma thermal pressure to the pressure in the confining magnetic field), and viscosity coefficient, wherein double layer may exist, are determined. In the absence of collisions, viscous dissipation modifies the Sagdeev potential and results in large amplitude compressional Alfvenic double layers. The depth of Sagdeev potential increases with the increasing Mach number and plasma β, however, decreases with the increasing viscosity. The double layer structure increases with the increasing plasma β, but decreases with increasing viscous dissipation μ(tilde sign)

  6. Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL

    SciTech Connect

    Jay R. Johnson; C.Z. Cheng

    2002-05-31

    At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the

  7. Subcyclotron Instability of Alfven Eigenmodes due to Energetic Ions in Low Aspect Ratio Plasmas

    SciTech Connect

    N.N. Gorelenko; E. Fredrickson; E. Belova; C.Z. Cheng; D. Gates; R. White

    2003-08-21

    High-frequency modes with frequencies below the fundamental cyclotron frequency of thermal ions were observed in the National Spherical Torus Experiment (NSTX). Based on the measured spectrum of high-frequency modes they are identified as Compressional Alfven Eigenmodes (CAEs) and Global Alfven Eigenmodes (GAEs). CAEs have similar time evolution as plasma parameters change, while GAEs may intersect due to q-profile relaxation. A theory has been developed to study the properties of these modes. Both types of instabilities are driven by the tangential neutral-beam injection in NSTX. Beam ions excite CAEs/GAEs through the Doppler-shifted cyclotron resonance. The main source for the drive is the velocity space anisotropy of the beam ion distribution function. Simulations of the effect CAEs/GAEs may have on plasma ions indicate that these modes may provide a channel for efficient energy transfer from fast ions directly to thermal ions.

  8. Heating of coronal loops by phase-mixid shear Alfven waves

    NASA Technical Reports Server (NTRS)

    Abdelatif, Toufik E.

    1987-01-01

    The dissipation of shear Alfven waves in a coronal loop driven externally by an incident wave in the subcoronal region is investigated. The phase mixing of these incident shear Alfven waves serves as the dissipation mechanism in the corona. The wave solution found by Heyvaerts and Priest (1983) for coronal holes is used to compute the total energy deposited in a loop. The energy deposited is shown to depend upon the magnetic diffusivity nu(m) and viscosity nu(v), contrary to the conclusion of authors who assumed that coronal loops are perfect resonators. The energy deposited in a three-layer model is computed for incident waves with periods of five minutes or five seconds. For a five-minute period, almost no energy is deposited, especially for small loops. For a five-second period, a substantial amount of energy is deposited in the loop, but not enough to account for the heating of small loops.

  9. Stochastic Ion Heating at the Magnetopause due to Kinetic Alfven Waves

    SciTech Connect

    Jay R. Johnson; C.Z. Cheng

    2001-08-10

    The magnetopause and boundary layer are typically characterized by large amplitude transverse wave activity with frequency below the ion cyclotron frequency. The signatures of the transverse waves suggest that they are kinetic Alfven waves with wavelength on the order of the ion gyroradius. We investigate ion motion in the presence of large amplitude kinetic Alfven waves with wavelength the order of rho(subscript ''i'') and demonstrate that for sufficiently large wave amplitude (delta B(subscript ''perpendicular'')/B(subscript ''0'') > 0.05) the particle orbits become stochastic. As a result, low energy particles in the core of the ion distribution can migrate to higher energy through the stochastic sea leading to an increase in T(subscript ''perpendicular'') and a broadening of the distribution. This process can explain transverse ion energization and formation of conics which have been observed in the low-latitude boundary layer.

  10. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas

    SciTech Connect

    Tishchenko, V N; Shaikhislamov, I F

    2014-02-28

    We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)

  11. Making and Propagating Elastic Waves: Overview of the new wave propagation code WPP

    SciTech Connect

    McCandless, K P; Petersson, N A; Nilsson, S; Rodgers, A; Sjogreen, B; Blair, S C

    2006-05-09

    We are developing a new parallel 3D wave propagation code at LLNL called WPP (Wave Propagation Program). WPP is being designed to incorporate the latest developments in embedded boundary and mesh refinement technology for finite difference methods, as well as having an efficient portable implementation to run on the latest supercomputers at LLNL. We are currently exploring seismic wave applications, including a recent effort to compute ground motions for the 1906 Great San Francisco Earthquake. This paper will briefly describe the wave propagation problem, features of our numerical method to model it, implementation of the wave propagation code, and results from the 1906 Great San Francisco Earthquake simulation.

  12. Parallel Information Processing.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1992-01-01

    Examines parallel computer architecture and the use of parallel processors for text. Topics discussed include parallel algorithms; performance evaluation; parallel information processing; parallel access methods for text; parallel and distributed information retrieval systems; parallel hardware for text; and network models for information…

  13. Comments on compressible effects on Alfven normal modes in nonuniform plasmas

    NASA Technical Reports Server (NTRS)

    Mok, Y.; Einaudi, G.

    1990-01-01

    The paper discusses the regime of validity of the theory of dissipative Alfven normal modes presented by Mok and Einaudi (1985) and Einaudi and Mok (1985), which was based on the incompressible closure of the system of ideal MHD equations. Some simple extensions of the earlier results to the compressible case are described. In addition, certain misunderstandings of this work, which have appeared in other papers, are clarified.

  14. Saturation of Alfven oscillations in the ring current region due to generation of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Gamaiunov, K. V.; Krivorutskii, E. N.; Veriaev, A. A.; Khazanov, G. V.

    1992-04-01

    The possibility of flux generation of lower hybrid oscillations in the ring current region of the earth's magnetosphere is suggested in this paper. The energy level of lower hybrid oscillations can exceed the modulational instability threshold, which leads to the formation of caverns. The consequences of this are qualitatively analyzed. Also, an assumption is made that the flux instability of lower hybrid oscillations may limit the level of Alfven oscillations in the ring current region.

  15. Expansion of parameter space for Toroidal Alfven Eigenmode experiments in TFTR

    SciTech Connect

    Wong, K.L.; Wilson, J.R.; Chang, Z.Y.; Fredrickson, E.; Hammett, G.W.; Bush, C.; Nazikian, R.; Phillips, C.K.; Snipes, J.; Taylor, G.

    1993-05-01

    Several techniques were used to excite toroidal Alfven Eigenmodes in the Tokamak Fusion Test Reactor (TFTR) at magnetic fields above 10 kG. These involve pellet injection to raise the plasma density, variation of plasma current to change the energetic ion orbit and the q-profile, and ICRF heating to produce energetic hydrogen ions at velocities comparable to 3.5 MeV alpha particles. These experimental results are presented and relevance to fusion reactors are discussed.

  16. Linearly Coupled Electrostatic and Shear Alfven Waves in Dense Plasma in the Presence of Stationary Dust

    SciTech Connect

    Khan, S. A.

    2011-11-29

    Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.

  17. Excitation of ion-acoustic perturbations by incoherent kinetic Alfven waves in plasmas

    SciTech Connect

    Mendonca, J. T.; Shukla, P. K.

    2007-12-15

    The dispersion relation for ion-acoustic perturbations (IAPs) in the presence of incoherent kinetic Alfven waves (KAWs) in plasmas is derived. The wave-kinetic-approach is used to study the nonlinear interactions between an ensemble of random phase KAWs and IAPs. It is found that incoherent KAW spectrum is unstable against IAPs. The instability growth rates for particular cases are obtained. The present instability offers the possibility of heating ions in a turbulent magnetoplasma composed of incoherent KAWs.

  18. Linearly Coupled Electrostatic and Shear Alfven Waves in Dense Plasma in the Presence of Stationary Dust

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2011-11-01

    Low frequency electrostatic and electromagnetic waves in a dense magnetoplasma are studied. The dispersive contribution of electron quantum effects in an electron-ion plasma in the presence of positively or negatively charged dust particles in the background is emphasized. By employing the quantum hydrodynamic model, a linear dispersion relation is derived which shows coupling of electrostatic and shear Alfven modes which shows influence of electron quantum effects and dust density.

  19. Magnetosphere--Ionosphere Coupling: Effects of Plasma Alfven Wave Relative Motion

    NASA Astrophysics Data System (ADS)

    Christiansen, P. J.; Dum, C. T.

    1989-06-01

    The introduction of relative perpendicular motion between a flux-tube supporting shear Alfven wave activity and the background plasma is studied in the context of the coupling of a wave generating region with a distant ionosphere. The results of a representative simulation, using an extended version of the code developed by Lysak & Dum (J. geophys. Res. 88, 365 (1983)), are used as a basis for interpreting some aspects of recent satellite observations.

  20. Optical evidence for Alfven wave breaking in the near-Earth magnetosphere

    NASA Astrophysics Data System (ADS)

    Semeter, J.; Blixt, M.

    2006-12-01

    Alfvén waves propagating obliquely to the Earth's magnetic lines of force become dispersive when the perpendicular wavelength approaches the collisionless electron skin depth. The dispersion results in two simultaneous effects: (1) wave energy becomes coupled to particle kinetic energy such that parallel acceleration of electrons is possible, and (2) wave energy spreads azimuthally across the background magnetic field, with phase- and group-velocities oppositely directed. Validation of this mechanism requires two-dimensional, time-dependent measurements of the dispersing wave packet. Such evidence should be available in video measurements of the aurora-borealis. An analysis of high-speed, narrow-field, intensified video of dynamic aurora event is presented, confirming the salient predictions for inertial Alfvén wave dispersion.

  1. Kinetic Alfven wave in the presence of kappa distribution function in plasma sheet boundary layer

    SciTech Connect

    Shrivastava, G. Ahirwar, G.; Shrivastava, J.

    2015-07-31

    The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping/growth rate and associated currents in the presence of kappa distribution function. Kinetic effect of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (T{sub i}/T{sub e}), and kappa distribution function affect the dispersion relation, damping/growth rate and associated currents in both cases(warm and cold electron limit).The treatment of kinetic Alfven wave instability is based on assumption that the plasma consist of resonant and non resonant particles. The resonant particles participate in an energy exchange process, whereas the non resonant particles support the oscillatory motion of the wave.

  2. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  3. The pseudospectrum of the resistive magnetohydrodynamics operator: Resolving the resistive Alfven paradox

    SciTech Connect

    Borba, D. ); Riedel, K.S. ); Kerner, W.; Huysmans, G.T.A.; Ottaviani, M. ); Schmid, P.J. )

    1994-10-01

    The Alfven paradox'' is that as resistivity decreases, the discrete eigenmodes do not converge to the generalized eigenmodes of the ideal Alfven continuum. To resolve the paradox, the [epsilon]-pseudospectrum of the resistive magnetohydrodynamic (RMHD) operator is considered. It is proven that for any [epsilon], the [epsilon]-pseudospectrum contains the Alfven continuum for sufficiently small resistivity. Formal [epsilon]-[ital pseudoeigenmodes] are constructed using the formal Wentzel--Kramers--Brillouin--Jeffreys solutions, and it is shown that the entire stable half-annulus of complex frequencies with [rho][vert bar][omega][vert bar][sup 2]=[vert bar][bold k][center dot][bold B]([ital x])[vert bar][sup 2] is resonant to order [epsilon], i.e., belongs to the [epsilon]-[ital pseudospectrum]. The resistive eigenmodes are exponentially ill-conditioned as a basis and the condition number is proportional to exp([ital R][sup 1/2][sub [ital M

  4. Simulations of Decaying Kinetic Alfv'en Wave Turbulence: Intermittent and Coherent Structures

    NASA Astrophysics Data System (ADS)

    Smith, Kurt; Terry, Paul

    2008-11-01

    We simulate decaying kinetic Alfv'en wave turbulence in a strong guide field, appropriate for modeling interstellar turbulence at scales <=10ρs. Ion flow decouples from the system at these scales, while electron density (ne) fluctuations equipartition with the magnetic field. Stable circularly symmetric structures form in J, B and ne fields after a few Alfv'en times; nonlinear magnetic shear prevents turbulence from mixing the structures into the background and allow the structures to persist for many Alfv'en times. J filaments are large in amplitude and spatially localized, and their associated B and ne structures are less localized, consistent with the Biot-Savart law and KAW equipartitioning. Ensemble-averaged pdfs indicate ne and ∇ne deviate strongly from Gaussian statistics following the onset of structure formation. The non-Gaussian ∇ne statistics are especially of interest as a possible explanation of τD^4 scaling of pulsar signal widths τ with distance-to-source D.---Work supported by NSF.

  5. Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.

  6. The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Singh, N.; Krivorutsky, E.

    2003-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. Furthermore, we will present results from particle-in-cell simulations showing the generation of particle drifts in response to an Alfven wave, resulting in excitation of waves and ion heating in a multi- ion plasma.

  7. Coupling and spatial structure of Alfven-ion-cyclotron waves in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Hirata, M.; Yokoyama, T.; Iimura, T.; Saito, Y.; Iwamoto, Y.; Okada, T.; Sumida, S.; Watanabe, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Gamma 10 Team

    2013-10-01

    In the GAMMA 10 tandem mirror, anisotropy-driven Alfven wave, referred as Alfven ion-cyclotron (AIC) wave, have been spontaneously excited in high-beta discharges. Density fluctuation, which we measured with a reflectometer, shows fruitful interactions of AIC waves with externally applied ICRF waves and with themselves. These wave-wave coupling phenomena are found to be an important issue for mirror-confinement of high-energy ions in GAMMA 10; the amount of axially transported high-energy ions of greater than 6 keV measured with a semiconductor detector demonstrated significant modulation by the difference frequencies between simultaneously excited AIC waves (about 100 kHz). This indicates pitch-angle scattering due to the excited low-frequency Alfven waves. We present detailed characteristics of the coupling phenomena observed in GAMMA 10 and also spatial structure of the spontaneously excited AIC waves, which we have investigated by using a two-channel reflectometer. This work is partly supported by a Grant-in-Aid for Scientific Research from JSPS, Japan (No. 25400531) and by the bidirectional collaborative research programme of the National Institute for Fusion Science, Japan (NIFS12KUGM067).

  8. Synaptic Contacts Enhance Cell-to-Cell Tau Pathology Propagation.

    PubMed

    Calafate, Sara; Buist, Arjan; Miskiewicz, Katarzyna; Vijayan, Vinoy; Daneels, Guy; de Strooper, Bart; de Wit, Joris; Verstreken, Patrik; Moechars, Diederik

    2015-05-26

    Accumulation of insoluble Tau protein aggregates and stereotypical propagation of Tau pathology through the brain are common hallmarks of tauopathies, including Alzheimer's disease (AD). Propagation of Tau pathology appears to occur along connected neurons, but whether synaptic contacts between neurons are facilitating propagation has not been demonstrated. Using quantitative in vitro models, we demonstrate that, in parallel to non-synaptic mechanisms, synapses, but not merely the close distance between the cells, enhance the propagation of Tau pathology between acceptor hippocampal neurons and Tau donor cells. Similarly, in an artificial neuronal network using microfluidic devices, synapses and synaptic activity are promoting neuronal Tau pathology propagation in parallel to the non-synaptic mechanisms. Our work indicates that the physical presence of synaptic contacts between neurons facilitate Tau pathology propagation. These findings can have implications for synaptic repair therapies, which may turn out to have adverse effects by promoting propagation of Tau pathology.

  9. Polarization and Compressibility of Oblique Kinetic Alfven Waves

    NASA Technical Reports Server (NTRS)

    Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.

    2012-01-01

    Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects

  10. Experimental studies of fast wave propagation in DIII-D

    SciTech Connect

    Ikezi, H.; Pinsker, R.I.; Chiu, S.C.; deGrassie, J.S.

    1995-06-01

    Fast Alfven waves radiated from the phased array antenna in the DIII-D tokamak and used for heating and current drive are studied by employing a B-loop array mounted on the vacuum vessel wall. The wave propagation direction controlled by the antenna phasing is clearly observed. A small divergence of the rays arising from the anisotropic nature of the fast wave is found. Comparison with a ray tracing code confirms that the ray position calculated by the code is accurate up to at least one toroidal turn of the rays. Conservation of Rk{sub t} which is a basic assumption in computer codes is tested. Although the upshift of toroidal wavenumber k{sub t} at small major radius R is confirmed, Rk{sub t} is not well conserved. A mass density interferometer is demonstrated by employing the extraordinary fast wave.

  11. Damping of Energetic-Particle-Driven Alfven Eigenmodes in Different Magnetic Equilibria in the MST Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Sears, Stephanie; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Kim, Jungha

    2015-11-01

    Alfven wave dissipation is an important mechanism behind anomalous ion heating, both in astrophysical and reversed-field pinch (RFP) plasma systems. Additionally, the damping rate has implications for the stability of energetic particle driven modes (EPMs) and their associated nonlinear dynamics and fast ion transport, which are crucial topics for any burning plasma reactor. With a 1 MW neutral beam injector on the MST RFP, a controlled set of EPMs and Alfvenic eigenmodes can be driven in this never-before-probed region of strong magnetic shear and weak externally applied magnetic field. The decay time of the average of 100s of reproducible bursts is computed for different equilibrium profiles. In this work, we report initial measurements of Alfvenic damping rates with varied RFP equilibria (including magnetic shear and flow shear) and the effects on fast ion transport. This research is supported by DOE and NSF.

  12. A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES

    SciTech Connect

    Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.

    2010-12-10

    We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.

  13. Explosion propagation in inert porous media.

    PubMed

    Ciccarelli, G

    2012-02-13

    Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity. PMID:22213663

  14. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    SciTech Connect

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.

    2010-07-13

    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  15. Multiple toroidal Alfven eigenmodes with a single toroidal mode number in KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Rizvi, H.; Ryu, C. M.; Lin, Z.

    2016-11-01

    Simultaneous excitation of multiple discrete toroidal Alfven eigenmodes (TAEs) for a single toroidal mode number have been observed in KSTAR plasmas. Excitation and characteristics of these modes are studied by using a global gyrokinetic particle-in-cell simulation code. It is shown that compared to a single core-localized mode, excitation of two modes is difficult. The frequency difference between the double TAEs studied from simulation seems to agree well with the experimental value. Details of studies on the frequency, growth rate, mode structures, etc, using the GTC simulation are presented.

  16. Fast Ion Induced Shearing of 2D Alfven Eigenmodes Measured by Electron Cyclotron Emission Imaging

    SciTech Connect

    Tobias, Ben; Classen, I.G.J.; Domier, C. W.; Heidbrink, W.; Luhmann, N.C.; Nazikian, Raffi; Park, H.K.; Spong, Donald A; Van Zeeland, Michael

    2011-01-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfven eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  17. {beta} suppression of Alfven cascade modes in the National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E. D.; Gorelenkov, N. N.; Menard, J. E.; Bell, R. E.; Crocker, N. A.; Kubota, S.; Heidbrink, W. W.; Levinton, F. M.; Yuh, H.

    2007-10-15

    Alfven cascade modes have been found in low density, low {beta} plasmas on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. An extension of the theory of cascade modes which includes the coupling to geodesic acoustic modes [Breizman et al., Phys. Plasmas 12, 112506 (2005)] is shown to imply their absence for typical spherical tokamak ratios of electron thermal to magnetic energy, {beta}. A scan in electron {beta} confirmed a threshold for suppression of cascade modes in good agreement with theoretical predictions.

  18. Alfven's critical ionization velocity observed in high power impulse magnetron sputtering discharges

    SciTech Connect

    Brenning, N.; Lundin, D.

    2012-09-15

    Azimuthally rotating dense plasma structures, spokes, have recently been detected in several high power impulse magnetron sputtering (HiPIMS) devices used for thin film deposition and surface treatment, and are thought to be important for plasma buildup, energizing of electrons, as well as cross-B transport of charged particles. In this work, the drift velocities of these spokes are shown to be strongly correlated with the critical ionization velocity, CIV, proposed by Alfven. It is proposed as the most promising approach in combining the CIV and HiPIMS research fields is to focus on the role of spokes in the process of electron energization.

  19. The Plausibility of the Stationary Inertial Alfven Wave in Explaining Important Morphological and Temporal Signatures of Auroral Arcs based on Laboratory Experiments and Auroral Observations

    NASA Astrophysics Data System (ADS)

    Nogami, S. H.; Koepke, M. E.; Gillies, D. M.; Knudsen, D. J.; Vincena, S. T.; Van Compernolle, B.; Donovan, E.

    2015-12-01

    The Stationary Inertial Alfven Wave (StIAW) [Knudsen J. Geophys. Res., 101, 10761 (1996)] is a non-fluctuating, non-travelling, spatially periodic pattern in electromagnetic field and fluid quantities that arises in the simultaneous presence of a magnetic-field-aligned current channel and cross-magnetic field plasma flow. Theory predicts [Finnegan et al., Nonlin. Proc. Geophys., 15, 957 (2008)] that the wave appears as an ion density perturbation that is static in the laboratory frame and that the wave electric field can accelerate electrons parallel to a background magnetic field. For experiments in the afterglow plasma in LAPD-U, results of which are reported on in this poster, the necessary conditions for the stationary wave are generated by a biased segmented electrode that creates a convective flow and a planar-mesh electrode that draws current parallel to the background magnetic field. An electrostatic probe and a retarding field energy analyzer measure fixed (in the laboratory frame) patterns in the ion density and electron energy. Spatial patterns of electron acceleration are reminiscent of the patterns present during the formation of discrete auroral arcs. Observation of long-lived discrete arcs indicates that some arcs require a generation mechanism that supports electron acceleration parallel to auroral field lines for tens of minutes. We present arc lifetime statistics to emphasize the paucity of physical models that explain these observations. *Support from NSF grant PHY-130-1896 and grants from the Canadian Space Agency is gratefully acknowledged. We also thank the THEMIS ASI Teams at U Calgary and UC Berkeley.

  20. Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma

    SciTech Connect

    Tsiklauri, D.

    2012-08-15

    The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.

  1. Heart Fibrillation and Parallel Supercomputers

    NASA Technical Reports Server (NTRS)

    Kogan, B. Y.; Karplus, W. J.; Chudin, E. E.

    1997-01-01

    The Luo and Rudy 3 cardiac cell mathematical model is implemented on the parallel supercomputer CRAY - T3D. The splitting algorithm combined with variable time step and an explicit method of integration provide reasonable solution times and almost perfect scaling for rectilinear wave propagation. The computer simulation makes it possible to observe new phenomena: the break-up of spiral waves caused by intracellular calcium and dynamics and the non-uniformity of the calcium distribution in space during the onset of the spiral wave.

  2. Special parallel processing workshop

    SciTech Connect

    1994-12-01

    This report contains viewgraphs from the Special Parallel Processing Workshop. These viewgraphs deal with topics such as parallel processing performance, message passing, queue structure, and other basic concept detailing with parallel processing.

  3. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  4. Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    SciTech Connect

    Klein, R I; Li, P S; McKee, C F; Fisher, R

    2008-04-10

    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256{sup 3} and 512{sup 3} simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li et al. (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.

  5. Winds From Luminous Late-Type Stars. 1; The Effects of Nonlinear Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Ofman, L.; Robinson, R. D.; Carpenter, K.; Davila, J.

    2000-01-01

    We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.

  6. Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER

    SciTech Connect

    N.N. Gorelenkov and R.B. White

    2012-10-29

    The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.

  7. Standing Alfven Waves Transitioned from Fast-Growing, Travelling Waves: Indications from Electron Measurements

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Wang, Z. H.; Zong, Q.; Hao, Y.; Claudepierre, S. G.; Kivelson, M.; Angelopoulos, V.

    2014-12-01

    Ultra-Low Frequency (ULF) electromagnetic oscillations, usually interpreted as standing Alfven waves, are a major candidate to accelerate electrons to relativistic energies in the Earth's Van Allen radiation belt. Electrons can promptly gain energy from ULF waves when they resonate with each other via a process named drift resonance, which is characterized in spacecraft observations by an energy dependence of phase differences between electron fluxes and electromagnetic oscillations. Such a dependence, recently observed by Van Allen Probes, has been presented as a most unambiguous identification of the drift-resonance electron acceleration (Claudepierre et al., 2013). In this paper, we revisit the same event to find that in the early stage of the ULF oscillations, the observed phase relationship appeared to be not fully consistent with the drift resonance theory. We further examine these apparent inconsistencies, to suggest that they arose from the fast growth of travelling Alfven waves before they were transitioned into the more typical standing waves. These observations, therefore, provide a rare opportunity to understand the generation, evolution, and particle-interaction of ULF oscillations in the Earth's magnetosphere.

  8. Heating of the solar corona by the resonant absorption of Alfven waves

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    1987-01-01

    An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. To accomplish this, the wave equation for a dissipative, compressible plasma is derived from the linearized magnetohydrodynamic equations for a plasma with transverse Alfven speed gradients. For parameters representative of the solar corona, it is found that a two-scale description of the wave motion is appropriate. The large-scale motion, which can be approximated as nearly ideal, has a scale which is on the order of the width of the loop. The small-scale wave, however, has a transverse scale much smaller than the width of the loop, with a width of about 0.3-250 km, and is highly dissipative. These two wave motions are coupled in a narrow resonance region in the loop where the global wave frequency equals the local Alfven wave frequency. Formally, this coupling comes about from using the method of matched asymptotic expansions to match the inner and outer (small and large scale) solutions. The resultant heating rate can be calculated from either of these solutions. A formula derived using the outer (ideal) solution is presented, and shown to be consistent with observations of heating and line broadening in the solar corona.

  9. Filamentation of dispersive Alfven waves in density channels: Hall magnetohydrodynamics description

    SciTech Connect

    Borgogno, D.; Laveder, D.; Passot, T.; Sulem, P. L.; Sulem, C.

    2008-06-15

    Filamentation of dispersive Alfven waves initiated by low or high density channels (depending on the plasma beta) is simulated numerically in the framework of ideal Hall magnetohydrodynamics, and asymptotically modeled with a two-dimensional nonlinear Schroedinger equation including a linear attracting potential. Compared with the dynamics in a homogeneous plasma, the phenomenon is accelerated and occurs for a broader range of parameters. In the case of an isolated channel with a width comparable to the pump wavelength, the transverse wave collapse can be replaced by a moderate amplification. In many cases, a relatively complex dynamics takes place, characterized by an oscillation between magnetic filaments and magnetic ribbons, leading to the formation of small scales at which dissipative effects could become relevant. Alfven vortices, governed by the equations of the reduced magnetohydrodynamics, are also identified in the simulations, in spite of their small amplitude relative to the wave. The formation of structures under the effect of periodic or random distributions of low and high density channels is also discussed.

  10. Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas

    SciTech Connect

    Misra, A. P.; Banerjee, S.

    2011-03-15

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.

  11. Observation of fast-ion Doppler-shifted cyclotron resonance with shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Vincena, S.; Carter, T. A.; Gekelman, W.; Leneman, D.; Pribyl, P.

    2008-10-15

    The Doppler-shifted cyclotron resonance ({omega}-k{sub z}v{sub z}={omega}{sub f}) between fast ions and shear Alfven waves is experimentally investigated ({omega}, wave frequency; k{sub z}, axial wavenumber; v{sub z}, fast-ion axial speed; {omega}{sub f}, fast-ion cyclotron frequency). A test particle beam of fast ions is launched by a Li{sup +} source in the helium plasma of the LArge Plasma Device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)], with shear Alfven waves (SAW) (amplitude {delta} B/B up to 1%) launched by a loop antenna. A collimated fast-ion energy analyzer measures the nonclassical spreading of the beam, which is proportional to the resonance with the wave. A resonance spectrum is observed by launching SAWs at 0.3-0.8{omega}{sub ci}. Both the magnitude and frequency dependence of the beam-spreading are in agreement with the theoretical prediction using a Monte Carlo Lorentz code that launches fast ions with an initial spread in real/velocity space and random phases relative to the wave. Measured wave magnetic field data are used in the simulation.

  12. Proton gyroresonance with parallel waves in a low-beta solar flare plasma

    NASA Technical Reports Server (NTRS)

    Steinacker, Juergen; Miller, James A.

    1992-01-01

    We consider the gyroresonant interaction of protons with parallel electromagnetic plasma waves. These waves have either right- or left-hand circular polarization and include as a subset Alfven and whistler waves. We identify three comoving gyroresonances, which can lead to divergences in the Fokker-Planck coefficients. Taking into account thermal damping, we calculate the Fokker-Planck coefficient along with momentum diffusion coefficient D(p) and the mean-free path. Resulting acceleration time scales are compared with solar flare observations.

  13. The universal propagator

    NASA Technical Reports Server (NTRS)

    Klauder, John R.

    1993-01-01

    For a general Hamiltonian appropriate to a single canonical degree of freedom, a universal propagator with the property that it correctly evolves the coherent-state Hilbert space representatives for an arbitrary fiducial vector is characterized and defined. The universal propagator is explicitly constructed for the harmonic oscillator, with a result that differs from the conventional propagators for this system.

  14. Parallel acoustic wave propagation and generation of a seismic dataset

    SciTech Connect

    Oldfield, R.; Dyke, J.V.; Semeraro, B.D.

    1995-12-01

    The ultimate goal of this work is to construct a large seismic dataset that will be used to calibrate industrial seismic analysis codes. Seismic analysis is used in oil and gas exploration to deduce subterranean geological formations based on the reflection of acoustic waves from a source to an array of receivers placed on or near the surface. This work deals with the generation of a test set of acoustic data based on a known representative geological formation. Industrial users of the data will calibrate their codes by comparing their predicted geology to the know geology used to generate the test data. This is a cooperative effort involving Los Alamos, Sandia, Oak Ridge and Lawrence Livermore national labs as well as Institut Francais du Petrole and the Society of Exploration Geophysicists.

  15. Final report for DOE-FG02-02ER54688: Study of nonlinear interactions between counterpropagating shear Alfven waves

    SciTech Connect

    Carter, T A

    2006-11-16

    Final report for DOE Plasma Physics Junior Faculty Development award DOE-FG02-02ER54688. Reports on research undertaken from 8/1/2002 until 5/15/2006, investigating nonlinear interactions between Alfven waves in a laboratory experiment.

  16. Enhancing data locality by using terminal propagation

    SciTech Connect

    Hendrickson, B.; Leland, R.; Van Driessche, R.

    1995-12-31

    Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitions generated by more familiar techniques.

  17. Parallel rendering techniques for massively parallel visualization

    SciTech Connect

    Hansen, C.; Krogh, M.; Painter, J.

    1995-07-01

    As the resolution of simulation models increases, scientific visualization algorithms which take advantage of the large memory. and parallelism of Massively Parallel Processors (MPPs) are becoming increasingly important. For large applications rendering on the MPP tends to be preferable to rendering on a graphics workstation due to the MPP`s abundant resources: memory, disk, and numerous processors. The challenge becomes developing algorithms that can exploit these resources while minimizing overhead, typically communication costs. This paper will describe recent efforts in parallel rendering for polygonal primitives as well as parallel volumetric techniques. This paper presents rendering algorithms, developed for massively parallel processors (MPPs), for polygonal, spheres, and volumetric data. The polygon algorithm uses a data parallel approach whereas the sphere and volume render use a MIMD approach. Implementations for these algorithms are presented for the Thinking Ma.chines Corporation CM-5 MPP.

  18. Energetic particle drive for toroidicity-induced Alfven eigenmodes and kinetic toroidicity-induced Alfven eigenmodes in a low-shear Tokamak. Revised

    SciTech Connect

    Breizman, B.N. |; Sharapov, S.E.

    1994-10-01

    The structure of toroidicity-induced Alfven eigenmodes (TAE) and kinetic TAE (KTAE) with large mode numbers is analyzed and the linear power transfer from energetic particles to these modes is calculated in the low shear limit when each mode is localized near a single gap within an interval whose total width {Delta}{sup out} is much smaller than the radius r{sub m} of the mode location. Near its peak where most of the mode energy is concentrated, the mode has an inner scalelength {Delta}{sup in}, which is much smaller than {Delta}{sup out}. The scale {Delta}{sup in} is determined by toroidicity and kinetic effects, which eliminate the singularity of the potential at the resonant surface. This work examines the case when the drift orbit width of energetic particles {Delta}{sub b} is much larger than the inner scalelength {Delta}{sup in}, but arbitrary compared to the total width of the mode. It is shown that the particle-to-wave linear power transfer is comparable for the TAE and KTAE modes in this case. The ratio of the energetic particle contributions to the growth rates of the TAE and KTAE modes is then roughly equal to the inverse ratio of the mode energies. It is found that, in the low shear limit the growth rate of the KTAE modes can be larger than that for the TAE modes.

  19. Study of Thermonuclear Alfven Instabilities in Next Step Burning Plasma Experiments

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R. Budny; C.Z. Cheng; G.-Y. Fu; W.W. Heidbrink; G. Kramer; D. Meade; and R. Nazikian

    2002-07-02

    A study is presented for the stability of alpha-particle driven shear Alfven Eigenmodes (AE) for the normal parameters of the three major burning plasma proposals, ITER (International Thermonuclear Experimental Reactor), FIRE (Fusion Ignition Research Experiment), and IGNITOR (Ignited Torus). A study of the JET (Joint European Torus) plasma, where fusion alphas were generated in tritium experiments, is also included to attempt experimental validation of the numerical predictions. An analytic assessment of Toroidal AE (TAE) stability is first presented, where the alpha particle beta due to the fusion reaction rate and electron drag is simply and accurately estimated in 7-20 keV plasma temperature regime. In this assessment the hot particle drive is balanced against ion-Landau damping of the background deuterons and electron collision effects and stability boundaries are determined. Then two numerical studies of AE instability are presented. In one the High-n stability code HINST is used . This code is capable of predicting instabilities of low and moderately high frequency Alfven modes. HINST computes the non-perturbative solution of the Alfven eigenmodes including effects of ion finite Larmor radius, orbit width, trapped electrons etc. The stability calculations are repeated using the global code NOVAK. We show that for these tokamaks the spectrum of the least stable AE modes are TAE that appear at medium-/high-n numbers. In HINST TAEs are locally unstable due to the alphas pressure gradient in all the devices under the consideration except IGNITOR. However, NOVAK calculations show that the global mode structure enhances the damping mechanisms and produces stability in all configurations considered here. A serious question remains whether the perturbation theory used in NOVAK overestimates the stability predictions, so that it is premature to conclude that the nominal operation of all three proposals are stable to AEs. In addition NBI ions produce a strong

  20. Possible evidence for the driving of the winds of hot stars by Alfven waves

    SciTech Connect

    Underhill, A.B.

    1983-05-15

    Ultraviolet spectra of the supergiants ..cap alpha.. Cam (09.5 Ia), HD 105056 (ON9.7 Iae), and 15 Sgr (09.7 Lab) are compared, and it is shown that the terminal outflow velocity ..nu../sub infinity/, of HD 105056 is one-half that of the other two stars even though HD 105056 has the highest effective temperature of the three stars. This anomaly, together with the fact that the observed ..nu../sub infinity/ values for early-type stars scatter about an empirical correlation between ..nu../sub infinity/ and log T/sub eff/ by an amount which is larger than the amount which is larger than the amount expected according to the observational errors in determining ..nu../sub infinity/ and log T/sub eff/, leads to the conclusion that an agent in addition to radiation. Alfven waves, is driving the winds of early-type stars.

  1. Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)

    SciTech Connect

    Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S

    2001-10-11

    An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.

  2. Relationship Between Alfvenic Fluctuations and Heavy Ion Heating in the Cusp at 1 Re

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    We look at the effect of heavy ion heating from their coupling with observed broadband (BB-ELF) emissions. These wave fluctuations are common to many regions of the ionosphere and magnetosphere and have been described as spatial turbulence of dispersive Alfven waves (DAW) with short perpendicular wavelengths. With Polar passing through the cusp at 1 Re in the Spring of 1996, we show the correlation of their wave power with mass-resolved O+ derived heating rates. This relationship lead to the study of the coupling of the thermal O+ ions and these bursty electric fields. We demonstrate the role of these measurements in the suggestion of DAW and stochastic ion heating and the observed density cavity characteristics.

  3. The evolution of nonlinear Alfven waves subject to growth and damping

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.

    1986-01-01

    The effects of wave amplification (by streaming particle distributions) and damping (by ion-cyclotron resonance absorption) on the nonlinear evolution of Alfven waves are investigated theoretically. The results of numerical simulations based on the derivative-Schroedinger-equation model of Spangler and Sheerin (1983 and 1985) are presented graphically and characterized in detail, with an emphasis on astrophysical applications. Three phases of wave-packet evolution (linear, nonlinear-saturation, and postsaturation quasi-steady) are identified, and nonlinearity is found to transfer wave energy from growing or amplified wavenumbers to wavenumbers affected by damping. It is pointed out that although there are similarities between the solitonlike pulses predicted by the simulations and short-wavelength shocklet structures observed in the earth bow shock, the model does not explain why low-frequency waves stop growing in the vicinity of the bow shock.

  4. Electrostatic turbulence driven by high magnetohydrodynamic activity in Tokamak Chauffage Alfven Bresilien

    SciTech Connect

    Guimaraes-Filho, Zwinglio O.; Caldas, Ibere L.; Heller, Maria Vittoria A. P.; Nascimento, Ivan C.; Kuznetsov, Yuri K.; Viana, Ricardo L.; Bengtson, Roger D.

    2008-06-15

    In Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao et al., Plasma Phys. Controlled Fusion 43, 1181 (2001)], high magnetohydrodynamic (MHD) activity may appear spontaneously or during discharges with a voltage biased electrode inserted at the plasma edge. The turbulent electrostatic fluctuations, measured by Langmuir probes, are modulated by Mirnov oscillations presenting a dominant peak with a common frequency around 10 kHz. We report the occurrence of phase locking of the turbulent potential fluctuations driven by MHD activity at this frequency. Using wavelet cross-spectral analysis, we characterized the phase and frequency synchronization in the plasma edge region. We introduced an order parameter to characterize the radial dependence of the phase-locking intensity.

  5. Signatures of mode conversion and kinetic Alfven waves at the magnetopause

    SciTech Connect

    Jay R. Johnson; C. Z. Cheng

    2000-07-21

    It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations.

  6. Reversed Shear Alfv'en Eigenmode Stabilization by Localized Electron Cyclotron Heating

    NASA Astrophysics Data System (ADS)

    van Zeeland, M. A.; Lohr, J.; Heidbrink, W. W.; Nazikian, R.; Solomon, W. M.; Gorelenkov, N. N.; Kramer, G. J.; Austin, M. E.; Rhodes, T. L.; Holcomb, C.; Makowski, M. A.; McKee, G. R.; Sharapov, S. E.

    2007-11-01

    Reversed shear Alfv'en eigenmode (RSAE) activity in DIII-D is observed to be stabilized by electron cyclotron heating (ECH) near the minimum of the safety factor (qmin) in neutral beam heated discharges with reversed magnetic shear. The degree of RSAE stabilization and the volume averaged neutron production (Sn) are highly dependent on ECH deposition location relative to qmin. Ideal MHD simulations predict RSAE existence during ECH, indicating that the mode disappearance is due to kinetic effects not taken into account by the ideal MHD model. While discharges with ECH stabilization of RSAEs have higher Sn than discharges with significant RSAE activity, neutron production remains strongly reduced (up to 60%), indicating the bulk of the deficit is not due to RSAEs alone.

  7. A computational approach to continuum damping of Alfven waves in two and three-dimensional geometry

    SciTech Connect

    Koenies, Axel; Kleiber, Ralf

    2012-12-15

    While the usual way of calculating continuum damping of global Alfven modes is the introduction of a small artificial resistivity, we present a computational approach to the problem based on a suitable path of integration in the complex plane. This approach is implemented by the Riccati shooting method and it is shown that it can be transferred to the Galerkin method used in three-dimensional ideal magneto-hydrodynamics (MHD) codes. The new approach turns out to be less expensive with respect to resolution and computation time than the usual one. We present an application to large aspect ratio tokamak and stellarator equilibria retaining a few Fourier harmonics only and calculate eigenfunctions and continuum damping rates. These may serve as an input for kinetic MHD hybrid models making it possible to bypass the problem of having singularities on the path of integration on one hand and considering continuum damping on the other.

  8. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    SciTech Connect

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  9. Self-suppression of double tearing modes via Alfven resonance in rotating tokamak plasmas

    SciTech Connect

    Wang Zhengxiong; Wei Lai; Liu Yue; Wang Xiaogang

    2011-05-15

    Reversed magnetic shear configuration, a key method for improving plasma confinement in advanced tokamaks, is prone to exciting double tearing modes (DTMs) that can severely degrade the plasma confinement. In this letter, we reveal a new mechanism of suppressing the DTM instability due to the self-induced Alfven resonance in rotating tokamak plasmas. The linear growth rate is reduced from {approx}S{sub Hp}{sup -1/3} of the fast DTM regime to {approx}S{sub Hp}{sup -3/5} of the slow single tearing mode regime, where S{sub Hp} is magnetic Reynolds number. Instead of generating magnetic islands at the inner rational surface that can greatly enhance plasma transport in the core region, the formation of current sheets at resonance layers not only prevents the fast nonlinear DTM reconnection phase but also contributes to plasma heating.

  10. Stability of the kinetic Alfven wave in a current-less plasma

    NASA Astrophysics Data System (ADS)

    Sreekala, G.; Sebastian, Sijo; Michael, Manesh; Abraham, Noble P.; Renuka, G.; Venugopal, Chandu

    2015-06-01

    The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities VdH and Vde. For the most general case, the dispersion relation is a polynomial equation of order five; it reduces to a relation which supports only one mode when VdH = 0. For typical parameters at comet Halley, we find that both VdH and Vde can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al. (2009).

  11. Stability of the kinetic Alfven wave in a current-less plasma

    NASA Astrophysics Data System (ADS)

    Abraham, Noble P.; C, Venugopal; Sebastian, Sijo; Renuka, G.; Balan, Nanan; Sreekala, G.

    The two potential theory of Hasegawa has been used to derive the dispersion relation for the kinetic Alfven wave (KAW) in a plasma composed of hydrogen, oxygen and electrons. All three components have been modeled by ring distributions (obtained by subtracting two Maxwellian distributions with different temperatures) with the hydrogen and electrons drifting, respectively, with velocities V_{dH} and V_{de}. For the most general case, the dispersion equation is a polynomial equation of order five; it reduces to a relation which supports only one mode when V_{dH}=0. For typical parameters at comet Halley, we find that both V_{dH} and V_{de} can drive the wave unstable; the KAW is thus driven unstable in a current-less plasma. Such an instability was found for the ion acoustic wave by Vranjes et al.

  12. Doppler-shifted cyclotron resonance of fast ions with circularly polarized shear Alfven waves

    SciTech Connect

    Zhang Yang; Heidbrink, W. W.; Zhou Shu; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Lilley, M. K.

    2009-05-15

    The Doppler-shifted cyclotron resonance between fast ions and shear Alfven waves (SAWs) has been experimentally investigated with a test-particle fast-ion (Li{sup +}) beam launched in the helium plasma of the Large Plasma Device [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)]. Left- or right-hand circularly polarized SAWs are launched by an antenna with four current channels. A collimated fast-ion energy analyzer characterizes the resonance by measuring the nonclassical spreading of the averaged beam signal. Left-hand circularly polarized SAWs resonate with the fast ions but right-hand circularly polarized SAWs do not. The measured fast-ion profiles are compared with simulations by a Monte Carlo Lorentz code that uses the measured wave field data.

  13. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  14. Transmitter Upgrade for JET Alfv'en Eigenmode Fast Particle Interaction Studies

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Porkolab, M.; Fasoli, A.; Blanchard, P.

    2009-11-01

    One of the main missions of the worldwide fusion R&D effort is to develop predictive and control capability of burning plasmas in support of ITER. A unique 8-coil antenna system has been implemented on JET to study fast-ion interactions with Alfv'en eigenmodes in the 50 -- 500 kHz range that could potentially increase losses of α particles and reduce fusion gain. The single 4 kW transmitter will be replaced with eight 1 kW transmitters that will independently power each antenna to more uniformly distribute the power among the antennas. This will improve the coupling to higher order modes (n = 5 - 30) for damping studies. Independent drivers will also be used to make possible multi frequency and arbitrary phase studies of multiple modes and traveling modes. Various analog and digital driver approaches are being considered to provide the needed flexibility. A systems design will be presented.

  15. Correlation between excitation of Alfven modes and degradation of ICRF heating efficiency in TFTR

    SciTech Connect

    Bernabei, S.; Chang, Z.; Darrow, D.

    1997-05-01

    Alfven modes are excited by energetic ions in TFTR during intense minority ICRF heating. There is a clear threshold in rf power above which the modes are destabilized. The net effect of these modes is the increase of the fast ion losses, with an associated saturation of the ion tail energy and of the efficiency of the heating. Typically, several modes are excited with progressive n-numbers, with frequencies in the neighborhood of 200 kHz. Results suggest that Energetic Particle Modes (EPM), mostly unseen by the Mirnov coils, are generated near the center and are responsible for the ion losses. Stronger global TAE modes, which are destabilized by the stream of displaced fast ions, appear responsible only for minor losses.

  16. Acceleration and heating of two-fluid solar wind by Alfven waves

    NASA Technical Reports Server (NTRS)

    Sandbaek, Ornulf; Leer, Egil

    1994-01-01

    Earlier model studies of solar wind driven by thermal pressure and Alfven waves have shown that wave amplitudes of 20-30 km/s at the coronal base are sufficient to accelerate the flow to the high speeds observed in quasi-steady streams emanating from large coronal holes. We focus on the energy balance in the proton gas and show that heat conduction from the region where the waves are dissipated may play an important role in determining the proton temperature at the orbit of Earth. In models with 'classical' heat conduction we find a correlation between high flow speed, high proton temperature, and low electron temperature at 1 AU. The effect of wave heating on the development of anisotropies in the solar wind proton gas pressure is also investigated in this study.

  17. The Nonlinear Coupling of Alfven and Lower Hybrid Waves in Space Plasma

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2004-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wave-wave interactions which are of crucial importance to magnetospheric and ionospheric plasma behavior. The excitation of lower hybrid waves (LHWs) in particular is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves may generate LHWs in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We present several examples of observational data which illustrate that the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in the ionosphere and magnetosphere and demonstrate electron and ion energization involving these processes. We discuss the morphology dynamics and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al. 2002) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  18. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  19. MPP parallel forth

    NASA Technical Reports Server (NTRS)

    Dorband, John E.

    1987-01-01

    Massively Parallel Processor (MPP) Parallel FORTH is a derivative of FORTH-83 and Unified Software Systems' Uni-FORTH. The extension of FORTH into the realm of parallel processing on the MPP is described. With few exceptions, Parallel FORTH was made to follow the description of Uni-FORTH as closely as possible. Likewise, the parallel FORTH extensions were designed as philosophically similar to serial FORTH as possible. The MPP hardware characteristics, as viewed by the FORTH programmer, is discussed. Then a description is presented of how parallel FORTH is implemented on the MPP.

  20. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    SciTech Connect

    Evans, R. M.; Opher, M.; Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vasquez, A.

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  1. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  2. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  3. Limitations in scatter propagation

    NASA Astrophysics Data System (ADS)

    Lampert, E. W.

    1982-04-01

    A short description of the main scatter propagation mechanisms is presented; troposcatter, meteor burst communication and chaff scatter. For these propagation modes, in particular for troposcatter, the important specific limitations discussed are: link budget and resulting hardware consequences, diversity, mobility, information transfer and intermodulation and intersymbol interference, frequency range and future extension in frequency range for troposcatter, and compatibility with other services (EMC).

  4. NASA Propagation Information Center

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1989-01-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  5. NASA propagation information center

    NASA Astrophysics Data System (ADS)

    Smith, Ernest K.; Flock, Warren L.

    1990-07-01

    The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.

  6. Propagation data bases

    NASA Astrophysics Data System (ADS)

    1981-12-01

    Existing data bases accumulated as the result of experiments to gather propagation data on millimeter wave Earth-space links are described. The satellites used are described and results of the significant experiments conducted in the United States are summarized. The data bases consist primarily of cumulative attenuation statistics, though some depolarization measurements are included. Additional summaries of propagation data are cited.

  7. Propagation research in Japan

    NASA Technical Reports Server (NTRS)

    Wakana, Hiromitsu

    1991-01-01

    L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.

  8. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  9. Verbal and Visual Parallelism

    ERIC Educational Resources Information Center

    Fahnestock, Jeanne

    2003-01-01

    This study investigates the practice of presenting multiple supporting examples in parallel form. The elements of parallelism and its use in argument were first illustrated by Aristotle. Although real texts may depart from the ideal form for presenting multiple examples, rhetorical theory offers a rationale for minimal, parallel presentation. The…

  10. Millimeter wavelength propagation studies

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1974-01-01

    The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.

  11. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  12. 'Alfven wing' models of the induced electrical current system at Io - A probe of the ionosphere of Io

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A novel class of models of the Alfven wing interaction between the Io plasma torus and Io's ionosphere has been developed and used to compute the magnetic field fluctuations at the position of the Voyager 1 flyby. These computations of the magnetic field signature are compared with the magnetic field measurements made during the flyby, and the differences between the model and observations are used as a probe of the structure of Io's ionosphere. The results of this model fitting indicate that a significant atmospheric neutral column density is required over a major part of the trailing hemisphere. This can be consistent with the cold-trap model for Io's neutral atmoshpere only if the major plumes near the center of the trailing hemisphere provide significant volumetric coverage. The Io plasma torus charged-mass density required for a proper match to the data is larger than earlier estimates based on the width of the Alfven wing signature.

  13. Parallel algorithm development

    SciTech Connect

    Adams, T.F.

    1996-06-01

    Rapid changes in parallel computing technology are causing significant changes in the strategies being used for parallel algorithm development. One approach is simply to write computer code in a standard language like FORTRAN 77 or with the expectation that the compiler will produce executable code that will run in parallel. The alternatives are: (1) to build explicit message passing directly into the source code; or (2) to write source code without explicit reference to message passing or parallelism, but use a general communications library to provide efficient parallel execution. Application of these strategies is illustrated with examples of codes currently under development.

  14. Alfven eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas

    SciTech Connect

    Van Zeeland, Michael; Gorelenkov, Nikolai; Heidbrink, W.; Kramer, G.; Spong, Donald A; Austin, M. E.; Fisher, R K; Munoz, M G; Gorelenkova, M.; Luhmann, N.C.; Murakami, Masanori; Nazikian, Raffi; Park, J. M.; Tobias, Ben; White, R.

    2012-01-01

    Neutral beam injection into reversed-magnetic shear DIII-D plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes (TAEs) and reversed shear Alfven eigenmodes (RSAEs). With measured equilibrium profiles as inputs, the ideal MHD code NOVA is used to calculate eigenmodes of these plasmas. The postprocessor code NOVA-K is then used to perturbatively calculate the actual stability of the modes, including finite orbit width and finite Larmor radius effects, and reasonable agreement with the spectrum of observed modes is found. Using experimentally measured mode amplitudes, fast ion orbit following simulations have been carried out in the presence of the NOVA calculated eigenmodes and are found to reproduce the dominant energy, pitch and temporal evolution of the losses measured using a large bandwidth scintillator diagnostic. The same analysis techniques applied to a DT 8 MA ITER steady-state plasma scenario with reversed-magnetic shear and both beam ion and alpha populations show Alfven eigenmode instability. Both RSAEs and TAEs are found to be unstable with maximum growth rates occurring for toroidal mode number n = 6 and the majority of the drive coming from fast ions injected by the 1MeV negative ion beams. AE instability due to beam ion drive is confirmed by the non-perturbative code TAEFL. Initial fast ion orbit following simulations using the unstable modes with a range of amplitudes (delta B/B = 10(-5)-10(-3)) have been carried out and show negligible fast ion loss. The lack of fast ion loss is a result of loss boundaries being limited to large radii and significantly removed from the actual modes themselves.

  15. Analog Delta-Back-Propagation Neural-Network Circuitry

    NASA Technical Reports Server (NTRS)

    Eberhart, Silvio

    1990-01-01

    Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.

  16. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  17. Implementing Recurrent Back Propagation on the Connection Machine. Final report

    SciTech Connect

    Deprit, E.M.

    1988-12-02

    Pineda's Recurrent Back-Propagation algorithm for neural networks was implemented on the Connection Machine, a massively parallel processor. Two fundamentally different graph architectures underlying the nets were tested - one based on arcs, the other on nodes. Confirming the predominance of communication over computation, performance measurements underscore the necessity to make connections the basic unit of representation. Comparisons between these graphs algorithms lead to important conclusions concerning the parallel implementation of neural nets in both software and hardware.

  18. On the propagation of plane waves above an impedance surface

    NASA Technical Reports Server (NTRS)

    Zhong, F. H.; Vanmoorhem, W. K.

    1990-01-01

    The propagation of grazing incidence plane waves along a finite impedance boundary is investigated. A solution of the semi-infinite problem, where a harmonic motion, parallel to the boundary, is imposed along a line perpendicular to the boundary, is obtained. This solution consists of quasiplane waves, waves moving parallel to the boundary with amplitude and phase variations perpendicular to the boundary. Several approximations to the full solution are considered.

  19. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  20. Pc1 propagation in the ionopsheric duct: dispersion relation and source structure

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Plaschke, F.; Narita, Y.; Glassmeier, K.; Fujita, S.; Mann, I. R.

    2013-12-01

    Pc1 geomagnetic pulsations (Pc1) observed on the ground at subauroral latitudes are signatures of ion cyclotron waves at frequencies between 0.2 and 5.0Hz in the inner magnetosphere. When the waves reach the ionosphere, they induce time-varying Pedersen and Hall currents that generate both Alfven and fast mode waves in the ionospheric duct. The fast mode waves propagate horizontally and are observed in distant areas at lower latitudes from the wave entrance region. Previous theoretical studies have shown attenuation rates, polarizations, and dispersion relations of those waves. So far no observational study found a Pc1 dispersion relation and compared with theoretical results. We have investigated wave vectors of Pc1 pulsations both with the 2D Wave Telescope technique and with the minimum variance analysis. We also have investigated the spatial power distribution of Pc1 pulsations. For our study, we used ground-based measurements of Pc1 pulsations from 27 May 2011, observed at 17 different stations of the Canadian magnetometer network CARISMA (www.carisma.ca). We identified the frequency-wave number relation that shows a behavior of fast mode waves. Furthermore, we found that the attenuation rates of Pc1 wave power are larger along the meridian than normal it, in contrast to theoretical results. The possible source structure of incident Alfven waves will be discussed using power distributions of Pc1 pulsations by considering both effects of attenuation and conversion to fast mode waves.

  1. Nonlinear propagation of coherent electromagnetic waves in a dense magnetized plasma

    SciTech Connect

    Shukla, P. K.; Eliasson, B.; Stenflo, L.

    2012-07-15

    We present an investigation of the nonlinear propagation of high-frequency coherent electromagnetic waves in a uniform quantum magnetoplasma. Specifically, we consider nonlinear couplings of right-hand circularly polarized electromagnetic-electron-cyclotron (CPEM-EC) waves with dispersive shear Alfven (DSA) and dispersive compressional Alfven (DCA) perturbations in plasmas composed of degenerate electron fluids and non-degenerate ion fluids. Such interactions lead to amplitude modulation of the CPEM-EC wave packets, the dynamics of which is governed by a three-dimensional nonlinear Schroedinger equation (NLSE) with the frequency shift arising from the relativistic electron mass increase in the CPEM-EC fields and density perturbations associated with the DSA and DCA perturbations. Accounting for the electromagnetic and quantum forces, we derive the evolution equation for the DSA and DCA waves in the presence of the magnetic field-aligned ponderomotive force of the CPEM-EC waves. The NLSE and the driven DSA and DCA equations are then used to investigate the modulational instability. The relevance of our investigation to laser-plasma interaction experiments and the cores of white dwarf stars is pointed out.

  2. Numerical Simulation of Waves Driven by Plasma Currents Generated by Low-Frequency Alfven Waves in a Multi-Ion Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George

    2004-01-01

    When multi-ion plasma consisting of heavy and light ions is permeated by a low-frequency Alfven (LFA) wave, the crossed-electric-and-magnetic field (E x B), and the polarization drifts of the different ion species and the electrons could be quite different. The relative drifts between the charged-particle species drive waves, which energize the plasma. Using 2.5-dimensional (2.5-D) particle-in-cell simulations, we study this process of wave generation and its nonlinear consequences in terms of acceleration and heating plasma. Specifically, we study the situation for LFA wave frequency being lower than the heavy-ion cyclotron frequency in a multi-ion plasma. We impose such a wave to the plasma assuming that its wavelength is much larger than that of the waves generated by the relative drifts. For better understanding, the LFA-wave driven simulations are augmented by those driven by initialized ion beams. The driven high-frequency (HF) wave modes critically depend on the heavy ion density nh; for small values of nh, the lower hybrid (LH) waves dominate. On the other hand, for large nh a significantly enhanced level of waves occurs over a much broader frequency spectrum below the LH frequency and such waves are interpreted here as the ion Bernstein (IB) mode near the light ion cyclotron harmonics. Irrespective of the driven wave modes, both the light and heavy ions undergo significant transverse acceleration, but for the large heavy-ion densities, even the electrons are significantly accelerated in the parallel direction by the waves below the LH frequency. Even when the LFA wave drive is maintained, the ion heating leads to the cessation of HF wave excitation just after a few cycles of the former wave. On the basis of marginal stability seen in the simulations, an empirical relation for LFA wave amplitude, frequency and ion temperature is given.

  3. Database for propagation models

    NASA Technical Reports Server (NTRS)

    Kantak, Anil V.

    1991-01-01

    A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.

  4. NASA Propagation Studies Website

    NASA Technical Reports Server (NTRS)

    Angkasa, Krisjani S.

    1996-01-01

    This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.

  5. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  6. Parallel MRI at microtesla fields.

    PubMed

    Zotev, Vadim S; Volegov, Petr L; Matlashov, Andrei N; Espy, Michelle A; Mosher, John C; Kraus, Robert H

    2008-06-01

    Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 mu T measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.

  7. Parallel MRI at microtesla fields

    NASA Astrophysics Data System (ADS)

    Zotev, Vadim S.; Volegov, Petr L.; Matlashov, Andrei N.; Espy, Michelle A.; Mosher, John C.; Kraus, Robert H.

    2008-06-01

    Parallel imaging techniques have been widely used in high-field magnetic resonance imaging (MRI). Multiple receiver coils have been shown to improve image quality and allow accelerated image acquisition. Magnetic resonance imaging at ultra-low fields (ULF MRI) is a new imaging approach that uses SQUID (superconducting quantum interference device) sensors to measure the spatially encoded precession of pre-polarized nuclear spin populations at microtesla-range measurement fields. In this work, parallel imaging at microtesla fields is systematically studied for the first time. A seven-channel SQUID system, designed for both ULF MRI and magnetoencephalography (MEG), is used to acquire 3D images of a human hand, as well as 2D images of a large water phantom. The imaging is performed at 46 μT measurement field with pre-polarization at 40 mT. It is shown how the use of seven channels increases imaging field of view and improves signal-to-noise ratio for the hand images. A simple procedure for approximate correction of concomitant gradient artifacts is described. Noise propagation is analyzed experimentally, and the main source of correlated noise is identified. Accelerated imaging based on one-dimensional undersampling and 1D SENSE (sensitivity encoding) image reconstruction is studied in the case of the 2D phantom. Actual threefold imaging acceleration in comparison to single-average fully encoded Fourier imaging is demonstrated. These results show that parallel imaging methods are efficient in ULF MRI, and that imaging performance of SQUID-based instruments improves substantially as the number of channels is increased.

  8. Nonlinear dispersive Alfven waves in dusty plasma in the transition limit, {alpha}{approx}1

    SciTech Connect

    Sah, O. P.

    2011-10-15

    Localized nonlinear structures associated with dispersive Alfven waves are investigated in dusty plasma in the transition limit, i.e., {alpha}{identical_to}({beta}/2Q){approx}1, where {beta} is the ratio of thermal to magnetic pressure and Q is electron to ion mass ratio. Sagdeev pseudopotential is obtained from the basic governing equations, which is then numerically solved to study the existence and the behaviors of the nonlinear structures. It is found that both compressive and rarefactive solitons can coexist above and below certain critical {alpha}- values determined by the wave direction cosine (K{sub Z}) and the Mach number (M); and the compressive (rarefactive) solitons are much wider than the rarefactive ones for the case MK{sub Z}). In addition, the rarefactive solitons are found to be converted into rarefactive double layers, for the case M>K{sub Z}, if the dust grains are negatively charged and their density exceeds certain critical value.

  9. Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.

    2010-12-01

    Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.

  10. Anomalous flow deflection at planetary bow shocks in the low Alfven Mach number regime

    NASA Astrophysics Data System (ADS)

    Nishino, Masaki N.; Fujimoto, Masaki; Tai, Phan-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M.; Rastaetter, Lutz

    A planetary magnetosphere is an obstacle to the super-sonic solar wind and the bow shock is formed in the front-side of it. In ordinary hydro-dynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the planet-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low density solar wind in which duskward flow was observed in the dawnside magnetosheath of the Earth's magnetosphere. A Rankine-Hugoniot test across the bow shock shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional Magneto- Hydro-Dynamics (MHD) simulation of the situation in this previously unexplored parameter regime is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle. The magnetic effect at the bow shock should become more conspicuously around the Mercury's magnetosphere, because stronger interplanetary magnetic field and slower solar wind around the Mercury let the Alfven Mach number low. Resultant strong deformation of the magnetosphere induced by the "wrong flow" will cause more complex interaction between the solar wind and the Mercury.

  11. MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT

    SciTech Connect

    Collins, David C.; Norman, Michael L.; Padoan, Paolo; Xu Hao

    2011-04-10

    In this work, we present the mass and magnetic distributions found in a recent adaptive mesh refinement magnetohydrodynamic simulation of supersonic, super-Alfvenic, self-gravitating turbulence. Power-law tails are found in both mass density and magnetic field probability density functions, with P({rho}) {proportional_to} {rho}{sup -1.6} and P(B) {proportional_to} B{sup -2.7}. A power-law relationship is also found between magnetic field strength and density, with B {proportional_to} {rho}{sup 0.5}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass-to-flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements. We also compare the relationship between velocity dispersion and density to the same cores, and find an increasing relationship between the two, with {sigma} {proportional_to} n{sup 0.25}, also in agreement with the observations. We then estimate the potential effects of ambipolar diffusion in our cores and find that due to the weakness of the magnetic field in our simulation, the inclusion of ambipolar diffusion in our simulation will not cause significant alterations of the flow dynamics.

  12. On Properties of Compressional Alfven Eigenmode Instability Driven by Superalfvinic Ions

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng

    2002-02-06

    Properties of the instability of Compressional Alfven Eigenmodes (CAE) in tokamak plasmas are studied in the cold plasma approximation with an emphasis on the instability driven by the energetic minority Ion Cyclotron Resonance Heating (ICRH) ions. We apply earlier developed theory [N.N. Gorelenkov and C.Z. Cheng, Nuclear Fusion 35 (1995) 1743] to compare two cases: Ion Cyclotron Emission (ICE) driven by charged fusion products and ICRH Minority driven ICE (MICE) [J. Cottrell, Phys. Rev. Lett. (2000)] recently observed on JET [Joint European Torus]. Particularly in MICE spectrum, only instabilities with even harmonics of deuterium-cyclotron frequency at the low-field-side plasma edge were reported. Odd deuterium-cyclotron frequency harmonics of ICE spectrum between the cyclotron harmonics of protons can be driven only via the Doppler-shifted cyclotron wave-particle resonance of CAEs with fusion products, but are shown to be damped due to the electron Landau damping in experiments on MI CE. Excitation of odd harmonics of MICE with high-field-side heating is predicted. Dependencies of the instability on the electron temperature is studied and is shown to be strong. Low electron temperature is required to excite odd harmonics in MICE.

  13. ALFVEN-WAVE TURBULENCE AND PERPENDICULAR ION TEMPERATURES IN CORONAL HOLES

    SciTech Connect

    Chandran, Benjamin D. G.

    2010-09-01

    Low-frequency Alfven-wave turbulence causes ion trajectories to become chaotic, or 'stochastic', when the turbulence amplitude is sufficiently large. Stochastic orbits enable ions to absorb energy from the turbulence, increasing the perpendicular ion temperature T{sub perpendiculari} even when the fluctuation frequencies are too small for a cyclotron resonance to occur. In this paper, an analytic expression for the stochastic heating rate is used in conjunction with an observationally constrained turbulence model to obtain an analytic formula for T{sub perpendiculari} as a function of heliocentric distance r, ion mass, and ion charge in coronal holes at 2 R{sub sun} {approx}< r {approx}< 15 R{sub sun}. The resulting temperature profiles provide a good fit to observations of protons and O{sup +5} ions at 2 R {sub sun} {approx}< r {approx}< 3 R{sub sun} from the Ultraviolet Coronagraph Spectrometer (UVCS). Stochastic heating also offers a natural explanation for several detailed features of the UVCS observations, including the preferential and anisotropic heating of minor ions, the rapid radial increase in the O{sup +5} temperature between 1.6 R{sub sun} and 1.9 R{sub sun}, and the abrupt flattening of the O{sup +5} temperature profile as r increases above 1.9 R{sub sun}.

  14. Cross Scale Coupling of Alfven Turbulence in the Polar Wind Region

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Ionosphere-magnetosphere coupling phenomena are extremely complex and diverse, involving a whole series of processes operating over a wide range of spatial and temporal scales. One of the fundamental aspects of understanding this coupling is the polar wind, which is a dominant mechanism of mass transport from the ionospheric source region to the magnetosphere and strongly influences the plasma parameters above the F2 density peak. The combined effects of photoelectrons, and the ponderomotive force will be presented based on our polar wind model. The presence of photoelectrons and low frequency oscillations (that create the ponderomotive force) increase ion outflows. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW.

  15. Modeling fast-ion transport during toroidal Alfven eigenmode avalanches in National Spherical Torus Experiment

    SciTech Connect

    Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.; Crocker, N. A.; Kubota, S.; Levinton, F. M.; Yuh, H.; Liu, D.; Podesta, M.; Tritz, K.

    2009-12-15

    Experiments on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfven eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA[C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT[R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments.

  16. Non-linear Dynamics Of Toroidicity-induced Alfven Eigenmodes On The National Spherical Torus Experiment

    SciTech Connect

    Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P

    2011-04-26

    The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.

  17. Stabilizing effect of ionized background of trans-Alfvenic expansion of exploding plasmas

    SciTech Connect

    Zakharov, Yu.P.; Ponomarenko, A.G.; Dudnikova, G.I.; Vshivkov, V.A.

    1995-12-31

    Recently a lot of theoretical and numerical calculations have been performed devoted to the study of Large-Larmor-Flute Instability (LLFI). Such instability was discovered initially in laboratory and later in active experiments (AMPTE, CRRES) on expansion of a quasispherical plasma cloud in a ``vacuum`` magnetic field {rvec B}{sub 0}. In the laser-produced plasma experiments at KI-1 facility it was established for the first time, that such non-MHD instability and LHD-instability of skin-layer may effectively be suppressed by ionized background at high-Alfven Mach numbers M{sub A} {much_gt} 1 as well as in a transient regime M{sub A} {approximately} 1. In the present paper on the basis of laboratory and computer simulation the value of M{sub A} was defined more exactly and other similarity parameters characterizing the development of LLFI was founded. The laser experiments were realized in hydrogen and argon background plasmas. The computer simulations were carried out with 2D electromagnetic hybrid code. It was exposed the transition from flute increase to decrease one when M{sub A} changed from M{sub A} = 1 to M{sub A} = 3.

  18. Drift-Alfven wave mediated particle transport in an elongated density depression

    SciTech Connect

    Vincena, Stephen; Gekelman, Walter

    2006-06-15

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.

  19. Dispersion characteristics of kinetic Alfven waves in a multi-ion plasma

    NASA Astrophysics Data System (ADS)

    Venugopal, Chandu; Jayapal, R.; Sreekala, G.; Jose, Blesson; Savithri Devi, E.; Antony, S.

    2014-06-01

    The stability of the kinetic Alfven wave (KAW) has been studied in a plasma composed of electrons, hydrogen and positively and negatively charged oxygen ions. Using the two potential theory of Hasegawa, we have derived an expression for the frequency and growth/damping rate of the KAW. The dispersion relation derived in this paper is a generalization of the dispersion relation of Hasegawa on two counts: (i) we use a more generalized distribution function and show that our relation reduces to the dispersion relation of Hasegawa in the limiting case, and (ii) it is applicable to a multi-ion plasma containing lighter ions and positively and negatively charged heavier ions. We find the growth rate of the wave increases with increasing drift velocities of the electrons. Negatively charged oxygen ions (O-) decrease the growth rate; however, the growth rate is very sensitively dependent on O- ion density, especially when its density is greater than that of the positively charged oxygen ions (O+). Interestingly, the dispersion characteristics of KAWs can be made insensitive to the presence of the heavier ions by an appropriate choice of their densities and temperatures.

  20. An analytical solution of finite-amplitude solitary kinetic Alfven waves

    SciTech Connect

    Wu, D.; Wang, D.; Faelthammar, C.

    1995-12-01

    An analytical solution of finite-amplitude solitary kinetic Alfven waves (SKAWs) in a low-{beta} ({beta}{much_lt}{ital m}{sub {ital e}}/{ital m}{sub {ital i}}{much_lt}1) plasma is presented. This solution has been compared with the solution of the Korteweg--de Vries (KdV) equation in the small-amplitude limit. It is found that the KdV soliton solution is valid only for the maximum relative density perturbation {ital N}{sub {ital m}}{lt}0.1. For the larger {ital N}{sub {ital m}}, the exact analytical solution shows that the SKAWs have a much wider structure and much stronger perturbed fields than the KdV solitons with the same {ital N}{sub {ital m}}. Moreover, the relations between the width and the amplitude of SKAWs are also considerably different from that of the KdV solitons. In addition, the possibility for applying these results to some events observed from the Freja scientific satellite is discussed. (The Freja is a Swedish--German scientific project for the investigation of ionospheric and magnetospheric plasmas, and the Freja satellite was launched on a Long-March II rocket of China on October 6, 1992.) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Gyrokinetic simulations of reverse shear Alfven eigenmodes in DIII-D plasmas

    SciTech Connect

    Chen, Y.; Munsat, T.; Parker, S. E.; Heidbrink, W. W.; Van Zeeland, M. A.; Tobias, B. J.; Domier, C. W.

    2013-01-15

    A gyrokinetic ion/mass-less fluid electron hybrid model as implemented in the GEM code [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 837 (2007)] is used to study the reverse shear Alfven eigenmodes (RSAE) observed in DIII-D, discharge no. 142111. This is a well diagnosed case with measurement of the core-localized RSAE mode structures and the mode frequency, which can be used to compare with simulations. Simulations reproduce many features of the observation, including the mode frequency up-sweeping in time and the sweeping range. A new algorithmic feature is added to the GEM code for this study. Instead of the gyrokinetic Poisson equation itself, its time derivative, or the vorticity equation, is solved to obtain the electric potential. This permits a numerical scheme that ensures the E Multiplication-Sign B convection of the equilibrium density profiles of each species cancel each other in the absence of any finite-Larmor-radius effects. These nonlinear simulations generally result in an electron temperature fluctuation level that is comparable to measurements, and a mode frequency spectrum broader than the experimental spectrum. The spectral width from simulations can be reduced if less steep beam density profiles are used, but then the experimental fluctuation level can be reproduced only if a collision rate above the classical level is assumed.

  2. Alfven cascade modes at high {beta} in the National Spherical Torus Experiment

    SciTech Connect

    Crocker, N. A.; Kubota, S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; Darrow, D. S.; Menard, J. E.; LeBlanc, B. P.; Bell, R. E.; Heidbrink, W. W.; Levinton, F. M.; Yuh, H.

    2008-10-15

    Alfven cascade (AC) modes are observed in the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] reversed shear plasmas over a wide range (up to {approx}25% on axis, or {approx}11% at minimum q) of {beta} (ratio of kinetic pressure to magnetic pressure). At low {beta}, the AC mode spectrum shows characteristics similar to conventional tokamaks. At higher {beta}, distinct {beta} and {nabla}{beta} effects are observed in the spectrum, including a significant reduction in the relative size of the frequency sweep and a toroidal mode number dependence in the minimum mode frequency. AC mode structure is obtained using reflectometry. Fast-ion loss associated with AC mode activity is observed. AC mode polarization at the plasma edge is consistent with expectation. Magnetohydrodynamic (MHD) spectroscopy is shown to be usable to determine q{sub min} at both low {beta} and high {beta}. Observed AC mode structure and frequency are found to be consistent with calculations for the same plasma conditions and geometry using the linear, ideal MHD hybrid kinetic code NOVA-K[C. Z. Cheng, Phys. Rep. 211, 1 (1992)].

  3. Verification and validation of linear gyrokinetic simulation of Alfven eigenmodes in the DIII-D tokamak

    SciTech Connect

    Spong, D. A.; Bass, E. M.; Deng, W.; Heidbrink, W. W.; Lin, Z.; Tobias, B.; Van Zeeland, M. A.; Austin, M. E.; Domier, C. W.; Luhmann, N. C. Jr.

    2012-08-15

    A verification and validation study is carried out for a sequence of reversed shear Alfven instability time slices. The mode frequency increases in time as the minimum (q{sub min}) in the safety factor profile decreases. Profiles and equilibria are based upon reconstructions of DIII-D discharge (no. 142111) in which many such frequency up-sweeping modes were observed. Calculations of the frequency and mode structure evolution from two gyrokinetic codes, GTC and GYRO, and a gyro-Landau fluid code TAEFL are compared. The experimental mode structure of the instability was measured using time-resolved two-dimensional electron cyclotron emission imaging. The three models reproduce the frequency upsweep event within {+-}10% of each other, and the average of the code predictions is within {+-}8% of the measurements; growth rates are predicted that are consistent with the observed spectral line widths. The mode structures qualitatively agree with respect to radial location and width, dominant poloidal mode number, ballooning structure, and the up-down asymmetry, with some remaining differences in the details. Such similarities and differences between the predictions of the different models and the experimental results are a valuable part of the verification/validation process and help to guide future development of the modeling efforts.

  4. Transport of cross helicity and the radial evolution of Alfvenicity in the solar wind

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Minnie, J.; Breech, B.; Parhi, S.; Bieber, J. W.; Oughton, S.; Bavassano, B.

    2004-05-01

    A transport theory for cross helicity is described, including both scale-separated spatial transport and a phenomenological description of nonlinear effects associated with magnetohydrodynamic turbulence. The formalism is applied to the radial evolution of the solar wind, where driving effects of shear and pickup ions are included. It is found that the radial decrease of cross helicity observed in the equatorial solar wind can be accounted for when sufficient driving is included to overcome dynamic alignment, i.e., the inherent tendency for MHD turbulence to produce Alfvenic states. For the high latitude wind, which evolves under influence of a lower mean shear stregnth, the theory predicts a closer balance between dynamic alignment and shear strength effects, so that the normalized cross helicity, which generally decreases with increasing heliocentric radial distance, changes very little between 2 and 4 AU. This accounts well for Ulysses observations. This research supported in part by NSF grant TM-0105254, NASA grants NAG5-8134, NAG5-11603, NAG5-6570 and NAG5-10911, and the NZ Marsden Fund (02-UOW-050 MIS).

  5. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  6. Parallel MR Imaging

    PubMed Central

    Deshmane, Anagha; Gulani, Vikas; Griswold, Mark A.; Seiberlich, Nicole

    2015-01-01

    Parallel imaging is a robust method for accelerating the acquisition of magnetic resonance imaging (MRI) data, and has made possible many new applications of MR imaging. Parallel imaging works by acquiring a reduced amount of k-space data with an array of receiver coils. These undersampled data can be acquired more quickly, but the undersampling leads to aliased images. One of several parallel imaging algorithms can then be used to reconstruct artifact-free images from either the aliased images (SENSE-type reconstruction) or from the under-sampled data (GRAPPA-type reconstruction). The advantages of parallel imaging in a clinical setting include faster image acquisition, which can be used, for instance, to shorten breath-hold times resulting in fewer motion-corrupted examinations. In this article the basic concepts behind parallel imaging are introduced. The relationship between undersampling and aliasing is discussed and two commonly used parallel imaging methods, SENSE and GRAPPA, are explained in detail. Examples of artifacts arising from parallel imaging are shown and ways to detect and mitigate these artifacts are described. Finally, several current applications of parallel imaging are presented and recent advancements and promising research in parallel imaging are briefly reviewed. PMID:22696125

  7. Eclipse Parallel Tools Platform

    2005-02-18

    Designing and developing parallel programs is an inherently complex task. Developers must choose from the many parallel architectures and programming paradigms that are available, and face a plethora of tools that are required to execute, debug, and analyze parallel programs i these environments. Few, if any, of these tools provide any degree of integration, or indeed any commonality in their user interfaces at all. This further complicates the parallel developer's task, hampering software engineering practices,more » and ultimately reducing productivity. One consequence of this complexity is that best practice in parallel application development has not advanced to the same degree as more traditional programming methodologies. The result is that there is currently no open-source, industry-strength platform that provides a highly integrated environment specifically designed for parallel application development. Eclipse is a universal tool-hosting platform that is designed to providing a robust, full-featured, commercial-quality, industry platform for the development of highly integrated tools. It provides a wide range of core services for tool integration that allow tool producers to concentrate on their tool technology rather than on platform specific issues. The Eclipse Integrated Development Environment is an open-source project that is supported by over 70 organizations, including IBM, Intel and HP. The Eclipse Parallel Tools Platform (PTP) plug-in extends the Eclipse framwork by providing support for a rich set of parallel programming languages and paradigms, and a core infrastructure for the integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration of a wide variety of parallel tools. The first version of the PTP is a prototype that only provides minimal functionality for parallel tool integration, support for a small number of parallel architectures

  8. Parallel Lisp simulator

    SciTech Connect

    Weening, J.S.

    1988-05-01

    CSIM is a simulator for parallel Lisp, based on a continuation passing interpreter. It models a shared-memory multiprocessor executing programs written in Common Lisp, extended with several primitives for creating and controlling processes. This paper describes the structure of the simulator, measures its performance, and gives an example of its use with a parallel Lisp program.

  9. DROMO Propagator Revisited

    NASA Astrophysics Data System (ADS)

    Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J.

    2013-12-01

    In year 2000 a house-made orbital propagator was developed by the SDGUPM (former Grupo de Dinámica de Tethers) based in a set of redundant variables including Euler parameters. This propagator was called DROMO. and it was mainly used in numerical simulations of electrodynamic tethers. It was presented for the first time in the international meeting V Jornadas de Trabajo en Mecánica Celeste, held in Albarracín, Spain, in 2002 (see reference 1). The special perturbation method associated with DROMO can be consulted in the paper.2 In year 1975, Andre Deprit in reference 3 proposes a propagation scheme very similar to the one in which DROMO is based, by using the ideal frame concept of Hansen. The different approaches used in references 3 and 2 gave rise to a small controversy. In this paper we carried out a different deduction of the DROMO propagator, underlining its close relation with the Hansen ideal frame concept, and also the similarities and the differences with the theory carried out by Deprit in 3. Simultaneously we introduce some improvements in the formulation that leads to a more synthetic propagator.

  10. Parallel computing works

    SciTech Connect

    Not Available

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  11. Totally parallel multilevel algorithms

    NASA Technical Reports Server (NTRS)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  12. Massively parallel mathematical sieves

    SciTech Connect

    Montry, G.R.

    1989-01-01

    The Sieve of Eratosthenes is a well-known algorithm for finding all prime numbers in a given subset of integers. A parallel version of the Sieve is described that produces computational speedups over 800 on a hypercube with 1,024 processing elements for problems of fixed size. Computational speedups as high as 980 are achieved when the problem size per processor is fixed. The method of parallelization generalizes to other sieves and will be efficient on any ensemble architecture. We investigate two highly parallel sieves using scattered decomposition and compare their performance on a hypercube multiprocessor. A comparison of different parallelization techniques for the sieve illustrates the trade-offs necessary in the design and implementation of massively parallel algorithms for large ensemble computers.

  13. Optics Program Modified for Multithreaded Parallel Computing

    NASA Technical Reports Server (NTRS)

    Lou, John; Bedding, Dave; Basinger, Scott

    2006-01-01

    A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on pthreads [POSIX Thread, (where "POSIX" signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.

  14. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  15. Bilingual parallel programming

    SciTech Connect

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach provides and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.

  16. CONDITIONS FOR PHOTOSPHERICALLY DRIVEN ALFVENIC OSCILLATIONS TO HEAT THE SOLAR CHROMOSPHERE BY PEDERSEN CURRENT DISSIPATION

    SciTech Connect

    Goodman, Michael L.

    2011-07-01

    A magnetohydrodynamic model that includes a complete electrical conductivity tensor is used to estimate conditions for photospherically driven, linear, non-plane Alfvenic oscillations extending from the photosphere to the lower corona to drive a chromospheric heating rate due to Pedersen current dissipation that is comparable to the observed net chromospheric radiative loss of {approx}10{sup 7} erg cm{sup -2} s{sup -1}. The heating rates due to electron current dissipation in the photosphere and corona are also computed. The wave amplitudes are computed self-consistently as functions of an inhomogeneous background (BG) atmosphere. The effects of the conductivity tensor are resolved numerically using a resolution of 3.33 m. The oscillations drive a chromospheric heating flux F{sub Ch} {approx} 10{sup 7}-10{sup 8} erg cm{sup -2} s{sup -1} at frequencies {nu} {approx} 10{sup 2}-10{sup 3} mHz for BG magnetic field strengths B {approx}> 700 G and magnetic field perturbation amplitudes {approx}0.01-0.1 B. The total resistive heating flux increases with {nu}. Most heating occurs in the photosphere. Thermalization of Poynting flux in the photosphere due to electron current dissipation regulates the Poynting flux into the chromosphere, limiting F{sub Ch}. F{sub Ch} initially increases with {nu}, reaches a maximum, and then decreases with increasing {nu} due to increasing electron current dissipation in the photosphere. The resolution needed to resolve the oscillations increases from {approx}10 m in the photosphere to {approx}10 km in the upper chromosphere and is {proportional_to}{nu}{sup -1/2}. Estimates suggest that these oscillations are normal modes of photospheric flux tubes with diameters {approx}10-20 km, excited by magnetic reconnection in current sheets with thicknesses {approx}0.1 km.

  17. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  18. Alfvenicity of Fluctuations Associated with Kelvin-Helmholtz Instability in Plume-Interplume Region

    NASA Astrophysics Data System (ADS)

    Parhi, S.; Suess, S.; Sulkanen, M.

    1999-05-01

    We study the velocity shear between plumes and the interplume flow in coronal holes. We model these plumes as jets (or, strictly speaking, wakes). Weak and strong magnetic fields are considered both inside and outside the jet for a shear Mach number 6. The shear can be unstable and evolve into a new less sheared pattern. As the instability sets in, the jet first develops a cocoon of intermediate speed flow and slowly a bridge develops between upstream and downstream flows. This marks the onset of jet disruption via what appears to be mass entrainment and fluid instability. This could also be induced by the jet's passage through the accompanying fast shock formation. The jet bends upon crossing the oblique shocks because all streamlines bend away from the shock normal. In a short time the downstream flow just ahead of the bending suffers a change in speed but still maintains or reestablishes supersonic conditions somehow. The transverse velocity here is very low because the instability generated in the disturbed region reduces the shear ahead. The shear ultimately must dissipate. The generation of this instability depends both temporally and spatially on the amount of shear and the time needed for nonlinear growth. To analyse the fluctuations quantitatively we perform a time series analysis at various points inside and adjacent to the jet. Specifically we consider points either in the center of the jet or just outside the transition layer- the initial location of the shear layer. We find the fully developed nonlinear fluctuations are more Alfvenic than magnetosonic in the high beta case than in low beta case.

  19. KINETIC ALFVEN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS

    SciTech Connect

    Chen, L.; Wu, D. J. E-mail: djwu@pmo.ac.cn

    2012-08-01

    Magneto-plasma loops, which trace closed solar magnetic field lines, are the primary structural elements of the solar corona. Kinetic Alfven wave (KAW) can play an important role in inhomogeneous heating of these magneto-plasma structures in the corona. By the use of a low-frequency kinetic dispersion equation, which is presented in this paper and is valid in a finite-{beta} plasma with Q < {beta} < 1 plasma (where {beta} is the kinetic to magnetic pressure ratio and Q = m{sub e} /m{sub i} is the mass ratio of electrons to ions), KAW instability driven by a field-aligned current in the current-carrying loops in the solar corona is investigated. The results show that the KAW instability can occur in wave number regimes 0 < k{sub z} < k{sup c}{sub z} and 0 < k < k{sup c} , and that the critical wave numbers k{sup c}{sub z} and k{sup c} and the growth rate both considerably increase as the drift velocity V{sub D} of the current-carrying electrons increases in the loops. In particular, for typical parameters of the current-carrying loops in the solar corona this instability mechanism results in a high growth rate of KAWs, {omega}{sub i} {approx} 0.01-0.1{omega}{sub ci} {approx} 10{sup 3}-10{sup 4} s{sup -1}. The results are of importance in understanding the physics of the electric current dissipation and plasma heating of the current-carrying loops in the solar corona.

  20. Measurements and modeling of Alfven eigenmode induced fast ion transport and loss in DIII-D and ASDEX Upgrade

    SciTech Connect

    Van Zeeland, M. A.; Fisher, R. K.; Hyatt, A. W.; Heidbrink, W. W.; Pace, D. C.; Muscatello, C. M.; Zhu, Y. B.; Garcia Munoz, M.; Geiger, B.; Maraschek, M.; Suttrop, W.; Tardini, G.; Kramer, G. J.; White, R. B.; Gorelenkova, M.; Gorelenkov, N. N.; Nazikian, R.; Aekaeslompolo, S.; Austin, M. E.; Boom, J. E.

    2011-05-15

    Neutral beam injection into reversed magnetic shear DIII-D and ASDEX Upgrade plasmas produces a variety of Alfvenic activity including toroidicity-induced Alfven eigenmodes and reversed shear Alfven eigenmodes (RSAEs). These modes are studied during the discharge current ramp phase when incomplete current penetration results in a high central safety factor and increased drive due to multiple higher order resonances. Scans of injected 80 keV neutral beam power on DIII-D showed a transition from classical to AE dominated fast ion transport and, as previously found, discharges with strong AE activity exhibit a deficit in neutron emission relative to classical predictions. By keeping beam power constant and delaying injection during the current ramp, AE activity was reduced or eliminated and a significant improvement in fast ion confinement observed. Similarly, experiments in ASDEX Upgrade using early 60 keV neutral beam injection drove multiple unstable RSAEs. Periods of strong RSAE activity are accompanied by a large (peak {delta}S{sub n}/S{sub n{approx_equal}}60%) neutron deficit. Losses of beam ions modulated at AE frequencies were observed using large bandwidth energy and pitch resolving fast ion loss scintillator detectors and clearly identify their role in the process. Modeling of DIII-D loss measurements using guiding center following codes to track particles in the presence of ideal magnetohydrodynamic (MHD) calculated AE structures (validated by comparison to experiment) is able to reproduce the dominant energy, pitch, and temporal evolution of these losses. While loss of both co and counter current fast ions occurs, simulations show that the dominant loss mechanism observed is the mode induced transition of counter-passing fast ions to lost trapped orbits. Modeling also reproduces a coherent signature of AE induced losses and it was found that these coherent losses scale proportionally with the amplitude; an additional incoherent contribution scales

  1. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  2. DROMO propagator revisited

    NASA Astrophysics Data System (ADS)

    Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2016-01-01

    In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.

  3. COBE nonspinning attitude propagation

    NASA Technical Reports Server (NTRS)

    Chu, D.

    1989-01-01

    The Cosmic Background Explorer (COBE) spacecraft will exhibit complex attitude motion consisting of a spin rate of approximately -0.8 revolution per minute (rpm) about the x-axis and simultaneous precession of the spin axis at a rate of one revolution per orbit (rpo) about the nearly perpendicular spacecraft-to-Sun vector. The effect of the combined spinning and precession is to make accurate attitude propagation difficult and the 1-degree (3 sigma) solution accuracy goal problematic. To improve this situation, an intermediate reference frame is introduced, and the angular velocity divided into two parts. The nonspinning part is that which would be observed if there were no rotation about the X-axis. The spinning part is simply the X-axis component of the angular velocity. The two are propagated independently and combined whenever the complete attitude is needed. This approach is better than the usual one-step method because each of the two angular velocities look nearly constant in their respective reference frames. Since the angular velocities are almost constant, the approximations made in discrete time propagation are more nearly true. To demonstrate the advantages of this nonspinning method, attitude is propagated as outlined above and is then compared with the results of the one-step method. Over the 100-minute COBE orbit, the one-step error grows to several degrees while the nonspinning error remains negligible.

  4. SELF-CONSISTENT MODEL OF THE INTERSTELLAR PICKUP PROTONS, ALFVENIC TURBULENCE, AND CORE SOLAR WIND IN THE OUTER HELIOSPHERE

    SciTech Connect

    Gamayunov, Konstantin V.; Zhang Ming; Rassoul, Hamid K.; Pogorelov, Nikolai V.; Heerikhuisen, Jacob

    2012-09-20

    A self-consistent model of the interstellar pickup protons, the slab component of the Alfvenic turbulence, and core solar wind (SW) protons is presented for r {>=} 1 along with the initial results of and comparison with the Voyager 2 (V2) observations. Two kinetic equations are used for the pickup proton distribution and Alfvenic power spectral density, and a third equation governs SW temperature including source due to the Alfven wave energy dissipation. A fraction of the pickup proton free energy, f{sub D} , which is actually released in the waveform during isotropization, is taken from the quasi-linear consideration without preexisting turbulence, whereas we use observations to specify the strength of the large-scale driving, C{sub sh}, for turbulence. The main conclusions of our study can be summarized as follows. (1) For C{sub sh} Almost-Equal-To 1-1.5 and f{sub D} Almost-Equal-To 0.7-1, the model slab component agrees well with the V2 observations of the total transverse magnetic fluctuations starting from {approx}8 AU. This indicates that the slab component at low-latitudes makes up a majority of the transverse magnetic fluctuations beyond 8-10 AU. (2) The model core SW temperature agrees well with the V2 observations for r {approx}> 20 AU if f{sub D} Almost-Equal-To 0.7-1. (3) A combined effect of the Wentzel-Kramers-Brillouin attenuation, large-scale driving, and pickup proton generated waves results in the energy sink in the region r {approx}< 10 AU, while wave energy is pumped in the turbulence beyond 10 AU. Without energy pumping, the nonlinear energy cascade is suppressed for r {approx}< 10 AU, supplying only a small energy fraction into the k-region of dissipation by the core SW protons. A similar situation takes place for the two-dimensional turbulence. (4) The energy source due to the resonant Alfven wave damping by the core SW protons is small at heliocentric distances r {approx}< 10 AU for both the slab and the two-dimensional turbulent components

  5. The Parallel Axiom

    ERIC Educational Resources Information Center

    Rogers, Pat

    1972-01-01

    Criteria for a reasonable axiomatic system are discussed. A discussion of the historical attempts to prove the independence of Euclids parallel postulate introduces non-Euclidean geometries. Poincare's model for a non-Euclidean geometry is defined and analyzed. (LS)

  6. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1991-12-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and C that allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. In includes both tutorial and reference material. It also presents the basic concepts that underly PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous FTP from Argonne National Laboratory in the directory pub/pcn at info.mcs.anl.gov (c.f. Appendix A).

  7. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  8. Parallel image compression

    NASA Technical Reports Server (NTRS)

    Reif, John H.

    1987-01-01

    A parallel compression algorithm for the 16,384 processor MPP machine was developed. The serial version of the algorithm can be viewed as a combination of on-line dynamic lossless test compression techniques (which employ simple learning strategies) and vector quantization. These concepts are described. How these concepts are combined to form a new strategy for performing dynamic on-line lossy compression is discussed. Finally, the implementation of this algorithm in a massively parallel fashion on the MPP is discussed.

  9. Artificial intelligence in parallel

    SciTech Connect

    Waldrop, M.M.

    1984-08-10

    The current rage in the Artificial Intelligence (AI) community is parallelism: the idea is to build machines with many independent processors doing many things at once. The upshot is that about a dozen parallel machines are now under development for AI alone. As might be expected, the approaches are diverse yet there are a number of fundamental issues in common: granularity, topology, control, and algorithms.

  10. An equivalent viscoelastic model for rock mass with parallel joints

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Ma, Guowei; Zhao, Jian

    2010-03-01

    An equivalent viscoelastic medium model is proposed for rock mass with parallel joints. A concept of "virtual wave source (VWS)" is proposed to take into account the wave reflections between the joints. The equivalent model can be effectively applied to analyze longitudinal wave propagation through discontinuous media with parallel joints. Parameters in the equivalent viscoelastic model are derived analytically based on longitudinal wave propagation across a single rock joint. The proposed model is then verified by applying identical incident waves to the discontinuous and equivalent viscoelastic media at one end to compare the output waves at the other end. When the wavelength of the incident wave is sufficiently long compared to the joint spacing, the effect of the VWS on wave propagation in rock mass is prominent. The results from the equivalent viscoelastic medium model are very similar to those determined from the displacement discontinuity method. Frequency dependence and joint spacing effect on the equivalent viscoelastic model and the VWS method are discussed.

  11. Continuous parallel coordinates.

    PubMed

    Heinrich, Julian; Weiskopf, Daniel

    2009-01-01

    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data.

  12. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect

    Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com

    2013-06-01

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  13. Beta-induced Alfven-acoustic eigenmodes in National Spherical Torus Experiment and DIII-D driven by beam ions

    SciTech Connect

    Gorelenkov, N. N.; Darrow, D.; Fredrickson, E.; Fu, G.-Y.; Menard, J.; Nazikian, R.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Heidbrink, W. W.

    2009-05-15

    Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here beta-induced Alfven-acoustic eigenmodes (BAAEs) are reported confirming, previous results [N. N. Gorelenkov et al., Plasma Phys. Controlled Fusion 49, B371 (2007)]. The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorate the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global toroidicity-induced shear Alfven eigenmode instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.

  14. Alfven Eigenmode Stability and Fast Ion Transport in High qmin Steady State Discharges on DIII-D

    NASA Astrophysics Data System (ADS)

    Kramer, G. J.; Grierson, B.; Gorelenkov, N. N.; Nazikian, R.; Solomon, W.; Holcomb, C. T.; Ferron, J. R.; van Zeeland, M. A.; Collins, C.; Heidbrink, W. W.

    2015-11-01

    A wide range of Alfven eigenmode (AE) activity and beam ion loss is observed in high qmin steady state target plasmas on DIII-D. Modeling the losses with the NOVA-k code and the Critical Gradient Model indicates that the observed reduction in the neutron signal, usually up to 20 % , can be attributed to the AEs. In those high qmin reversed shear discharges both normal shear and reversed shear AEs are excited. The normal shear AEs can be suppressed by increasing the pressure gradient or increasing the q(0). However, the reversed shear AEs emerge from the Alfven continuum above a critical pressure gradient. It will be shown that both the normal and reversed shear AEs can be suppressed or their effects strongly mitigated by raising q(0) and moving qmin to larger radius. This prediction is consistent with observations in DIII-D EAST SS plasmas. Supported by US DOE No. DE-AC02-09CH11466, DE-AC52-07NA27344, DE-FG02-97ER54415, DE-FC02-04ER54698, SC-G903402.

  15. Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions

    SciTech Connect

    Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.

    2009-03-06

    Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.

  16. Kelvin-Helmholtz instability on the magnetopause, magnetohydrodynamic waveguide in the outer magnetosphere, and Alfven resonance deep in the magnetosphere

    SciTech Connect

    Mazur, V. A. Chuiko, D. A.

    2013-06-15

    Oscillations of the 'magnetosphere-solar wind' system are studied analytically in the framework of a plane-stratified model of the medium. The properties of oscillations are determined by three phenomena: Kelvin-Helmholtz instability on the tangential discontinuity (magnetopause) separating the magnetosphere and the solar wind, the presence of a waveguide for fast magnetosonic waves in the magnetosphere, and the Alfven resonance-a sharp increase in the amplitude of oscillations having the properties of Alfven waves-in the inner magnetosphere. The oscillations of the system form a discrete spectrum of eigenmodes. Analytical expressions are obtained for the frequency and growth rate of instability of each mode, as well as for the functions describing the spatial structure of these modes. All these characteristics of the eigenmodes are shown to depend on the velocity of the solar wind as a parameter. The dependences of the main mode characteristics (such as the instability thresholds, the points of the maximum and minimum growth rate, and the spatial distributions of the oscillation energy) on this parameter are determined for each eigenmode.

  17. Reflectometer distance measurement between parallel conductive plates

    NASA Technical Reports Server (NTRS)

    Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    This report presents an analytic and experimental investigation of the measurement problem in which a reflectometer is used to determine the distance to a target that is a highly conductive surface parallel to the reflectometer antenna ground plane. These parallel surfaces constitute a waveguide (WG) which can contribute parasitic perturbations that seriously degrade the accuracy of the measurements. Two distinct parallel-plate-waveguide (PPWG) phenomena are described, and their effects on both frequency and time-domain reflectometers are considered. The time-domain processing approach was found to be superior to a representative frequency-domain phase-measurement approach because of less susceptibility to perturbations produced by edge reflections and immunity to phase capture. Experimental results are presented which show that a simple radiating system modification can suppress parallel-plate (PP) propagation. The addition of a thin layer of lossy mu-metal 'magnetic absorber' to the antenna ground plane allowed a measurement accuracy of 0.025 cm (0.01 in.) when a vector network analyzer (VNA) is used as a time-domain reflectometer.

  18. Transionospheric Propagation Code (TIPC)

    SciTech Connect

    Roussel-Dupre, R.; Kelley, T.A.

    1990-10-01

    The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.

  19. Florida's propagation report

    NASA Technical Reports Server (NTRS)

    Helmken, Henry; Henning, Rudolf

    1994-01-01

    One of the key goals of the Florida Center is to obtain a maximum of useful information on propagation behavior unique to its subtropical weather and subtropical climate. Such weather data is of particular interest when it is (or has the potential to become) useful for developing and implementing techniques to compensate for adverse weather effects. Also discussed are data observations, current challenges, CDF's, sun movement, and diversity experiments.

  20. Wave Propagation in Fractured Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Shao, S.; Pyrak-Nolte, L. J.

    2012-12-01

    Discontinuities such as fractures, joints and faults occur in the Earth's crusts in a variety of rock types. While much theoretical, experimental and computational research have examined seismic wave propagation in fractured isotropic rock, few experimental studies have investigated seismic wave propagation in fractured anisotropic media. The co-existence of fractures and layers can complicate the interpretation of seismic properties because of the discrete guided modes that propagate along or are confined by the fractures. In this study, we use seismic arrays and acoustic wavefront imaging techniques to examine the competing sources of seismic anisotropy from fractures and from layers. Samples with textural anisotropy (100 mm x 100 mm x 100 mm) were fabricated from garolite, an epoxy - cloth laminate, with layer thickness 0f ~ 0.5 mm. Two sets of fractured samples were fabricated: (1) two single fractured samples with one fracture either parallel or (and) perpendicular to layers, and (2) four multi-fractured samples with 5 parallel fractures oriented either parallel, 30 degrees, 60 degrees or perpendicular to the layers. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Seismic arrays were used on the first set of samples to measure bulk waves and fracture interface waves as a function of stress. The seismic array contained two compressional and five shear-wave source-receiver pairs with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). From these measurements it was observed that a fractured layered medium appears more isotropic or anisotropic than the orthorhombic background, depending on the orientation of the fracture relative to layers. The matrix anisotropy was recovered by increasing the normal stress on a fracture (i.e., by closing the fracture). For the

  1. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Jafelice, L. C.; Opher, R.

    1990-11-01

    evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS

  2. Metastability of collisionless current sheets. Hannes Alfven Lecture on behalf of Albert Galeev

    NASA Astrophysics Data System (ADS)

    Zelenyi, L.; Galeev, A.

    2009-04-01

    Complicated magnetic configurations containing numerous magnetic field reversals are widespread in nature. Each of such reversals is supported by corresponding current sheet (CS) which could often have very small thickness comparable to ion skin depth. Since the beginning of Space Age "in situ" investigations of current sheets in the Earth's magnetosphere (magnetopause and magnetotail) acquired one of the highest priorities in national space programs and became one of the cornerstones of various international activities, like ISTP, IACG, and ILWS, which appeared to be very effective. Intense theoretical efforts were undertaken by theorists all over the world to develop both equilibrium models of current sheets and analyze its stability and further nonlinear evolution. Lack of collisions and smallness of many characteristic scales in comparison with ion Larmor radius made an application of straightforward MHD approach dramatically questionable. Professor Alfven was one of the first who suggested in 1968 simple but very physical self-consistent particle model of CS. One of the most intriguing features of current sheets in collisionless plasma is their ability to accumulate tremendous amounts of magnetic energy (1015 J for magnetospheric substorms , 1024 J for solar flare associated sheets) and then suddenly sometimes almost explosively release them. We will demonstrate in this talk that such METASTABILITY is a principal intrinsic feature of current sheets in hot plasma. Very intense theoretical debates of 80-ies and late 90-ies resulted in some consensus that current sheets with the small component of magnetic field normal to their plane become overstable for spontaneous reconnection (i.e. versus the development of ion tearing mode). Analysis of INTERBALL and especially 4- point CLUSTER data have shown that real current sheets observed in the Earth's magnetotail very rarely resemble simplistic HARRIS current sheets which have been used for an early stability

  3. Parallel time integration software

    SciTech Connect

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds must come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.

  4. Parallel time integration software

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds mustmore » come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.« less

  5. Damping of Magnetohydrodynamic Turbulence in Partially Ionized Plasma: Implications for Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Yan, Huirong; Lazarian, A.

    2016-08-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  6. Intense laser propagation in sapphire

    NASA Astrophysics Data System (ADS)

    Tate, Jennifer L.

    When a sufficiently energetic short laser pulse propagates through a medium it can generate an explosive increase in bandwidth leading to the creation of white light; this is known as supercontinuum generation (SCG). Although it is frequently referred to as a single process, SCG is actually the result of many different parallel and competing processes. In this work we investigate the contribution of the individual physical processes underlying the SCG effect, focusing specifically on Raman processes and plasma formation in sapphire. For our experiments we use an amplified Ti:sapphire laser system producing nearly transform limited 60 fs pulses at 800 nm. Typical pulse energies for the experiments are 1--3 muJ/pulse. Using a new experimental technique, the spectrally resolved interferometric double pump, we study the contribution of non-instantaneous Raman effects. We see two distinct Raman contributions in sapphire which are much stronger than indicated in previous work. One Raman process has a period of approximately 185 fs and is related to an available optical phonon; the second Raman process has a period of 20 fs and is related to defect states caused by an oxygen vacancy in the sapphire crystal. Data from the same experiment show that the SCG light is not phase stable at low excitation energies, but that the phase stability is restored and saturates with increasing laser intensity. In a separate experiment we investigate the dynamics of plasma formation using a pump-probe technique. We observe that in sapphire both the formation and the decay of the plasma occur over time scales much longer than predicted by current theory. The plasma rise time is ˜225 fs, while the decay time is ˜150 ps; we also observe that these values do not depend on input pulse energy. In addition to these experiments, we perform a numerical integration of the extended (3 + 1) dimensional nonlinear Schrodinger equation, which models the propagation of a short laser pulse through a

  7. Modeling Light Propagation in Luminescent Media

    NASA Astrophysics Data System (ADS)

    Sahin, Derya

    This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.

  8. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  9. Parallelism in System Tools

    SciTech Connect

    Matney, Sr., Kenneth D; Shipman, Galen M

    2010-01-01

    The Cray XT, when employed in conjunction with the Lustre filesystem, has provided the ability to generate huge amounts of data in the form of many files. Typically, this is accommodated by satisfying the requests of large numbers of Lustre clients in parallel. In contrast, a single service node (Lustre client) cannot adequately service such datasets. This means that the use of traditional UNIX tools like cp, tar, et alli (with have no parallel capability) can result in substantial impact to user productivity. For example, to copy a 10 TB dataset from the service node using cp would take about 24 hours, under more or less ideal conditions. During production operation, this could easily extend to 36 hours. In this paper, we introduce the Lustre User Toolkit for Cray XT, developed at the Oak Ridge Leadership Computing Facility (OLCF). We will show that Linux commands, implementing highly parallel I/O algorithms, provide orders of magnitude greater performance, greatly reducing impact to productivity.

  10. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  11. Parallel programming with Ada

    SciTech Connect

    Kok, J.

    1988-01-01

    To the human programmer the ease of coding distributed computing is highly dependent on the suitability of the employed programming language. But with a particular language it is also important whether the possibilities of one or more parallel architectures can efficiently be addressed by available language constructs. In this paper the possibilities are discussed of the high-level language Ada and in particular of its tasking concept as a descriptional tool for the design and implementation of numerical and other algorithms that allow execution of parts in parallel. Language tools are explained and their use for common applications is shown. Conclusions are drawn about the usefulness of several Ada concepts.

  12. The NAS Parallel Benchmarks

    SciTech Connect

    Bailey, David H.

    2009-11-15

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, although the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage

  13. SPINning parallel systems software.

    SciTech Connect

    Matlin, O.S.; Lusk, E.; McCune, W.

    2002-03-15

    We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin.

  14. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  15. Heat pulse propagation in chaotic three-dimensional magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego; Blazevski, Daniel

    2014-06-01

    Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ε), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

  16. PIV uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Sciacchitano, Andrea; Wieneke, Bernhard

    2016-08-01

    This paper discusses the propagation of the instantaneous uncertainty of PIV measurements to statistical and instantaneous quantities of interest derived from the velocity field. The expression of the uncertainty of vorticity, velocity divergence, mean value and Reynolds stresses is derived. It is shown that the uncertainty of vorticity and velocity divergence requires the knowledge of the spatial correlation between the error of the x and y particle image displacement, which depends upon the measurement spatial resolution. The uncertainty of statistical quantities is often dominated by the random uncertainty due to the finite sample size and decreases with the square root of the effective number of independent samples. Monte Carlo simulations are conducted to assess the accuracy of the uncertainty propagation formulae. Furthermore, three experimental assessments are carried out. In the first experiment, a turntable is used to simulate a rigid rotation flow field. The estimated uncertainty of the vorticity is compared with the actual vorticity error root-mean-square, with differences between the two quantities within 5-10% for different interrogation window sizes and overlap factors. A turbulent jet flow is investigated in the second experimental assessment. The reference velocity, which is used to compute the reference value of the instantaneous flow properties of interest, is obtained with an auxiliary PIV system, which features a higher dynamic range than the measurement system. Finally, the uncertainty quantification of statistical quantities is assessed via PIV measurements in a cavity flow. The comparison between estimated uncertainty and actual error demonstrates the accuracy of the proposed uncertainty propagation methodology.

  17. Temporal scaling in information propagation.

    PubMed

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-01-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers. PMID:24939414

  18. Temporal scaling in information propagation

    NASA Astrophysics Data System (ADS)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  19. Transport with Feynman propagators

    SciTech Connect

    White, R.H.

    1990-11-06

    Richard Feynman's formulation of quantum electrodynamics suggests a Monte Carlo algorithm for calculating wave propagation. We call this the Sum Over All Paths (SOAP) method. The method is applied to calculate diffraction by double slits of finite width and by a reflection grating. Calculations of reflection by plane and parabolic mirrors of finite aperture and from several figured surfaces are shown. An application to a one-dimensional scattering problem is discussed. A variation of SOAP can be applied to the diffusion equation. 2 refs., 8 figs.

  20. Parallel Total Energy

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  1. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  2. Parallel Multigrid Equation Solver

    2001-09-07

    Prometheus is a fully parallel multigrid equation solver for matrices that arise in unstructured grid finite element applications. It includes a geometric and an algebraic multigrid method and has solved problems of up to 76 mullion degrees of feedom, problems in linear elasticity on the ASCI blue pacific and ASCI red machines.

  3. Optical parallel selectionist systems

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    1993-01-01

    There are at least two major classes of computers in nature and technology: connectionist and selectionist. A subset of connectionist systems (Turing Machines) dominates modern computing, although another subset (Neural Networks) is growing rapidly. Selectionist machines have unique capabilities which should allow them to do truly creative operations. It is possible to make a parallel optical selectionist system using methods describes in this paper.

  4. Optimizing parallel reduction operations

    SciTech Connect

    Denton, S.M.

    1995-06-01

    A parallel program consists of sets of concurrent and sequential tasks. Often, a reduction (such as array sum) sequentially combines values produced by a parallel computation. Because reductions occur so frequently in otherwise parallel programs, they are good candidates for optimization. Since reductions may introduce dependencies, most languages separate computation and reduction. The Sisal functional language is unique in that reduction is a natural consequence of loop expressions; the parallelism is implicit in the language. Unfortunately, the original language supports only seven reduction operations. To generalize these expressions, the Sisal 90 definition adds user-defined reductions at the language level. Applicable optimizations depend upon the mathematical properties of the reduction. Compilation and execution speed, synchronization overhead, memory use and maximum size influence the final implementation. This paper (1) Defines reduction syntax and compares with traditional concurrent methods; (2) Defines classes of reduction operations; (3) Develops analysis of classes for optimized concurrency; (4) Incorporates reductions into Sisal 1.2 and Sisal 90; (5) Evaluates performance and size of the implementations.

  5. Parallel fast gauss transform

    SciTech Connect

    Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan

    2010-01-01

    We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.

  6. Parallel programming with PCN

    SciTech Connect

    Foster, I.; Tuecke, S.

    1993-01-01

    PCN is a system for developing and executing parallel programs. It comprises a high-level programming language, tools for developing and debugging programs in this language, and interfaces to Fortran and Cthat allow the reuse of existing code in multilingual parallel programs. Programs developed using PCN are portable across many different workstations, networks, and parallel computers. This document provides all the information required to develop parallel programs with the PCN programming system. It includes both tutorial and reference material. It also presents the basic concepts that underlie PCN, particularly where these are likely to be unfamiliar to the reader, and provides pointers to other documentation on the PCN language, programming techniques, and tools. PCN is in the public domain. The latest version of both the software and this manual can be obtained by anonymous ftp from Argonne National Laboratory in the directory pub/pcn at info.mcs. ani.gov (cf. Appendix A). This version of this document describes PCN version 2.0, a major revision of the PCN programming system. It supersedes earlier versions of this report.

  7. Massively parallel processor computer

    NASA Technical Reports Server (NTRS)

    Fung, L. W. (Inventor)

    1983-01-01

    An apparatus for processing multidimensional data with strong spatial characteristics, such as raw image data, characterized by a large number of parallel data streams in an ordered array is described. It comprises a large number (e.g., 16,384 in a 128 x 128 array) of parallel processing elements operating simultaneously and independently on single bit slices of a corresponding array of incoming data streams under control of a single set of instructions. Each of the processing elements comprises a bidirectional data bus in communication with a register for storing single bit slices together with a random access memory unit and associated circuitry, including a binary counter/shift register device, for performing logical and arithmetical computations on the bit slices, and an I/O unit for interfacing the bidirectional data bus with the data stream source. The massively parallel processor architecture enables very high speed processing of large amounts of ordered parallel data, including spatial translation by shifting or sliding of bits vertically or horizontally to neighboring processing elements.

  8. Parallel hierarchical global illumination

    SciTech Connect

    Snell, Q.O.

    1997-10-08

    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, the authors have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations.

  9. Parallel hierarchical radiosity rendering

    SciTech Connect

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  10. Parallel Dislocation Simulator

    2006-10-30

    ParaDiS is software capable of simulating the motion, evolution, and interaction of dislocation networks in single crystals using massively parallel computer architectures. The software is capable of outputting the stress-strain response of a single crystal whose plastic deformation is controlled by the dislocation processes.

  11. Propagation of a narrow plasma beam in an oblique magnetic field

    SciTech Connect

    Heidbrink, W.W.; Adams, D.; Drum, S.; Evans, K.; Manson, J.; Price, T.; Urayama, P.; Wessel, F.J. )

    1992-10-01

    The propagation of an intense neutralized ion beam ({ital v}{similar to}5{times}10{sup 8} cm/sec, {ital n}{similar to}10{sup 10} cm{sup {minus}3}) through a large insulated vacuum chamber is measured as a function of magnetic field strength and direction. When the beam propagates parallel to the applied field, beam divergence is reduced. When the beam propagates perpendicular to the applied field, the downstream beam density decreases with increasing field strength. When the beam velocity vector intersects the magnetic field at an oblique angle, beam propagation is determined primarily by the perpendicular component of the field.

  12. Propagation of a narrow plasma beam in an oblique magnetic field

    NASA Technical Reports Server (NTRS)

    Heidbrink, W. W.; Adams, D.; Drum, S.; Evans, K.; Manson, J.; Price, T.; Urayama, P.; Wessel, F. J.

    1992-01-01

    The propagation of an intense neutralized ion beam (v is about 5 x 10 exp 8 cm/sec, n is about 10 exp 10/cu cm) through a large insulated vacuum chamber is measured as a function of magnetic field strength and direction. When the beam propagates parallel to the applied field, beam divergence is reduced. When the beam propagates perpendicular to the applied fields, the downstream beam density decreases with increasing field strength. When the beam velocity vector intersects the magnetic field at an oblique angle, beam propagation is determined primarily by the perpendicular component of the field.

  13. SPECTROSCOPIC SIGNATURE OF ALFVEN WAVES DAMPING IN A POLAR CORONAL HOLE UP TO 0.4 SOLAR RADII

    SciTech Connect

    Bemporad, A.; Abbo, L.

    2012-06-01

    Between 2009 February 24 and 25, the EUV Imaging Spectrometer (EIS) spectrometer on board the Hinode spacecraft performed special 'sit and stare' observations above the south polar coronal hole continuously over more than 22 hr. Spectra were acquired with the 1'' slit placed off-limb covering altitudes up to 0.48 R{sub Sun} (3.34 Multiplication-Sign 10{sup 2} Mm) above the Sun surface, in order to study with EIS the non-thermal spectral line broadenings. Spectral lines such as Fe XII {lambda}186.88, Fe XII {lambda}193.51, Fe XII {lambda}195.12, and Fe XIII {lambda}202.04 are observed with good statistics up to high altitudes and they have been analyzed in this study. Results show that the FWHM of the Fe XII {lambda}195.12 line increases up to {approx_equal} 0.14 R{sub Sun }, then decreases higher up. EIS stray light has been estimated and removed. Derived electron density and non-thermal velocity profiles have been used to estimate the total energy flux transported by Alfven waves off-limb in the polar coronal hole up to {approx_equal} 0.4 R{sub Sun }. The computed Alfven wave energy flux density f{sub w} progressively decays with altitude from f{sub w} {approx_equal} 1.2 Multiplication-Sign 10{sup 6} erg cm{sup -2} s{sup -1} at 0.03 R{sub Sun} down to f{sub w} {approx_equal} 8.5 Multiplication-Sign 10{sup 3} erg cm{sup -2} s{sup -1} at 0.4 R{sub Sun }, with an average energy decay rate of {Delta}f{sub w} /{Delta}h {approx_equal} -4.5 Multiplication-Sign 10{sup -5} erg cm{sup -1}. Hence, this result suggests energy deposition by Alfven waves in a polar coronal hole, thus providing a significant source for coronal heating.

  14. Parallel computers and parallel algorithms for CFD: An introduction

    NASA Astrophysics Data System (ADS)

    Roose, Dirk; Vandriessche, Rafael

    1995-10-01

    This text presents a tutorial on those aspects of parallel computing that are important for the development of efficient parallel algorithms and software for computational fluid dynamics. We first review the main architectural features of parallel computers and we briefly describe some parallel systems on the market today. We introduce some important concepts concerning the development and the performance evaluation of parallel algorithms. We discuss how work load imbalance and communication costs on distributed memory parallel computers can be minimized. We present performance results for some CFD test cases. We focus on applications using structured and block structured grids, but the concepts and techniques are also valid for unstructured grids.

  15. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  16. An analysis of rumor propagation based on propagation force

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen-jun; Liu, Yong-mei; Wang, Ke-xi

    2016-02-01

    A propagation force is introduced into the analysis of rumor propagation to address uncertainty in the process. The propagation force is portrayed as a fuzzy variable, and a category of new parameters with fuzzy variables is defined. The classic susceptible, infected, recovered (SIR) model is modified using these parameters, a fuzzy reproductive number is introduced into the modified model, and the rationality of the fuzzy reproductive number is illuminated through calculation and comparison. Rumor control strategies are also discussed.

  17. Observations and analysis of the Ionospheric Alfven resonance mode structure in a complete 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Baru, N. A.; Koloskov, A. V.; Yampolsky, Y. M.; Rakhmatulin, R. A.

    2016-03-01

    The long-term data of the ionospheric Alfven resonance (IAR) observations recorded at the Ukrainian Antarctic Station "Akademik Vernadsky" from 2002 to 2013 and at Sayan Solar Observatory (Mondy, Russia) from 2010 to 2013 are analyzed. IAR fine spectral structure is studied and a previously unknown effect of splitting of the several lowest resonance modes is discovered. The diurnal and seasonal dependencies of this effect are investigated as well as the dependences of the probability of IAR and splitting detection on Solar and geomagnetic activities in the 11-year cycle. The morphological features of the splitting frequency behavior are analyzed and three main characteristic periods of the splitting are identified, namely: the development, the stationary period and the disappearing. Possible mechanisms of the splitting effect are suggested.

  18. Generation of Alfven-ion cyclotron waves on auroral field lines in the presence of heavy ions

    NASA Technical Reports Server (NTRS)

    Lysak, R. L.; Temerin, M. A.

    1983-01-01

    Observation of electromagnetic waves in the low-altitude auroral zone at frequencies between the proton and helium gyrofrequencies suggests that Alfven-ion cyclotron waves modified by the presence of helium ions are being excited. Estimates of the growth rates for this mode indicate that the auroral electron beam can provide the free energy for the instability. The effect of the heavy ions is to decrease the group velocity of the waves, leading to larger convective growth. Theoretical wave spectra are computed in the local approximation, which assumes that the gradient scale lengths in density and magnetic field are constant over the ray paths. Narrow banded spectral peaks similar to observations may be produced when the thickness of the electron beam is small (200 m at 3000 km altitude). Narrow beams also limit growth of whistler mode waves, which compete for the free energy of the electron beam.

  19. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  20. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    SciTech Connect

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.

    2010-08-27

    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.