Sample records for parallel robot mechanism

  1. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  2. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.

    PubMed

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot's end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H(∞) tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  3. Development of a 3D Parallel Mechanism Robot Arm with Three Vertical-Axial Pneumatic Actuators Combined with a Stereo Vision System

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting

    2011-01-01

    This study aimed to develop a novel 3D parallel mechanism robot driven by three vertical-axial pneumatic actuators with a stereo vision system for path tracking control. The mechanical system and the control system are the primary novel parts for developing a 3D parallel mechanism robot. In the mechanical system, a 3D parallel mechanism robot contains three serial chains, a fixed base, a movable platform and a pneumatic servo system. The parallel mechanism are designed and analyzed first for realizing a 3D motion in the X-Y-Z coordinate system of the robot’s end-effector. The inverse kinematics and the forward kinematics of the parallel mechanism robot are investigated by using the Denavit-Hartenberg notation (D-H notation) coordinate system. The pneumatic actuators in the three vertical motion axes are modeled. In the control system, the Fourier series-based adaptive sliding-mode controller with H∞ tracking performance is used to design the path tracking controllers of the three vertical servo pneumatic actuators for realizing 3D path tracking control of the end-effector. Three optical linear scales are used to measure the position of the three pneumatic actuators. The 3D position of the end-effector is then calculated from the measuring position of the three pneumatic actuators by means of the kinematics. However, the calculated 3D position of the end-effector cannot consider the manufacturing and assembly tolerance of the joints and the parallel mechanism so that errors between the actual position and the calculated 3D position of the end-effector exist. In order to improve this situation, sensor collaboration is developed in this paper. A stereo vision system is used to collaborate with the three position sensors of the pneumatic actuators. The stereo vision system combining two CCD serves to measure the actual 3D position of the end-effector and calibrate the error between the actual and the calculated 3D position of the end-effector. Furthermore, to

  4. Development of a Stereo Vision Measurement System for a 3D Three-Axial Pneumatic Parallel Mechanism Robot Arm

    PubMed Central

    Chiang, Mao-Hsiung; Lin, Hao-Ting; Hou, Chien-Lun

    2011-01-01

    In this paper, a stereo vision 3D position measurement system for a three-axial pneumatic parallel mechanism robot arm is presented. The stereo vision 3D position measurement system aims to measure the 3D trajectories of the end-effector of the robot arm. To track the end-effector of the robot arm, the circle detection algorithm is used to detect the desired target and the SAD algorithm is used to track the moving target and to search the corresponding target location along the conjugate epipolar line in the stereo pair. After camera calibration, both intrinsic and extrinsic parameters of the stereo rig can be obtained, so images can be rectified according to the camera parameters. Thus, through the epipolar rectification, the stereo matching process is reduced to a horizontal search along the conjugate epipolar line. Finally, 3D trajectories of the end-effector are computed by stereo triangulation. The experimental results show that the stereo vision 3D position measurement system proposed in this paper can successfully track and measure the fifth-order polynomial trajectory and sinusoidal trajectory of the end-effector of the three- axial pneumatic parallel mechanism robot arm. PMID:22319408

  5. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  6. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  7. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system.

    PubMed

    Monfaredi, Reza; Wilson, Emmanuel; Azizi Koutenaei, Bamshad; Labrecque, Brendan; Leroy, Kristen; Goldie, James; Louis, Eric; Swerdlow, Daniel; Cleary, Kevin

    2015-02-01

    Ultrasound imaging is frequently used in medicine. The quality of ultrasound images is often dependent on the skill of the sonographer. Several researchers have proposed robotic systems to aid in ultrasound image acquisition. In this paper we first provide a short overview of robot-assisted ultrasound imaging (US). We categorize robot-assisted US imaging systems into three approaches: autonomous US imaging, teleoperated US imaging, and human-robot cooperation. For each approach several systems are introduced and briefly discussed. We then describe a compact six degree of freedom parallel mechanism telerobotic system for ultrasound imaging developed by our research team. The long-term goal of this work is to enable remote ultrasound scanning through teleoperation. This parallel mechanism allows for both translation and rotation of an ultrasound probe mounted on the top plate along with force control. Our experimental results confirmed good mechanical system performance with a positioning error of < 1 mm. Phantom experiments by a radiologist showed promising results with good image quality.

  8. Parallel-distributed mobile robot simulator

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Sekiguchi, Minoru; Watanabe, Nobuo

    1996-06-01

    The aim of this project is to achieve an autonomous learning and growth function based on active interaction with the real world. It should also be able to autonomically acquire knowledge about the context in which jobs take place, and how the jobs are executed. This article describes a parallel distributed movable robot system simulator with an autonomous learning and growth function. The autonomous learning and growth function which we are proposing is characterized by its ability to learn and grow through interaction with the real world. When the movable robot interacts with the real world, the system compares the virtual environment simulation with the interaction result in the real world. The system then improves the virtual environment to match the real-world result more closely. This the system learns and grows. It is very important that such a simulation is time- realistic. The parallel distributed movable robot simulator was developed to simulate the space of a movable robot system with an autonomous learning and growth function. The simulator constructs a virtual space faithful to the real world and also integrates the interfaces between the user, the actual movable robot and the virtual movable robot. Using an ultrafast CG (computer graphics) system (FUJITSU AG series), time-realistic 3D CG is displayed.

  9. Biomimetic shoulder complex based on 3-PSS/S spherical parallel mechanism

    NASA Astrophysics Data System (ADS)

    Hou, Yulei; Hu, Xinzhe; Zeng, Daxing; Zhou, Yulin

    2015-01-01

    The application of the parallel mechanism is still limited in the humanoid robot fields, and the existing parallel humanoid robot joint has not yet been reflected the characteristics of the parallel mechanism completely, also failed to solve the problem, such as small workspace, effectively. From the structural and functional bionic point of view, a three degrees of freedom(DOFs) spherical parallel mechanism for the shoulder complex of the humanoid robot is presented. According to the structure and kinetic characteristics analysis of the human shoulder complex, 3-PSS/S(P for prismatic pair, S for spherical pair) is chosen as the original configuration for the shouder complex. Using genetic algorithm, the optimization of the 3-PSS/S spherical parallel mechanism is performed, and the orientation workspace of the prototype mechanism is enlarged obviously. Combining the practical structure characteristics of the human shouder complex, an offset output mode, which means the output rod of the mechanism turn to any direction at the point a certain distance from the rotation center of the mechanism, is put forward, which provide possibility for the consistent of the workspace of the mechanism and the actual motion space of the human body shoulder joint. The relationship of the attitude angles between different coordinate system is derived, which establishs the foundation for the motion descriptions under different conditions and control development. The 3-PSS/S spherical parallel mechanism is proposed for the shoulder complex, and the consistence of the workspace of the mechanism and the human shoulder complex is realized by the stuctural parameter optimization and the offset output design.

  10. Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot

    DOE PAGES

    Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton; ...

    2016-11-23

    This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less

  11. Parallel elastic elements improve energy efficiency on the STEPPR bipedal walking robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumdar, Anirban; Spencer, Steven J.; Hobart, Clinton

    This study describes how parallel elastic elements can be used to reduce energy consumption in the electric motor driven, fully-actuated, STEPPR bipedal walking robot without compromising or significantly limiting locomotive behaviors. A physically motivated approach is used to illustrate how selectively-engaging springs for hip adduction and ankle flexion predict benefits for three different flat ground walking gaits: human walking, human-like robot walking and crouched robot walking. Based on locomotion data, springs are designed and substantial reductions in power consumption are demonstrated using a bench dynamometer. These lessons are then applied to STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a fully actuatedmore » bipedal robot designed to explore the impact of tailored joint mechanisms on walking efficiency. Featuring high-torque brushless DC motors, efficient low-ratio transmissions, and high fidelity torque control, STEPPR provides the ability to incorporate novel joint-level mechanisms without dramatically altering high level control. Unique parallel elastic designs are incorporated into STEPPR, and walking data shows that hip adduction and ankle flexion springs significantly reduce the required actuator energy at those joints for several gaits. These results suggest that parallel joint springs offer a promising means of supporting quasi-static joint torques due to body mass during walking, relieving motors of the need to support these torques and substantially improving locomotive energy efficiency.« less

  12. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-12-01

    There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

  13. Dynamic modeling of parallel robots for computed-torque control implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codourey, A.

    1998-12-01

    In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less

  14. Continuum Reconfigurable Parallel Robots for Surgery: Shape Sensing and State Estimation with Uncertainty.

    PubMed

    Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J

    2017-07-01

    This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.

  15. Issues of planning trajectory of parallel robots taking into account zones of singularity

    NASA Astrophysics Data System (ADS)

    Rybak, L. A.; Khalapyan, S. Y.; Gaponenko, E. V.

    2018-03-01

    A method for determining the design characteristics of a parallel robot necessary to provide specified parameters of its working space that satisfy the controllability requirement is developed. The experimental verification of the proposed method was carried out using an approximate planar 3-RPR mechanism.

  16. Conceptual design of a hybrid parallel mechanism for mask exchanging of TMT

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Zhou, Hongfei; Li, Kexuan; Zhou, Zengxiang; Zhai, Chao

    2015-10-01

    Mask exchange system is an important part of the Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). To solve the problem of stiffness changing with the gravity vector of the mask exchange system in the MOBIE, the hybrid parallel mechanism design method was introduced into the whole research. By using the characteristics of high stiffness and precision of parallel structure, combined with large moving range of serial structure, a conceptual design of a hybrid parallel mask exchange system based on 3-RPS parallel mechanism was presented. According to the position requirements of the MOBIE, the SolidWorks structure model of the hybrid parallel mask exchange robot was established and the appropriate installation position without interfering with the related components and light path in the MOBIE of TMT was analyzed. Simulation results in SolidWorks suggested that 3-RPS parallel platform had good stiffness property in different gravity vector directions. Furthermore, through the research of the mechanism theory, the inverse kinematics solution of the 3-RPS parallel platform was calculated and the mathematical relationship between the attitude angle of moving platform and the angle of ball-hinges on the moving platform was established, in order to analyze the attitude adjustment ability of the hybrid parallel mask exchange robot. The proposed conceptual design has some guiding significance for the design of mask exchange system of the MOBIE on TMT.

  17. Evaluation of the power consumption of a high-speed parallel robot

    NASA Astrophysics Data System (ADS)

    Han, Gang; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    An inverse dynamic model of a high-speed parallel robot is established based on the virtual work principle. With this dynamic model, a new evaluation method is proposed to measure the power consumption of the robot during pick-and-place tasks. The power vector is extended in this method and used to represent the collinear velocity and acceleration of the moving platform. Afterward, several dynamic performance indices, which are homogenous and possess obvious physical meanings, are proposed. These indices can evaluate the power input and output transmissibility of the robot in a workspace. The distributions of the power input and output transmissibility of the high-speed parallel robot are derived with these indices and clearly illustrated in atlases. Furtherly, a low-power-consumption workspace is selected for the robot.

  18. A Soft Parallel Kinematic Mechanism.

    PubMed

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  19. Social humanoid robot SARA: development of the wrist mechanism

    NASA Astrophysics Data System (ADS)

    Penčić, M.; Rackov, M.; Čavić, M.; Kiss, I.; Cioată, V. G.

    2018-01-01

    This paper presents the development of a wrist mechanism for humanoid robots. The research was conducted within the project which develops social humanoid robot Sara - a mobile anthropomorphic platform for researching the social behaviour of robots. There are two basic ways for the realization of humanoid wrist. The first one is based on biologically inspired structures that have variable stiffness, and the second one on low backlash mechanisms that have high stiffness. Our solution is low backlash differential mechanism that requires small actuators. Based on the kinematic-dynamic requirements, a dynamic model of the robot wrist is formed. A dynamic simulation for several hand positions was performed and the driving torques of the wrist mechanism were determined. The realized wrist has 2 DOFs and enables movements in the direction of flexion/extension 115°, ulnar/radial deviation ±45° and the combination of these two movements. It consists of a differential mechanism with three spur bevel gears, two of which are driving and identical, while the last one is the driven gear to which the robot hand is attached. Power transmission and motion from the actuator to the input links of the differential mechanism is realized with two parallel placed identical gear mechanisms. The wrist mechanism has high carrying capacity and reliability, high efficiency, a compact design and low backlash that provides high positioning accuracy and repeatability of movements, which is essential for motion control.

  20. Six degree-of-freedom scanning supports and manipulators based on parallel robots

    NASA Astrophysics Data System (ADS)

    Comin, Fabio

    1995-02-01

    The exploitation of third generation SR sources heavily relies on accurate and stable positioning and scanning of samples and optical elements. In some cases, active feedback is also necessary. Normally, these tasks are carried out by serial addition of individual components, each of them providing a well-defined excursion path. On the contrary, the exploitation of the concept of parallel robots, structures in close cinematic chain, permits us to follow any given trajectory in the six-dimensional space with a large increase in accuracy and stiffness. At ESRF, the parallel robot architecture conceived some tens of years ago for flight simulators has been adapted to both actively align and operate optical elements of considerable weight and position small samples in ultrahigh vacuum. The performance of these devices gives results far superior to the initial specification and a variety of drive mechanisms are being developed to fit the different needs of the ESRF beamlines.

  1. Serpentine Robot Model and Gait Design Using Autodesk Inventor and Simulink SimMechanics

    NASA Astrophysics Data System (ADS)

    Daniel; Iman Alamsyah, Mohammad; Erwin; Tan, Sofyan

    2014-03-01

    The authors introduce gaits of a serpentine robot with linear expansion mechanism where the robot varies its length using joints with three degrees of freedom. The 3D model of the serpentine robot is drawed in Autocad Inventor® and exported to SimMechanics® for straighforward modeling of the kinematics. The gaits are important for robots designed to explore ruins of disasters where the working spaces are very tight. For maximum flexibility of the serpentine robot, we adopted a joint design with three parallel actuators, where the joint is capable of linear movement in the forward axis, and rotational movements around two other axes. The designed linear expansion gaits is calculated for forward movement when the robot is posing straight or turning laterally.

  2. Motion capability analysis of a quadruped robot as a parallel manipulator

    NASA Astrophysics Data System (ADS)

    Yu, Jingjun; Lu, Dengfeng; Zhang, Zhongxiang; Pei, Xu

    2014-12-01

    This paper presents the forward and inverse displacement analysis of a quadruped robot MANA as a parallel manipulator in quadruple stance phase, which is used to obtain the workspace and control the motion of the body. The robot MANA designed on the basis of the structure of quadruped mammal is able to not only walk and turn in the uneven terrain, but also accomplish various manipulating tasks as a parallel manipulator in quadruple stance phase. The latter will be the focus of this paper, however. For this purpose, the leg kinematics is primarily analyzed, which lays the foundation on the gait planning in terms of locomotion and body kinematics analysis as a parallel manipulator. When all four feet of the robot contact on the ground, by assuming there is no slipping at the feet, each contacting point is treated as a passive spherical joint and the kinematic model of parallel manipulator is established. The method for choosing six non-redundant actuated joints for the parallel manipulator from all twelve optional joints is elaborated. The inverse and forward displacement analysis of the parallel manipulator is carried out using the method of coordinate transformation. Finally, based on the inverse and forward kinematic model, two issues on obtaining the reachable workspace of parallel manipulator and planning the motion of the body are implemented and verified by ADAMS simulation.

  3. Dynamics and control of cable-suspended parallel robots for giant telescopes

    NASA Astrophysics Data System (ADS)

    Zhuang, Peng; Yao, Zhengqiu

    2006-06-01

    A cable-suspended parallel robot utilizes the basic idea of Stewart platform but replaces parallel links with cables and linear actuators with winches. It has many advantages over a conventional crane. The concept of applying a cable-suspended parallel robot into the construction and maintenance of giant telescope is presented in this paper. Compared with the mass and travel of the moving platform of the robot, the mass and deformation of the cables can be disregarded. Based on the premises, the kinematic and dynamic models of the robot are built. Through simulation, the inertia and gravity of moving platform are found to have dominant effect on the dynamic characteristic of the robot, while the dynamics of actuators can be disregarded, so a simplified dynamic model applicable to real-time control is obtained. Moreover, according to control-law partitioning approach and optimization theory, a workspace model-based controller is proposed considering the characteristic that the cables can only pull but not push. The simulation results indicate that the controller possesses good accuracy in pose and speed tracking, and keeps the cables in reliable tension by maintaining the minimum strain above a certain given value, thus ensures smooth motion and accurate localization for moving platform.

  4. Implementation and Assessment of a Virtual Laboratory of Parallel Robots Developed for Engineering Students

    ERIC Educational Resources Information Center

    Gil, Arturo; Peidró, Adrián; Reinoso, Óscar; Marín, José María

    2017-01-01

    This paper presents a tool, LABEL, oriented to the teaching of parallel robotics. The application, organized as a set of tools developed using Easy Java Simulations, enables the study of the kinematics of parallel robotics. A set of classical parallel structures was implemented such that LABEL can solve the inverse and direct kinematic problem of…

  5. Probe Scanning Support System by a Parallel Mechanism for Robotic Echography

    NASA Astrophysics Data System (ADS)

    Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji

    We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.

  6. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  7. Design and development of miniature parallel robot for eye surgery.

    PubMed

    Sakai, Tomoya; Harada, Kanako; Tanaka, Shinichi; Ueta, Takashi; Noda, Yasuo; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    A five degree-of-freedom (DOF) miniature parallel robot has been developed to precisely and safely remove the thin internal limiting membrane in the eye ground during vitreoretinal surgery. A simulator has been developed to determine the design parameters of this robot. The developed robot's size is 85 mm × 100 mm × 240 mm, and its weight is 770 g. This robot incorporates an emergency instrument retraction function to quickly remove the instrument from the eye in case of sudden intraoperative complications such as bleeding. Experiments were conducted to evaluate the robot's performance in the master-slave configuration, and the results demonstrated that it had a tracing accuracy of 40.0 μm.

  8. Motion control of planar parallel robot using the fuzzy descriptor system approach.

    PubMed

    Vermeiren, Laurent; Dequidt, Antoine; Afroun, Mohamed; Guerra, Thierry-Marie

    2012-09-01

    This work presents the control of a two-degree of freedom parallel robot manipulator. A quasi-LPV approach, through the so-called TS fuzzy model and LMI constraints problems is used. Moreover, in this context a way to derive interesting control laws is to keep the descriptor form of the mechanical system. Therefore, new LMI problems have to be defined that helps to reduce the conservatism of the usual results. Some relaxations are also proposed to leave the pure quadratic stability/stabilization framework. A comparison study between the classical control strategies from robotics and the control design using TS fuzzy descriptor models is carried out to show the interest of the proposed approach. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A 6-DOF parallel bone-grinding robot for cervical disc replacement surgery.

    PubMed

    Tian, Heqiang; Wang, Chenchen; Dang, Xiaoqing; Sun, Lining

    2017-12-01

    Artificial cervical disc replacement surgery has become an effective and main treatment method for cervical disease, which has become a more common and serious problem for people with sedentary work. To improve cervical disc replacement surgery significantly, a 6-DOF parallel bone-grinding robot is developed for cervical bone-grinding by image navigation and surgical plan. The bone-grinding robot including mechanical design and low level control is designed. The bone-grinding robot navigation is realized by optical positioning with spatial registration coordinate system defined. And a parametric robot bone-grinding plan and high level control have been developed for plane grinding for cervical top endplate and tail endplate grinding by a cylindrical grinding drill and spherical grinding for two articular surfaces of bones by a ball grinding drill. Finally, the surgical flow for a robot-assisted cervical disc replacement surgery procedure is present. The final experiments results verified the key technologies and performance of the robot-assisted surgery system concept excellently, which points out a promising clinical application with higher operability. Finally, study innovations, study limitations, and future works of this present study are discussed, and conclusions of this paper are also summarized further. This bone-grinding robot is still in the initial stage, and there are many problems to be solved from a clinical point of view. Moreover, the technique is promising and can give a good support for surgeons in future clinical work.

  10. Structure Assembly by a Heterogeneous Team of Robots Using State Estimation, Generalized Joints, and Mobile Parallel Manipulators

    NASA Technical Reports Server (NTRS)

    Komendera, Erik E.; Adhikari, Shaurav; Glassner, Samantha; Kishen, Ashwin; Quartaro, Amy

    2017-01-01

    Autonomous robotic assembly by mobile field robots has seen significant advances in recent decades, yet practicality remains elusive. Identified challenges include better use of state estimation to and reasoning with uncertainty, spreading out tasks to specialized robots, and implementing representative joining methods. This paper proposes replacing 1) self-correcting mechanical linkages with generalized joints for improved applicability, 2) assembly serial manipulators with parallel manipulators for higher precision and stability, and 3) all-in-one robots with a heterogeneous team of specialized robots for agent simplicity. This paper then describes a general assembly algorithm utilizing state estimation. Finally, these concepts are tested in the context of solar array assembly, requiring a team of robots to assemble, bond, and deploy a set of solar panel mockups to a backbone truss to an accuracy not built into the parts. This paper presents the results of these tests.

  11. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and

  12. Error modeling and sensitivity analysis of a parallel robot with SCARA(selective compliance assembly robot arm) motions

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua

    2014-07-01

    Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.

  13. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery.

    PubMed

    Kobler, Jan-Philipp; Nuelle, Kathrin; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lueder A; Kotlarski, Jens; Ortmaier, Tobias

    2016-03-01

    Minimally invasive cochlear implantation is a novel surgical technique which requires highly accurate guidance of a drilling tool along a trajectory from the mastoid surface toward the basal turn of the cochlea. The authors propose a passive, reconfigurable, parallel robot which can be directly attached to bone anchors implanted in a patient's skull, avoiding the need for surgical tracking systems. Prior to clinical trials, methods are necessary to patient specifically optimize the configuration of the mechanism with respect to accuracy and stability. Furthermore, the achievable accuracy has to be determined experimentally. A comprehensive error model of the proposed mechanism is established, taking into account all relevant error sources identified in previous studies. Two optimization criteria to exploit the given task redundancy and reconfigurability of the passive robot are derived from the model. The achievable accuracy of the optimized robot configurations is first estimated with the help of a Monte Carlo simulation approach and finally evaluated in drilling experiments using synthetic temporal bone specimen. Experimental results demonstrate that the bone-attached mechanism exhibits a mean targeting accuracy of [Formula: see text] mm under realistic conditions. A systematic targeting error is observed, which indicates that accurate identification of the passive robot's kinematic parameters could further reduce deviations from planned drill trajectories. The accuracy of the proposed mechanism demonstrates its suitability for minimally invasive cochlear implantation. Future work will focus on further evaluation experiments on temporal bone specimen.

  14. Three Degree of Freedom Parallel Mechanical Linkage

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D. (Inventor)

    1998-01-01

    A three degree of freedom parallel mechanism or linkage that couples three degree of freedom translational displacements at an endpoint, such as a handle, a hand grip, or a robot tool, to link rotations about three axes that are fixed with respect to a common base or ground link. The mechanism includes a three degree of freedom spherical linkage formed of two closed loops, and a planar linkage connected to the endpoint. The closed loops are rotatably interconnected, and made of eight rigid links connected by a plurality of single degree of freedom revolute joints. Three of these revolute joints are base joints and are connected to a common ground. such that the axis lines passing through the revolute joints intersect at a common fixed center point K forming the center of a spherical work volume in which the endpoint is capable of moving. 'Me three degrees of freedom correspond to the spatial displacement of the endpoint, for instance. The mechanism provides a new overall spatial kinematic linkage composed of a minimal number of rigid links and rotary joints. The mechanism has improved mechanical stiffness, and conveys mechanical power bidirectionally between the human operator and the electromechanical actuators. It does not require gears, belts. cable, screw or other types of transmission elements, and is useful in applications requiring full backdrivability. Thus, this invention can serve as the mechanical linkage for actively powered devices such as compliant robotic manipulators and force-reflecting hand controllers, and passive devices such as manual input devices for computers and other systems.

  15. A parallel expert system for the control of a robotic air vehicle

    NASA Technical Reports Server (NTRS)

    Shakley, Donald; Lamont, Gary B.

    1988-01-01

    Expert systems can be used to govern the intelligent control of vehicles, for example the Robotic Air Vehicle (RAV). Due to the nature of the RAV system the associated expert system needs to perform in a demanding real-time environment. The use of a parallel processing capability to support the associated expert system's computational requirement is critical in this application. Thus, algorithms for parallel real-time expert systems must be designed, analyzed, and synthesized. The design process incorporates a consideration of the rule-set/face-set size along with representation issues. These issues are looked at in reference to information movement and various inference mechanisms. Also examined is the process involved with transporting the RAV expert system functions from the TI Explorer, where they are implemented in the Automated Reasoning Tool (ART), to the iPSC Hypercube, where the system is synthesized using Concurrent Common LISP (CCLISP). The transformation process for the ART to CCLISP conversion is described. The performance characteristics of the parallel implementation of these expert systems on the iPSC Hypercube are compared to the TI Explorer implementation.

  16. Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Lin, C. T.

    1989-01-01

    The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.

  17. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, K.

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  18. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    NASA Technical Reports Server (NTRS)

    Lee, J.; Kim, K.

    1991-01-01

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  19. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  20. Development of autonomous eating mechanism for biomimetic robots

    NASA Astrophysics Data System (ADS)

    Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung

    2005-12-01

    Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.

  1. Efficient dynamic simulation for multiple chain robotic mechanisms

    NASA Technical Reports Server (NTRS)

    Lilly, Kathryn W.; Orin, David E.

    1989-01-01

    An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms is presented, where m is the number of chains, and N is the number of degrees of freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6) for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel implementation of the dynamics for each chain results in an O(N) + O(log sub 2 m+1) algorithm.

  2. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  3. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

    NASA Astrophysics Data System (ADS)

    Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

  4. Advanced mechanisms for robotics

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    An overview of applied research and development at NASA-Goddard (GSFC) on mechanisms and the collision avoidance skin for robots is presented. First the work on robot end effectors is outlined, followed by a brief discussion on robot-friendly payload latching mechanisms and compliant joints. This, in turn, is followed by the collision avoidance/management skin and the GSFC research on magnetostrictive direct drive motors. Finally, a new project, the artificial muscle, is introduced. Each of the devices is described in sufficient detail to permit a basic understanding of its purpose, fundamental principles of operation, and capabilities. In addition, the development status of each is reported along with descriptions of breadboards and prototypes and their test results. In each case, the implications of the research for commercialization is discussed. The chronology of the presentation will give a clear idea of both the evolution of the R&D in recent years and its likely direction in the future.

  5. An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    PubMed Central

    Majarena, Ana C.; Santolaria, Jorge; Samper, David; Aguilar, Juan J.

    2010-01-01

    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters. PMID:22163469

  6. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.

    PubMed

    Malosio, Matteo; Negri, Simone Pio; Pedrocchi, Nicola; Vicentini, Federico; Caimmi, Marco; Molinari Tosatti, Lorenzo

    2012-01-01

    The ankle represents a fairly complex bone structure, resulting in kinematics that hinders a flawless robot-assisted recovery of foot motility in impaired subjects. The paper proposes a novel device for ankle-foot neuro-rehabilitation based on a mechatronic redesign of the remarkable Agile Eye spherical robot on the basis of clinical requisites. The kinematic design allows the positioning of the ankle articular center close to the machine rotation center with valuable benefits in term of therapy functions. The prototype, named PKAnkle, Parallel Kinematic machine for Ankle rehabilitation, provides a 6-axes load cell for the measure of subject interaction forces/torques, and it integrates a commercial EMG-acquisition system. Robot control provides active and passive therapeutic exercises.

  7. An Advice Mechanism for Heterogeneous Robot Teams

    NASA Astrophysics Data System (ADS)

    Daniluk, Steven

    The use of reinforcement learning for robot teams has enabled complex tasks to be performed, but at the cost of requiring a large amount of exploration. Exchanging information between robots in the form of advice is one method to accelerate performance improvements. This thesis presents an advice mechanism for robot teams that utilizes advice from heterogeneous advisers via a method guaranteeing convergence to an optimal policy. The presented mechanism has the capability to use multiple advisers at each time step, and decide when advice should be requested and accepted, such that the use of advice decreases over time. Additionally, collective collaborative, and cooperative behavioural algorithms are integrated into a robot team architecture, to create a new framework that provides fault tolerance and modularity for robot teams.

  8. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  9. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  10. Design, fabrication and characterization of a micro-fluxgate intended for parallel robot application

    NASA Astrophysics Data System (ADS)

    Kirchhoff, M. R.; Bogdanski, G.; Büttgenbach, S.

    2009-05-01

    This paper presents a micro-magnetometer based on the fluxgate principle. Fluxgates detect the magnitude and direction of DC and low-frequency AC magnetic fields. The detectable flux density typically ranges from several 10 nT to about 1 mT. The introduced fluxgate sensor is fabricated using MEMS-technologies, basically UV depth lithography and electroplating for manufacturing high aspect ratio structures. It consists of helical copper coils around a soft magnetic nickel-iron (NiFe) core. The core is designed in so-called racetrack geometry, whereby the directional sensitivity of the sensor is considerably higher compared to common ring-core fluxgates. The electrical operation is based on analyzing the 2nd harmonic of the AC output signal. Configuration, manufacturing and selected characteristics of the fluxgate magnetometer are discussed in this work. The fluxgate builds the basis of an innovative angular sensor system for a parallel robot with HEXA-structure. Integrated into the passive joints of the parallel robot, the fluxgates are combined with permanent magnets rotating on the joint shafts. The magnet transmits the angular information via its magnetic orientation. In this way, the angles between the kinematic elements are measured, which allows self-calibration of the robot and the fast analytical solution of direct kinematics for an advanced workspace monitoring.

  11. Method for six-legged robot stepping on obstacles by indirect force estimation

    NASA Astrophysics Data System (ADS)

    Xu, Yilin; Gao, Feng; Pan, Yang; Chai, Xun

    2016-07-01

    Adaptive gaits for legged robots often requires force sensors installed on foot-tips, however impact, temperature or humidity can affect or even damage those sensors. Efforts have been made to realize indirect force estimation on the legged robots using leg structures based on planar mechanisms. Robot Octopus III is a six-legged robot using spatial parallel mechanism(UP-2UPS) legs. This paper proposed a novel method to realize indirect force estimation on walking robot based on a spatial parallel mechanism. The direct kinematics model and the inverse kinematics model are established. The force Jacobian matrix is derived based on the kinematics model. Thus, the indirect force estimation model is established. Then, the relation between the output torques of the three motors installed on one leg to the external force exerted on the foot tip is described. Furthermore, an adaptive tripod static gait is designed. The robot alters its leg trajectory to step on obstacles by using the proposed adaptive gait. Both the indirect force estimation model and the adaptive gait are implemented and optimized in a real time control system. An experiment is carried out to validate the indirect force estimation model. The adaptive gait is tested in another experiment. Experiment results show that the robot can successfully step on a 0.2 m-high obstacle. This paper proposes a novel method to overcome obstacles for the six-legged robot using spatial parallel mechanism legs and to avoid installing the electric force sensors in harsh environment of the robot's foot tips.

  12. Evaluation of parallel reduction strategies for fusion of sensory information from a robot team

    NASA Astrophysics Data System (ADS)

    Lyons, Damian M.; Leroy, Joseph

    2015-05-01

    The advantage of using a team of robots to search or to map an area is that by navigating the robots to different parts of the area, searching or mapping can be completed more quickly. A crucial aspect of the problem is the combination, or fusion, of data from team members to generate an integrated model of the search/mapping area. In prior work we looked at the issue of removing mutual robots views from an integrated point cloud model built from laser and stereo sensors, leading to a cleaner and more accurate model. This paper addresses a further challenge: Even with mutual views removed, the stereo data from a team of robots can quickly swamp a WiFi connection. This paper proposes and evaluates a communication and fusion approach based on the parallel reduction operation, where data is combined in a series of steps of increasing subsets of the team. Eight different strategies for selecting the subsets are evaluated for bandwidth requirements using three robot missions, each carried out with teams of four Pioneer 3-AT robots. Our results indicate that selecting groups to combine based on similar pose but distant location yields the best results.

  13. Robotic Powered Transfer Mechanism modeling on Human Muscle Structure

    NASA Astrophysics Data System (ADS)

    Saito, Yukio

    It is considered in engineering that one power source can operate one joint. However, support movement mechanism of living organism is multi joint movement mechanism. Considerably different from mechanical movement mechanism, two pairs of uni-articular muscles and a pair of bi-articular muscles are involved in it. In leg, movements observed in short run including leg idling, heel contact and toeing are operated by bi-articular muscles of the thigh showing strong legs to support body weight. Pursuit of versatility in welfare robot brings its comparison with conventional machinery or industrial robot to the fore. Request for safety and technology allowing elderly people to operate the robot is getting stronger in the society. The robot must be safe when it is used together with other welfare equipment and simpler system avoiding difficult operation has to be constructed. Appearance of recent care and assistance robot is getting similar to human arm in comparison with industrial robot. Being easily able to imagine from industrial robot, mid-heavyweight articulated robot to support 60-70kgf combined with large output motor and reduction gears is next to impossible to be installed in the bath room. This research indicated that upper limb arm and lower limb thigh of human and animals are holding coalitional muscles and movement of uni-artcular muscle and bi-articular muscle conjure the image of new actuators.

  14. Kinematic synthesis of adjustable robotic mechanisms

    NASA Astrophysics Data System (ADS)

    Chuenchom, Thatchai

    1993-01-01

    Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for

  15. Surgical bedside master console for neurosurgical robotic system.

    PubMed

    Arata, Jumpei; Kenmotsu, Hajime; Takagi, Motoki; Hori, Tatsuya; Miyagi, Takahiro; Fujimoto, Hideo; Kajita, Yasukazu; Hayashi, Yuichiro; Chinzei, Kiyoyuki; Hashizume, Makoto

    2013-01-01

    We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.

  16. Mechanism And Control Of The Quadruped Walking Robot

    NASA Astrophysics Data System (ADS)

    Adachi, Hironori; Nakano, Eiji; Koyachi, Noriho

    1987-10-01

    This paper provides a description of the quadruped walking robot "TURTLE-1". A new link mechanism named ASTBALLEM is used for the legs of this robot. With this mechanism highly rigid and easily controllable legs are constructed. Each leg has two degrees of freedom and is driven by two DC servo motors. The motion of the legs is controlled by a micro computer and various gaits are generated. Static stability is maintained as the robot walks. Moreover, its walk is quasi-dynamic; that is, it has a manner of walking that has a two legged supporting period.

  17. Mechanism design and optimization of a bionic kangaroo jumping robot

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.

    2018-03-01

    Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.

  18. The NIST SPIDER, A Robot Crane

    PubMed Central

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439

  19. The NIST SPIDER, A Robot Crane.

    PubMed

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.

  20. Vocal emotion of humanoid robots: a study from brain mechanism.

    PubMed

    Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.

  1. Vocal Emotion of Humanoid Robots: A Study from Brain Mechanism

    PubMed Central

    Wang, Youhui; Hu, Xiaohua; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings. PMID:24587712

  2. Virtual Sensor for Kinematic Estimation of Flexible Links in Parallel Robots

    PubMed Central

    Cabanes, Itziar; Mancisidor, Aitziber; Pinto, Charles

    2017-01-01

    The control of flexible link parallel manipulators is still an open area of research, endpoint trajectory tracking being one of the main challenges in this type of robot. The flexibility and deformations of the limbs make the estimation of the Tool Centre Point (TCP) position a challenging one. Authors have proposed different approaches to estimate this deformation and deduce the location of the TCP. However, most of these approaches require expensive measurement systems or the use of high computational cost integration methods. This work presents a novel approach based on a virtual sensor which can not only precisely estimate the deformation of the flexible links in control applications (less than 2% error), but also its derivatives (less than 6% error in velocity and 13% error in acceleration) according to simulation results. The validity of the proposed Virtual Sensor is tested in a Delta Robot, where the position of the TCP is estimated based on the Virtual Sensor measurements with less than a 0.03% of error in comparison with the flexible approach developed in ADAMS Multibody Software. PMID:28832510

  3. New Factorization Techniques and Parallel (log N) Algorithms for Forward Dynamics Solution of Single Closed-Chain Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir

    1993-01-01

    In this paper parallel 0(log N) algorithms for dynamic simulation of single closed-chain rigid multibody system as specialized to the case of a robot manipulatoar in contact with the environment are developed.

  4. Higher-order continuation for the determination of robot workspace boundaries

    NASA Astrophysics Data System (ADS)

    Hentz, Gauthier; Charpentier, Isabelle; Renaud, Pierre

    2016-02-01

    In the medical and surgical fields, robotics may be of great interest for safer and more accurate procedures. Space constraints for a robotic assistant are however strict. Therefore, roboticists study non-conventional mechanisms with advantageous size/workspace ratios. The determination of mechanism workspace, and primarily its boundaries, is thus of major importance. This Note builds on boundary equation definition, continuation and automatic differentiation to propose a general, accurate, fast and automated method for the determination of mechanism workspace. The method is illustrated with a planar RRR mechanism and a three-dimensional Orthoglide parallel mechanism.

  5. [Advanced Development for Space Robotics With Emphasis on Fault Tolerance Technology

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert

    1997-01-01

    This report describes work developing fault tolerant redundant robotic architectures and adaptive control strategies for robotic manipulator systems which can dynamically accommodate drastic robot manipulator mechanism, sensor or control failures and maintain stable end-point trajectory control with minimum disturbance. Kinematic designs of redundant, modular, reconfigurable arms for fault tolerance were pursued at a fundamental level. The approach developed robotic testbeds to evaluate disturbance responses of fault tolerant concepts in robotic mechanisms and controllers. The development was implemented in various fault tolerant mechanism testbeds including duality in the joint servo motor modules, parallel and serial structural architectures, and dual arms. All have real-time adaptive controller technologies to react to mechanism or controller disturbances (failures) to perform real-time reconfiguration to continue the task operations. The developments fall into three main areas: hardware, software, and theoretical.

  6. Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems

    ERIC Educational Resources Information Center

    Ham, MyungJoo

    2009-01-01

    We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…

  7. A robot arm simulation with a shared memory multiprocessor machine

    NASA Technical Reports Server (NTRS)

    Kim, Sung-Soo; Chuang, Li-Ping

    1989-01-01

    A parallel processing scheme for a single chain robot arm is presented for high speed computation on a shared memory multiprocessor. A recursive formulation that is derived from a virtual work form of the d'Alembert equations of motion is utilized for robot arm dynamics. A joint drive system that consists of a motor rotor and gears is included in the arm dynamics model, in order to take into account gyroscopic effects due to the spinning of the rotor. The fine grain parallelism of mechanical and control subsystem models is exploited, based on independent computation associated with bodies, joint drive systems, and controllers. Efficiency and effectiveness of the parallel scheme are demonstrated through simulations of a telerobotic manipulator arm. Two different mechanical subsystem models, i.e., with and without gyroscopic effects, are compared, to show the trade-off between efficiency and accuracy.

  8. Development of structural schemes of parallel structure manipulators using screw calculus

    NASA Astrophysics Data System (ADS)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  9. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke.

    PubMed

    Guang, Hui; Ji, Linhong; Shi, Yingying; Misgeld, Berno J E

    2018-01-01

    The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance ( p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints.

  10. Dynamic Modeling and Interactive Performance of PARM: A Parallel Upper-Limb Rehabilitation Robot Using Impedance Control for Patients after Stroke

    PubMed Central

    Shi, Yingying; Misgeld, Berno J. E.

    2018-01-01

    The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed. Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance, respectively. The results showed that the impedance and resistance affected both mean absolute error and standard deviation of movements and also demonstrated the significant differences between movements with/without impedance and resistance (p < 0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints. PMID:29850004

  11. Development of wall climbing robot

    NASA Astrophysics Data System (ADS)

    Kojima, Hisao; Toyama, Ryousei; Kobayashi, Kengo

    1992-03-01

    A configuration design is presented for a wall-climbing robot with high payload which is capable of moving on diversified surfaces of walls including the wall surface to ceilings in every direction. A developed quadruped wall climbing robot, NINJYA-1, is introduced. NINJYA-1 is composed of legs based on a 3D parallel link mechanism and a VM (Valve-regulated Multiple) sucker which will be able to suck even if there are grooves and a small difference in level. A wall climbing robot which supports rescue operation at a high building using a VM sucker is also introduced. Finally, a wall climbing robot named Disk Rover with a disk-type magnetic wheel is shown. The wheel shape is calculated by FEM. The disk-type magnetic wheel has a force three times more powerful than the one heretofore in use.

  12. Characteristics of manipulator for industrial robot with three rotational pairs having parallel axes

    NASA Astrophysics Data System (ADS)

    Poteyev, M. I.

    1986-01-01

    The dynamics of a manipulator with three rotatinal kinematic pairs having parallel axes are analyzed, for application in an industrial robot. The system of Lagrange equations of the second kind, describing the motion of such a mechanism in terms of kinetic energy in generalized coordinates, is reduced to equations of motion in terms of Newton's laws. These are useful not only for either determining the moments of force couples which will produce a prescribed motion or, conversely determining the motion which given force couples will produce but also for solving optimization problems under constraints in both cases and for estimating dynamic errors. As a specific example, a manipulator with all three axes of vertical rotation is considered. The performance of this manipulator, namely the parameters of its motion as functions of time, is compared with that of a manipulator having one rotational and two translational kinematic pairs. Computer aided simulation of their motion on the basis of ideal models, with all three links represented by identical homogeneous bars, has yielded velocity time diagrams which indicate that the manipulator with three rotational pairs is 4.5 times faster.

  13. Type synthesis for 4-DOF parallel press mechanism using GF set theory

    NASA Astrophysics Data System (ADS)

    He, Jun; Gao, Feng; Meng, Xiangdun; Guo, Weizhong

    2015-07-01

    Parallel mechanisms is used in the large capacity servo press to avoid the over-constraint of the traditional redundant actuation. Currently, the researches mainly focus on the performance analysis for some specific parallel press mechanisms. However, the type synthesis and evaluation of parallel press mechanisms is seldom studied, especially for the four degrees of freedom(DOF) press mechanisms. The type synthesis of 4-DOF parallel press mechanisms is carried out based on the generalized function(GF) set theory. Five design criteria of 4-DOF parallel press mechanisms are firstly proposed. The general procedure of type synthesis of parallel press mechanisms is obtained, which includes number synthesis, symmetrical synthesis of constraint GF sets, decomposition of motion GF sets and design of limbs. Nine combinations of constraint GF sets of 4-DOF parallel press mechanisms, ten combinations of GF sets of active limbs, and eleven combinations of GF sets of passive limbs are synthesized. Thirty-eight kinds of press mechanisms are presented and then different structures of kinematic limbs are designed. Finally, the geometrical constraint complexity( GCC), kinematic pair complexity( KPC), and type complexity( TC) are proposed to evaluate the press types and the optimal press type is achieved. The general methodologies of type synthesis and evaluation for parallel press mechanism are suggested.

  14. Analysis of a closed-kinematic chain robot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  15. Robotics for Human Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Deans, Mathew; Bualat, Maria

    2013-01-01

    Robots can do a variety of work to increase the productivity of human explorers. Robots can perform tasks that are tedious, highly repetitive or long-duration. Robots can perform precursor tasks, such as reconnaissance, which help prepare for future human activity. Robots can work in support of astronauts, assisting or performing tasks in parallel. Robots can also perform "follow-up" work, completing tasks designated or started by humans. In this paper, we summarize the development and testing of robots designed to improve future human exploration of space.

  16. A fish-like robot: Mechanics of swimming due to constraints

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  17. Development of safe mechanism for surgical robots using equilibrium point control method.

    PubMed

    Park, Shinsuk; Lim, Hokjin; Kim, Byeong-sang; Song, Jae-bok

    2006-01-01

    This paper introduces a novel mechanism for surgical robotic systems to generate human arm-like compliant motion. The mechanism is based on the idea of the equilibrium point control hypothesis which claims that multi-joint limb movements are achieved by shifting the limbs' equilibrium positions defined by neuromuscular activity. The equilibrium point control can be implemented on a robot manipulator by installing two actuators at each joint of the manipulator, one to control the joint position, and the other to control the joint stiffness. This double-actuator mechanism allows us to arbitrarily manipulate the stiffness (or impedance) of a robotic manipulator as well as its position. Also, the force at the end-effector can be estimated based on joint stiffness and joint angle changes without using force transducers. A two-link manipulator and a three-link manipulator with the double-actuator units have been developed, and experiments and simulation results show the potential of the proposed approach. By creating the human arm-like behavior, this mechanism can improve the performance of robot manipulators to execute stable and safe movement in surgical environments by using a simple control scheme.

  18. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    PubMed Central

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  19. Agricultural robot designed for seeding mechanism

    NASA Astrophysics Data System (ADS)

    Sunitha, K. A., Dr.; Suraj, G. S. G. S.; Sowrya, CH P. N.; Atchyut Sriram, G.; Shreyas, D.; Srinivas, T.

    2017-05-01

    In the field of agriculture, plantation begins with ploughing the land and sowing seeds. The old traditional method plough attached to an OX and tractors needs human involvement to carry the process. The driving force behind this work is to reduce the human interference in the field of agriculture and to make it cost effective. In this work, apart of the land is taken into consideration and the robot introduced localizes the path and can navigate itself without human action. For ploughing, this robot is provided with tentacles attached with saw blades. The sowing mechanism initiates with long toothed gears actuated with motors. The complete body is divided into two parts the tail part acts as a container for seeds. The successor holds on all the electronics used for automating and actuation. The locomotion is provided with wheels covered under conveyor belts. Gears at the back of the robot rotate in equal speed with respect to each other with the saw blades. For each rotation every tooth on gear will take seeds and will drop them on field. Camera at the front end tracks the path for every fixed distance and at the minimum distance it takes the path pre-programmed.

  20. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  1. A cable-driven parallel robots application: modelling and simulation of a dynamic cable model in Dymola

    NASA Astrophysics Data System (ADS)

    Othman, M. F.; Kurniawan, R.; Schramm, D.; Ariffin, A. K.

    2018-05-01

    Modeling a cable model in multibody dynamics simulation tool which dynamically varies in length, mass and stiffness is a challenging task. Simulation of cable-driven parallel robots (CDPR) for instance requires a cable model that can dynamically change in length for every desired pose of the platform. Thus, in this paper, a detailed procedure for modeling and simulation of a dynamic cable model in Dymola is proposed. The approach is also applicable for other types of Modelica simulation environments. The cable is modeled using standard mechanical elements like mass, spring, damper and joint. The parameters of the cable model are based on the factsheet of the manufacturer and experimental results. Its dynamic ability is tested by applying it on a complete planar CDPR model in which the parameters are based on a prototype named CABLAR, which is developed in Chair of Mechatronics, University of Duisburg-Essen. The prototype has been developed to demonstrate an application of CDPR as a goods storage and retrieval machine. The performance of the cable model during the simulation is analyzed and discussed.

  2. Control of parallel manipulators using force feedback

    NASA Technical Reports Server (NTRS)

    Nanua, Prabjot

    1994-01-01

    Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.

  3. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    NASA Astrophysics Data System (ADS)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  4. Applying Workspace Limitations in a Velocity-Controlled Robotic Mechanism

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Platt, Robert J., Jr. (Inventor)

    2014-01-01

    A robotic system includes a robotic mechanism responsive to velocity control signals, and a permissible workspace defined by a convex-polygon boundary. A host machine determines a position of a reference point on the mechanism with respect to the boundary, and includes an algorithm for enforcing the boundary by automatically shaping the velocity control signals as a function of the position, thereby providing smooth and unperturbed operation of the mechanism along the edges and corners of the boundary. The algorithm is suited for application with higher speeds and/or external forces. A host machine includes an algorithm for enforcing the boundary by shaping the velocity control signals as a function of the reference point position, and a hardware module for executing the algorithm. A method for enforcing the convex-polygon boundary is also provided that shapes a velocity control signal via a host machine as a function of the reference point position.

  5. Improving Mechanical Properties of Molded Silicone Rubber for Soft Robotics Through Fabric Compositing.

    PubMed

    Wang, Yue; Gregory, Cherry; Minor, Mark A

    2018-06-01

    Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.

  6. High-Precision Coupling Mechanism Operable By Robots

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Coupling mechanism has features making it easily operable by hand and suitable for operation by robots: tolerates some initial misalignment, imposes precise final alignment, and protects itself against overtightening. Typically used to mount equipment module on structure. Mechanism includes kinematic mounts, which tolerate small initial misalignment and enforce precise final alignment as two assemblies brought together. Clamping force applied to kinematic mounts via two flexible plates. Bolt and nut tightened on flexible plates to impose spring clamping load. Repeatability of interface tested and found to be better than forty-millionths of inch.

  7. Robotics

    NASA Astrophysics Data System (ADS)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  8. Ant-like task allocation and recruitment in cooperative robots

    NASA Astrophysics Data System (ADS)

    Krieger, Michael J. B.; Billeter, Jean-Bernard; Keller, Laurent

    2000-08-01

    One of the greatest challenges in robotics is to create machines that are able to interact with unpredictable environments in real time. A possible solution may be to use swarms of robots behaving in a self-organized manner, similar to workers in an ant colony. Efficient mechanisms of division of labour, in particular series-parallel operation and transfer of information among group members, are key components of the tremendous ecological success of ants. Here we show that the general principles regulating division of labour in ant colonies indeed allow the design of flexible, robust and effective robotic systems. Groups of robots using ant-inspired algorithms of decentralized control techniques foraged more efficiently and maintained higher levels of group energy than single robots. But the benefits of group living decreased in larger groups, most probably because of interference during foraging. Intriguingly, a similar relationship between group size and efficiency has been documented in social insects. Moreover, when food items were clustered, groups where robots could recruit other robots in an ant-like manner were more efficient than groups without information transfer, suggesting that group dynamics of swarms of robots may follow rules similar to those governing social insects.

  9. Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism

    NASA Astrophysics Data System (ADS)

    Balaji, K.; Khan, B. Shahul Hamid

    2018-02-01

    In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.

  10. Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    NASA Technical Reports Server (NTRS)

    Wheatley, Thomas E.; Michaloski, John L.; Lumia, Ronald

    1989-01-01

    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored.

  11. Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications

    NASA Astrophysics Data System (ADS)

    Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk

    2018-07-01

    The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.

  12. A benchtop biorobotic platform for in vitro observation of muscle-tendon dynamics with parallel mechanical assistance from an elastic exoskeleton.

    PubMed

    Robertson, Benjamin D; Vadakkeveedu, Siddarth; Sawicki, Gregory S

    2017-05-24

    We present a novel biorobotic framework comprised of a biological muscle-tendon unit (MTU) mechanically coupled to a feedback controlled robotic environment simulation that mimics in vivo inertial/gravitational loading and mechanical assistance from a parallel elastic exoskeleton. Using this system, we applied select combinations of biological muscle activation (modulated with rate-coded direct neural stimulation) and parallel elastic assistance (applied via closed-loop mechanical environment simulation) hypothesized to mimic human behavior based on previously published modeling studies. These conditions resulted in constant system-level force-length dynamics (i.e., stiffness), reduced biological loads, increased muscle excursion, and constant muscle average positive power output-all consistent with laboratory experiments on intact humans during exoskeleton assisted hopping. Mechanical assistance led to reduced estimated metabolic cost and MTU apparent efficiency, but increased apparent efficiency for the MTU+Exo system as a whole. Findings from this study suggest that the increased natural resonant frequency of the artificially stiffened MTU+Exo system, along with invariant movement frequencies, may underlie observed limits on the benefits of exoskeleton assistance. Our novel approach demonstrates that it is possible to capture the salient features of human locomotion with exoskeleton assistance in an isolated muscle-tendon preparation, and introduces a powerful new tool for detailed, direct examination of how assistive devices affect muscle-level neuromechanics and energetics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mechanisms for employment with robotic extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Dullea, Kevin J.

    Technologies pertaining to a robotic hand are described herein. A protection apparatus is positioned in a joint of the robotic hand, where movement of a link about the joint is driven by a motor. The protection apparatus absorbs torque about the joint caused by an external force. At least a portion of the robotic hand can be covered by an anthropomorphic skin. An apparatus suitable for controlling operation of the robotic hand is also described herein.

  14. Parallel software support for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1987-01-01

    The application of the parallel programming methodology known as the Force was conducted. Two application issues were addressed. The first involves the efficiency of the implementation and its completeness in terms of satisfying the needs of other researchers implementing parallel algorithms. Support for, and interaction with, other Computational Structural Mechanics (CSM) researchers using the Force was the main issue, but some independent investigation of the Barrier construct, which is extremely important to overall performance, was also undertaken. Another efficiency issue which was addressed was that of relaxing the strong synchronization condition imposed on the self-scheduled parallel DO loop. The Force was extended by the addition of logical conditions to the cases of a parallel case construct and by the inclusion of a self-scheduled version of this construct. The second issue involved applying the Force to the parallelization of finite element codes such as those found in the NICE/SPAR testbed system. One of the more difficult problems encountered is the determination of what information in COMMON blocks is actually used outside of a subroutine and when a subroutine uses a COMMON block merely as scratch storage for internal temporary results.

  15. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial.

    PubMed

    Klamroth-Marganska, Verena; Blanco, Javier; Campen, Katrin; Curt, Armin; Dietz, Volker; Ettlin, Thierry; Felder, Morena; Fellinghauer, Bernd; Guidali, Marco; Kollmar, Anja; Luft, Andreas; Nef, Tobias; Schuster-Amft, Corina; Stahel, Werner; Riener, Robert

    2014-02-01

    Arm hemiparesis secondary to stroke is common and disabling. We aimed to assess whether robotic training of an affected arm with ARMin--an exoskeleton robot that allows task-specific training in three dimensions-reduces motor impairment more effectively than does conventional therapy. In a prospective, multicentre, parallel-group randomised trial, we enrolled patients who had had motor impairment for more than 6 months and moderate-to-severe arm paresis after a cerebrovascular accident who met our eligibility criteria from four centres in Switzerland. Eligible patients were randomly assigned (1:1) to receive robotic or conventional therapy using a centre-stratified randomisation procedure. For both groups, therapy was given for at least 45 min three times a week for 8 weeks (total 24 sessions). The primary outcome was change in score on the arm (upper extremity) section of the Fugl-Meyer assessment (FMA-UE). Assessors tested patients immediately before therapy, after 4 weeks of therapy, at the end of therapy, and 16 weeks and 34 weeks after start of therapy. Assessors were masked to treatment allocation, but patients, therapists, and data analysts were unmasked. Analyses were by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT00719433. Between May 4, 2009, and Sept 3, 2012, 143 individuals were tested for eligibility, of whom 77 were eligible and agreed to participate. 38 patients assigned to robotic therapy and 35 assigned to conventional therapy were included in analyses. Patients assigned to robotic therapy had significantly greater improvements in motor function in the affected arm over the course of the study as measured by FMA-UE than did those assigned to conventional therapy (F=4.1, p=0.041; mean difference in score 0.78 points, 95% CI 0.03-1.53). No serious adverse events related to the study occurred. Neurorehabilitation therapy including task-oriented training with an exoskeleton robot can enhance improvement of

  16. Kinematics Simulation Analysis of Packaging Robot with Joint Clearance

    NASA Astrophysics Data System (ADS)

    Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.

    2018-03-01

    Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.

  17. Kinematics of an in-parallel actuated manipulator based on the Stewart platform mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II

    1992-01-01

    This paper presents kinematic equations and solutions for an in-parallel actuated robotic mechanism based on Stewart's platform. These equations are required for inverse position and resolved rate (inverse velocity) platform control. NASA LaRC has a Vehicle Emulator System (VES) platform designed by MIT which is based on Stewart's platform. The inverse position solution is straight-forward and computationally inexpensive. Given the desired position and orientation of the moving platform with respect to the base, the lengths of the prismatic leg actuators are calculated. The forward position solution is more complicated and theoretically has 16 solutions. The position and orientation of the moving platform with respect to the base is calculated given the leg actuator lengths. Two methods are pursued in this paper to solve this problem. The resolved rate (inverse velocity) solution is derived. Given the desired Cartesian velocity of the end-effector, the required leg actuator rates are calculated. The Newton-Raphson Jacobian matrix resulting from the second forward position kinematics solution is a modified inverse Jacobian matrix. Examples and simulations are given for the VES.

  18. HyBAR: hybrid bone-attached robot for joint arthroplasty.

    PubMed

    Song, S; Mor, A; Jaramaz, B

    2009-06-01

    A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.

  19. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.

    PubMed

    Patanè, Fabrizio; Cappa, Paolo

    2011-04-01

    In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.

  20. A design concept of parallel elasticity extracted from biological muscles for engineered actuators.

    PubMed

    Chen, Jie; Jin, Hongzhe; Iida, Fumiya; Zhao, Jie

    2016-08-23

    Series elastic actuation that takes inspiration from biological muscle-tendon units has been extensively studied and used to address the challenges (e.g. energy efficiency, robustness) existing in purely stiff robots. However, there also exists another form of passive property in biological actuation, parallel elasticity within muscles themselves, and our knowledge of it is limited: for example, there is still no general design strategy for the elasticity profile. When we look at nature, on the other hand, there seems a universal agreement in biological systems: experimental evidence has suggested that a concave-upward elasticity behaviour is exhibited within the muscles of animals. Seeking to draw possible design clues for elasticity in parallel with actuators, we use a simplified joint model to investigate the mechanisms behind this biologically universal preference of muscles. Actuation of the model is identified from general biological joints and further reduced with a specific focus on muscle elasticity aspects, for the sake of easy implementation. By examining various elasticity scenarios, one without elasticity and three with elasticity of different profiles, we find that parallel elasticity generally exerts contradictory influences on energy efficiency and disturbance rejection, due to the mechanical impedance shift thus caused. The trade-off analysis between them also reveals that concave parallel elasticity is able to achieve a more advantageous balance than linear and convex ones. It is expected that the results could contribute to our further understanding of muscle elasticity and provide a theoretical guideline on how to properly design parallel elasticity behaviours for engineering systems such as artificial actuators and robotic joints.

  1. Stochastic Estimation of Arm Mechanical Impedance During Robotic Stroke Rehabilitation

    PubMed Central

    Palazzolo, Jerome J.; Ferraro, Mark; Krebs, Hermano Igo; Lynch, Daniel; Volpe, Bruce T.; Hogan, Neville

    2009-01-01

    This paper presents a stochastic method to estimate the multijoint mechanical impedance of the human arm suitable for use in a clinical setting, e.g., with persons with stroke undergoing robotic rehabilitation for a paralyzed arm. In this context, special circumstances such as hypertonicity and tissue atrophy due to disuse of the hemiplegic limb must be considered. A low-impedance robot was used to bring the upper limb of a stroke patient to a test location, generate force perturbations, and measure the resulting motion. Methods were developed to compensate for input signal coupling at low frequencies apparently due to human–machine interaction dynamics. Data was analyzed by spectral procedures that make no assumption about model structure. The method was validated by measuring simple mechanical hardware and results from a patient's hemiplegic arm are presented. PMID:17436881

  2. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  3. Periodic activations of behaviours and emotional adaptation in behaviour-based robotics

    NASA Astrophysics Data System (ADS)

    Burattini, Ernesto; Rossi, Silvia

    2010-09-01

    The possible modulatory influence of motivations and emotions is of great interest in designing robotic adaptive systems. In this paper, an attempt is made to connect the concept of periodic behaviour activations to emotional modulation, in order to link the variability of behaviours to the circumstances in which they are activated. The impact of emotion is studied, described as timed controlled structures, on simple but conflicting reactive behaviours. Through this approach it is shown that the introduction of such asynchronies in the robot control system may lead to an adaptation in the emergent behaviour without having an explicit action selection mechanism. The emergent behaviours of a simple robot designed with both a parallel and a hierarchical architecture are evaluated and compared.

  4. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  5. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing

    PubMed Central

    Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori

    2017-01-01

    Large scale operational areas often require multiple service robots for coverage and task parallelism. In such scenarios, each robot keeps its individual map of the environment and serves specific areas of the map at different times. We propose a knowledge sharing mechanism for multiple robots in which one robot can inform other robots about the changes in map, like path blockage, or new static obstacles, encountered at specific areas of the map. This symbiotic information sharing allows the robots to update remote areas of the map without having to explicitly navigate those areas, and plan efficient paths. A node representation of paths is presented for seamless sharing of blocked path information. The transience of obstacles is modeled to track obstacles which might have been removed. A lazy information update scheme is presented in which only relevant information affecting the current task is updated for efficiency. The advantages of the proposed method for path planning are discussed against traditional method with experimental results in both simulation and real environments. PMID:28678193

  6. Design and implementation of a novel modal space active force control concept for spatial multi-DOF parallel robotic manipulators actuated by electrical actuators.

    PubMed

    Yang, Chifu; Zhao, Jinsong; Li, Liyi; Agrawal, Sunil K

    2018-01-01

    Robotic spine brace based on parallel-actuated robotic system is a new device for treatment and sensing of scoliosis, however, the strong dynamic coupling and anisotropy problem of parallel manipulators result in accuracy loss of rehabilitation force control, including big error in direction and value of force. A novel active force control strategy named modal space force control is proposed to solve these problems. Considering the electrical driven system and contact environment, the mathematical model of spatial parallel manipulator is built. The strong dynamic coupling problem in force field is described via experiments as well as the anisotropy problem of work space of parallel manipulators. The effects of dynamic coupling on control design and performances are discussed, and the influences of anisotropy on accuracy are also addressed. With mass/inertia matrix and stiffness matrix of parallel manipulators, a modal matrix can be calculated by using eigenvalue decomposition. Making use of the orthogonality of modal matrix with mass matrix of parallel manipulators, the strong coupled dynamic equations expressed in work space or joint space of parallel manipulator may be transformed into decoupled equations formulated in modal space. According to this property, each force control channel is independent of others in the modal space, thus we proposed modal space force control concept which means the force controller is designed in modal space. A modal space active force control is designed and implemented with only a simple PID controller employed as exampled control method to show the differences, uniqueness, and benefits of modal space force control. Simulation and experimental results show that the proposed modal space force control concept can effectively overcome the effects of the strong dynamic coupling and anisotropy problem in the physical space, and modal space force control is thus a very useful control framework, which is better than the current joint

  7. Cable-driven elastic parallel humanoid head with face tracking for Autism Spectrum Disorder interventions.

    PubMed

    Su, Hao; Dickstein-Fischer, Laurie; Harrington, Kevin; Fu, Qiushi; Lu, Weina; Huang, Haibo; Cole, Gregory; Fischer, Gregory S

    2010-01-01

    This paper presents the development of new prismatic actuation approach and its application in human-safe humanoid head design. To reduce actuator output impedance and mitigate unexpected external shock, the prismatic actuation method uses cables to drive a piston with preloaded spring. By leveraging the advantages of parallel manipulator and cable-driven mechanism, the developed neck has a parallel manipulator embodiment with two cable-driven limbs embedded with preloaded springs and one passive limb. The eye mechanism is adapted for low-cost webcam with succinct "ball-in-socket" structure. Based on human head anatomy and biomimetics, the neck has 3 degree of freedom (DOF) motion: pan, tilt and one decoupled roll while each eye has independent pan and synchronous tilt motion (3 DOF eyes). A Kalman filter based face tracking algorithm is implemented to interact with the human. This neck and eye structure is translatable to other human-safe humanoid robots. The robot's appearance reflects a non-threatening image of a penguin, which can be translated into a possible therapeutic intervention for children with Autism Spectrum Disorders.

  8. Mechanical design, fabrication, and test of biomimetic fish robot using LIPCA as artificial muscle

    NASA Astrophysics Data System (ADS)

    Wiguna, T.; Syaifuddin, M.; Park, Hoon C.; Heo, S.

    2006-03-01

    This paper presents a mechanical design, fabrication and test of biomimetic fish robot using the Lightweight Piezocomposite Curved Actuator (LIPCA). We have designed a mechanism for converting actuation of the LIPCA into caudal fin movement. This linkage mechanism consists of rack-pinion system and four-bar linkage. We also have tested four types of caudal fin in order to examine effect of different shape of caudal fin on thrust generation by tail beat. Subsequently, based on the caudal fin test, four caudal fins which resemble fish caudal fin shapes of ostraciiform, subcarangiform, carangiform and thunniform, respectively, are attached to the posterior part of the robotic fish. The swimming test using 300 V pp input with 1 Hz to 1.5 Hz frequency was conducted to investigate effect of changing tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. The maximum swimming speed was reached when the device was operated at its natural swimming frequency. At the natural swimming frequency 1 Hz, maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for ostraciiform-, subcarangiform-, carangiform- and thunniform-like caudal fins, respectively. Strouhal numbers, which are a measure of thrust efficiency, were calculated in order to examine thrust performance of the present biomimetic fish robot. We also approximated the net forward force of the robotic fish using momentum conservation principle.

  9. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.

    PubMed

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human-robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

  10. Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials.

    PubMed

    Nycz, Christopher J; Gondokaryono, Radian; Carvalho, Paulo; Patel, Nirav; Wartenberg, Marek; Pilitsis, Julie G; Fischer, Gregory S

    2017-09-01

    The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism's accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it's axis with accuracy of 1.37 ± 0.06 mm and 0.79° ± 0.41°, inserting it along it's axis with an accuracy of 0.06 ± 0.07 mm , and rotating it about it's axis to an accuracy of 0.77° ± 1.31°. This was accomplished with no significant reduction in SNR caused by the robot's presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot's motors during a scan, and no visible paramagnetic artifacts.

  11. Design of a high-mobility multi-terrain robot based on eccentric paddle mechanism.

    PubMed

    Sun, Yi; Yang, Yang; Ma, Shugen; Pu, Huayan

    Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling motion into a traditional wheeled mechanism. In this paper, prototypes of an ePaddle mechanism and an ePaddle-based quadruped robot are presented. Several locomotion modes, including wheeled rolling, legged crawling, legged race-walking, rotational paddling, oscillating paddling, and paddle-aided rolling, are experimentally verified on testbeds with fabricated prototypes. Experimental results confirm that paddle's motion is useful in all the locomotion modes.

  12. Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A commercially available ANDROS Mark V-A robot was used by Jet Propulsion Laboratory (JPL) as the departure point in the development of the HAZBOT III, a prototype teleoperated mobile robot designed for response to emergencies. Teleoperated robots contribute significantly to reducing human injury levels by performing tasks too hazardous for humans. ANDROS' manufacturer, REMOTEC, Inc., in turn, adopted some of the JPL concepts, particularly the control panel. HAZBOT III has exceptional mobility, employs solid state electronics and brushless DC motors for safer operation, and is designed so combustible gases cannot penetrate areas containing electronics and motors. Other features include the six-degree-of-freedom manipulator, the 30-pound squeeze force parallel jaw gripper and two video cameras, one for general viewing and navigation and the other for manipulation/grasping.

  13. A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

    PubMed Central

    Beckerle, Philipp; Salvietti, Gionata; Unal, Ramazan; Prattichizzo, Domenico; Rossi, Simone; Castellini, Claudio; Hirche, Sandra; Endo, Satoshi; Amor, Heni Ben; Ciocarlie, Matei; Mastrogiovanni, Fulvio; Argall, Brenna D.; Bianchi, Matteo

    2017-01-01

    Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions. PMID:28588473

  14. Exploring types of play in an adapted robotics program for children with disabilities.

    PubMed

    Lindsay, Sally; Lam, Ashley

    2018-04-01

    Play is an important occupation in a child's development. Children with disabilities often have fewer opportunities to engage in meaningful play than typically developing children. The purpose of this study was to explore the types of play (i.e., solitary, parallel and co-operative) within an adapted robotics program for children with disabilities aged 6-8 years. This study draws on detailed observations of each of the six robotics workshops and interviews with 53 participants (21 children, 21 parents and 11 programme staff). Our findings showed that four children engaged in solitary play, where all but one showed signs of moving towards parallel play. Six children demonstrated parallel play during all workshops. The remainder of the children had mixed play types play (solitary, parallel and/or co-operative) throughout the robotics workshops. We observed more parallel and co-operative, and less solitary play as the programme progressed. Ten different children displayed co-operative behaviours throughout the workshops. The interviews highlighted how staff supported children's engagement in the programme. Meanwhile, parents reported on their child's development of play skills. An adapted LEGO ® robotics program has potential to develop the play skills of children with disabilities in moving from solitary towards more parallel and co-operative play. Implications for rehabilitation Educators and clinicians working with children who have disabilities should consider the potential of LEGO ® robotics programs for developing their play skills. Clinicians should consider how the extent of their involvement in prompting and facilitating children's engagement and play within a robotics program may influence their ability to interact with their peers. Educators and clinicians should incorporate both structured and unstructured free-play elements within a robotics program to facilitate children's social development.

  15. A mechanism for efficient debugging of parallel programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.P.; Choi, J.D.

    1988-01-01

    This paper addresses the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors (SMMP). The authors describe the use of flowback analysis to provide information on causal relationships between events in a program's execution without re-executing the program for debugging. The authors introduce a mechanism called incremental tracing that, by using semantic analyses of the debugged program, makes the flowback analysis practical with only a small amount of trace generated during execution. The extend flowback analysis to apply to parallel programs and describe a method to detect race conditions in the interactions ofmore » the co-operating processes.« less

  16. Compliant Robot Wrist

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    Compliant element for robot wrist accepts small displacements in one direction only (to first approximation). Three such elements combined to obtain translational compliance along three orthogonal directions, without rotational compliance along any of them. Element is double-blade flexure joint in which two sheets of spring steel attached between opposing blocks, forming rectangle. Blocks moved parallel to each other in one direction only. Sheets act as double cantilever beams deforming in S-shape, keeping blocks parallel.

  17. The contact condition influence on stability and energy efficiency of quadruped robot

    NASA Astrophysics Data System (ADS)

    Lei, Jingtao; Wang, Tianmiao; Gao, Feng

    2008-10-01

    Quadruped robot has attribute of serial and parallel manipulator with multi-loop mechanism, with more DOF of each leg and intermittent contact with ground during walking, the trot gait of quadruped robot belongs to dynamic waking, compared to the crawl gait, the walking speed is higher, but the robot becomes unstable, it is difficult to keep dynamically stable walking. In this paper, we mainly analyze the condition for the quadruped robot to realize dynamically stable walking, establish centroid orbit equation based on ZMP (Zero Moment Point) stability theory, on the other hand , we study contact impact and friction influence on stability and energy efficiency. Because of the periodic contact between foots and ground, the contact impact and friction are considered to establish spring-damp nonlinear dynamics model. Robot need to be controlled to meet ZMP stability condition and contact constraint condition. Based on the virtual prototyping model, we study control algorithm considering contact condition, the contact compensator and friction compensator are adopted. The contact force and the influence of different contact conditions on the energy efficiency during whole gait cycle are obtained.

  18. Distributed power and control actuation in the thoracic mechanics of a robotic insect.

    PubMed

    Finio, Benjamin M; Wood, Robert J

    2010-12-01

    Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight performance. One of the key challenges is the development of an effective and efficient transmission mechanism to control wing motions. Here we present multiple insect-scale robotic thorax designs capable of producing asymmetric wing kinematics similar to those observed in nature and utilized by dipteran insects to maneuver. Inspired by the thoracic mechanics of dipteran insects, which entail a morphological separation of power and control muscles, these designs show that such distributed actuation can also modulate wing motion in a robotic design.

  19. Topology search of 3-DOF translational parallel manipulators with three identical limbs for leg mechanisms

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco

    2015-07-01

    Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.

  20. Soft mobile robots driven by foldable dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less

  1. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  2. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion

    NASA Astrophysics Data System (ADS)

    Lee, Po-Chih; Lee, Jyh-Jone

    2012-06-01

    This paper presents the analysis of three parallel manipulators with Schoenflies-motion. Each parallel manipulator possesses two limbs in structure and the end-effector has three DOFs (degree of freedom) in the translational motion and one DOF in rotational motion about a given direction axis with respect to the world coordinate system. The three isoconstrained parallel manipulators have the structures denoted as C{u/u}UwHw-//-C{v/v}UwHw, CuR{u/u}Uhw-//-CvR{v/v}Uhw and CuPuUhw-//-CvPvUhw. The kinematic equations are first introduced for each manipulator. Then, Jacobian matrix, singularity, workspace, and performance index for each mechanism are subsequently derived and analysed for the first time. The results can be helpful for the engineers to evaluate such kind of parallel robots for possible application in industry where pick-and-place motion is required.

  3. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study

    PubMed Central

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2015-01-01

    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the

  4. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.

    PubMed

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2015-09-06

    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the

  5. Mechanochemically Active Soft Robots.

    PubMed

    Gossweiler, Gregory R; Brown, Cameron L; Hewage, Gihan B; Sapiro-Gheiler, Eitan; Trautman, William J; Welshofer, Garrett W; Craig, Stephen L

    2015-10-14

    The functions of soft robotics are intimately tied to their form-channels and voids defined by an elastomeric superstructure that reversibly stores and releases mechanical energy to change shape, grip objects, and achieve complex motions. Here, we demonstrate that covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation in soft robots into a mechanochromic, covalent chemical response. A bis-alkene functionalized spiropyran (SP) mechanophore is cured into a molded poly(dimethylsiloxane) (PDMS) soft robot walker and gripper. The stresses and strains necessary for SP activation are compatible with soft robot function. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional robotic device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the robot in a way that might be coupled to autonomous feedback loops that allow the robot to regulate its own activity. The demonstration motivates the simultaneous development of new combinations of mechanophores, materials, and soft, active devices for enhanced functionality.

  6. Industrial Robots.

    ERIC Educational Resources Information Center

    Reed, Dean; Harden, Thomas K.

    Robots are mechanical devices that can be programmed to perform some task of manipulation or locomotion under automatic control. This paper discusses: (1) early developments of the robotics industry in the United States; (2) the present structure of the industry; (3) noneconomic factors related to the use of robots; (4) labor considerations…

  7. Robotic hand with modular extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salisbury, Curt Michael; Quigley, Morgan

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  8. Design, fabrication and control of origami robots

    NASA Astrophysics Data System (ADS)

    Rus, Daniela; Tolley, Michael T.

    2018-06-01

    Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.

  9. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1998-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  10. Robotic vehicle

    DOEpatents

    Box, W. Donald

    1997-01-01

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  11. Robotic vehicle

    DOEpatents

    Box, W.D.

    1997-02-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  12. Robotic vehicle

    DOEpatents

    Box, W.D.

    1998-08-11

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  13. Intelligent robotic tracker

    NASA Technical Reports Server (NTRS)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  14. Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS).

    PubMed

    Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi

    2017-12-01

    Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Industrial robots: Handbook

    NASA Astrophysics Data System (ADS)

    Kozyrev, Iu. G.

    Topics covered include terms, definitions, and classification; operator-directed manipulators; autooperators as used in automated pressure casting; construction and application of industrial robots; and the operating bases of automated systems. Attention is given to adaptive and interactive robots; gripping mechanisms; applications to foundary production, press-forging plants, heat treatment, welding, and assembly operations. A review of design recommendations includes a determination of fundamental structural and technological indicators for industrial robots and a consideration of drive mechanisms.

  16. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].

    PubMed

    Pott, P; Weiser, P; Scharf, H P; Schwarz, M

    2004-06-01

    Applications in robot-aided surgery are currently based on modifications of manipulators used in industrial manufacturing processes. In this paper we describe novel rotatory kinematics for a manipulator, specially developed for deployment in robot-aided surgery. The construction of the gearing mechanism used for the positioning and orientation of a linkage point is described. Forward and inverse kinematics were calculated, and a constructive solution proposed. The gearing mechanism is based on two disk systems, each of which consists of two opposing rotatable discs. The construction was designed in such a way that the linkage point can be positioned freely anywhere within the mechanism's range of motion. The kinematics thus permits an x-y-positioning via rotating movements only. The spatial arrangement of two of such disc systems permits movements in four degrees of freedom (DOF). The construction is compact, but can be further miniaturized, is flexible and manufacturing costs are low. On the basis of this mechanical concept a new, small automated manipulator for surgical application will be developed.

  17. The mechanical design of a humanoid robot with flexible skin sensor for use in psychiatric therapy

    NASA Astrophysics Data System (ADS)

    Burns, Alec; Tadesse, Yonas

    2014-03-01

    In this paper, a humanoid robot is presented for ultimate use in the rehabilitation of children with mental disorders, such as autism. Creating affordable and efficient humanoids could assist the therapy in psychiatric disability by offering multimodal communication between the humanoid and humans. Yet, the humanoid development needs a seamless integration of artificial muscles, sensors, controllers and structures. We have designed a human-like robot that has 15 DOF, 580 mm tall and 925 mm arm span using a rapid prototyping system. The robot has a human-like appearance and movement. Flexible sensors around the arm and hands for safe human-robot interactions, and a two-wheel mobile platform for maneuverability are incorporated in the design. The robot has facial features for illustrating human-friendly behavior. The mechanical design of the robot and the characterization of the flexible sensors are presented. Comprehensive study on the upper body design, mobile base, actuators selection, electronics, and performance evaluation are included in this paper.

  18. Brachytherapy next generation: robotic systems

    PubMed Central

    Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina

    2015-01-01

    In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510

  19. Toward On-line Parameter Estimation of Concentric Tube Robots Using a Mechanics-based Kinematic Model

    PubMed Central

    Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo

    2017-01-01

    Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554

  20. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.

    PubMed

    Suarez-Escobar, Marian; Rendon-Velez, Elizabeth

    2018-01-15

    This article aims to clarify the current state-of-the-art of robotic/mechanical devices for post-stroke thumb rehabilitation as well as the anatomical characteristics and motions of the thumb that are crucial for the development of any device that aims to support its motion. A systematic literature search was conducted to identify robotic/mechanical devices for post-stroke thumb rehabilitation. Specific electronic databases and well-defined search terms and inclusion/exclusion criteria were used for such purpose. A reasoning model was devised to support the structured abstraction of relevant data from the literature of interest. Following the main search and after removing duplicated and other non-relevant studies, 68 articles (corresponding to 32 devices) were left for further examination. These articles were analyzed to extract data relative to (i) the motions assisted/permitted - either actively or passively - by the device per anatomical joint of the thumb and (ii) mechanical-related aspects (i.e., architecture, connections to thumb, other fingers supported, adjustability to different hand sizes, actuators - type, quantity, location, power transmission and motion trajectory). Most articles describe preliminary design and testing of prototypes, rather than the thorough evaluation of commercially ready devices. Defining appropriate kinematic models of the thumb upon which to design such devices still remains a challenging and unresolved task. Further research is needed before these devices can actually be implemented in clinical environments to serve their intended purpose of complementing the labour of therapists by facilitating intensive treatment with precise and repeatable exercises. Implications for Rehabilitation Post-stroke functional disability of the hand, and particularly of the thumb, significantly affects the capability to perform activities of daily living, threatening the independence and quality of life of the stroke survivors. The latest studies

  1. A study on a wheel-based stair-climbing robot with a hopping mechanism

    NASA Astrophysics Data System (ADS)

    Kikuchi, Koki; Sakaguchi, Keisuke; Sudo, Takayuki; Bushida, Naoki; Chiba, Yasuhiro; Asai, Yuji

    2008-08-01

    In this study, we propose a simple hopping mechanism using the vibration of a two-degree-of-freedom system for a wheel-based stair-climbing robot. The robot, consisting of two bodies connected by springs and a wire, hops by releasing energy stored in the springs and quickly travels using wheels mounted in its lower body. The trajectories of the bodies during hopping change in accordance with the design parameters, such as the reduced mass of the two bodies, the mass ratio between the upper and lower bodies, the spring constant, the control parameters such as the initial contraction of the spring and the wire tension. This property allows the robot to quickly and economically climb up and down stairs, leap over obstacles, and landing softly without complex control. In this paper, the characteristics of hopping motion for the design and control parameters are clarified by both numerical simulations and experiments. Furthermore, using the robot design based on the results the abilities to hop up and down a step, leap over a cable, and land softly are demonstrated.

  2. Robotic Assistance for Ultrasound-Guided Prostate Brachytherapy

    PubMed Central

    Fichtinger, Gabor; Fiene, Jonathan P.; Kennedy, Christopher W.; Kronreif, Gernot; Iordachita, Iulian; Song, Danny Y.; Burdette, Everette C.; Kazanzides, Peter

    2016-01-01

    We present a robotically assisted prostate brachytherapy system and test results in training phantoms and Phase-I clinical trials. The system consists of a transrectal ultrasound (TRUS) and a spatially co-registered robot, fully integrated with an FDA-approved commercial treatment planning system. The salient feature of the system is a small parallel robot affixed to the mounting posts of the template. The robot replaces the template interchangeably, using the same coordinate system. Established clinical hardware, workflow and calibration remain intact. In all phantom experiments, we recorded the first insertion attempt without adjustment. All clinically relevant locations in the prostate were reached. Non-parallel needle trajectories were achieved. The pre-insertion transverse and rotational errors (measured with a Polaris optical tracker relative to the template’s coordinate frame) were 0.25mm (STD=0.17mm) and 0.75° (STD=0.37°). In phantoms, needle tip placement errors measured in TRUS were 1.04mm (STD=0.50mm). A Phase-I clinical feasibility and safety trial has been successfully completed with the system. We encountered needle tip positioning errors of a magnitude greater than 4mm in only 2 out of 179 robotically guided needles, in contrast to manual template guidance where errors of this magnitude are much more common. Further clinical trials are necessary to determine whether the apparent benefits of the robotic assistant will lead to improvements in clinical efficacy and outcomes. PMID:18650122

  3. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    PubMed Central

    Yan, Susu; Bowsher, James; Tough, MengHeng; Cheng, Lin; Yin, Fang-Fang

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  4. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.

    PubMed

    Bharadwaj, Kartik; Sugar, Thomas G; Koeneman, James B; Koeneman, Edward J

    2005-11-01

    Repetitive task training is an effective form of rehabilitation for people suffering from debilitating injuries of stroke. We present the design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait. Structurally based on a tripod mechanism, the device is a parallel robot that incorporates two pneumatically powered, double-acting, compliant, spring over muscle actuators as actuation links which move the ankle in dorsiflex ion/plantarflexion and inversion/eversion. A unique feature in the tripod design is that the human anatomy is part of the robot, the first fixed link being the patient's leg. The kinematics and workspace of the tripod device have been analyzed determining its range of motion. Experimental gait data from an able-bodied person wearing the working RGT prototype are presented.

  5. The micro conical system: Lessons learned from a successful EVA/robot-compatible mechanism

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark; Johnston, Alistair

    1996-01-01

    The Micro Conical System (MCS) is a three-part, multi-purpose mechanical interface system used for acquiring and manipulating masses on-orbit by either extravehicular activity (EVA) or telerobotic means. The three components of the system are the micro conical fitting (MCF), the EVA micro tool (EMCT), and the Robot Micro Conical Tool (RMCT). The MCS was developed and refined over a four-year period. This period culminated with the delivery of 358 Class 1 and Class 2 micro conical fittings for the International Space Station and with its first use in space to handle a 1272 kg (2800 lbm) Spartan satellite (11000 times greater than the MCF mass) during an EVA aboard STS-63 in February, 1995. The micro conical system is the first successful EVA/robot-compatible mechanism to be demonstrated in the external environment aboard the U.S. Space Shuttle.

  6. Characterization of an acoustic actuation mechanism for robotic propulsion in low Reynolds number environments

    NASA Astrophysics Data System (ADS)

    House, Christopher; Armstrong, Jenelle; Burkhardt, John; Firebaugh, Samara

    2014-06-01

    With the end goal of medical applications such as non-invasive surgery and targeted drug delivery, an acoustically driven resonant structure is proposed for microrobotic propulsion. At the proposed scale, the low Reynolds number environment requires non-reciprocal motion from the robotic structure for propulsion; thus, a "flapper" with multiple, flexible joints, has been designed to produce excitation modes that involve the necessary flagella-like bending for non-reciprocal motion. The key design aspect of the flapper structure involves a very thin joint that allows bending in one (vertical) direction, but not the opposing direction. This allows for the second mass and joint to bend in a manner similar to a dolphin's "kick" at the bottom of their stroke, resulting in forward thrust. A 130 mm x 50 mm x 0.2 mm prototype of a swimming robot that utilizes the flapper was fabricated out of acrylic using a laser cutter. The robot was tested in water and in a water-glycerine solution designed to mimic microscale fluid conditions. The robot exhibited forward propulsion when excited by an underwater speaker at its resonance mode, with velocities up to 2.5 mm/s. The robot also displayed frequency selectivity, leading to the possibility of exploring a steering mechanism with alternatively tuned flappers. Additional tests were conducted with a robot at a reduced size scale.

  7. A robot end effector exchange mechanism for space applications

    NASA Technical Reports Server (NTRS)

    Gorin, Barney F.

    1990-01-01

    Efficient robot operation requires the use of specialized end effectors or tools for tasks. In spacecraft applications, the microgravity environment precludes the use of gravitational forces to retain the tools in holding fixture. As a result of this, a retention mechanism which forms a part of the tool storage container is required. A unique approach to this problem has resulted in the development of an end effector exchange mechanism that meets the requirements for spaceflight applications while avoiding the complexity usually involved. This mechanism uses multiple latching cams both on the manipulator and in the tool storage container, combined with a system of catch rings to provide retention in both locations and the required failure tolerance. Because of the cam configuration the mechanism operates passively, requiring no electrical commands except those needed to move the manipulator into position. Similarly, it inherently provides interlocks to prevent the release of one cam before its opposite number is engaged.

  8. Modeling and simulation of a Stewart platform type parallel structure robot

    NASA Technical Reports Server (NTRS)

    Lim, Gee Kwang; Freeman, Robert A.; Tesar, Delbert

    1989-01-01

    The kinematics and dynamics of a Stewart Platform type parallel structure robot (NASA's Dynamic Docking Test System) were modeled using the method of kinematic influence coefficients (KIC) and isomorphic transformations of system dependence from one set of generalized coordinates to another. By specifying the end-effector (platform) time trajectory, the required generalized input forces which would theoretically yield the desired motion were determined. It was found that the relationship between the platform motion and the actuators motion was nonlinear. In addition, the contribution to the total generalized forces, required at the actuators, from the acceleration related terms were found to be more significant than the velocity related terms. Hence, the curve representing the total required actuator force generally resembled the curve for the acceleration related force. Another observation revealed that the acceleration related effective inertia matrix I sub dd had the tendency to decouple, with the elements on the main diagonal of I sub dd being larger than the off-diagonal elements, while the velocity related inertia power array P sub ddd did not show such tendency. This tendency results in the acceleration related force curve of a given actuator resembling the acceleration profile of that particular actuator. Furthermore, it was indicated that the effective inertia matrix for the legs is more decoupled than that for the platform. These observations provide essential information for further research to develop an effective control strategy for real-time control of the Dynamic Docking Test System.

  9. [History of robotics: from Archytas of Tarentum until da Vinci robot. (Part I)].

    PubMed

    Sánchez Martín, F M; Millán Rodríguez, F; Salvador Bayarri, J; Palou Redorta, J; Rodríguez Escovar, F; Esquena Fernández, S; Villavicencio Mavrich, H

    2007-02-01

    Robotic surgery is the newst technologic option in urology. To understand how new robots work is interesting to know their history. The desire to design machines imitating humans continued for more than 4000 years. There are references to King-su Tse (clasic China) making up automaton at 500 a. C. Archytas of Tarentum (at around 400 a.C.) is considered the father of mechanical engineering, and one of the occidental robotics classic referents. Heron of Alexandria, Hsieh-Fec, Al-Jazari, Roger Bacon, Juanelo Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors in the middle age, renaissance and classicism. At the XIXth century, automaton production underwent a peak and all engineering branches suffered a great development. At 1942 Asimov published the three robotics laws, based on mechanics, electronics and informatics advances. At XXth century robots able to do very complex self governing works were developed, like da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons.

  10. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.

    PubMed

    Hadavand, Mostafa; Mirbagheri, Alireza; Behzadipour, Saeed; Farahmand, Farzam

    2014-06-01

    An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. A novel 4 + 1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The target workspace was achieved with an acceptable manipulability. The trajectory tracking experiments revealed small errors, due to backlash at the joints. The proposed mechanism meets the basic requirements of an effective master robot for haptic tele-surgery applications. Copyright © 2013 John Wiley & Sons, Ltd.

  11. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    PubMed

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  12. Walking Robot Locomotion System Conception

    NASA Astrophysics Data System (ADS)

    Ignatova, D.; Abadjieva, E.; Abadjiev, V.; Vatzkitchev, Al.

    2014-09-01

    This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  13. Babybot: a biologically inspired developing robotic agent

    NASA Astrophysics Data System (ADS)

    Metta, Giorgio; Panerai, Francesco M.; Sandini, Giulio

    2000-10-01

    The study of development, either artificial or biological, can highlight the mechanisms underlying learning and adaptive behavior. We shall argue whether developmental studies might provide a different and potentially interesting perspective either on how to build an artificial adaptive agent, or on understanding how the brain solves sensory, motor, and cognitive tasks. It is our opinion that the acquisition of the proper behavior might indeed be facilitated because within an ecological context, the agent, its adaptive structure and the environment dynamically interact thus constraining the otherwise difficult learning problem. In very general terms we shall describe the proposed approach and supporting biological related facts. In order to further analyze these aspects from the modeling point of view, we shall demonstrate how a twelve degrees of freedom baby humanoid robot acquires orienting and reaching behaviors, and what advantages the proposed framework might offer. In particular, the experimental setup consists of five degrees-of-freedom (dof) robot head, and an off-the-shelf six dof robot manipulator, both mounted on a rotating base: i.e. the torso. From the sensory point of view, the robot is equipped with two space-variant cameras, an inertial sensor simulating the vestibular system, and proprioceptive information through motor encoders. The biological parallel is exploited at many implementation levels. It is worth mentioning, for example, the space- variant eyes, exploiting foveal and peripheral vision in a single arrangement, the inertial sensor providing efficient image stabilization (vestibulo-ocular reflex).

  14. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Susu, E-mail: susu.yan@duke.edu; Tough, MengHeng; Bowsher, James

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom{sup TM}), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator ormore » a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in

  15. High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning

    PubMed Central

    Sun, Wen; Patil, Sachin; Alterovitz, Ron

    2015-01-01

    As sampling-based motion planners become faster, they can be re-executed more frequently by a robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency replanning (HFR), where, during each period, fast sampling-based motion planners are executed in parallel as the robot simultaneously executes the first action of the best motion plan from the previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) dynamics and observation models with noise drawn from zero mean Gaussian distributions. The objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach the goal) or to minimize path length subject to a lower bound on the probability of success. We show that, as parallel computation power increases, HFR offers asymptotic optimality for these objectives during each period for goal-oriented problems. We then demonstrate the effectiveness of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical needles. PMID:26279645

  16. A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation

    DTIC Science & Technology

    2016-05-01

    research, Kunkler (2006) suggested that the similarities between computer simulation tools and robotic surgery systems (e.g., mechanized feedback...distribution is unlimited. 49 Davies B. A review of robotics in surgery . Proceedings of the Institution of Mechanical Engineers, Part H: Journal...ARL-TR-7683 ● MAY 2016 US Army Research Laboratory A Guide for Developing Human- Robot Interaction Experiments in the Robotic

  17. The universal robot

    NASA Technical Reports Server (NTRS)

    Moravec, Hans

    1993-01-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  18. The universal robot

    NASA Astrophysics Data System (ADS)

    Moravec, Hans

    1993-12-01

    Our artifacts are getting smarter, and a loose parallel with the evolution of animal intelligence suggests one future course for them. Computerless industrial machinery exhibits the behavioral flexibility of single-celled organisms. Today's best computer-controlled robots are like the simpler invertebrates. A thousand-fold increase in computer power in the next decade should make possible machines with reptile-like sensory and motor competence. Properly configured, such robots could do in the physical world what personal computers now do in the world of data - act on our behalf as literal-minded slaves. Growing computer power over the next half-century will allow this reptile stage to be surpassed, in stages producing robots that learn like mammals, model their world like primates, and eventually reason like humans. Depending on your point of view, humanity will then have produced a worthy successor, or transcended some of its inherited limitations and so transformed itself into something quite new.

  19. Reverse control for humanoid robot task recognition.

    PubMed

    Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul

    2012-12-01

    Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.

  20. Automation, parallelism, and robotics for proteomics.

    PubMed

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.

  1. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots.

    PubMed

    Jayaram, Kaushik; Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S; Full, Robert J

    2018-02-01

    Exceptional performance is often considered to be elegant and free of 'errors' or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the 'Haldane limit'. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. © 2018 The Authors.

  2. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots

    PubMed Central

    Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S.; Full, Robert J.

    2018-01-01

    Exceptional performance is often considered to be elegant and free of ‘errors’ or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the ‘Haldane limit’. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. PMID:29445036

  3. Honda humanoid robots development.

    PubMed

    Hirose, Masato; Ogawa, Kenichi

    2007-01-15

    Honda has been doing research on robotics since 1986 with a focus upon bipedal walking technology. The research started with straight and static walking of the first prototype two-legged robot. Now, the continuous transition from walking in a straight line to making a turn has been achieved with the latest humanoid robot ASIMO. ASIMO is the most advanced robot of Honda so far in the mechanism and the control system. ASIMO's configuration allows it to operate freely in the human living space. It could be of practical help to humans with its ability of five-finger arms as well as its walking function. The target of further development of ASIMO is to develop a robot to improve life in human society. Much development work will be continued both mechanically and electronically, staying true to Honda's 'challenging spirit'.

  4. Probabilistic structural mechanics research for parallel processing computers

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.

    1991-01-01

    Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.

  5. Mechanisms mediating parallel action monitoring in fronto-striatal circuits.

    PubMed

    Beste, Christian; Ness, Vanessa; Lukas, Carsten; Hoffmann, Rainer; Stüwe, Sven; Falkenstein, Michael; Saft, Carsten

    2012-08-01

    Flexible response adaptation and the control of conflicting information play a pivotal role in daily life. Yet, little is known about the neuronal mechanisms mediating parallel control of these processes. We examined these mechanisms using a multi-methodological approach that integrated data from event-related potentials (ERPs) with structural MRI data and source localisation using sLORETA. Moreover, we calculated evoked wavelet oscillations. We applied this multi-methodological approach in healthy subjects and patients in a prodromal phase of a major basal ganglia disorder (i.e., Huntington's disease), to directly focus on fronto-striatal networks. Behavioural data indicated, especially the parallel execution of conflict monitoring and flexible response adaptation was modulated across the examined cohorts. When both processes do not co-incide a high integrity of fronto-striatal loops seems to be dispensable. The neurophysiological data suggests that conflict monitoring (reflected by the N2 ERP) and working memory processes (reflected by the P3 ERP) differentially contribute to this pattern of results. Flexible response adaptation under the constraint of high conflict processing affected the N2 and P3 ERP, as well as their delta frequency band oscillations. Yet, modulatory effects were strongest for the N2 ERP and evoked wavelet oscillations in this time range. The N2 ERPs were localized in the anterior cingulate cortex (BA32, BA24). Modulations of the P3 ERP were localized in parietal areas (BA7). In addition, MRI-determined caudate head volume predicted modulations in conflict monitoring, but not working memory processes. The results show how parallel conflict monitoring and flexible adaptation of action is mediated via fronto-striatal networks. While both, response monitoring and working memory processes seem to play a role, especially response selection processes and ACC-basal ganglia networks seem to be the driving force in mediating parallel conflict

  6. Tool Changer For Robot

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.

    1992-01-01

    Mechanism enables robot to change tools on end of arm. Actuated by motion of robot: requires no additional electrical or pneumatic energy to make or break connection between tool and wrist at end of arm. Includes three basic subassemblies: wrist interface plate attached to robot arm at wrist, tool interface plate attached to tool, and holster. Separate tool interface plate and holster provided for each tool robot uses.

  7. Engineering 'cell robots' for parallel and highly sensitive screening of biomolecules under in vivo conditions.

    PubMed

    Song, Lifu; Zeng, An-Ping

    2017-11-09

    Cells are capable of rapid replication and performing tasks adaptively and ultra-sensitively and can be considered as cheap "biological-robots". Here we propose to engineer cells for screening biomolecules in parallel and with high sensitivity. Specifically, we place the biomolecule variants (library) on the bacterial phage M13. We then design cells to screen the library based on cell-phage interactions mediated by a specific intracellular signal change caused by the biomolecule of interest. For proof of concept, we used intracellular lysine concentration in E. coli as a signal to successfully screen variants of functional aspartate kinase III (AK-III) under in vivo conditions, a key enzyme in L-lysine biosynthesis which is strictly inhibited by L-lysine. Comparative studies with flow cytometry method failed to distinguish the wild-type from lysine resistance variants of AK-III, confirming a higher sensitivity of the method. It opens up a new and effective way of in vivo high-throughput screening for functional molecules and can be easily implemented at low costs.

  8. Industrial dual arm robot manipulator for precise assembly of mechanical parts

    NASA Astrophysics Data System (ADS)

    Park, Chanhun; Kim, Doohyung; Park, Kyoungtaik; Choi, Youngjin

    2007-12-01

    A new structure of dual arm robot manipulator which consists of two industrial 6-DOF arms and one 2-DOF Torso is introduced. Each industrial 6-DOF arm is able to be used as a stand-alone industrial 6-DOF robot manipulator and as a part of dual arm manipulator at the same time. These structures help the robot maker which is willing to succeed in the emerging dual arm robot market in order to have high competition for the current industrial robot market at same time. Self-collision detection algorithm for multi-arm robot and kinematics algorithms for the developed dual arm robot manipulator which are implemented in our controller are introduced.

  9. Parallel conjugate gradient algorithms for manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheld, Robert E.

    1989-01-01

    Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).

  10. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    PubMed

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  11. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    PubMed Central

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; de Jesus Romero-Troncoso, Rene

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot. PMID:22163850

  12. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.

    PubMed

    Miao, Qing; Zhang, Mingming; Wang, Congzhe; Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords "ankle ∗ ," and "robot ∗ ," and ("rehabilitat ∗ " or "treat ∗ "). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.

  13. Control of mechanical systems with rolling constraints: Application to dynamic control of mobile robots

    NASA Technical Reports Server (NTRS)

    Sarkar, Nilanjan; Yun, Xiaoping; Kumar, Vijay

    1994-01-01

    There are many examples of mechanical systems that require rolling contacts between two or more rigid bodies. Rolling contacts engender nonholonomic constraints in an otherwise holonomic system. In this article, we develop a unified approach to the control of mechanical systems subject to both holonomic and nonholonomic constraints. We first present a state space realization of a constrained system. We then discuss the input-output linearization and zero dynamics of the system. This approach is applied to the dynamic control of mobile robots. Two types of control algorithms for mobile robots are investigated: trajectory tracking and path following. In each case, a smooth nonlinear feedback is obtained to achieve asymptotic input-output stability and Lagrange stability of the overall system. Simulation results are presented to demonstrate the effectiveness of the control algorithms and to compare the performane of trajectory-tracking and path-following algorithms.

  14. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury.

    PubMed

    Sen, Chandan K; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-03-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT - ) or RAMT + groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT + increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT - controls. Furthermore, RAMT + rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.-Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. © FASEB.

  15. A novel slithering locomotion mechanism for a snake-like soft robot

    NASA Astrophysics Data System (ADS)

    Cao, Yunteng; Liu, Yilun; Chen, Youlong; Zhu, Liangliang; Yan, Yuan; Chen, Xi

    2017-02-01

    A novel mechanism for slithering locomotion of a snake-like soft robot is presented. A rectangular beam with an isotropic coefficient of friction of its contact surface with the flat ground can move forward or backward when actuated by a periodic traveling sinusoidal wave. The Poisson's ratio of the beam plays an important role in the slithering locomotion speed and direction, particularly when it is negative. A theoretical model is proposed to elucidate the slithering locomotion mechanism, which is analogous to the rolling of a wheel on ground. There are two key factors of slithering locomotion: a rotational velocity field and a corresponding local contact region between the beam and ground. During wriggling motion of the rectangular beam, a rotational velocity field is observed near the maximum curvature point of the beam. If the beam has a negative Poisson's ratio, the axial tension will cause a lateral expansion so that the contact region between the beam and ground is located at the outer edge of the maximum curvature (the largest lateral expansion point). The direction of the beam's velocity at this outer edge is usually opposite to the traveling wave direction, so the friction force propels the beam in the direction of the traveling wave. A similar scenario is found for the relatively large amplitude of wriggling motion when the beam's Poisson's ratio is positive. Finite element method (FEM) simulation was conducted to verify the slithering locomotion mechanism, and good agreement was found between the FEM simulation results and theoretical predictions. The insights obtained here present a simple, novel and straightforward mechanism for slithering locomotion and are helpful for future designs of snake-like soft robots.

  16. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury

    PubMed Central

    Sen, Chandan K.; Khanna, Savita; Harris, Hallie; Stewart, Richard; Balch, Maria; Heigel, Mallory; Teplitsky, Seth; Gnyawali, Surya; Rink, Cameron

    2017-01-01

    The efficacy and optimization of poststroke physical therapy paradigms is challenged in part by a lack of objective tools available to researchers for systematic preclinical testing. This work represents a maiden effort to develop a robot-assisted mechanical therapy (RAMT) device to objectively address the significance of mechanical physiotherapy on poststroke outcomes. Wistar rats were subjected to right hemisphere middle-cerebral artery occlusion and reperfusion. After 24 h, rats were split into control (RAMT−) or RAMT+ groups (30 min daily RAMT over the stroke-affected gastrocnemius) and were followed up to poststroke d 14. RAMT+ increased perfusion 1.5-fold in stroke-affected gastrocnemius as compared to RAMT− controls. Furthermore, RAMT+ rats demonstrated improved poststroke track width (11% wider), stride length (21% longer), and travel distance (61% greater), as objectively measured using software-automated testing platforms. Stroke injury acutely increased myostatin (3-fold) and lowered brain-derived neurotrophic factor (BDNF) expression (0.6-fold) in the stroke-affected gastrocnemius, as compared to the contralateral one. RAMT attenuated the stroke-induced increase in myostatin and increased BDNF expression in skeletal muscle. Additional RAMT-sensitive myokine targets in skeletal muscle (IL-1ra and IP-10/CXCL10) were identified from a cytokine array. Taken together, outcomes suggest stroke acutely influences signal transduction in hindlimb skeletal muscle. Regimens based on mechanical therapy have the clear potential to protect hindlimb function from such adverse influence.—Sen, C. K., Khanna, S., Harris, H., Stewart, R., Balch, M., Heigel, M., Teplitsky, S., Gnyawali, S., Rink, C. Robot-assisted mechanical therapy attenuates stroke-induced limb skeletal muscle injury. PMID:27895105

  17. Origami-based earthworm-like locomotion robots.

    PubMed

    Fang, Hongbin; Zhang, Yetong; Wang, K W

    2017-10-16

    Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.

  18. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.

    PubMed

    Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi

    2016-04-28

    This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.

  19. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.

    PubMed

    Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P

    2017-03-01

    We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. A small cable tunnel inspection robot design

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolong; Guo, Xiaoxue; Huang, Jiangcheng; Xiao, Jie

    2017-04-01

    Modern city mainly rely on internal electricity cable tunnel, this can reduce the influence of high voltage over-head lines of urban city appearance and function. In order to reduce the dangers of cable tunnel artificial inspection and high labor intensity, we design a small caterpillar chassis in combination with two degrees of freedom robot with two degrees of freedom camera pan and tilt, used in the cable tunnel inspection work. Caterpillar chassis adopts simple return roller, damping structure. Mechanical arm with three parallel shafts, finish the up and down and rotated action. Two degrees of freedom camera pan and tilt are used to monitor cable tunnel with 360 °no dead angle. It looks simple, practical and efficient.

  1. Very fast motion planning for highly dexterous-articulated robots

    NASA Technical Reports Server (NTRS)

    Challou, Daniel J.; Gini, Maria; Kumar, Vipin

    1994-01-01

    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.

  2. Flexure mechanism-based parallelism measurements for chip-on-glass bonding

    NASA Astrophysics Data System (ADS)

    Jung, Seung Won; Yun, Won Soo; Jin, Songwan; Kim, Bo Sun; Jeong, Young Hun

    2011-08-01

    Recently, liquid crystal displays (LCDs) have played vital roles in a variety of electronic devices such as televisions, cellular phones, and desktop/laptop monitors because of their enhanced volume, performance, and functionality. However, there is still a need for thinner LCD panels due to the trend of miniaturization in electronic applications. Thus, chip-on-glass (COG) bonding has become one of the most important aspects in the LCD panel manufacturing process. In this study, a novel sensor was developed to measure the parallelism between the tooltip planes of the bonding head and the backup of the COG main bonder, which has previously been estimated by prescale pressure films in industry. The sensor developed in this study is based on a flexure mechanism, and it can measure the total pressing force and the inclination angles in two directions that satisfy the quantitative definition of parallelism. To improve the measurement accuracy, the sensor was calibrated based on the estimation of the total pressing force and the inclination angles using the least-squares method. To verify the accuracy of the sensor, the estimation results for parallelism were compared with those from prescale pressure film measurements. In addition, the influence of parallelism on the bonding quality was experimentally demonstrated. The sensor was successfully applied to the measurement of parallelism in the COG-bonding process with an accuracy of more than three times that of the conventional method using prescale pressure films.

  3. Human-robot interaction tests on a novel robot for gait assistance.

    PubMed

    Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio

    2013-06-01

    This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.

  4. Kinematic design considerations for minimally invasive surgical robots: an overview.

    PubMed

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Trajectory control of robot manipulators with closed-kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy

    1987-01-01

    The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.

  6. D2 Delta Robot Structural Design and Kinematics Analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; wang, Song; Dong, Yu; Yang, Hai

    2017-12-01

    In this paper, a new type of Delta robot with only two degrees of freedom is proposed on the basis of multi - degree - of - freedom delta robot. In order to meet our application requirements, we have carried out structural design and analysis of the robot. Through SolidWorks modeling, combined with 3D printing technology to determine the final robot structure. In order to achieve the precise control of the robot, the kinematics analysis of the robot was carried out. The SimMechanics toolbox of MATLAB is used to establish the mechanism model, and the kinematics mathematical model is used to simulate the robot motion control in Matlab environment. Finally, according to the design mechanism, the working space of the robot is drawn by the graphic method, which lays the foundation for the motion control of the subsequent robot.

  7. Computational structures for robotic computations

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chang, P. R.

    1987-01-01

    The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed.

  8. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects

    PubMed Central

    Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms. PMID:29736230

  9. Laboratory on Legs: An Architecture for Adjustable Morphology with Legged Robots

    DTIC Science & Technology

    2012-04-01

    fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize...mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional...PackBot,36 among others. Two parallel rails, 40 cm long and spaced at a center-to-center distance of 14 cm, span the length of the each robot’s body

  10. Micro Hopping Robots for Rescue Operation. Location of the Distributed Tiny Robots Under the Collapsed Building

    DTIC Science & Technology

    2008-07-31

    any wheels or legs even on small, rough terrain with the help of eccentric mechanical vibration. This tiny robot also has the ability of self...integral part of any robo -rescue operation. Inexpensive micro robots can be manufactured for this purpose and by utilizing numerous micro robots (100s to...designed and developed. This locomotion mechanism functions without any wheels or legs and can move based upon the asymmetrical thrusting and lifting

  11. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  12. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  13. Teleoperator/robot technology can help solve biomedical problems

    NASA Technical Reports Server (NTRS)

    Heer, E.; Bejczy, A. K.

    1975-01-01

    Teleoperator and robot technology appears to offer the possibility to apply these techniques to the benefit for the severely handicapped giving them greater self reliance and independence. Major problem areas in the development of prostheses and remotely controlled devices for the handicapped are briefly discussed, and the parallelism with problems in the development of teleoperator/robots identified. A brief description of specific ongoing and projected developments in the area of remotely controlled devices (wheelchairs and manipulators) is provided.

  14. Robotic hand with locking mechanism using TCP muscles for applications in prosthetic hand and humanoids

    NASA Astrophysics Data System (ADS)

    Saharan, Lokesh; Tadesse, Yonas

    2016-04-01

    This paper presents a biomimetic, lightweight, 3D printed and customizable robotic hand with locking mechanism consisting of Twisted and Coiled Polymer (TCP) muscles based on nylon precursor fibers as artificial muscles. Previously, we have presented a small-sized biomimetic hand using nylon based artificial muscles and fishing line muscles as actuators. The current study focuses on an adult-sized prosthetic hand with improved design and a position/force locking system. Energy efficiency is always a matter of concern to make compact, lightweight, durable and cost effective devices. In natural human hand, if we keep holding objects for long time, we get tired because of continuous use of energy for keeping the fingers in certain positions. Similarly, in prosthetic hands we also need to provide energy continuously to artificial muscles to hold the object for a certain period of time, which is certainly not energy efficient. In this work we, describe the design of the robotic hand and locking mechanism along with the experimental results on the performance of the locking mechanism.

  15. [History of robotics: from archytas of tarentum until Da Vinci robot. (Part II)].

    PubMed

    Sánchez-Martín, F M; Jiménez Schlegl, P; Millán Rodríguez, F; Salvador-Bayarri, J; Monllau Font, V; Palou Redorta, J; Villavicencio Mavrich, H

    2007-03-01

    Robotic surgery is a reality. In order to to understand how new robots work is interesting to know the history of ancient (see part i) and modern robotics. The desire to design automatic machines imitating humans continued for more than 4000 years. Archytas of Tarentum (at around 400 a.C.), Heron of Alexandria, Hsieh-Fec, Al-Jazari, Bacon, Turriano, Leonardo da Vinci, Vaucanson o von Kempelen were robot inventors. At 1942 Asimov published the three robotics laws. Mechanics, electronics and informatics advances at XXth century developed robots to be able to do very complex self governing works. At 1985 the robot PUMA 560 was employed to introduce a needle inside the brain. Later on, they were designed surgical robots like World First, Robodoc, Gaspar o Acrobot, Zeus, AESOP, Probot o PAKI-RCP. At 2000 the FDA approved the da Vinci Surgical System (Intuitive Surgical Inc, Sunnyvale, CA, USA), a very sophisticated robot to assist surgeons. Currently urological procedures like prostatectomy, cystectomy and nephrectomy are performed with the da Vinci, so urology has become a very suitable speciality to robotic surgery.

  16. Analysis of the position of robotic cell components and its impact on energy consumption by robot

    NASA Astrophysics Data System (ADS)

    Banas, W.; Gwiazda, A.; Monica, Z.; Sekala, A.; Foit, K.

    2016-08-01

    Location elements in the robot cell is very important must provide reasonable access to technological points. This is a basic condition, but it is possible to shift these elements worth considering over other criteria. One of them can be energy consumption. This is an economic parameter and in most cases its improvement make shorten the working time an industrial robot. In most conventional mechanical systems you do not need to consume power in standby mode only for a move. Robot because of its construction, even if it does not move has enabled engines and is ready to move. In this case, the servo speed is zero. During this stop servo squeak. Low-speed motors cause the engine torque is reduced and increases power consumption. In larger robots are installed brakes that when the robot does not move mechanically hold the position. Off the robot has enabled brakes and remembers the position servo drives. Brakes must be released when the robot wants to move and drives hold the position.

  17. Simple geometric algorithms to aid in clearance management for robotic mechanisms

    NASA Technical Reports Server (NTRS)

    Copeland, E. L.; Ray, L. D.; Peticolas, J. D.

    1981-01-01

    Global geometric shapes such as lines, planes, circles, spheres, cylinders, and the associated computational algorithms which provide relatively inexpensive estimates of minimum spatial clearance for safe operations were selected. The Space Shuttle, remote manipulator system, and the Power Extension Package are used as an example. Robotic mechanisms operate in quarters limited by external structures and the problem of clearance is often of considerable interest. Safe clearance management is simple and suited to real time calculation, whereas contact prediction requires more precision, sophistication, and computational overhead.

  18. Optimal design of a novel remote center-of-motion mechanism for minimally invasive surgical robot

    NASA Astrophysics Data System (ADS)

    Sun, Jingyuan; Yan, Zhiyuan; Du, Zhijiang

    2017-06-01

    Surgical robot with a remote center-of-motion (RCM) plays an important role in minimally invasive surgery (MIS) field. To make the mechanism has high flexibility and meet the demand of movements during processing of operation, an optimized RCM mechanism is proposed in this paper. Then, the kinematic performance and workspace are analyzed. Finally, a new optimization objective function is built by using the condition number index and the workspace index.

  19. Rapid, parallel path planning by propagating wavefronts of spiking neural activity

    PubMed Central

    Ponulak, Filip; Hopfield, John J.

    2013-01-01

    Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213

  20. Use of Parallel Micro-Platform for the Simulation the Space Exploration

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen

    The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.

  1. Innovation in robotic surgery: the Indian scenario.

    PubMed

    Deshpande, Suresh V

    2015-01-01

    Robotics is the science. In scientific words a "Robot" is an electromechanical arm device with a computer interface, a combination of electrical, mechanical, and computer engineering. It is a mechanical arm that performs tasks in Industries, space exploration, and science. One such idea was to make an automated arm - A robot - In laparoscopy to control the telescope-camera unit electromechanically and then with a computer interface using voice control. It took us 5 long years from 2004 to bring it to the level of obtaining a patent. That was the birth of the Swarup Robotic Arm (SWARM) which is the first and the only Indian contribution in the field of robotics in laparoscopy as a total voice controlled camera holding robotic arm developed without any support by industry or research institutes.

  2. Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Yu, Jingjun; Pei, Xu

    2018-06-01

    A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10-6. In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.

  3. Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties

    PubMed Central

    Huang, Shouren; Bergström, Niklas; Yamakawa, Yuji; Senoo, Taku; Ishikawa, Masatoshi

    2016-01-01

    It is traditionally difficult to implement fast and accurate position regulation on an industrial robot in the presence of uncertainties. The uncertain factors can be attributed either to the industrial robot itself (e.g., a mismatch of dynamics, mechanical defects such as backlash, etc.) or to the external environment (e.g., calibration errors, misalignment or perturbations of a workpiece, etc.). This paper proposes a systematic approach to implement high-performance position regulation under uncertainties on a general industrial robot (referred to as the main robot) with minimal or no manual teaching. The method is based on a coarse-to-fine strategy that involves configuring an add-on module for the main robot’s end effector. The add-on module consists of a 1000 Hz vision sensor and a high-speed actuator to compensate for accumulated uncertainties. The main robot only focuses on fast and coarse motion, with its trajectories automatically planned by image information from a static low-cost camera. Fast and accurate peg-and-hole alignment in one dimension was implemented as an application scenario by using a commercial parallel-link robot and an add-on compensation module with one degree of freedom (DoF). Experimental results yielded an almost 100% success rate for fast peg-in-hole manipulation (with regulation accuracy at about 0.1 mm) when the workpiece was randomly placed. PMID:27483274

  4. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  5. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot

    PubMed Central

    Zi, Bin; Yin, Guangcai; Zhang, Dan

    2016-01-01

    In this paper a waist rehabilitation robot driven by cables and pneumatic artificial muscles (PAMs) has been conceptualized and designed. In the process of mechanism design, the human body structure, the waist movement characteristics, and the actuators’ driving characteristics are the main considerable factors to make the hybrid-driven waist rehabilitation robot (HWRR) cost-effective, safe, flexible, and well-adapted. A variety of sensors are chosen to measure the position and orientation of the recovery patient to ensure patient safety at the same time as the structure design. According to the structure specialty and function, the HWRR is divided into two independent parallel robots: the waist twist device and the lower limb traction device. Then these two devices are analyzed and evaluated, respectively. Considering the characters of the human body in the HWRR, the inverse kinematics and statics are studied when the waist and the lower limb are considered as a spring and link, respectively. Based on the inverse kinematics and statics, the effect of the contraction parameter of the PAM is considered in the optimization of the waist twist device, and the lower limb traction device is optimized using particle swarm optimization (PSO) to minimize the global conditioning number over the feasible workspace. As a result of the optimization, an optimal rehabilitation robot design is obtained and the condition number of the Jacobian matrix over the feasible workspace is also calculated. PMID:27983626

  6. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.

    PubMed

    Zi, Bin; Yin, Guangcai; Zhang, Dan

    2016-12-14

    In this paper a waist rehabilitation robot driven by cables and pneumatic artificial muscles (PAMs) has been conceptualized and designed. In the process of mechanism design, the human body structure, the waist movement characteristics, and the actuators' driving characteristics are the main considerable factors to make the hybrid-driven waist rehabilitation robot (HWRR) cost-effective, safe, flexible, and well-adapted. A variety of sensors are chosen to measure the position and orientation of the recovery patient to ensure patient safety at the same time as the structure design. According to the structure specialty and function, the HWRR is divided into two independent parallel robots: the waist twist device and the lower limb traction device. Then these two devices are analyzed and evaluated, respectively. Considering the characters of the human body in the HWRR, the inverse kinematics and statics are studied when the waist and the lower limb are considered as a spring and link, respectively. Based on the inverse kinematics and statics, the effect of the contraction parameter of the PAM is considered in the optimization of the waist twist device, and the lower limb traction device is optimized using particle swarm optimization (PSO) to minimize the global conditioning number over the feasible workspace. As a result of the optimization, an optimal rehabilitation robot design is obtained and the condition number of the Jacobian matrix over the feasible workspace is also calculated.

  7. A deformable spherical planet exploration robot

    NASA Astrophysics Data System (ADS)

    Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun

    2013-03-01

    In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.

  8. Three dialogues concerning robots in elder care.

    PubMed

    Metzler, Theodore A; Barnes, Susan J

    2014-01-01

    The three dialogues in this contribution concern 21st century application of life-like robots in the care of older adults. They depict conversations set in the near future, involving a philosopher (Dr Phonius) and a nurse (Dr Myloss) who manages care at a large facility for assisted living. In their first dialogue, the speakers discover that their quite different attitudes towards human-robot interaction parallel fundamental differences separating their respective concepts of consciousness. The second dialogue similarly uncovers deeply contrasting notions of personhood that appear to be associated with respective communities of nursing and robotics. The additional key awareness that arises in their final dialogue links applications of life-like robots in the care of older adults with potential transformations in our understandings of ourselves - indeed, in our understandings of the nature of our own humanity. This series of dialogues, therefore, appears to address a topic in nursing philosophy that merits our careful attention. © 2013 John Wiley & Sons Ltd.

  9. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  10. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  11. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  12. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  13. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, David B.; Williams, Paul M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot.

  14. System for exchanging tools and end effectors on a robot

    DOEpatents

    Burry, D.B.; Williams, P.M.

    1991-02-19

    A system and method for exchanging tools and end effectors on a robot permits exchange during a programmed task. The exchange mechanism is located off the robot, thus reducing the mass of the robot arm and permitting smaller robots to perform designated tasks. A simple spring/collet mechanism mounted on the robot is used which permits the engagement and disengagement of the tool or end effector without the need for a rotational orientation of the tool to the end effector/collet interface. As the tool changing system is not located on the robot arm no umbilical cords are located on robot. 12 figures.

  15. A review on the mechanical design elements of ankle rehabilitation robot.

    PubMed

    Khalid, Yusuf M; Gouwanda, Darwin; Parasuraman, Subramanian

    2015-06-01

    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings. © IMechE 2015.

  16. Micro-aerial vehicle type wall-climbing robot mechanism for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Shin, Jae-Uk; Kim, Donghoon; Kim, Jong-Heon; Myung, Hyun

    2013-04-01

    Currently, the maintenance or inspection of large structures is labor-intensive, so it has a problem of the large cost due to the staffing professionals and the risk for hard to reach areas. To solve the problem, the needs of wall-climbing robot are emerged. Infra-based wall-climbing robots to maintain an outer wall of building have high payload and safety. However, the infrastructure for the robot must be equipped on the target structure and the infrastructure isn't preferred by the architects since it can injure the exterior of the structure. These are the reasons of why the infra-based wall-climbing robot is avoided. In case of the non-infra-based wall-climbing robot, it is researched to overcome the aforementioned problems. However, most of the technologies are in the laboratory level since the payload, safety and maneuverability are not satisfactory. For this reason, aerial vehicle type wall-climbing robot is researched. It is a flying possible wallclimbing robot based on a quadrotor. It is a famous aerial vehicle robot using four rotors to make a thrust for flying. This wall-climbing robot can stick to a vertical wall using the thrust. After sticking to the wall, it can move with four wheels installed on the robot. As a result, it has high maneuverability and safety since it can restore the position to the wall even if it is detached from the wall by unexpected disturbance while climbing the wall. The feasibility of the main concept was verified through simulations and experiments using a prototype.

  17. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  18. Model identification and vision-based H∞ position control of 6-DoF cable-driven parallel robots

    NASA Astrophysics Data System (ADS)

    Chellal, R.; Cuvillon, L.; Laroche, E.

    2017-04-01

    This paper presents methodologies for the identification and control of 6-degrees of freedom (6-DoF) cable-driven parallel robots (CDPRs). First a two-step identification methodology is proposed to accurately estimate the kinematic parameters independently and prior to the dynamic parameters of a physics-based model of CDPRs. Second, an original control scheme is developed, including a vision-based position controller tuned with the H∞ methodology and a cable tension distribution algorithm. The position is controlled in the operational space, making use of the end-effector pose measured by a motion-tracking system. A four-block H∞ design scheme with adjusted weighting filters ensures good trajectory tracking and disturbance rejection properties for the CDPR system, which is a nonlinear-coupled MIMO system with constrained states. The tension management algorithm generates control signals that maintain the cables under feasible tensions. The paper makes an extensive review of the available methods and presents an extension of one of them. The presented methodologies are evaluated by simulations and experimentally on a redundant 6-DoF INCA 6D CDPR with eight cables, equipped with a motion-tracking system.

  19. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  20. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  1. Survival of falling robots

    NASA Astrophysics Data System (ADS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  2. Survival of falling robots

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  3. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  4. Energy efficiency of mobile soft robots.

    PubMed

    Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi

    2017-11-15

    The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy

  5. Mechanical Validation of an MRI Compatible Stereotactic Neurosurgery Robot in Preparation for Pre-Clinical Trials

    PubMed Central

    Nycz, Christopher J; Gondokaryono, Radian; Carvalho, Paulo; Patel, Nirav; Wartenberg, Marek; Pilitsis, Julie G; Fischer, Gregory S

    2018-01-01

    The use of magnetic resonance imaging (MRI) for guiding robotic surgical devices has shown great potential for performing precisely targeted and controlled interventions. To fully realize these benefits, devices must work safely within the tight confines of the MRI bore without negatively impacting image quality. Here we expand on previous work exploring MRI guided robots for neural interventions by presenting the mechanical design and assessment of a device for positioning, orienting, and inserting an interstitial ultrasound-based ablation probe. From our previous work we have added a 2 degree of freedom (DOF) needle driver for use with the aforementioned probe, revised the mechanical design to improve strength and function, and performed an evaluation of the mechanism’s accuracy and effect on MR image quality. The result of this work is a 7-DOF MRI robot capable of positioning a needle tip and orienting it’s axis with accuracy of 1.37 ± 0.06mm and 0.79° ± 0.41°, inserting it along it’s axis with an accuracy of 0.06 ± 0.07mm, and rotating it about it’s axis to an accuracy of 0.77° ± 1.31°. This was accomplished with no significant reduction in SNR caused by the robot’s presence in the MRI bore, ≤ 10.3% reduction in SNR from running the robot’s motors during a scan, and no visible paramagnetic artifacts. PMID:29696097

  6. Research on the inspection robot for cable tunnel

    NASA Astrophysics Data System (ADS)

    Xin, Shihao

    2017-03-01

    Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.

  7. Cellular-level surgery using nano robots.

    PubMed

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu

    2012-12-01

    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  8. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  9. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    PubMed Central

    Cid, Felipe; Moreno, Jose; Bustos, Pablo; Núñez, Pedro

    2014-01-01

    This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura) and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System), the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions. PMID:24787636

  10. The Charlotte (TM) intra-vehicular robot

    NASA Technical Reports Server (NTRS)

    Swaim, Patrick L.; Thompson, Clark J.; Campbell, Perry D.

    1994-01-01

    NASA has identified telerobotics and telescience as essential technologies to reduce the crew extra-vehicular activity (EVA) and intra-vehicular activity (IVA) workloads. Under this project, we are developing and flight testing a novel IVA robot to relieve the crew of tedious and routine tasks. Through ground telerobotic control of this robot, we will enable ground researchers to routinely interact with experiments in space. Our approach is to develop an IVA robot system incrementally by employing a series of flight tests with increasing complexity. This approach has the advantages of providing an early IVA capability that can assist the crew, demonstrate capabilities that ground researchers can be confident of in planning for future experiments, and allow incremental refinement of system capabilities and insertion of new technology. In parallel with this approach to flight testing, we seek to establish ground test beds, in which the requirements of payload experimenters can be further investigated. In 1993 we reviewed manifested SpaceHab experiments and defined IVA robot requirements to assist in their operation. We also examined previous IVA robot designs and assessed them against flight requirements. We rejected previous design concepts on the basis of threat to crew safety, operability, and maintainability. Based on this insight, we developed an entirely new concept for IVA robotics, the CHARLOTTE robot system. Ground based testing of a prototype version of the system has already proven its ability to perform most common tasks demanded of the crew, including operation of switches, buttons, knobs, dials, and performing video surveys of experiments and switch panels.

  11. Space-time modeling using environmental constraints in a mobile robot system

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1990-01-01

    Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.

  12. The Robot in the Crib: A Developmental Analysis of Imitation Skills in Infants and Robots.

    PubMed

    Demiris, Yiannis; Meltzoff, Andrew

    2008-01-01

    Interesting systems, whether biological or artificial, develop. Starting from some initial conditions, they respond to environmental changes, and continuously improve their capabilities. Developmental psychologists have dedicated significant effort to studying the developmental progression of infant imitation skills, because imitation underlies the infant's ability to understand and learn from his or her social environment. In a converging intellectual endeavour, roboticists have been equipping robots with the ability to observe and imitate human actions because such abilities can lead to rapid teaching of robots to perform tasks. We provide here a comparative analysis between studies of infants imitating and learning from human demonstrators, and computational experiments aimed at equipping a robot with such abilities. We will compare the research across the following two dimensions: (a) initial conditions-what is innate in infants, and what functionality is initially given to robots, and (b) developmental mechanisms-how does the performance of infants improve over time, and what mechanisms are given to robots to achieve equivalent behaviour. Both developmental science and robotics are critically concerned with: (a) how their systems can and do go 'beyond the stimulus' given during the demonstration, and (b) how the internal models used in this process are acquired during the lifetime of the system.

  13. The ROMPS robot in HitchHiker

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1992-01-01

    The Robotics Branch of the Goddard Space Flight Center has under development a robot that fits inside a Get Away Special can. In the RObotic Materials Processing System (ROMPS) HitchHiker experiment, this robot is used to transport pallets containing wafers of different materials from their storage rack to a halogen lamp furnace for rapid thermal processing in a microgravity environment. It then returns them to their storage rack. A large part of the mechanical design of the robot dealt with the potential misalignment between the various components that are repeatedly mated and demated. A system of tapered guides and compliant springs was designed to work within the robot's force and accuracy capabilities. This paper discusses the above and other robot design issues in detail, and presents examples of ROMPS robot analyses that are applicable to other HitcherHiker materials handling missions.

  14. Design of robotic cells based on relative handling modules with use of SolidWorks system

    NASA Astrophysics Data System (ADS)

    Gaponenko, E. V.; Anciferov, S. I.

    2018-05-01

    The article presents a diagramed engineering solution for a robotic cell with six degrees of freedom for machining of complex details, consisting of the base with a tool installation module and a detail machining module made as parallel structure mechanisms. The output links of the detail machining module and the tool installation module can move along X-Y-Z coordinate axes each. A 3D-model of the complex is designed in the SolidWorks system. It will be used further for carrying out engineering calculations and mathematical analysis and obtaining all required documentation.

  15. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot.

    PubMed

    Sato, Takahide; Kano, Takeshi; Ishiguro, Akio

    2011-06-01

    A systematic method for an autonomous decentralized control system is still lacking, despite its appealing concept. In order to alleviate this, we focused on the amoeboid locomotion of the true slime mold, and extracted a design scheme for the decentralized control mechanism that leads to adaptive behavior for the entire system, based on the so-called discrepancy function. In this paper, we intensively investigate the universality of this design scheme by applying it to a different type of locomotion based on a 'synthetic approach'. As a first step, we implement this design scheme to the control of a real physical two-dimensional serpentine robot that exhibits slithering locomotion. The experimental results show that the robot exhibits adaptive behavior and responds to the environmental changes; it is also robust against malfunctions of the body segments due to the local sensory feedback control that is based on the discrepancy function. We expect the results to shed new light on the methodology of autonomous decentralized control systems.

  16. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  17. Petri net controllers for distributed robotic systems

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, George N.

    1992-01-01

    Petri nets are a well established modelling technique for analyzing parallel systems. When coupled with an event-driven operating system, Petri nets can provide an effective means for integrating and controlling the functions of distributed robotic applications. Recent work has shown that Petri net graphs can also serve as remarkably intuitive operator interfaces. In this paper, the advantages of using Petri nets as high-level controllers to coordinate robotic functions are outlined, the considerations for designing Petri net controllers are discussed, and simple Petri net structures for implementing an interface for operator supervision are presented. A detailed example is presented which illustrates these concepts for a sensor-based assembly application.

  18. Wheeled hopping robot

    DOEpatents

    Fischer, Gary J [Albuquerque, NM

    2010-08-17

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  19. A cable-driven parallel manipulator with force sensing capabilities for high-accuracy tissue endomicroscopy.

    PubMed

    Miyashita, Kiyoteru; Oude Vrielink, Timo; Mylonas, George

    2018-05-01

    Endomicroscopy (EM) provides high resolution, non-invasive histological tissue information and can be used for scanning of large areas of tissue to assess cancerous and pre-cancerous lesions and their margins. However, current robotic solutions do not provide the accuracy and force sensitivity required to perform safe and accurate tissue scanning. A new surgical instrument has been developed that uses a cable-driven parallel mechanism (CPDM) to manipulate an EM probe. End-effector forces are determined by measuring the tensions in each cable. As a result, the instrument allows to accurately apply a contact force on a tissue, while at the same time offering high resolution and highly repeatable probe movement. 0.2 and 0.6 N force sensitivities were found for 1 and 2 DoF image acquisition methods, respectively. A back-stepping technique can be used when a higher force sensitivity is required for the acquisition of high quality tissue images. This method was successful in acquiring images on ex vivo liver tissue. The proposed approach offers high force sensitivity and precise control, which is essential for robotic EM. The technical benefits of the current system can also be used for other surgical robotic applications, including safe autonomous control, haptic feedback and palpation.

  20. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    NASA Astrophysics Data System (ADS)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  1. Mechanics without Muscles: Fast Motion of the Venus flytrap and Bio-inspired Robotics

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Zheng, Huang; Li, Wei; Ding, Yiting; Su, Guiping; Lin, Junjie; Liu, Yuxin; Chen, Wenzhe; Taber, Larry

    2013-03-01

    The rapid motion of plants has intrigued scientists for centuries. Plants have neither nerves nor muscles, yet the Venus flytrap can move in a fraction of a second to capture insects. Darwin did a first systematic study on the trap closure mechanism, and called this plant ``one of the most wonderful in the world''. Several physical mechanisms have since been proposed, such as the rapid loss of turgor pressure, an irreversible acid-induced wall loosening mechanism, and tsnap-through instability, but no unanimous agreement is reached. We propose a coupled mechanical bistable mechanism that explains the rapid closure of the Venus flytrap, consistent with experimental observations. Such bistable behaviors are theoretically modeled and validated with experiments. Biomimetic flytrap robots are also fabricated according to the learnt principles. It is thus promising to design smart bio-mimetic materials and devices with snapping mechanisms as sensors, actuators, artificial muscles and biomedical devices. Zi Chen and Qiaohang Guo contributed equally. We thank National Science Foundation of China (No. 11102040), American Academy of Mechanics Founder's Award and Society in Science-Branco Weiss fellowship.

  2. Equipment and technology in surgical robotics.

    PubMed

    Sim, Hong Gee; Yip, Sidney Kam Hung; Cheng, Christopher Wai Sam

    2006-06-01

    Contemporary medical robotic systems used in urologic surgery usually consist of a computer and a mechanical device to carry out the designated task with an image acquisition module. These systems are typically from one of the two categories: offline or online robots. Offline robots, also known as fixed path robots, are completely automated with pre-programmed motion planning based on pre-operative imaging studies where precise movements within set confines are carried out. Online robotic systems rely on continuous input from the surgeons and change their movements and actions according to the input in real time. This class of robots is further divided into endoscopic manipulators and master-slave robotic systems. Current robotic surgical systems have resulted in a paradigm shift in the minimally invasive approach to complex laparoscopic urological procedures. Future developments will focus on refining haptic feedback, system miniaturization and improved augmented reality and telesurgical capabilities.

  3. Robots are not just tools

    NASA Astrophysics Data System (ADS)

    Prescott, Tony J.

    2017-04-01

    The EPSRC principles of robotics make a number of commitments about the ontological status of robots such as that robots are "just tools" or can give only "an impression or real intelligence". This commentary proposes that this assumes, all too easily, that we know the boundary conditions of future robotics development, and argues that progress towards a more useful set of principles could begin by thinking carefully about the ontological status of robots. Whilst most robots are currently little more than tools, we are entering an era where there will be new kinds of entities that combine some of the properties of tools with psychological capacities that we had previously thought were reserved for complex biological organisms such as humans. The ontological status of robots might be best described as liminal - neither living nor simply mechanical. There is also evidence that people will treat robots as more than just tools regardless of the extent to which their machine nature is transparent. Ethical principles need to be developed that recognise these ontological and psychological issues around the nature of robots and how they are perceived.

  4. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  5. Current status of endovascular catheter robotics.

    PubMed

    Lumsden, Alan B; Bismuth, Jean

    2018-06-01

    In this review, we will detail the evolution of endovascular therapy as the basis for the development of catheter-based robotics. In parallel, we will outline the evolution of robotics in the surgical space and how the convergence of technology and the entrepreneurs who push this evolution have led to the development of endovascular robots. The current state-of-the-art and future directions and potential are summarized for the reader. Information in this review has been drawn primarily from our personal clinical and preclinical experience in use of catheter robotics, coupled with some ground-breaking work reported from a few other major centers who have embraced the technology's capabilities and opportunities. Several case studies demonstrating the unique capabilities of a precisely controlled catheter are presented. Most of the preclinical work was performed in the advanced imaging and navigation laboratory. In this unique facility, the interface of advanced imaging techniques and robotic guidance is being explored. Although this procedure employs a very high-tech approach to navigation inside the endovascular space, we have conveyed the kind of opportunities that this technology affords to integrate 3D imaging and 3D control. Further, we present the opportunity of semi-autonomous motion of these devices to a target. For the interventionist, enhanced precision can be achieved in a nearly radiation-free environment.

  6. Surgical robot for single-incision laparoscopic surgery.

    PubMed

    Choi, Hyundo; Kwak, Ho-Seong; Lim, Yo-An; Kim, Hyung-Joo

    2014-09-01

    This paper introduces a novel surgical robot for single-incision laparoscopic surgeries. The robot system includes the cone-type remote center-of-motion (RCM) mechanism and two articulated instruments having a flexible linkage-driven elbow. The RCM mechanism, which has two revolute joints and one prismatic joint, is designed to maintain a stationary point at the apex of the cone shape. By placing the stationary point on the incision area, the mechanism allows a surgical instrument to explore the abdominal area through a small incision point. The instruments have six articulated joints, including an elbow pitch joint, which make the triangulation position for the surgery possible inside of the abdominal area. The presented elbow pitch structure is similar to the slider-crank mechanism but the connecting rod is composed of a flexible leaf spring for high payload and small looseness error. We verified the payload of the robot is more than 10 N and described preliminary experiments on peg transfer and suture motion by using the proposed surgical robot.

  7. Robot Hand Grips Cylinders Securely

    NASA Technical Reports Server (NTRS)

    Parma, George F.

    1989-01-01

    Jaws and linkage accommodate various sizes. Robot hand includes two pairs of parallel jaws that grasp rods, pipes, tubes, struts, and other long, heavy cylindrical objects. Hand features compact rotary drive and butterfly configuration simplifying approach and gripping maneuvers of robot. Parallelogram linkages maintain alignment of each jaw with other jaws. One bar of each linkage connected to one of two concentric, counterrotating shafts; rotation of shafts moves jaws in each pair toward or away from each other to grasp or release workpiece. Each jaw includes rigid gripping pad lined with rubber to give firm grip and to prevent damage to workpiece. Inner cylindrical surface (corner) of each jaw tapers off to flat sides. Enables jaw to grasp workpieces with diameters larger than or equal to twice the corner radius.

  8. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.

    PubMed

    Erwin, Andrew; O'Malley, Marcia K; Ress, David; Sergi, Fabrizio

    2017-09-01

    We demonstrate the interaction control capabilities of the MR-SoftWrist, a novel MR-compatible robot capable of applying accurate kinesthetic feedback to wrist pointing movements executed during fMRI. The MR-SoftWrist, based on a novel design that combines parallel piezoelectric actuation with compliant force feedback, is capable of delivering 1.5 N [Formula: see text] of torque to the wrist of an interacting subject about the flexion/extension and radial/ulnar deviation axes. The robot workspace, defined by admissible wrist rotation angles, fully includes a circle with a 20 deg radius. Via dynamic characterization, we demonstrate capability for transparent operation with low (10% of maximum torque output) backdrivability torques at nominal speeds. Moreover, we demonstrate a 5.5 Hz stiffness control bandwidth for a 14 dB range of virtual stiffness values, corresponding to 25%-125% of the device's physical reflected stiffness in the nominal configuration. We finally validate the possibility of operation during fMRI via a case study involving one healthy subject. Our validation experiment demonstrates the capability of the device to apply kinesthetic feedback to elicit distinguishable kinetic and neural responses without significant degradation of image quality or task-induced head movements. With this study, we demonstrate the feasibility of MR-compatible devices like the MR-SoftWrist to be used in support of motor control experiments investigating wrist pointing under robot-applied force fields. Such future studies may elucidate fundamental neural mechanisms enabling robot-assisted motor skill learning, which is crucial for robot-aided neurorehabilitation.

  9. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    PubMed

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  10. Controlling legs for locomotion-insights from robotics and neurobiology.

    PubMed

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  11. Implement of the Owner Distinction Function for Healing-Type Pet Robots

    NASA Astrophysics Data System (ADS)

    Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki

    In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.

  12. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  13. Robotic Stereotaxy in Cranial Neurosurgery: A Qualitative Systematic Review.

    PubMed

    Fomenko, Anton; Serletis, Demitre

    2017-12-14

    Modern-day stereotactic techniques have evolved to tackle the neurosurgical challenge of accurately and reproducibly accessing specific brain targets. Neurosurgical advances have been made in synergy with sophisticated technological developments and engineering innovations such as automated robotic platforms. Robotic systems offer a unique combination of dexterity, durability, indefatigability, and precision. To perform a systematic review of robotic integration for cranial stereotactic guidance in neurosurgery. Specifically, we comprehensively analyze the strengths and weaknesses of a spectrum of robotic technologies, past and present, including details pertaining to each system's kinematic specifications and targeting accuracy profiles. Eligible articles on human clinical applications of cranial robotic-guided stereotactic systems between 1985 and 2017 were extracted from several electronic databases, with a focus on stereotactic biopsy procedures, stereoelectroencephalography, and deep brain stimulation electrode insertion. Cranial robotic stereotactic systems feature serial or parallel architectures with 4 to 7 degrees of freedom, and frame-based or frameless registration. Indications for robotic assistance are diversifying, and include stereotactic biopsy, deep brain stimulation and stereoelectroencephalography electrode placement, ventriculostomy, and ablation procedures. Complication rates are low, and mainly consist of hemorrhage. Newer systems benefit from increasing targeting accuracy, intraoperative imaging ability, improved safety profiles, and reduced operating times. We highlight emerging future directions pertaining to the integration of robotic technologies into future neurosurgical procedures. Notably, a trend toward miniaturization, cost-effectiveness, frameless registration, and increasing safety and accuracy characterize successful stereotactic robotic technologies. Copyright © 2017 by the Congress of Neurological Surgeons

  14. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  15. Intelligent manipulation technique for multi-branch robotic systems

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  16. The 1991-1992 walking robot design

    NASA Technical Reports Server (NTRS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    1992-01-01

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  17. Intraocular robotic interventional surgical system (IRISS): Mechanical design, evaluation, and master-slave manipulation.

    PubMed

    Wilson, Jason T; Gerber, Matthew J; Prince, Stephen W; Chen, Cheng-Wei; Schwartz, Steven D; Hubschman, Jean-Pierre; Tsao, Tsu-Chin

    2018-02-01

    Since the advent of robotic-assisted surgery, the value of using robotic systems to assist in surgical procedures has been repeatedly demonstrated. However, existing technologies are unable to perform complete, multi-step procedures from start to finish. Many intraocular surgical steps continue to be manually performed. An intraocular robotic interventional surgical system (IRISS) capable of performing various intraocular surgical procedures was designed, fabricated, and evaluated. Methods were developed to evaluate the performance of the remote centers of motion (RCMs) using a stereo-camera setup and to assess the accuracy and precision of positioning the tool tip using an optical coherence tomography (OCT) system. The IRISS can simultaneously manipulate multiple surgical instruments, change between mounted tools using an onboard tool-change mechanism, and visualize the otherwise invisible RCMs to facilitate alignment of the RCM to the surgical incision. The accuracy of positioning the tool tip was measured to be 0.205±0.003 mm. The IRISS was evaluated by trained surgeons in a remote surgical theatre using post-mortem pig eyes and shown to be effective in completing many key steps in a variety of intraocular surgical procedures as well as being capable of performing an entire cataract extraction from start to finish. The IRISS represents a necessary step towards fully automated intraocular surgery and demonstrated accurate and precise master-slave manipulation for cataract removal and-through visual feedback-retinal vein cannulation. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Evolving locomotion for a 12-DOF quadruped robot in simulated environments.

    PubMed

    Klaus, Gordon; Glette, Kyrre; Høvin, Mats

    2013-05-01

    We demonstrate the power of evolutionary robotics (ER) by comparing to a more traditional approach its performance and cost on the task of simulated robot locomotion. A novel quadruped robot is introduced, the legs of which - each having three non-coplanar degrees of freedom - are very maneuverable. Using a simplistic control architecture and a physics simulation of the robot, gaits are designed both by hand and using a highly parallel evolutionary algorithm (EA). It is found that the EA produces, in a small fraction of the time that takes to design by hand, gaits that travel at two to four times the speed of the hand-designed one. The flexibility of this approach is demonstrated by applying it across a range of differently configured simulators. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Biologically-inspired hexapod robot design and simulation

    NASA Technical Reports Server (NTRS)

    Espenschied, Kenneth S.; Quinn, Roger D.

    1994-01-01

    The design and construction of a biologically-inspired hexapod robot is presented. A previously developed simulation is modified to include models of the DC drive motors, the motor driver circuits and their transmissions. The application of this simulation to the design and development of the robot is discussed. The mechanisms thought to be responsible for the leg coordination of the walking stick insect were previously applied to control the straight-line locomotion of a robot. We generalized these rules for a robot walking on a plane. This biologically-inspired control strategy is used to control the robot in simulation. Numerical results show that the general body motion and performance of the simulated robot is similar to that of the robot based on our preliminary experimental results.

  20. System-level challenges in pressure-operated soft robotics

    NASA Astrophysics Data System (ADS)

    Onal, Cagdas D.

    2016-05-01

    Last decade witnessed the revival of fluidic soft actuation. As pressure-operated soft robotics becomes more popular with promising recent results, system integration remains an outstanding challenge. Inspired greatly by biology, we envision future robotic systems to embrace mechanical compliance with bodies composed of soft and hard components as well as electronic and sensing sub-systems, such that robot maintenance starts to resemble surgery. In this vision, portable energy sources and driving infrastructure plays a key role to offer autonomous many-DoF soft actuation. On the other hand, while offering many advantages in safety and adaptability to interact with unstructured environments, objects, and human bodies, mechanical compliance also violates many inherent assumptions in traditional rigid-body robotics. Thus, a complete soft robotic system requires new approaches to utilize proprioception that provides rich sensory information while remaining flexible, and motion control under significant time delay. This paper discusses our proposed solutions for each of these system-level challenges in soft robotics research.

  1. Morphological computation of multi-gaited robot locomotion based on free vibration.

    PubMed

    Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya

    2013-01-01

    In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

  2. Probe-And-Socket Fasteners For Robotic Assembly

    NASA Technical Reports Server (NTRS)

    Nyberg, Karen

    1995-01-01

    Self-alignment and simplicity of actuation make mechanism amenable to robotic assembly. Includes socket, mounted on structure at worksite, and probe, mounted on piece of equipment to be attached to structure at socket. Probe-and-socket mechanism used in conjunction with fixed target aiding in placement of end effector of robot during grasping, and with handle or handles on structure. Intended to enable robot to set up workstation in hostile environment. Workstation then used by astronaut, aquanaut, or other human, spending minimum time in environment. Human concentrates on performing quality work rather than on setting up equipment, with consequent reduction of risk.

  3. Experientally guided robots. [for planet exploration

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1974-01-01

    This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.

  4. Parallel-Processing Software for Creating Mosaic Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; McCauley, Michael; DeJong, Eric

    2008-01-01

    A computer program implements parallel processing for nearly real-time creation of panoramic mosaics of images of terrain acquired by video cameras on an exploratory robotic vehicle (e.g., a Mars rover). Because the original images are typically acquired at various camera positions and orientations, it is necessary to warp the images into the reference frame of the mosaic before stitching them together to create the mosaic. [Also see "Parallel-Processing Software for Correlating Stereo Images," Software Supplement to NASA Tech Briefs, Vol. 31, No. 9 (September 2007) page 26.] The warping algorithm in this computer program reflects the considerations that (1) for every pixel in the desired final mosaic, a good corresponding point must be found in one or more of the original images and (2) for this purpose, one needs a good mathematical model of the cameras and a good correlation of individual pixels with respect to their positions in three dimensions. The desired mosaic is divided into slices, each of which is assigned to one of a number of central processing units (CPUs) operating simultaneously. The results from the CPUs are gathered and placed into the final mosaic. The time taken to create the mosaic depends upon the number of CPUs, the speed of each CPU, and whether a local or a remote data-staging mechanism is used.

  5. An integrated dexterous robotic testbed for space applications

    NASA Technical Reports Server (NTRS)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  6. Biomedical applications of soft robotics

    NASA Astrophysics Data System (ADS)

    Cianchetti, Matteo; Laschi, Cecilia; Menciassi, Arianna; Dario, Paolo

    2018-06-01

    Soft robotics enables the design of soft machines and devices at different scales. The compliance and mechanical properties of soft robots make them especially interesting for medical applications. Depending on the level of interaction with humans, different levels of biocompatibility and biomimicry are required for soft materials used in robots. In this Review, we investigate soft robots for biomedical applications, including soft tools for surgery, diagnosis and drug delivery, wearable and assistive devices, prostheses, artificial organs and tissue-mimicking active simulators for training and biomechanical studies. We highlight challenges regarding durability and reliability, and examine traditional and novel soft and active materials as well as different actuation strategies. Finally, we discuss future approaches and applications in the field.

  7. Modified Denavit-Hartenberg parameters for better location of joint axis systems in robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1986-01-01

    The Denavit-Hartenberg parameters define the relative location of successive joint axis systems in a robot arm. A recent justifiable criticism is that one of these parameters becomes extremely large when two successive joints have near-parallel rotational axes. Geometrically, this parameter then locates a joint axis system at an excessive distance from the robot arm and, computationally, leads to an ill-conditioned transformation matrix. In this paper, a simple modification (which results from constraining a transverse vector between successive joint rotational axes to be normal to one of the rotational axes, instead of both) overcomes this criticism and favorably locates the joint axis system. An example is given for near-parallel rotational axes of the elbow and shoulder joints in a robot arm. The regular and modified parameters are extracted by an algebraic method with simulated measurement data. Unlike the modified parameters, extracted values of the regular parameters are very sensitive to measurement accuracy.

  8. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    NASA Astrophysics Data System (ADS)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  9. Cooperative crossing of traffic intersections in a distributed robot system

    NASA Astrophysics Data System (ADS)

    Rausch, Alexander; Oswald, Norbert; Levi, Paul

    1995-09-01

    In traffic scenarios a distributed robot system has to cope with problems like resource sharing, distributed planning, distributed job scheduling, etc. While travelling along a street segment can be done autonomously by each robot, crossing of an intersection as a shared resource forces the robot to coordinate its actions with those of other robots e.g. by means of negotiations. We discuss the issue of cooperation on the design of a robot control architecture. Task and sensor specific cooperation between robots requires the robots' architectures to be interlinked at different hierarchical levels. Inside each level control cycles are running in parallel and provide fast reaction on events. Internal cooperation may occur between cycles of the same level. Altogether the architecture is matrix-shaped and contains abstract control cycles with a certain degree of autonomy. Based upon the internal structure of a cycle we consider the horizontal and vertical interconnection of cycles to form an individual architecture. Thereafter we examine the linkage of several agents and its influence on an interacting architecture. A prototypical implementation of a scenario, which combines aspects of active vision and cooperation, illustrates our approach. Two vision-guided vehicles are faced with line following, intersection recognition and negotiation.

  10. Some mechanical design aspects of the European Robotic Arm

    NASA Technical Reports Server (NTRS)

    Lambooy, Peter J.; Mandersloot, Wart M.; Bentall, Richard H.

    1995-01-01

    The European Robotic Arm (ERA) is a contribution to the Russian Segment of the International Space Station Alpha. It will start operating on the Russian Segment during the assembly phase. ERA is designed and produced by a large industrial consortium spread over Europe with Fokker Space & Systems as prime contractor. In this paper, we will describe some of the overall design aspects and focus on the development of several mechanisms within ERA. The operation of ERA during the approach of its end effector towards the grapple interface and the grapple operation is discussed, with a focus on mechanisms. This includes the geometry of the end effector leading edge, which is carefully designed to provide the correct and complete tactile information to a torque-force sensor (TFS). The data from this TFS are used to steer the arm such that forces and moments are kept below 20 N and 20 N.m respectively during the grappling operation. Two hardware models of the end effector are built. The problems encountered are described as well as their solutions. The joints in the wrists and the elbow initially used a harmonic drive lubricated by MoS2. During development testing, this combination showed an insufficient lifetime in air to survive the acceptance test program. The switch-over to a system comprising planetary gearboxes with grease lubrication is described. From these development efforts, conclusions are drawn and recommendations are given for the design of complex space mechanisms.

  11. TAIPAN instrument fibre positioner and Starbug robots: engineering overview

    NASA Astrophysics Data System (ADS)

    Staszak, Nicholas F.; Lawrence, Jon; Brown, David M.; Brown, Rebecca; Zhelem, Ross; Goodwin, Michael; Kuehn, Kyler; Lorente, Nuria P. F.; Nichani, Vijay; Waller, Lew; Case, Scott; Content, Robert; Hopkins, Andrew M.; Klauser, Urs; Pai, Naveen; Mueller, Rolf; Mali, Slavko; Vuong, Minh V.

    2016-07-01

    TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300) situated within independently controlled robotic positioners known as Starbugs. Starbugs allow precise parallel positioning of individual fibres, thus significantly reducing instrument configuration time and increasing the amount of observing time. Presented is an engineering overview of the UKST upgrade of the completely new Instrument Spider Assembly utilized to support the Starbug Fibre Positioning Robot and current status of the Starbug itself.

  12. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  13. A Mobile Robot for Small Object Handling

    NASA Astrophysics Data System (ADS)

    Fišer, Ondřej; Szűcsová, Hana; Grimmer, Vladimír; Popelka, Jan; Vonásek, Vojtěch; Krajník, Tomáš; Chudoba, Jan

    The aim of this paper is to present an intelligent autonomous robot capable of small object manipulation. The design of the robot is influenced mainly by the rules of EUROBOT 09 competition. In this challenge, two robots pick up objects scattered on a planar rectangular playfield and use these elements to build models of Hellenistic temples. This paper describes the robot hardware, i.e. electro-mechanics of the drive, chassis and manipulator, as well as the software, i.e. localization, collision avoidance, motion control and planning algorithms.

  14. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  15. Robot assistance of motor learning: A neuro-cognitive perspective.

    PubMed

    Heuer, Herbert; Lüttgen, Jenna

    2015-09-01

    The last several years have seen a number of approaches to robot assistance of motor learning. Experimental studies have produced a range of findings from beneficial effects through null-effects to detrimental effects of robot assistance. In this review we seek an answer to the question under which conditions which outcomes should be expected. For this purpose we derive tentative predictions based on a classification of learning tasks in terms of the products of learning, the mechanisms involved, and the modulation of these mechanisms by robot assistance. Consistent with these predictions, the learning of dynamic features of trajectories is facilitated and the learning of kinematic and dynamic transformations is impeded by robotic guidance, whereas the learning of dynamic transformations can profit from robot assistance with error-amplifying forces. Deviating from the predictions, learning of spatial features of trajectories is impeded by haptic guidance, but can be facilitated by divergent force fields. The deviations point to the existence of additional effects of robot assistance beyond the modulation of learning mechanisms, e.g., the induction of a passive role of the motor system during practice with haptic guidance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The da Vinci robot.

    PubMed

    Moran, Michael E

    2006-12-01

    One might assume from the title of this paper that the nuances of a complex mechanical robot will be discussed, and this would be correct. On the other hand, the date of the design and possible construction of this robot was 1495, a little more than five centuries ago. The key point in the title is the lack of a trademarked name, as Leonardo was the designer of this sophisticated system. His notes from the Codex Altanticus represent the foundation of this report. English translations of da Vinci's notebooks are currently available. Beginning in the 1950s, investigators at the University of California began to ponder the significance of some of da Vinci's markings on what appeared to be technical drawings. Such markings also occur in his Codex Atlanticus (the largest single collection of da Vinci's sheets, consisting of 1119 separate pages and 481 folios) along with a large number of other mechanical devices. Continuing research at the Instituto e Museo di Storia della Scienza in Florence has yielded a great deal of information about Leonardo's intentions with regard to his mechanical knight. It is now known that da Vinci's robot would have had the outer appearance of a Germanic knight. It had a complex core of mechanical devices that probably was human powered. The robot had two independent operating systems. The first had three degree-of-freedom legs, ankles, knees, and hips. The second had four degrees of freedom in the arms with articulated shoulders, elbows, wrists, and hands. A mechanical analog-programmable controller within the chest provided the power and control for the arms. The legs were powered by an external crank arrangement driving the cable, which connected to key locations near each lower extremity's joints. Da Vinci also is known to have devised a programmable front-wheel-drive automobile with rack-and-pinion suspension mechanisms at age 26. He would recall this device again, when, at age 40, he is thought to have built a programmable automated

  17. Kinematic synthesis of bevel-gear-type robotic wrist mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Chou

    Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of

  18. Research on Snake-Like Robot with Controllable Scales

    NASA Astrophysics Data System (ADS)

    Chen, Kailin; Zhao, Yuting; Chen, Shuping

    The purpose of this paper is to propose a new structure for a snake-like robot. This type of snake-like robot is different from the normal snake-like robot because it has lots of controllable scales which have a large role in helping moving. Besides, a new form of robot gait named as linear motion mode is developed based on theoretical analysis for the new mechanical structure. Through simulation and analysis in simmechanics of matlab, we proved the validity of theories about the motion mode of snake-like robot. The proposed machine construction and control method for the designed motion is verified experimentally by the independent developed snake robot.

  19. Robotic joint experiments under ultravacuum

    NASA Technical Reports Server (NTRS)

    Borrien, A.; Petitjean, L.

    1988-01-01

    First, various aspects of a robotic joint development program, including gearbox technology, electromechanical components, lubrication, and test results, are discussed. Secondly, a test prototype of the joint allowing simulation of robotic arm dynamic effects is presented. This prototype is tested under vacuum with different types of motors and sensors to characterize the functional parameters: angular position error, mechanical backlash, gearbox efficiency, and lifetime.

  20. A Modular Soft Robotic Wrist for Underwater Manipulation.

    PubMed

    Kurumaya, Shunichi; Phillips, Brennan T; Becker, Kaitlyn P; Rosen, Michelle H; Gruber, David F; Galloway, Kevin C; Suzumori, Koichi; Wood, Robert J

    2018-04-19

    This article presents the development of modular soft robotic wrist joint mechanisms for delicate and precise manipulation in the harsh deep-sea environment. The wrist consists of a rotary module and bending module, which can be combined with other actuators as part of a complete manipulator system. These mechanisms are part of a suite of soft robotic actuators being developed for deep-sea manipulation via submersibles and remotely operated vehicles, and are designed to be powered hydraulically with seawater. The wrist joint mechanisms can also be activated with pneumatic pressure for terrestrial-based applications, such as automated assembly and robotic locomotion. Here we report the development and characterization of a suite of rotary and bending modules by varying fiber number and silicone hardness. Performance of the complete soft robotic wrist is demonstrated in normal atmospheric conditions using both pneumatic and hydraulic pressures for actuation and under high ambient hydrostatic pressures equivalent to those found at least 2300 m deep in the ocean. This rugged modular wrist holds the potential to be utilized at full ocean depths (>10,000 m) and is a step forward in the development of jointed underwater soft robotic arms.

  1. Experimental characterization of a binary actuated parallel manipulator

    NASA Astrophysics Data System (ADS)

    Giuseppe, Carbone

    2016-05-01

    This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at Laboratory of Robotics and Mechatronics (LARM). Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics.

  2. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  3. Design of a walking robot

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  4. Design of a walking robot

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Dowling, Kevin

    1994-03-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  5. Development of a soft untethered robot using artificial muscle actuators

    NASA Astrophysics Data System (ADS)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  6. Design and real-time control of a robotic system for fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  7. Evaluation of mechanical deformation and distributive magnetic loads with different mechanical constraints in two parallel conducting bars

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Young; Lee, Se-Hee

    2017-08-01

    Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.

  8. Decentralized Adaptive Control For Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Precise knowledge of dynamics not required. Proposed scheme for control of multijointed robotic manipulator calls for independent control subsystem for each joint, consisting of proportional/integral/derivative feedback controller and position/velocity/acceleration feedforward controller, both with adjustable gains. Independent joint controller compensates for unpredictable effects, gravitation, and dynamic coupling between motions of joints, while forcing joints to track reference trajectories. Scheme amenable to parallel processing in distributed computing system wherein each joint controlled by relatively simple algorithm on dedicated microprocessor.

  9. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S; Touch, M; Bowsher, J

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less

  10. Multi-fingered robotic hand

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  11. First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1987-01-01

    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.

  12. Insect-controlled Robot: A Mobile Robot Platform to Evaluate the Odor-tracking Capability of an Insect.

    PubMed

    Ando, Noriyasu; Emoto, Shuhei; Kanzaki, Ryohei

    2016-12-19

    Robotic odor source localization has been a challenging area and one to which biological knowledge has been expected to contribute, as finding odor sources is an essential task for organism survival. Insects are well-studied organisms with regard to odor tracking, and their behavioral strategies have been applied to mobile robots for evaluation. This "bottom-up" approach is a fundamental way to develop biomimetic robots; however, the biological analyses and the modeling of behavioral mechanisms are still ongoing. Therefore, it is still unknown how such a biological system actually works as the controller of a robotic platform. To answer this question, we have developed an insect-controlled robot in which a male adult silkmoth (Bombyx mori) drives a robot car in response to odor stimuli; this can be regarded as a prototype of a future insect-mimetic robot. In the cockpit of the robot, a tethered silkmoth walked on an air-supported ball and an optical sensor measured the ball rotations. These rotations were translated into the movement of the two-wheeled robot. The advantage of this "hybrid" approach is that experimenters can manipulate any parameter of the robot, which enables the evaluation of the odor-tracking capability of insects and provides useful suggestions for robotic odor-tracking. Furthermore, these manipulations are non-invasive ways to alter the sensory-motor relationship of a pilot insect and will be a useful technique for understanding adaptive behaviors.

  13. Hand Rehabilitation Robotics on Poststroke Motor Recovery

    PubMed Central

    2017-01-01

    The recovery of hand function is one of the most challenging topics in stroke rehabilitation. Although the robot-assisted therapy has got some good results in the latest decades, the development of hand rehabilitation robotics is left behind. Existing reviews of hand rehabilitation robotics focus either on the mechanical design on designers' view or on the training paradigms on the clinicians' view, while these two parts are interconnected and both important for designers and clinicians. In this review, we explore the current literature surrounding hand rehabilitation robots, to help designers make better choices among varied components and thus promoting the application of hand rehabilitation robots. An overview of hand rehabilitation robotics is provided in this paper firstly, to give a general view of the relationship between subjects, rehabilitation theories, hand rehabilitation robots, and its evaluation. Secondly, the state of the art hand rehabilitation robotics is introduced in detail according to the classification of the hardware system and the training paradigm. As a result, the discussion gives available arguments behind the classification and comprehensive overview of hand rehabilitation robotics. PMID:29230081

  14. Cleaning Robot for Solar Panels in Solar Power Station

    NASA Astrophysics Data System (ADS)

    Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan

    2016-05-01

    The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.

  15. Preclinical evaluation of an MRI-compatible pneumatic robot for angulated needle placement in transperineal prostate interventions.

    PubMed

    Tokuda, Junichi; Song, Sang-Eun; Fischer, Gregory S; Iordachita, Iulian I; Seifabadi, Reza; Cho, Nathan B; Tuncali, Kemal; Fichtinger, Gabor; Tempany, Clare M; Hata, Nobuhiko

    2012-11-01

    To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.

  16. Single actuator wave-like robot (SAW): design, modeling, and experiments.

    PubMed

    Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz

    2016-07-01

    In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed.

  17. Robotic insects: Manufacturing, actuation, and power considerations

    NASA Astrophysics Data System (ADS)

    Wood, Robert

    2015-12-01

    As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.

  18. Comparison of Human and Humanoid Robot Control of Upright Stance

    PubMed Central

    Peterka, Robert J.

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on

  19. Comparison of human and humanoid robot control of upright stance.

    PubMed

    Peterka, Robert J

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the

  20. Robotic control and inspection verification

    NASA Technical Reports Server (NTRS)

    Davis, Virgil Leon

    1991-01-01

    Three areas of possible commercialization involving robots at the Kennedy Space Center (KSC) are discussed: a six degree-of-freedom target tracking system for remote umbilical operations; an intelligent torque sensing end effector for operating hand valves in hazardous locations; and an automatic radiator inspection device, a 13 by 65 foot robotic mechanism involving completely redundant motors, drives, and controls. Aspects concerning the first two innovations can be integrated to enable robots or teleoperators to perform tasks involving orientation and panal actuation operations that can be done with existing technology rather than waiting for telerobots to incorporate artificial intelligence (AI) to perform 'smart' autonomous operations. The third robot involves the application of complete control hardware redundancy to enable performance of work over and near expensive Space Shuttle hardware. The consumer marketplace may wish to explore commercialization of similiar component redundancy techniques for applications when a robot would not normally be used because of reliability concerns.

  1. Lower-Limb Rehabilitation Robot Design

    NASA Astrophysics Data System (ADS)

    Bouhabba, E. M.; Shafie, A. A.; Khan, M. R.; Ariffin, K.

    2013-12-01

    It is a general assumption that robotics will play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of both the upper and lower extremities. This paper investigates and proposes a lower-limb rehabilitation robot that is used to help patients with lower-limb paralysis to improve and resume physical functions. The proposed rehabilitation robot features three rotary joints forced by electric motors providing linear motions. The paper covers mechanism design and optimization, kinematics analysis, trajectory planning, wearable sensors, and the control system design. The design and control system demonstrate that the proposed rehabilitation robot is safe and reliable with the effective design and better kinematic performance.

  2. Embodied cognition for autonomous interactive robots.

    PubMed

    Hoffman, Guy

    2012-10-01

    In the past, notions of embodiment have been applied to robotics mainly in the realm of very simple robots, and supporting low-level mechanisms such as dynamics and navigation. In contrast, most human-like, interactive, and socially adept robotic systems turn away from embodiment and use amodal, symbolic, and modular approaches to cognition and interaction. At the same time, recent research in Embodied Cognition (EC) is spanning an increasing number of complex cognitive processes, including language, nonverbal communication, learning, and social behavior. This article suggests adopting a modern EC approach for autonomous robots interacting with humans. In particular, we present three core principles from EC that may be applicable to such robots: (a) modal perceptual representation, (b) action/perception and action/cognition integration, and (c) a simulation-based model of top-down perceptual biasing. We describe a computational framework based on these principles, and its implementation on two physical robots. This could provide a new paradigm for embodied human-robot interaction based on recent psychological and neurological findings. Copyright © 2012 Cognitive Science Society, Inc.

  3. Audio-Visual Perception System for a Humanoid Robotic Head

    PubMed Central

    Viciana-Abad, Raquel; Marfil, Rebeca; Perez-Lorenzo, Jose M.; Bandera, Juan P.; Romero-Garces, Adrian; Reche-Lopez, Pedro

    2014-01-01

    One of the main issues within the field of social robotics is to endow robots with the ability to direct attention to people with whom they are interacting. Different approaches follow bio-inspired mechanisms, merging audio and visual cues to localize a person using multiple sensors. However, most of these fusion mechanisms have been used in fixed systems, such as those used in video-conference rooms, and thus, they may incur difficulties when constrained to the sensors with which a robot can be equipped. Besides, within the scope of interactive autonomous robots, there is a lack in terms of evaluating the benefits of audio-visual attention mechanisms, compared to only audio or visual approaches, in real scenarios. Most of the tests conducted have been within controlled environments, at short distances and/or with off-line performance measurements. With the goal of demonstrating the benefit of fusing sensory information with a Bayes inference for interactive robotics, this paper presents a system for localizing a person by processing visual and audio data. Moreover, the performance of this system is evaluated and compared via considering the technical limitations of unimodal systems. The experiments show the promise of the proposed approach for the proactive detection and tracking of speakers in a human-robot interactive framework. PMID:24878593

  4. Electroactive Polymer (EAP) Actuation of Mechanisms and Robotic Devices

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Harrison, J.; Smith, J.

    1999-01-01

    Actuators are responsible to the operative capability of manipulation systems and robots. In recent years, electroactive polymers (EAP) have emerged as potential alternative to conventional actuators.

  5. Roller-gear drives for robotic manipulators design, fabrication and test

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William

    1991-01-01

    Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel. The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.

  6. The European Robotic Arm: A High-performance Mechanism Finally on Its Way to Space

    NASA Technical Reports Server (NTRS)

    Cruijssen, H. J.; Ellenbroek, M.; Henderson, M.; Petersen, H.; Verzijden, P.; Visser, M.

    2014-01-01

    This paper describes the design and qualification of the European Robotic Arm (ERA), which is planned to be launched by the end of 2015. After years of changes, a shift of launcher and new loads, launch preparation is underway. The European Robotic Arm ERA has been designed and manufactured by Dutch Space and its subcontractors such as Astrium, SABCA and Stork with key roles for the mechanical aspects. The arm was originally designed to be launched by the STS (mounted on a Russian module for the ISS) in 2001. However, due to delays and the STS disaster, a shift was made to the Russian Proton rocket. ERA will be launched on the Multipurpose Laboratory Module (MLM). This module, which is now planned for launch to the ISS in 2015, will carry the ERA. The symmetrical design of the arm with a complete 3 degree-of-freedom wrist and general-purpose end effector on both sides, allows ERA to relocate on the station by grappling a new base point and releasing the old one, and move to different working locations.

  7. An Implantable Extracardiac Soft Robotic Device for the Failing Heart: Mechanical Coupling and Synchronization.

    PubMed

    Payne, Christopher J; Wamala, Isaac; Abah, Colette; Thalhofer, Thomas; Saeed, Mossab; Bautista-Salinas, Daniel; Horvath, Markus A; Vasilyev, Nikolay V; Roche, Ellen T; Pigula, Frank A; Walsh, Conor J

    2017-09-01

    Soft robotic devices have significant potential for medical device applications that warrant safe synergistic interaction with humans. This article describes the optimization of an implantable soft robotic system for heart failure whereby soft actuators wrapped around the ventricles are programmed to contract and relax in synchrony with the beating heart. Elastic elements integrated into the soft actuators provide recoiling function so as to aid refilling during the diastolic phase of the cardiac cycle. Improved synchronization with the biological system is achieved by incorporating the native ventricular pressure into the control system to trigger assistance and synchronize the device with the heart. A three-state electro-pneumatic valve configuration allows the actuators to contract at different rates to vary contraction patterns. An in vivo study was performed to test three hypotheses relating to mechanical coupling and temporal synchronization of the actuators and heart. First, that adhesion of the actuators to the ventricles improves cardiac output. Second, that there is a contraction-relaxation ratio of the actuators which generates optimal cardiac output. Third, that the rate of actuator contraction is a factor in cardiac output.

  8. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

    PubMed

    d'Elia, Nicolò; Vanetti, Federica; Cempini, Marco; Pasquini, Guido; Parri, Andrea; Rabuffetti, Marco; Ferrarin, Maurizio; Molino Lova, Raffaele; Vitiello, Nicola

    2017-04-14

    In human-centered robotics, exoskeletons are becoming relevant for addressing needs in the healthcare and industrial domains. Owing to their close interaction with the user, the safety and ergonomics of these systems are critical design features that require systematic evaluation methodologies. Proper transfer of mechanical power requires optimal tuning of the kinematic coupling between the robotic and anatomical joint rotation axes. We present the methods and results of an experimental evaluation of the physical interaction with an active pelvis orthosis (APO). This device was designed to effectively assist in hip flexion-extension during locomotion with a minimum impact on the physiological human kinematics, owing to a set of passive degrees of freedom for self-alignment of the human and robotic hip flexion-extension axes. Five healthy volunteers walked on a treadmill at different speeds without and with the APO under different levels of assistance. The user-APO physical interaction was evaluated in terms of: (i) the deviation of human lower-limb joint kinematics when wearing the APO with respect to the physiological behavior (i.e., without the APO); (ii) relative displacements between the APO orthotic shells and the corresponding body segments; and (iii) the discrepancy between the kinematics of the APO and the wearer's hip joints. The results show: (i) negligible interference of the APO in human kinematics under all the experimented conditions; (ii) small (i.e., < 1 cm) relative displacements between the APO cuffs and the corresponding body segments (called stability); and (iii) significant increment in the human-robot kinematics discrepancy at the hip flexion-extension joint associated with speed and assistance level increase. APO mechanics and actuation have negligible interference in human locomotion. Human kinematics was not affected by the APO under all tested conditions. In addition, under all tested conditions, there was no relevant relative

  9. Energy harvesting from mouse click of robot finger using piezoelectrics

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Hong, Jin; Lee, Jaemin; Park, Jung-Min; Kim, Keehoon

    2017-04-01

    In this paper, we investigate the feasibility of energy harvesting from the mouse click motion using a piezoelectric energy transducer. Specifically, we use a robotic finger to realize repeatable mouse click motion. The robotic finger wears a glove with a pocket for including the piezoelectric material as an energy transducer. We propose a model for the energy harvesting system through the inverse kinematic framework of parallel joints in the finger and the electromechanical coupling equations of the piezoelectric material. Experiments are performed to elucidate the effect of the load resistance and the mouse click motion on energy harvesting.

  10. Cooperative Three-Robot System for Traversing Steep Slopes

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  11. The Role of Reciprocity in Verbally Persuasive Robots.

    PubMed

    Lee, Seungcheol Austin; Liang, Yuhua Jake

    2016-08-01

    The current research examines the persuasive effects of reciprocity in the context of human-robot interaction. This is an important theoretical and practical extension of persuasive robotics by testing (1) if robots can utilize verbal requests and (2) if robots can utilize persuasive mechanisms (e.g., reciprocity) to gain human compliance. Participants played a trivia game with a robot teammate. The ostensibly autonomous robot helped (or failed to help) the participants by providing the correct (vs. incorrect) trivia answers. Then, the robot directly asked participants to complete a 15-minute task for pattern recognition. Compared to no help, results showed that a robot's prior helping behavior significantly increased the likelihood of compliance (60 percent vs. 33 percent). Interestingly, participants' evaluations toward the robot (i.e., competence, warmth, and trustworthiness) did not predict compliance. These results also provided an insightful comparison showing that participants complied at similar rates with the robot and with computer agents. This result documents a clear empirically powerful potential for the role of verbal messages in persuasive robotics.

  12. Electrically Driven Microengineered Bioinspired Soft Robots.

    PubMed

    Shin, Su Ryon; Migliori, Bianca; Miccoli, Beatrice; Li, Yi-Chen; Mostafalu, Pooria; Seo, Jungmok; Mandla, Serena; Enrico, Alessandro; Antona, Silvia; Sabarish, Ram; Zheng, Ting; Pirrami, Lorenzo; Zhang, Kaizhen; Zhang, Yu Shrike; Wan, Kai-Tak; Demarchi, Danilo; Dokmeci, Mehmet R; Khademhosseini, Ali

    2018-03-01

    To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evolution of Signaling in a Multi-Robot System: Categorization and Communication

    NASA Astrophysics Data System (ADS)

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Dorigo, Marco

    We use Evolutionary Robotics to design robot controllers in which decision-making mechanisms to switch from solitary to social behavior are integrated with the mechanisms that underpin the sensory-motor repertoire of the robots. In particular, we study the evolution of behavioral and communicative skills in a categorization task. The individual decision-making structures are based on the integration over time of sensory information. The mechanisms for switching from solitary to social behavior and the ways in which the robots can affect each other's behavior are not predetermined by the experimenter, but are aspects of our model designed by artificial evolution. Our results show that evolved robots manage to cooperate and collectively discriminate between different environments by developing a simple communication protocol based on sound signaling. Communication emerges in the absence of explicit selective pressure coded in the fitness function. The evolution of communication is neither trivial nor obvious; for a meaningful signaling system to evolve, evolution must produce both appropriate signals and appropriate reactions to signals. The use of communication proves to be adaptive for the group, even if, in principle, non-cooperating robots can be equally successful with cooperating robots.

  14. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage

    NASA Astrophysics Data System (ADS)

    Jiang, Yao; Li, Tie-Min; Wang, Li-Ping

    2015-09-01

    This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.

  15. Performance-based robotic assistance during rhythmic arm exercises.

    PubMed

    Leconte, Patricia; Ronsse, Renaud

    2016-09-13

    Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided

  16. Rendering potential wearable robot designs with the LOPES gait trainer.

    PubMed

    Koopman, B; van Asseldonk, E H F; van der Kooij, H; van Dijk, W; Ronsse, R

    2011-01-01

    In recent years, wearable robots (WRs) for rehabilitation, personal assistance, or human augmentation are gaining increasing interest. To make these devices more energy efficient, radical changes to the mechanical structure of the device are being considered. However, it remains very difficult to predict how people will respond to, and interact with, WRs that differ in terms of mechanical design. Users may adjust their gait pattern in response to the mechanical restrictions or properties of the device. The goal of this pilot study is to show the feasibility of rendering the mechanical properties of different potential WR designs using the robotic gait training device LOPES. This paper describes a new method that selectively cancels the dynamics of LOPES itself and adds the dynamics of the rendered WR using two parallel inverse models. Adaptive frequency oscillators were used to get estimates of the joint position, velocity, and acceleration. Using the inverse models, different WR designs can be evaluated, eliminating the need to build several prototypes. As a proof of principle, we simulated the effect of a very simple WR that consisted of a mass attached to the ankles. Preliminary results show that we are partially able to cancel the dynamics of LOPES. Additionally, the simulation of the mass showed an increase in muscle activity but not in the same level as during the control, where subjects actually carried the mass. In conclusion, the results in this paper suggest that LOPES can be used to render different WRs. In addition, it is very likely that the results can be further optimized when more effort is put in retrieving proper estimations for the velocity and acceleration, which are required for the inverse models. © 2011 IEEE

  17. Soft Robots: Manipulation, Mobility, and Fast Actuation

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George

    2012-02-01

    Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.

  18. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social

    PubMed Central

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user’s needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human–robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human–human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human–robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human–robot tasks. Lastly, we describe circumstances under

  19. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social.

    PubMed

    Wiese, Eva; Metta, Giorgio; Wykowska, Agnieszka

    2017-01-01

    Robots are increasingly envisaged as our future cohabitants. However, while considerable progress has been made in recent years in terms of their technological realization, the ability of robots to interact with humans in an intuitive and social way is still quite limited. An important challenge for social robotics is to determine how to design robots that can perceive the user's needs, feelings, and intentions, and adapt to users over a broad range of cognitive abilities. It is conceivable that if robots were able to adequately demonstrate these skills, humans would eventually accept them as social companions. We argue that the best way to achieve this is using a systematic experimental approach based on behavioral and physiological neuroscience methods such as motion/eye-tracking, electroencephalography, or functional near-infrared spectroscopy embedded in interactive human-robot paradigms. This approach requires understanding how humans interact with each other, how they perform tasks together and how they develop feelings of social connection over time, and using these insights to formulate design principles that make social robots attuned to the workings of the human brain. In this review, we put forward the argument that the likelihood of artificial agents being perceived as social companions can be increased by designing them in a way that they are perceived as intentional agents that activate areas in the human brain involved in social-cognitive processing. We first review literature related to social-cognitive processes and mechanisms involved in human-human interactions, and highlight the importance of perceiving others as intentional agents to activate these social brain areas. We then discuss how attribution of intentionality can positively affect human-robot interaction by (a) fostering feelings of social connection, empathy and prosociality, and by (b) enhancing performance on joint human-robot tasks. Lastly, we describe circumstances under which

  20. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  1. Automatic Modeling and Simulation of Modular Robots

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  2. Passive appendages improve the maneuverability of fish-like robots

    NASA Astrophysics Data System (ADS)

    Pollard, Beau; Tallapragada, Phanindra

    2017-11-01

    It is known that the passive mechanics of fish appendages play a role in the high efficiency of their swimming. A well known example of this is the experimental demonstration that a dead fish could swim upstream. However little is known about the role if any of passive deformations of a fish-like body that could aid in its maneuverability. Part of the difficulty investigating this lies in clearly separating the role of actuated body deformations and passive deformations in response to the fluid structure interaction. In this paper we compare the maneuverability of several fish shaped robotic models that possess varying numbers of passive appendages with a fish shaped robot that has no appendages. All the robots are propelled by the oscillations of an internal momentum wheel thereby eliminating any active deformations of the body. Our experiments clearly reveal the significant improvement in maneuverability of robots with passive appendages. In the broader context of swimming robots our experiments show that passive mechanisms could be useful to provide mechanical feedback that can help maneuverability and obstacle avoidance along with propulsive efficiency. This work was partly supported by a Grant from the NSF CMMI 1563315.

  3. Development of biomimetic quadruped walking robot with 2-DOF waist joint

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; Park, Se-Hoon; Lee, Yun-Jung

    2005-12-01

    This paper presented a novel bio-mimetic quadruped walking robot with 2-DOF (Degree Of Freedom) waist joint, which connects the front and the rear parts of the body. The waist-jointed walking robot can guarantee more stable and more animal-like gait than that of a conventional single-rigid-body walking robot. The developed robot, called ELIRO-II (Eating LIzard RObot version 2), can bend its body from side to side by using 1-DOF passive waist joint while the legs is transferred, thereby increasing the stride and speed of the robot. In addition, ELIRO-II has one more active DOF to bend its body up and down, which increases the mobility in irregular terrain such as slope and stairs. We design the mechanical structure of the robot, which is small and light to have high mobility. This research described characteristics of the 2-DOF waists joint and leg mechanism as well as a hardware and software of the controller of ELIRO-II.

  4. Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.

    PubMed

    Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin

    2017-07-01

    Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.

  5. A discrete decentralized variable structure robotic controller

    NASA Technical Reports Server (NTRS)

    Tumeh, Zuheir S.

    1989-01-01

    A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.

  6. The Summer Robotic Autonomy Course

    NASA Technical Reports Server (NTRS)

    Nourbakhsh, Illah R.

    2002-01-01

    We offered a first Robotic Autonomy course this summer, located at NASA/Ames' new NASA Research Park, for approximately 30 high school students. In this 7-week course, students worked in ten teams to build then program advanced autonomous robots capable of visual processing and high-speed wireless communication. The course made use of challenge-based curricula, culminating each week with a Wednesday Challenge Day and a Friday Exhibition and Contest Day. Robotic Autonomy provided a comprehensive grounding in elementary robotics, including basic electronics, electronics evaluation, microprocessor programming, real-time control, and robot mechanics and kinematics. Our course then continued the educational process by introducing higher-level perception, action and autonomy topics, including teleoperation, visual servoing, intelligent scheduling and planning and cooperative problem-solving. We were able to deliver such a comprehensive, high-level education in robotic autonomy for two reasons. First, the content resulted from close collaboration between the CMU Robotics Institute and researchers in the Information Sciences and Technology Directorate and various education program/project managers at NASA/Ames. This collaboration produced not only educational content, but will also be focal to the conduct of formative and summative evaluations of the course for further refinement. Second, CMU rapid prototyping skills as well as the PI's low-overhead perception and locomotion research projects enabled design and delivery of affordable robot kits with unprecedented sensory- locomotory capability. Each Trikebot robot was capable of both indoor locomotion and high-speed outdoor motion and was equipped with a high-speed vision system coupled to a low-cost pan/tilt head. As planned, follow the completion of Robotic Autonomy, each student took home an autonomous, competent robot. This robot is the student's to keep, as she explores robotics with an extremely capable tool in the

  7. Three laws of robotics and surgery.

    PubMed

    Moran, Michael

    2008-08-01

    In 1939, Isaac Asimov solidified the modern science fiction genre of robotics in his short story "Strange Playfellow" but altered our thinking about robots in Runaround in 1942 by formulating the Three Laws. He took an engineer's perspective on advanced robotic technologies. Surgical robots by definition violate the first law, yet his discussions are poignant for our understanding of future potential of robotic urologic surgery. We sought to better understand Asimov's visions by reading his fiction and autobiography. We then sought to place his perceptions of science fact next to the Three Laws (he later added a fourth law, the zeroth). Asimov's Three Laws are often quoted in medical journals during discussions about robotic surgery. His First Law states: "A robot may not injure a human being, or, through inaction, allow a human being to come to harm. " This philosophy would directly conflict with the application in surgery. In fact, most of his robotic stories deal with robots that come into conflicts with the laws. Robots in his cleverly orchestrated works evolve unique solutions to complex hierarchical conflicts with these laws. Asimov anticipated the coming maelstrom of intelligent robotic technologies with prescient unease. Despite his scholarly intuitions, he was able to fathom medical/surgical applications in many of his works. These fictional robotic physicians were able to overcome the first law and aid in the care and management of the sick/injured. Isaac Asimov published over 500 books on topics ranging from Shakespeare to science. Despite his widespread influence, he refused to visit the MIT robotics laboratory to see current, state-of-the-art systems. He managed to lay the foundation of modern robotic control systems with a human-oriented safety mechanism in his laws. "If knowledge can create problems, it is not through ignorance that we can solve them " (I Asimov).

  8. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  9. Augmented Robotics Dialog System for Enhancing Human–Robot Interaction

    PubMed Central

    Alonso-Martín, Fernando; Castro-González, Aívaro; de Gorostiza Luengo, Francisco Javier Fernandez; Salichs, Miguel Ángel

    2015-01-01

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human–robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human–robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications. PMID:26151202

  10. Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.

    PubMed

    Alonso-Martín, Fernando; Castro-González, Aĺvaro; Luengo, Francisco Javier Fernandez de Gorostiza; Salichs, Miguel Ángel

    2015-07-03

    Augmented reality, augmented television and second screen are cutting edge technologies that provide end users extra and enhanced information related to certain events in real time. This enriched information helps users better understand such events, at the same time providing a more satisfactory experience. In the present paper, we apply this main idea to human-robot interaction (HRI), to how users and robots interchange information. The ultimate goal of this paper is to improve the quality of HRI, developing a new dialog manager system that incorporates enriched information from the semantic web. This work presents the augmented robotic dialog system (ARDS), which uses natural language understanding mechanisms to provide two features: (i) a non-grammar multimodal input (verbal and/or written) text; and (ii) a contextualization of the information conveyed in the interaction. This contextualization is achieved by information enrichment techniques that link the extracted information from the dialog with extra information about the world available in semantic knowledge bases. This enriched or contextualized information (information enrichment, semantic enhancement or contextualized information are used interchangeably in the rest of this paper) offers many possibilities in terms of HRI. For instance, it can enhance the robot's pro-activeness during a human-robot dialog (the enriched information can be used to propose new topics during the dialog, while ensuring a coherent interaction). Another possibility is to display additional multimedia content related to the enriched information on a visual device. This paper describes the ARDS and shows a proof of concept of its applications.

  11. Progress in EEG-Based Brain Robot Interaction Systems

    PubMed Central

    Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488

  12. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  13. Integrating sensorimotor systems in a robot model of cricket behavior

    NASA Astrophysics Data System (ADS)

    Webb, Barbara H.; Harrison, Reid R.

    2000-10-01

    The mechanisms by which animals manage sensorimotor integration and coordination of different behaviors can be investigated in robot models. In previous work the first author has build a robot that localizes sound based on close modeling of the auditory and neural system in the cricket. It is known that the cricket combines its response to sound with other sensorimotor activities such as an optomotor reflex and reactions to mechanical stimulation for the antennae and cerci. Behavioral evidence suggests some ways these behaviors may be integrated. We have tested the addition of an optomotor response, using an analog VLSI circuit developed by the second author, to the sound localizing behavior and have shown that it can, as in the cricket, improve the directness of the robot's path to sound. In particular it substantially improves behavior when the robot is subject to a motor disturbance. Our aim is to better understand how the insect brain functions in controlling complex combinations of behavior, with the hope that this will also suggest novel mechanisms for sensory integration on robots.

  14. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Baddourah, Majdi; Qin, Jiangning

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigensolution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization search analysis and domain decomposition. The source code for many of these algorithms is available.

  15. A novel laparoscopic grasper with two parallel jaws capable of extracting the mechanical behaviour of soft tissues.

    PubMed

    Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz

    2017-07-01

    Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.

  16. Collaborative Robots and Knowledge Management - A Short Review

    NASA Astrophysics Data System (ADS)

    Mușat, Flaviu-Constantin; Mihu, Florin-Constantin

    2017-12-01

    Because the requirements of the customers are more and more high related to quality, quantity, delivery times at lowest costs possible, the industry had to come with automated solutions to improve these requirements. Starting from the automated lines developed by Ford and Toyota, we have now developed automated and self-sustained working lines, which is possible nowadays-using collaborative robots. By using the knowledge management system we can improve the development of the future of this kind of area of research. This paper shows the benefits and the smartness use of the robots that are performing the manipulation activities that increases the work place ergonomically and improve the interaction between human - machine in order to assist in parallel tasks and lowering the physically human efforts.

  17. Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots

    PubMed Central

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment. PMID:24523694

  18. Anthropomorphism in Human–Robot Co-evolution

    PubMed Central

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507

  19. IOPA: I/O-aware parallelism adaption for parallel programs

    PubMed Central

    Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei

    2017-01-01

    With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads. PMID:28278236

  20. IOPA: I/O-aware parallelism adaption for parallel programs.

    PubMed

    Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei

    2017-01-01

    With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads.

  1. Biomimetic vibrissal sensing for robots

    PubMed Central

    Pearson, Martin J.; Mitchinson, Ben; Sullivan, J. Charles; Pipe, Anthony G.; Prescott, Tony J.

    2011-01-01

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots. PMID:21969690

  2. Biomimetic vibrissal sensing for robots.

    PubMed

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  3. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  4. Computational mechanics analysis tools for parallel-vector supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.

    1993-01-01

    Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.

  5. Autonomous Mobile Platform for Research in Cooperative Robotics

    NASA Technical Reports Server (NTRS)

    Daemi, Ali; Pena, Edward; Ferguson, Paul

    1998-01-01

    This paper describes the design and development of a platform for research in cooperative mobile robotics. The structure and mechanics of the vehicles are based on R/C cars. The vehicle is rendered mobile by a DC motor and servo motor. The perception of the robot's environment is achieved using IR sensors and a central vision system. A laptop computer processes images from a CCD camera located above the testing area to determine the position of objects in sight. This information is sent to each robot via RF modem. Each robot is operated by a Motorola 68HC11E micro-controller, and all actions of the robots are realized through the connections of IR sensors, modem, and motors. The intelligent behavior of each robot is based on a hierarchical fuzzy-rule based approach.

  6. System of launchable mesoscale robots for distributed sensing

    NASA Astrophysics Data System (ADS)

    Yesin, Kemal B.; Nelson, Bradley J.; Papanikolopoulos, Nikolaos P.; Voyles, Richard M.; Krantz, Donald G.

    1999-08-01

    A system of launchable miniature mobile robots with various sensors as payload is used for distributed sensing. The robots are projected to areas of interest either by a robot launcher or by a human operator using standard equipment. A wireless communication network is used to exchange information with the robots. Payloads such as a MEMS sensor for vibration detection, a microphone and an active video module are used mainly to detect humans. The video camera provides live images through a wireless video transmitter and a pan-tilt mechanism expands the effective field of view. There are strict restrictions on total volume and power consumption of the payloads due to the small size of the robot. Emerging technologies are used to address these restrictions. In this paper, we describe the use of microrobotic technologies to develop active vision modules for the mesoscale robot. A single chip CMOS video sensor is used along with a miniature lens that is approximately the size of a sugar cube. The device consumes 100 mW; about 5 times less than the power consumption of a comparable CCD camera. Miniature gearmotors 3 mm in diameter are used to drive the pan-tilt mechanism. A miniature video transmitter is used to transmit analog video signals from the camera.

  7. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  8. The sixth generation robot in space

    NASA Technical Reports Server (NTRS)

    Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.

    1990-01-01

    The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.

  9. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.

    PubMed

    Sheng, Bo; Zhang, Yanxin; Meng, Wei; Deng, Chao; Xie, Shengquan

    2016-07-01

    Robot-assisted bilateral upper-limb training grows abundantly for stroke rehabilitation in recent years and an increasing number of devices and robots have been developed. This paper aims to provide a systematic overview and evaluation of existing bilateral upper-limb rehabilitation devices and robots based on their mechanisms and clinical-outcomes. Most of the articles studied here were searched from nine online databases and the China National Knowledge Infrastructure (CNKI) from year 1993 to 2015. Devices and robots were categorized as end-effectors, exoskeletons and industrial robots. Totally ten end-effectors, one exoskeleton and one industrial robot were evaluated in terms of their mechanical characteristics, degrees of freedom (DOF), supported control modes, clinical applicability and outcomes. Preliminary clinical results of these studies showed that all participants could gain certain improvements in terms of range of motion, strength or physical function after training. Only four studies supported that bilateral training was better than unilateral training. However, most of clinical results cannot definitely verify the effectiveness of mechanisms and clinical protocols used in robotic therapies. To explore the actual value of these robots and devices, further research on ingenious mechanisms, dose-matched clinical protocols and universal evaluation criteria should be conducted in the future. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Robotic Ankle for Omnidirectional Rock Anchors

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish

    2013-01-01

    rotary DC motor that can drag the microspine arrays across the surface to engage them with asperities, as well as a linear actuator to disengage the hooks from the surface. Additionally, the ankle allows the gripper to rotate freely about all three axes so that when the robot takes a step, the gripper may optimally orient itself with respect to the wall or ground. Finally, the ankle contains some minimal elasticity, so that between steps, the gripper returns to a default position that is roughly parallel to the wall.

  11. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  12. Real-time robot deliberation by compilation and monitoring of anytime algorithms

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo

    1994-01-01

    Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.

  13. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  14. Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resseguie, David R

    There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less

  15. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  16. Research on Self-Reconfigurable Modular Robot System

    NASA Astrophysics Data System (ADS)

    Kamimura, Akiya; Murata, Satoshi; Yoshida, Eiichi; Kurokawa, Haruhisa; Tomita, Kohji; Kokaji, Shigeru

    Growing complexity of artificial systems arises reliability and flexibility issues of large system design. Robots are not exception of this, and many attempts have been made to realize reliable and flexible robot systems. Distributed modular composition of robot is one of the most effective approaches to attain such abilities and has a potential to adapt to its surroundings by changing its configuration autonomously according to information of surroundings. In this paper, we propose a novel three-dimensional self-reconfigurable robotic module. Each module has a very simple structure that consists of two semi-cylindrical parts connected by a link. The modular system is capable of not only building static structure but also generating dynamic robotic motion. We present details of the mechanical/electrical design of the developed module and its control system architecture. Experiments using ten modules with centralized control demonstrate robotic configuration change, crawling locomotion and three types of quadruped locomotion.

  17. Robotics in Orthopedics: A Brave New World.

    PubMed

    Parsley, Brian S

    2018-02-16

    Future health-care projection projects a significant growth in population by 2020. Health care has seen an exponential growth in technology to address the growing population with the decreasing number of physicians and health-care workers. Robotics in health care has been introduced to address this growing need. Early adoption of robotics was limited because of the limited application of the technology, the cumbersome nature of the equipment, and technical complications. A continued improvement in efficacy, adaptability, and cost reduction has stimulated increased interest in robotic-assisted surgery. The evolution in orthopedic surgery has allowed for advanced surgical planning, precision robotic machining of bone, improved implant-bone contact, optimization of implant placement, and optimization of the mechanical alignment. The potential benefits of robotic surgery include improved surgical work flow, improvements in efficacy and reduction in surgical time. Robotic-assisted surgery will continue to evolve in the orthopedic field. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.

    PubMed

    Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J

    2012-10-01

    The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.

  19. Novel compliant actuator for wearable robotics applications.

    PubMed

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  20. Robotic Surgical Training in an Academic Institution

    PubMed Central

    Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.

    2001-01-01

    Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons

  1. A tesselated probabilistic representation for spatial robot perception and navigation

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto

    1989-01-01

    The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.

  2. Balancing Theory and Practical Work in a Humanoid Robotics Course

    ERIC Educational Resources Information Center

    Wolff, Krister; Wahde, Mattias

    2010-01-01

    In this paper, we summarize our experiences from teaching a course in humanoid robotics at Chalmers University of Technology in Goteborg, Sweden. We describe the robotic platform used in the course and we propose the use of a custom-built robot consisting of standard electronic and mechanical components. In our experience, by using standard…

  3. A Parallel Randomized Clinical Trial Examining the Return of Urinary Continence after Robot-Assisted Radical Prostatectomy with or without a Small Intestinal Submucosa Bladder Neck Sling.

    PubMed

    Bahler, Clinton D; Sundaram, Chandru P; Kella, Naveen; Lucas, Steven M; Boger, Michelle A; Gardner, Thomas A; Koch, Michael O

    2016-07-01

    Urinary continence is a driver of quality of life after radical prostatectomy. In this study we evaluated the impact of a biological bladder neck sling on the return of urinary continence after robot-assisted radical prostatectomy. This study compared early continence in patients undergoing robot-assisted radical prostatectomy with a sling and without a sling in a 2-group, 1:1, parallel, randomized controlled trial. Patients were blinded to group assignment. The primary outcome was defined as urinary continence (0 to 1 pad per day) at 1 month postoperatively. Inclusion criteria were organ confined prostate cancer and a prostate specific antigen less than 15 ng/ml. Exclusion criteria were any prior surgery on the prostate, a history of neurogenic bladder and history of pelvic radiation. A chi-squared test was used for the primary outcome. A total of 147 patients were randomized (control 74, sling 73) and 92% were available for primary end point analysis at 1 month. There were no significant differences in baseline or perioperative data except that operating room time was 20.1 minutes longer for the sling group (p=0.04). The continence rate was similar between the control and sling groups at 1 month (47.1% vs 55.2%, p=0.34) and 12 months (86.7% vs 94.5%, p=0.15), respectively. Adverse events were similar between the control and sling groups (10.8% vs 13.7%, p=0.59). The application of an absorbable urethral sling at robot-assisted radical prostatectomy was well tolerated with no increase in obstructive symptoms in this randomized trial. However, the sling failed to show a significant improvement in continence. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  5. Middleware Design for Swarm-Driving Robots Accompanying Humans.

    PubMed

    Kim, Min Su; Kim, Sang Hyuck; Kang, Soon Ju

    2017-02-17

    Research on robots that accompany humans is being continuously studied. The Pet-Bot provides walking-assistance and object-carrying services without any specific controls through interaction between the robot and the human in real time. However, with Pet-Bot, there is a limit to the number of robots a user can use. If this limit is overcome, the Pet-Bot can provide services in more areas. Therefore, in this study, we propose a swarm-driving middleware design adopting the concept of a swarm, which provides effective parallel movement to allow multiple human-accompanying robots to accomplish a common purpose. The functions of middleware divide into three parts: a sequence manager for swarm process, a messaging manager, and a relative-location identification manager. This middleware processes the sequence of swarm-process of robots in the swarm through message exchanging using radio frequency (RF) communication of an IEEE 802.15.4 MAC protocol and manages an infrared (IR) communication module identifying relative location with IR signal strength. The swarm in this study is composed of the master interacting with the user and the slaves having no interaction with the user. This composition is intended to control the overall swarm in synchronization with the user activity, which is difficult to predict. We evaluate the accuracy of the relative-location estimation using IR communication, the response time of the slaves to a change in user activity, and the time to organize a network according to the number of slaves.

  6. Middleware Design for Swarm-Driving Robots Accompanying Humans

    PubMed Central

    Kim, Min Su; Kim, Sang Hyuck; Kang, Soon Ju

    2017-01-01

    Research on robots that accompany humans is being continuously studied. The Pet-Bot provides walking-assistance and object-carrying services without any specific controls through interaction between the robot and the human in real time. However, with Pet-Bot, there is a limit to the number of robots a user can use. If this limit is overcome, the Pet-Bot can provide services in more areas. Therefore, in this study, we propose a swarm-driving middleware design adopting the concept of a swarm, which provides effective parallel movement to allow multiple human-accompanying robots to accomplish a common purpose. The functions of middleware divide into three parts: a sequence manager for swarm process, a messaging manager, and a relative-location identification manager. This middleware processes the sequence of swarm-process of robots in the swarm through message exchanging using radio frequency (RF) communication of an IEEE 802.15.4 MAC protocol and manages an infrared (IR) communication module identifying relative location with IR signal strength. The swarm in this study is composed of the master interacting with the user and the slaves having no interaction with the user. This composition is intended to control the overall swarm in synchronization with the user activity, which is difficult to predict. We evaluate the accuracy of the relative-location estimation using IR communication, the response time of the slaves to a change in user activity, and the time to organize a network according to the number of slaves. PMID:28218650

  7. Experimental Research Regarding The Motion Capacity Of A Robotic Arm

    NASA Astrophysics Data System (ADS)

    Dumitru, Violeta Cristina

    2015-09-01

    This paper refers to the development of necessary experiments which obtained dynamic parameters (force, displacement) for a modular mechanism with multiple vertebrae. This mechanism performs functions of inspection and intervention in small spaces. Mechanical structure allows functional parameters to achieve precise movements to an imposed target. Will be analyzed the dynamic of the mechanisms using simulation instruments DimamicaRobot.tst under TestPoint programming environment and the elasticity of the tension cables. It will be changes on the mechanism so that spatial movement of the robotic arm is optimal.

  8. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  9. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    PubMed

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  10. Performance evaluation of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. S.; Heo, S.; Park, H. C.; Byun, D.

    2010-03-01

    This paper presents an improved fish robot actuated by four lightweight piezocomposite actuators. Our newly developed actuation mechanism is simple to fabricate because it works without gears. With the new actuation mechanism, the fish robot has a 30% smaller cross section than our previous model. Performance tests of the fish robot in water were carried out to measure the tail-beat angle, the thrust force, the swimming speed for various tail-beat frequencies from 1 to 5 Hz and the turning radius at the optimal frequency. The maximum swimming speed of the fish robot is 7.7 cm s - 1 at a tail-beat frequency of 3.9 Hz. A turning experiment shows that the swimming direction of the fish robot can be controlled by changing the duty ratio of the driving voltage; the fish robot has a turning radius of 0.41 m for a left turn and 0.68 m for a right turn.

  11. Artificial pheromone for path selection by a foraging swarm of robots.

    PubMed

    Campo, Alexandre; Gutiérrez, Alvaro; Nouyan, Shervin; Pinciroli, Carlo; Longchamp, Valentin; Garnier, Simon; Dorigo, Marco

    2010-11-01

    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilities.

  12. Embedded mobile farm robot for identification of diseased plants

    NASA Astrophysics Data System (ADS)

    Sadistap, S. S.; Botre, B. A.; Pandit, Harshavardhan; Chandrasekhar; Rao, Adesh

    2013-07-01

    This paper presents the development of a mobile robot used in farms for identification of diseased plants. It puts forth two of the major aspects of robotics namely automated navigation and image processing. The robot navigates on the basis of the GPS (Global Positioning System) location and data obtained from IR (Infrared) sensors to avoid any obstacles in its path. It uses an image processing algorithm to differentiate between diseased and non-diseased plants. A robotic platform consisting of an ARM9 processor, motor drivers, robot mechanical assembly, camera and infrared sensors has been used. Mini2440 microcontroller has been used wherein Embedded linux OS (Operating System) is implemented.

  13. Robotics handbook. Version 1: For the interested party and professional

    NASA Astrophysics Data System (ADS)

    1993-12-01

    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics.

  14. Robotics handbook. Version 1: For the interested party and professional

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication covers several categories of information about robotics. The first section provides a brief overview of the field of Robotics. The next section provides a reasonably detailed look at the NASA Robotics program. The third section features a listing of companies and organization engaging in robotics or robotic-related activities; followed by a listing of associations involved in the field; followed by a listing of publications and periodicals which cover elements of robotics or related fields. The final section is an abbreviated abstract of referred journal material and other reference material relevant to the technology and science of robotics, including such allied fields as vision perception; three-space axis orientation and measurement systems and associated inertial reference technology and algorithms; and physical and mechanical science and technology related to robotics.

  15. Development of Robotics Applications in a Solid Propellant Mixing Laboratory

    DTIC Science & Technology

    1988-06-01

    implementation of robotic hardware and software into a laboratory environment requires a carefully structured series of phases which examines, in...strategy. The general methodology utilized in this project is discussed in Appendix A. The proposed laboratory robotics development program was structured ...Accessibility - Potential modifications - Safety precautions e) Robot Transport - Slider mechanisms - Linear tracks - Gantry configuration - Mobility f

  16. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    PubMed

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  17. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    PubMed Central

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J.; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control. PMID:22666004

  18. Tool actuation and force feedback on robot-assisted microsurgery system

    NASA Technical Reports Server (NTRS)

    Das, Hari (Inventor); Ohm, Tim R. (Inventor); Boswell, Curtis D. (Inventor); Steele, Robert D. (Inventor)

    2002-01-01

    An input control device with force sensors is configured to sense hand movements of a surgeon performing a robot-assisted microsurgery. The sensed hand movements actuate a mechanically decoupled robot manipulator. A microsurgical manipulator, attached to the robot manipulator, is activated to move small objects and perform microsurgical tasks. A force-feedback element coupled to the robot manipulator and the input control device provides the input control device with an amplified sense of touch in the microsurgical manipulator.

  19. Experiential Learning of Electronics Subject Matter in Middle School Robotics Courses

    ERIC Educational Resources Information Center

    Rihtaršic, David; Avsec, Stanislav; Kocijancic, Slavko

    2016-01-01

    The purpose of this paper is to investigate whether the experiential learning of electronics subject matter is effective in the middle school open learning of robotics. Electronics is often ignored in robotics courses. Since robotics courses are typically comprised of computer-related subjects, and mechanical and electrical engineering, these…

  20. Modification of a Limbed Robot to Favor Climbing

    NASA Technical Reports Server (NTRS)

    Okon, Avi; Kennedy, Brett; Garrett, Michael; Magnone, Lee

    2006-01-01

    The figure shows the LEMUR IIb, which is a modified version of the LEMUR II the second generation of the Limbed Excursion Mechanical Utility Robot (LEMUR). Except as described below, the LEMUR IIb hardware is mostly the same as that of the LEMUR II. The IIb and II versions differ in their kinematic configurations and characteristics associated with their kinematic configurations. The differences are such that relative to the LEMUR II, the LEMUR IIb is simpler and is better suited to climbing on inclined surfaces. The first-generation LEMUR, now denoted the LEMUR I, was described in Six-Legged Experimental Robot (NPO-20897), NASA Tech Briefs, Vol. 25, No. 12 (December 2001), page 58. The LEMUR II was described in Second-Generation Six-Limbed Experimental Robot (NPO-35140) NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 55. To recapitulate: the LEMUR I and LEMUR II were six-legged or sixlimbed robots for demonstrating robotic capabilities for assembly, maintenance, and inspection. They were designed to be capable of walking autonomously along a truss structure toward a mechanical assembly at a prescribed location. They were equipped with stereoscopic video cameras and image-data-processing circuitry for navigation and mechanical operations. They were also equipped with wireless modems, through which they could be commanded remotely. Upon arrival at a mechanical assembly, the LEMUR I would perform simple mechanical operations by use of one or both of its front legs (or in the case of the LEMUR II, any of its limbs could be used to perform mechanical operations). Either LEMUR could also transmit images to a host computer. The differences between the LEMUR IIb and the LEMUR II are the following: Whereas the LEMUR II had six limbs, the LEMUR IIb has four limbs. This change has reduced both the complexity and mass of the legs and of the overall robot. Whereas each limb of the LEMUR II had four degrees of freedom (DOFs), each limb of the LEMUR IIb has three DOFs

  1. Robot acting on moving bodies (RAMBO): Preliminary results

    NASA Technical Reports Server (NTRS)

    Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David

    1989-01-01

    A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.

  2. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  3. A robotic approach to understanding the role and the mechanism of vicarious trial-and-error in a T-maze task.

    PubMed

    Matsuda, Eiko; Hubert, Julien; Ikegami, Takashi

    2014-01-01

    Vicarious trial-and-error (VTE) is a behavior observed in rat experiments that seems to suggest self-conflict. This behavior is seen mainly when the rats are uncertain about making a decision. The presence of VTE is regarded as an indicator of a deliberative decision-making process, that is, searching, predicting, and evaluating outcomes. This process is slower than automated decision-making processes, such as reflex or habituation, but it allows for flexible and ongoing control of behavior. In this study, we propose for the first time a robotic model of VTE to see if VTE can emerge just from a body-environment interaction and to show the underlying mechanism responsible for the observation of VTE and the advantages provided by it. We tried several robots with different parameters, and we have found that they showed three different types of VTE: high numbers of VTE at the beginning of learning, decreasing numbers afterward (similar VTE pattern to experiments with rats), low during the whole learning period, and high numbers all the time. Therefore, we were able to reproduce the phenomenon of VTE in a model robot using only a simple dynamical neural network with Hebbian learning, which suggests that VTE is an emergent property of a plastic and embodied neural network. From a comparison of the three types of VTE, we demonstrated that 1) VTE is associated with chaotic activity of neurons in our model and 2) VTE-showing robots were robust to environmental perturbations. We suggest that the instability of neuronal activity found in VTE allows ongoing learning to rebuild its strategy continuously, which creates robust behavior. Based on these results, we suggest that VTE is caused by a similar mechanism in biology and leads to robust decision making in an analogous way.

  4. Validation of a robotic balance system for investigations in the control of human standing balance.

    PubMed

    Luu, Billy L; Huryn, Thomas P; Van der Loos, H F Machiel; Croft, Elizabeth A; Blouin, Jean-Sébastien

    2011-08-01

    Previous studies have shown that human body sway during standing approximates the mechanics of an inverted pendulum pivoted at the ankle joints. In this study, a robotic balance system incorporating a Stewart platform base was developed to provide a new technique to investigate the neural mechanisms involved in standing balance. The robotic system, programmed with the mechanics of an inverted pendulum, controlled the motion of the body in response to a change in applied ankle torque. The ability of the robotic system to replicate the load properties of standing was validated by comparing the load stiffness generated when subjects balanced their own body to the robot's mechanical load programmed with a low (concentrated-mass model) or high (distributed-mass model) inertia. The results show that static load stiffness was not significantly (p > 0.05) different for standing and the robotic system. Dynamic load stiffness for the robotic system increased with the frequency of sway, as predicted by the mechanics of an inverted pendulum, with the higher inertia being accurately matched to the load properties of the human body. This robotic balance system accurately replicated the physical model of standing and represents a useful tool to simulate the dynamics of a standing person. © 2011 IEEE

  5. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  6. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    NASA Technical Reports Server (NTRS)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  7. Soft Actuators for Small-Scale Robotics.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Lum, Guo Zhan; Sitti, Metin

    2017-04-01

    This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Robotics in Nursing: A Bibliometric Analysis.

    PubMed

    Carter-Templeton, Heather; Frazier, Rachel M; Wu, Lin; H Wyatt, Tami

    2018-06-19

    The purpose of this study was to describe the current evidence found in the nursing literature about robotics used to assist or augment nursing care. A bibliometric analysis of published research focused on robotics in nursing care was conducted to analyze the trends of publications. A search of the Cumulative Index to Nursing and Allied Health Literature database was conducted. This analysis was used to determine the types and extent of robotic research presented in nursing and allied health literature, journals that publish robotic research, and the origins of the study. Twenty-one articles met inclusion criteria and spanned the years 2004 to 2016. The main disciplines represented by first authors in these 21 articles were medicine (n = 4, 9%), nursing (n = 4, 9%), and psychiatric medicine (n = 4, 9%). Nine countries were represented by the first author. The majority of the specific studies reported using qualitative research methods (n = 4, 19%) with reports of other research designs being used. Further analysis of subsequent citations found that 248 subsequent citations were generated from these articles. The application of robots has been used beyond typical physical day-to-day processes as many definitions of robotics suggest. Eleven (52%) of the 21 articles described the use of robots with aged patients. In some cases, robots were used as companions for older adults, as opposed to replacing mechanical and repetitive motions. Robotics are being used globally in nursing care areas. While a limited amount of research on this topic in nursing exists, this study of the literature offers reports of applications of robots within nursing care areas. © 2018 Sigma Theta Tau International.

  9. Socially intelligent robots: dimensions of human-robot interaction.

    PubMed

    Dautenhahn, Kerstin

    2007-04-29

    Social intelligence in robots has a quite recent history in artificial intelligence and robotics. However, it has become increasingly apparent that social and interactive skills are necessary requirements in many application areas and contexts where robots need to interact and collaborate with other robots or humans. Research on human-robot interaction (HRI) poses many challenges regarding the nature of interactivity and 'social behaviour' in robot and humans. The first part of this paper addresses dimensions of HRI, discussing requirements on social skills for robots and introducing the conceptual space of HRI studies. In order to illustrate these concepts, two examples of HRI research are presented. First, research is surveyed which investigates the development of a cognitive robot companion. The aim of this work is to develop social rules for robot behaviour (a 'robotiquette') that is comfortable and acceptable to humans. Second, robots are discussed as possible educational or therapeutic toys for children with autism. The concept of interactive emergence in human-child interactions is highlighted. Different types of play among children are discussed in the light of their potential investigation in human-robot experiments. The paper concludes by examining different paradigms regarding 'social relationships' of robots and people interacting with them.

  10. Research in mobile robotics at ORNL/CESAR (Oak Ridge National Laboratory/Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.; Weisbin, C.R.; Pin, F.G.

    1989-01-01

    This paper reviews ongoing and planned research with mobile autonomous robots at the Oak Ridge National Laboratory (ORNL), Center for Engineering Systems Advanced Research (CESAR). Specifically we report on results obtained with the robot HERMIES-IIB in navigation, intelligent sensing, learning, and on-board parallel computing in support of these functions. We briefly summarize an experiment with HERMIES-IIB that demonstrates the capability of smooth transitions between robot autonomy and tele-operation. This experiment results from collaboration among teams at the Universities of Florida, Michigan, Tennessee, and Texas; and ORNL in a program targeted at robotics for advanced nuclear power stations. We conclude bymore » summarizing ongoing R D with our new mobile robot HERMIES-III which is equipped with a seven degree-of-freedom research manipulator arm. 12 refs., 4 figs.« less

  11. Kinematics Analysis of End Effector for Carrier Robot of Feeding Broiler Chicken System

    NASA Astrophysics Data System (ADS)

    Syam, Rafiuddin; Arsyad, Hairul; Bauna, Ruslan; Renreng, Ilyas; Bakhri, Syaiful

    2018-02-01

    The demand for commodities, especially Broiler chicken farms are increasing, the volume of feed requirements Broiler chickens increased with age up to the age of 30-57 days required feed 3,829 grams/day/head, so if the chicken population is 3,000 needed transporting feed 11 487 kg/day, This research aims to produce a robot capable of transporting feed in the top of the cage by using a control system so as to make efficient use of manpower. Design robot performed using software design three-dimensional Solidworks2010, process of making the robot is started with the design manufacture three (3) units of mechanical systems (mechanical system for holder feed, mechanical systems for lifter feed and mechanical systems for transporting feed), then do the design process framework as a component buffer so that the mechanical system will work properly and safely when the robot operates. Furthermore, the manufacture of electronic circuits and control are using Arduino Mega microcontroller. After assembling all components mechanical systems and installation of electronic systems and control, then experiments to evaluate the performance of the robot have been made. The results of experiments showed that all components work well according to plan, in particular the speed and acceleration of end effector motion so it can hold and release the feed well. This strongly supports the robots perform tasks in accordance with the intent, i.e., holding, lifting and moving feed.

  12. Robotic autopositioning of the operating microscope.

    PubMed

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  13. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  14. Research and implementation of a new 6-DOF light-weight robot

    NASA Astrophysics Data System (ADS)

    Tao, Zihang; Zhang, Tao; Qi, Mingzhong; Ji, Junhui

    2017-06-01

    Traditional industrial robots have some weaknesses such as low payload-weight, high power consumption and high cost. These drawbacks limit their applications in such areas, special application, service and surgical robots. To improve these shortcomings, a new kind 6-DOF light-weight robot was designed based on modular joints and modular construction. This paper discusses the general requirements of the light-weight robots. Based on these requirements the novel robot is designed. The new robot is described from two aspects, mechanical design and control system. A prototype robot had developed and a joint performance test platform had designed. Position and velocity tests had conducted to evaluate the performance of the prototype robot. Test results showed that the prototype worked well.

  15. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

    PubMed Central

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Liu, Quan; Xie, Sheng Q.; Yang, Ming

    2017-01-01

    A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions. PMID:29283406

  16. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    PubMed

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming

    2017-12-28

    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  17. Robots with display screens: a robot with a more humanlike face display is perceived to have more mind and a better personality.

    PubMed

    Broadbent, Elizabeth; Kumar, Vinayak; Li, Xingyan; Sollers, John; Stafford, Rebecca Q; MacDonald, Bruce A; Wegner, Daniel M

    2013-01-01

    It is important for robot designers to know how to make robots that interact effectively with humans. One key dimension is robot appearance and in particular how humanlike the robot should be. Uncanny Valley theory suggests that robots look uncanny when their appearance approaches, but is not absolutely, human. An underlying mechanism may be that appearance affects users' perceptions of the robot's personality and mind. This study aimed to investigate how robot facial appearance affected perceptions of the robot's mind, personality and eeriness. A repeated measures experiment was conducted. 30 participants (14 females and 16 males, mean age 22.5 years) interacted with a Peoplebot healthcare robot under three conditions in a randomized order: the robot had either a humanlike face, silver face, or no-face on its display screen. Each time, the robot assisted the participant to take his/her blood pressure. Participants rated the robot's mind, personality, and eeriness in each condition. The robot with the humanlike face display was most preferred, rated as having most mind, being most humanlike, alive, sociable and amiable. The robot with the silver face display was least preferred, rated most eerie, moderate in mind, humanlikeness and amiability. The robot with the no-face display was rated least sociable and amiable. There was no difference in blood pressure readings between the robots with different face displays. Higher ratings of eeriness were related to impressions of the robot with the humanlike face display being less amiable, less sociable and less trustworthy. These results suggest that the more humanlike a healthcare robot's face display is, the more people attribute mind and positive personality characteristics to it. Eeriness was related to negative impressions of the robot's personality. Designers should be aware that the face on a robot's display screen can affect both the perceived mind and personality of the robot.

  18. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot

    PubMed

    Feng, Yongfei; Wang, Hongbo; Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige

    2017-01-01

    The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. © 2017 Yongfei Feng et al.

  19. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot

    PubMed Central

    Yan, Hao; Wang, Xincheng; Jin, Zhennan; Vladareanu, Luige

    2017-01-01

    The lower limb rehabilitation robot is an application of robotic technology for stroke people with lower limb disabilities. A new applicable and effective sitting/lying lower limb rehabilitation robot (LLR-Ro) is proposed, which has the mechanical limit protection, the electrical limit protection, and the software protection to prevent the patient from the secondary damage. Meanwhile, as a new type of the rehabilitation robots, its hip joint rotation ranges are different in the patient sitting training posture and lying training posture. The mechanical leg of the robot has a variable workspace to work in both training postures. So, if the traditional mechanical limit and the electrical limit cannot be used in the hip joint mechanism design, a follow-up limit is first proposed to improve the compatibility of human-machine motion. Besides, to eliminate the accident interaction force between the patient and LLR-Ro in the process of the passive training, an amendment impedance control strategy based on the position control is proposed to improve the compliance of the LLR-Ro. A simulation experiment and an experiment with a participant show that the passive training of LLR-Ro has compliance. PMID:29065571

  20. Spline-Screw Multiple-Rotation Mechanism

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Mechanism functions like combined robotic gripper and nut runner. Spline-screw multiple-rotation mechanism related to spline-screw payload-fastening system described in (GSC-13454). Incorporated as subsystem in alternative version of system. Mechanism functions like combination of robotic gripper and nut runner; provides both secure grip and rotary actuation of other parts of system. Used in system in which no need to make or break electrical connections to payload during robotic installation or removal of payload. More complicated version needed to make and break electrical connections. Mechanism mounted in payload.

  1. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  2. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Lesoinne, Michel

    1993-01-01

    Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.

  3. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    NASA Astrophysics Data System (ADS)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  4. Virtual Reality Robotic Operation Simulations Using MEMICA Haptic System

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mavroidis, C.; Bouzit, M.; Dolgin, B.; Harm, D. L.; Kopchok, G. E.; White, R.

    2000-01-01

    There is an increasing realization that some tasks can be performed significantly better by humans than robots but, due to associated hazards, distance, etc., only a robot can be employed. Telemedicine is one area where remotely controlled robots can have a major impact by providing urgent care at remote sites. In recent years, remotely controlled robotics has been greatly advanced. The robotic astronaut, "Robonaut," at NASA Johnson Space Center is one such example. Unfortunately, due to the unavailability of force and tactile feedback capability the operator must determine the required action using only visual feedback from the remote site, which limits the tasks that Robonaut can perform. There is a great need for dexterous, fast, accurate teleoperated robots with the operator?s ability to "feel" the environment at the robot's field. Recently, we conceived a haptic mechanism called MEMICA (Remote MEchanical MIrroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace system. Our team is developing novel MEMICA gloves and virtual reality models to allow the simulation of telesurgery and other applications. The MEMICA gloves are designed to have a high dexterity, rapid response, and large workspace and intuitively mirror the conditions at a virtual site where a robot is simulating the presence of the human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and Electrically Controlled Force and Stiffness (ECFS) actuators that are based on the sue of Electro-Rheological Fluids (ERF). In this paper the design of the MEMICA system and initial experimental results are presented.

  5. Mobile robot self-localization system using single webcam distance measurement technology in indoor environments.

    PubMed

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-27

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.

  6. Mobile Robot Self-Localization System Using Single Webcam Distance Measurement Technology in Indoor Environments

    PubMed Central

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-01

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment. PMID:24473282

  7. A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui

    2017-03-01

    A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.

  8. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, D.B.

    1994-07-19

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.

  9. Switch for serial or parallel communication networks

    DOEpatents

    Crosette, Dario B.

    1994-01-01

    A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination.

  10. Robotic vehicle with multiple tracked mobility platforms

    DOEpatents

    Salton, Jonathan R [Albuquerque, NM; Buttz, James H [Albuquerque, NM; Garretson, Justin [Albuquerque, NM; Hayward, David R [Wetmore, CO; Hobart, Clinton G [Albuquerque, NM; Deuel, Jr., Jamieson K.

    2012-07-24

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  11. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the University of Maryland walking robot project was to design, analyze, assemble, and test an intelligent, mobile, and terrain-adaptive system. The robot incorporates existing technologies in novel ways. The legs emulate the walking path of a human by an innovative modification of a crank-and-rocker mechanism. The body consists of two tripod frames connected by a turning mechanism. The two sets of three legs are mounted so as to allow the robot to walk with stability in its own footsteps. The computer uses a modular hardware design and distributed processing. Dual-port RAM is used to allow communication between a supervisory personal computer and seven microcontrollers. The microcontrollers provide low-level control for the motors and relieve the processing burden on the PC.

  12. Analysis of Parallelogram Mechanism used to Preserve Remote Center of Motion for Surgical Telemanipulator

    NASA Astrophysics Data System (ADS)

    Trochimczuk, R.

    2017-02-01

    This paper presents an analysis of a parallelogram mechanism commonly used to provide a kinematic remote center of motion in surgical telemanipulators. Selected types of parallel manipulator designs, encountered in commercial and laboratory-made designs described in the medical robotics literature, will serve as the research material. Among other things, computer simulations in the ANSYS 13.0 CAD/CAE software environment, employing the finite element method, will be used. The kinematics of the solution of manipulator with the parallelogram mechanism will be determined in order to provide a more complete description. These results will form the basis for the decision regarding the possibility of applying a parallelogram mechanism in an original prototype of a telemanipulator arm.

  13. Robotic retroperitoneal partial nephrectomy: a step-by-step guide.

    PubMed

    Ghani, Khurshid R; Porter, James; Menon, Mani; Rogers, Craig

    2014-08-01

    To describe a step-by-step guide for successful implementation of the retroperitoneal approach to robotic partial nephrectomy (RPN) PATIENTS AND METHODS: The patient is placed in the flank position and the table fully flexed to increase the space between the 12th rib and iliac crest. Access to the retroperitoneal space is obtained using a balloon-dilating device. Ports include a 12-mm camera port, two 8-mm robotic ports and a 12-mm assistant port placed in the anterior axillary line cephalad to the anterior superior iliac spine, and 7-8 cm caudal to the ipsilateral robotic port. Positioning and port placement strategies for successful technique include: (i) Docking robot directly over the patient's head parallel to the spine; (ii) incision for camera port ≈1.9 cm (1 fingerbreadth) above the iliac crest, lateral to the triangle of Petit; (iii) Seldinger technique insertion of kidney-shaped balloon dilator into retroperitoneal space; (iv) Maximising distance between all ports; (v) Ensuring camera arm is placed in the outer part of the 'sweet spot'. The retroperitoneal approach to RPN permits direct access to the renal hilum, no need for bowel mobilisation and excellent visualisation of posteriorly located tumours. © 2014 The Authors. BJU International © 2014 BJU International.

  14. Robotic Lobectomy Utilizing the Robotic Stapler.

    PubMed

    Pearlstein, Daryl Phillip

    2016-12-01

    A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Safety of robotic general surgery in elderly patients.

    PubMed

    Buchs, Nicolas C; Addeo, Pietro; Bianco, Francesco M; Ayloo, Subhashini; Elli, Enrique F; Giulianotti, Pier C

    2010-08-01

    As the life expectancy of people in Western countries continues to rise, so too does the number of elderly patients. In parallel, robotic surgery continues to gain increasing acceptance, allowing for more complex operations to be performed by minimally invasive approach and extending indications for surgery to this population. The aim of this study is to assess the safety of robotic general surgery in patients 70 years and older. From April 2007 to December 2009, patients 70 years and older, who underwent various robotic procedures at our institution, were stratified into three categories of surgical complexity (low, intermediate, and high). There were 73 patients, including 39 women (53.4%) and 34 men (46.6%). The median age was 75 years (range 70-88 years). There were 7, 24, and 42 patients included, respectively, in the low, intermediate, and high surgical complexity categories. Approximately 50% of patients underwent hepatic and pancreatic resections. There was no statistically significant difference between the three groups in terms of morbidity, mortality, readmission or transfusion. Mean overall operative time was 254 ± 133 min (range 15-560 min). Perioperative mortality and morbidity was 1.4% and 15.1%, respectively. Transfusion rate was 9.6%, and median length of stay was 6 days (range 0-30 days). Robotic surgery can be performed safely in the elderly population with low mortality, acceptable morbidity, and short hospital stay. Age should not be considered as a contraindication to robotic surgery even for advanced procedures.

  16. An anatomy of industrial robots and their controls

    NASA Astrophysics Data System (ADS)

    Luh, J. Y. S.

    1983-02-01

    The modernization of manufacturing facilities by means of automation represents an approach for increasing productivity in industry. The three existing types of automation are related to continuous process controls, the use of transfer conveyor methods, and the employment of programmable automation for the low-volume batch production of discrete parts. The industrial robots, which are defined as computer controlled mechanics manipulators, belong to the area of programmable automation. Typically, the robots perform tasks of arc welding, paint spraying, or foundary operation. One may assign a robot to perform a variety of job assignments simply by changing the appropriate computer program. The present investigation is concerned with an evaluation of the potential of the robot on the basis of its basic structure and controls. It is found that robots function well in limited areas of industry. If the range of tasks which robots can perform is to be expanded, it is necessary to provide multiple-task sensors, or special tooling, or even automatic tooling.

  17. Task allocation among multiple intelligent robots

    NASA Technical Reports Server (NTRS)

    Gasser, L.; Bekey, G.

    1987-01-01

    Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.

  18. Modelling robot's behaviour using finite automata

    NASA Astrophysics Data System (ADS)

    Janošek, Michal; Žáček, Jaroslav

    2017-07-01

    This paper proposes a model of a robot's behaviour described by finite automata. We split robot's knowledge into several knowledge bases which are used by the inference mechanism of the robot's expert system to make a logic deduction. Each knowledgebase is dedicated to the particular behaviour domain and the finite automaton helps us switching among these knowledge bases with the respect of actual situation. Our goal is to simplify and reduce complexity of one big knowledgebase splitting it into several pieces. The advantage of this model is that we can easily add new behaviour by adding new knowledgebase and add this behaviour into the finite automaton and define necessary states and transitions.

  19. Image acquisition device of inspection robot based on adaptive rotation regulation of polarizer

    NASA Astrophysics Data System (ADS)

    Dong, Maoqi; Wang, Xingguang; Liang, Tao; Yang, Guoqing; Zhang, Chuangyou; Gao, Faqin

    2017-12-01

    An image processing device of inspection robot with adaptive polarization adjustment is proposed, that the device includes the inspection robot body, the image collecting mechanism, the polarizer and the polarizer automatic actuating device. Where, the image acquisition mechanism is arranged at the front of the inspection robot body for collecting equipment image data in the substation. Polarizer is fixed on the automatic actuating device of polarizer, and installed in front of the image acquisition mechanism, and that the optical axis of the camera vertically goes through the polarizer and the polarizer rotates with the optical axis of the visible camera as the central axis. The simulation results show that the system solves the fuzzy problems of the equipment that are caused by glare, reflection of light and shadow, and the robot can observe details of the running status of electrical equipment. And the full coverage of the substation equipment inspection robot observation target is achieved, which ensures the safe operation of the substation equipment.

  20. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.

    PubMed

    Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David

    2013-06-01

    Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.

  1. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  2. Robotic Lunar Landers For Science And Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.

  3. A new oscillating saw for robotic aided surgery.

    PubMed

    Moctezuma, J L; Schuster, D; Gossé, F; Schulz, H J

    1997-01-01

    In this paper a brief description of a computer and robotic aided surgery system is given with a detailed overview of the necessity to develop special tools for robotic surgery. The application range of this robotic system has been specially focused on the orthopaedics field and, more particularly, on the execution of osteotomies. It was therefore necessary to develop a new saw device which would meet medical and--from the robot system point of view--mechanical as well as functional requirements. After describing the device which was developed on the basis of these requirements, a detailed comparative study of off-the-shelf oscillating saws and the new device is given at the end of the paper.

  4. Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content

    PubMed Central

    Lai, Victor K.; Lake, Spencer P.; Frey, Christina R.; Tranquillo, Robert T.; Barocas, Victor H.

    2012-01-01

    Fibrin and collagen, biopolymers occurring naturally in the body, are biomaterials commonly-used as scaffolds for tissue engineering. How collagen and fibrin interact to confer macroscopic mechanical properties in collagen-fibrin composite systems remains poorly understood. In this study, we formulated collagen-fibrin co-gels at different collagen-tofibrin ratios to observe changes in the overall mechanical behavior and microstructure. A modeling framework of a two-network system was developed by modifying our micro-scale model, considering two forms of interaction between the networks: (a) two interpenetrating but noninteracting networks (“parallel”), and (b) a single network consisting of randomly alternating collagen and fibrin fibrils (“series”). Mechanical testing of our gels show that collagen-fibrin co-gels exhibit intermediate properties (UTS, strain at failure, tangent modulus) compared to those of pure collagen and fibrin. The comparison with model predictions show that the parallel and series model cases provide upper and lower bounds, respectively, for the experimental data, suggesting that a combination of such interactions exists between the collagen and fibrin in co-gels. A transition from the series model to the parallel model occurs with increasing collagen content, with the series model best describing predominantly fibrin co-gels, and the parallel model best describing predominantly collagen co-gels. PMID:22482659

  5. Application of External Axis in Robot-Assisted Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Fang, Dandan; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2012-12-01

    Currently, industrial robots are widely used in the process of thermal spraying because of their high efficiency, security, and repeatability. Although robots are found suitable for use in industrial productions, they have some natural disadvantages because of their six-axis mechanical linkages. When a robot performs a series of stages of production, it could be hard to move from one to another because a few axes reach their limit value. For this reason, an external axis should be added to the robot system to extend the reachable space of the robots. This article concerns the application of external axis on ABB robots in thermal spraying and the different methods of off-line programming with external axis in the virtual environment. The developed software toolkit was applied to coat real workpiece with a complex geometry in atmospheric plasma spraying).

  6. Spiral lead platen robotic end effector

    NASA Technical Reports Server (NTRS)

    Beals, David C. (Inventor)

    1990-01-01

    A robotic end effector is disclosed which makes use of a rotating platen with spiral leads used to impact lateral motion to gripping fingers. Actuation is provided by the contact of rolling pins with the walls of the leads. The use of the disclosed method of actuation avoids jamming and provides excellent mechanical advantage while remaining light in weight and durable. The entire end effector is compact and easily adapted for attachment to robotic arms currently in use.

  7. An earthworm-like robot using origami-ball structures

    NASA Astrophysics Data System (ADS)

    Fang, Hongbin; Zhang, Yetong; Wang, K. W.

    2017-04-01

    Earthworms possess extraordinary on-ground and underground mobility, which inspired researchers to mimic their morphology characteristics and locomotion mechanisms to develop crawling robots. One of the bottlenecks that constrain the development and wide-spread application of earthworm-like robots is the process of design, fabrication and assembly of the robot frameworks. Here we present a new earthworm-like robot design and prototype by exploring and utilizing origami ball structures. The origami ball is able to antagonistically output both axial and radial deformations, similar as an earthworm's body segment. The origami folding techniques also introduce many advantages to the robot development, including precise and low cost fabrication and high customizability. Starting from a flat polymer film, we adopt laser machining technique to engrave the crease pattern and manually fold the patterned flat film into an origami ball. Coupling the ball with a servomotor-driven linkage yields a robot segment. Connecting six segments in series, we obtain an earthworm-like origami robot prototype. The prototype is tested in a tube to evaluate its locomotion performance. It shows that the robot could crawl effectively in the tube, manifesting the feasibility of the origami-based design. In addition, test results indicate that the robot's locomotion could be tailored by employing different peristalsis-wave based gaits. The robot design and prototype reported in this paper could foster a new breed of crawling robots with simply design, fabrication, and assemble processes, and improved locomotion performance.

  8. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.

    PubMed

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  9. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    PubMed Central

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q.

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy. PMID:29255412

  10. Towards soft robotic devices for site-specific drug delivery.

    PubMed

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  11. Generic robot architecture

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  12. Molecular Robots Obeying Asimov's Three Laws of Robotics.

    PubMed

    Kaminka, Gal A; Spokoini-Stern, Rachel; Amir, Yaniv; Agmon, Noa; Bachelet, Ido

    2017-01-01

    Asimov's three laws of robotics, which were shaped in the literary work of Isaac Asimov (1920-1992) and others, define a crucial code of behavior that fictional autonomous robots must obey as a condition for their integration into human society. While, general implementation of these laws in robots is widely considered impractical, limited-scope versions have been demonstrated and have proven useful in spurring scientific debate on aspects of safety and autonomy in robots and intelligent systems. In this work, we use Asimov's laws to examine these notions in molecular robots fabricated from DNA origami. We successfully programmed these robots to obey, by means of interactions between individual robots in a large population, an appropriately scoped variant of Asimov's laws, and even emulate the key scenario from Asimov's story "Runaround," in which a fictional robot gets into trouble despite adhering to the laws. Our findings show that abstract, complex notions can be encoded and implemented at the molecular scale, when we understand robots on this scale on the basis of their interactions.

  13. Computed tomography (CT)-compatible remote center of motion needle steering robot: Fusing CT images and electromagnetic sensor data.

    PubMed

    Shahriari, Navid; Heerink, Wout; van Katwijk, Tim; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2017-07-01

    Lung cancer is the most common cause of cancer-related death, and early detection can reduce the mortality rate. Patients with lung nodules greater than 10 mm usually undergo a computed tomography (CT)-guided biopsy. However, aligning the needle with the target is difficult and the needle tends to deflect from a straight path. In this work, we present a CT-compatible robotic system, which can both position the needle at the puncture point and also insert and rotate the needle. The robot has a remote-center-of-motion arm which is achieved through a parallel mechanism. A new needle steering scheme is also developed where CT images are fused with electromagnetic (EM) sensor data using an unscented Kalman filter. The data fusion allows us to steer the needle using the real-time EM tracker data. The robot design and the steering scheme are validated using three experimental cases. Experimental Case I and II evaluate the accuracy and CT-compatibility of the robot arm, respectively. In experimental Case III, the needle is steered towards 5 real targets embedded in an anthropomorphic gelatin phantom of the thorax. The mean targeting error for the 5 experiments is 1.78 ± 0.70 mm. The proposed robotic system is shown to be CT-compatible with low targeting error. Small nodule size and large needle diameter are two risk factors that can lead to complications in lung biopsy. Our results suggest that nodules larger than 5 mm in diameter can be targeted using our method which may result in lower complication rate. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy

    NASA Astrophysics Data System (ADS)

    Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars

    2016-12-01

    Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications.

  15. Research on Walking Wheel Slippage Control of Live Inspection Robot

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Liu, Xiaqing; Guo, Hao; Li, Jinliang; Liu, Lanlan

    2017-07-01

    To solve the problem of walking wheel slippage of a live inspection robot during walking or climbing, this paper analyzes the climbing capacity of the robot with a statics method, designs a pressing wheel mechanism, and presents a method of indirectly identifying walking wheel slippage by reading speed of the pressing wheel due to the fact that the linear speed of the pressing wheel and the walking wheel at the contract point is the same; and finds that the slippage state can not be controlled through accurate mathematical models after identifying the slippage state, whereas slippage can be controlled with fuzzy control. The experiment results indicate that due to design of the pressing wheel mechanism, friction force of the walking wheel is increased, and the climbing capability of the robot is improved. Within the range of climbing capability of the robot, gradient is the key factor that has influence on slippage of robot, and slippage can be effectively eliminated through the fuzzy control method proposed in this paper.

  16. Controlled flight of a biologically inspired, insect-scale robot.

    PubMed

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-03

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.

  17. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.

    PubMed

    Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J

    2005-01-01

    We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.

  18. Accurate multi-robot targeting for keyhole neurosurgery based on external sensor monitoring.

    PubMed

    Comparetti, Mirko Daniele; Vaccarella, Alberto; Dyagilev, Ilya; Shoham, Moshe; Ferrigno, Giancarlo; De Momi, Elena

    2012-05-01

    Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy.

  19. Creative Engineering Based Education with Autonomous Robots Considering Job Search Support

    NASA Astrophysics Data System (ADS)

    Takezawa, Satoshi; Nagamatsu, Masao; Takashima, Akihiko; Nakamura, Kaeko; Ohtake, Hideo; Yoshida, Kanou

    The Robotics Course in our Mechanical Systems Engineering Department offers “Robotics Exercise Lessons” as one of its Problem-Solution Based Specialized Subjects. This is intended to motivate students learning and to help them acquire fundamental items and skills on mechanical engineering and improve understanding of Robotics Basic Theory. Our current curriculum was established to accomplish this objective based on two pieces of research in 2005: an evaluation questionnaire on the education of our Mechanical Systems Engineering Department for graduates and a survey on the kind of human resources which companies are seeking and their expectations for our department. This paper reports the academic results and reflections of job search support in recent years as inherited and developed from the previous curriculum.

  20. Strategy for robot motion and path planning in robot taping

    NASA Astrophysics Data System (ADS)

    Yuan, Qilong; Chen, I.-Ming; Lembono, Teguh Santoso; Landén, Simon Nelson; Malmgren, Victor

    2016-06-01

    Covering objects with masking tapes is a common process for surface protection in processes like spray painting, plasma spraying, shot peening, etc. Manual taping is tedious and takes a lot of effort of the workers. The taping process is a special process which requires correct surface covering strategy and proper attachment of the masking tape for an efficient surface protection. We have introduced an automatic robot taping system consisting of a robot manipulator, a rotating platform, a 3D scanner and specially designed taping end-effectors. This paper mainly talks about the surface covering strategies for different classes of geometries. The methods and corresponding taping tools are introduced for taping of following classes of surfaces: Cylindrical/extended surfaces, freeform surfaces with no grooves, surfaces with grooves, and rotational symmetrical surfaces. A collision avoidance algorithm is introduced for the robot taping manipulation. With further improvements on segmenting surfaces of taping parts and tape cutting mechanisms, such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to assist humans in this tedious and time costly work.

  1. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  2. A robotic system for researching social integration in honeybees.

    PubMed

    Griparić, Karlo; Haus, Tomislav; Miklić, Damjan; Polić, Marsela; Bogdan, Stjepan

    2017-01-01

    In this paper, we present a novel robotic system developed for researching collective social mechanisms in a biohybrid society of robots and honeybees. The potential for distributed coordination, as observed in nature in many different animal species, has caused an increased interest in collective behaviour research in recent years because of its applicability to a broad spectrum of technical systems requiring robust multi-agent control. One of the main problems is understanding the mechanisms driving the emergence of collective behaviour of social animals. With the aim of deepening the knowledge in this field, we have designed a multi-robot system capable of interacting with honeybees within an experimental arena. The final product, stationary autonomous robot units, designed by specificaly considering the physical, sensorimotor and behavioral characteristics of the honeybees (lat. Apis mallifera), are equipped with sensing, actuating, computation, and communication capabilities that enable the measurement of relevant environmental states, such as honeybee presence, and adequate response to the measurements by generating heat, vibration and airflow. The coordination among robots in the developed system is established using distributed controllers. The cooperation between the two different types of collective systems is realized by means of a consensus algorithm, enabling the honeybees and the robots to achieve a common objective. Presented results, obtained within ASSISIbf project, show successful cooperation indicating its potential for future applications.

  3. A survey on dielectric elastomer actuators for soft robots.

    PubMed

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  4. Calibration of the motor-assisted robotic stereotaxy system: MARS.

    PubMed

    Heinig, Maximilian; Hofmann, Ulrich G; Schlaefer, Alexander

    2012-11-01

    The motor-assisted robotic stereotaxy system presents a compact and light-weight robotic system for stereotactic neurosurgery. Our system is designed to position probes in the human brain for various applications, for example, deep brain stimulation. It features five fully automated axes. High positioning accuracy is of utmost importance in robotic neurosurgery. First, the key parameters of the robot's kinematics are determined using an optical tracking system. Next, the positioning errors at the center of the arc--which is equivalent to the target position in stereotactic interventions--are investigated using a set of perpendicular cameras. A modeless robot calibration method is introduced and evaluated. To conclude, the application accuracy of the robot is studied in a phantom trial. We identified the bending of the arc under load as the robot's main error source. A calibration algorithm was implemented to compensate for the deflection of the robot's arc. The mean error after the calibration was 0.26 mm, the 68.27th percentile was 0.32 mm, and the 95.45th was 0.50 mm. The kinematic properties of the robot were measured, and based on the results an appropriate calibration method was derived. With mean errors smaller than currently used mechanical systems, our results show that the robot's accuracy is appropriate for stereotactic interventions.

  5. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-09-14

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance.

  6. Table-Top Robotics for Engineering Design

    ERIC Educational Resources Information Center

    Wilczynski, Vincent; Dixon, Gregg; Ford, Eric

    2005-01-01

    The Mechanical Engineering Section at the U.S. Coast Guard Academy has developed a comprehensive activity based course to introduce second year students to mechanical engineering design. The culminating design activity for the course requires students to design, construct and test robotic devices that complete engineering challenges. Teams of…

  7. Robosphere1: Building A Self-Sustaining Robotic Ecology for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Robotic exploration of Mars has been a "one shot" approach where each surface mission is planned typically with a rover that will perform a series of experiments for a few weeks or months, until the robot becomes unable to operate in the harsh Mars conditions and simply "dies". It would clearly be desirable to have robots on Mars that can last for much longer periods of time, I propose that there is an approach to sustained robotic exploration that can also pave the way to future human presence. The idea is to continue building a robotic infrastructure with every mission we send. The approach is to built a team of modular robots that could repair individual members when they break down. We could "seed" areas of interest with sturdy power stations (solar, chemical) that teams of robots could use to recharge themselves. We could also seed parts and modules the robots could access for self-repair. No mission could really "fail" if we simply keep adding to and maintaining the existing infrastructure. Simply landing a package of parts will be a success. In time we create a loose infrastructure that can be controlled and augmented from earth on a continuing basis, and which could eventually pave the way for human exploration. I propose that we could begin to build this infrastructure from relatively simple modular robots. Imagine 2 "spider-like" robots built out of small modular snap-in pieces, a bin of these pieces and a bin of snap-in end effectors. One of the spiders breaks down, i.e. one of its modules needs to be replaced. The second spider comes to the rescue and helps the first one replace the broken module. Assuming the input of fresh modules, this process can continue indefinetly. Now start separating robotic explorers from robotic "mechanics", start adding, a category of mechanics that are able to fix at least some of the broken modules (and which in turn can be fixed by the original mechanics), The need for a fresh influx of modules is thus reduced. I submit

  8. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    NASA Astrophysics Data System (ADS)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  9. Folk-Psychological Interpretation of Human vs. Humanoid Robot Behavior: Exploring the Intentional Stance toward Robots.

    PubMed

    Thellman, Sam; Silvervarg, Annika; Ziemke, Tom

    2017-01-01

    People rely on shared folk-psychological theories when judging behavior. These theories guide people's social interactions and therefore need to be taken into consideration in the design of robots and other autonomous systems expected to interact socially with people. It is, however, not yet clear to what degree the mechanisms that underlie people's judgments of robot behavior overlap or differ from the case of human or animal behavior. To explore this issue, participants ( N = 90) were exposed to images and verbal descriptions of eight different behaviors exhibited either by a person or a humanoid robot. Participants were asked to rate the intentionality, controllability and desirability of the behaviors, and to judge the plausibility of seven different types of explanations derived from a recently proposed psychological model of lay causal explanation of human behavior. Results indicate: substantially similar judgments of human and robot behavior, both in terms of (1a) ascriptions of intentionality/controllability/desirability and in terms of (1b) plausibility judgments of behavior explanations; (2a) high level of agreement in judgments of robot behavior - (2b) slightly lower but still largely similar to agreement over human behaviors; (3) systematic differences in judgments concerning the plausibility of goals and dispositions as explanations of human vs. humanoid behavior. Taken together, these results suggest that people's intentional stance toward the robot was in this case very similar to their stance toward the human.

  10. Folk-Psychological Interpretation of Human vs. Humanoid Robot Behavior: Exploring the Intentional Stance toward Robots

    PubMed Central

    Thellman, Sam; Silvervarg, Annika; Ziemke, Tom

    2017-01-01

    People rely on shared folk-psychological theories when judging behavior. These theories guide people’s social interactions and therefore need to be taken into consideration in the design of robots and other autonomous systems expected to interact socially with people. It is, however, not yet clear to what degree the mechanisms that underlie people’s judgments of robot behavior overlap or differ from the case of human or animal behavior. To explore this issue, participants (N = 90) were exposed to images and verbal descriptions of eight different behaviors exhibited either by a person or a humanoid robot. Participants were asked to rate the intentionality, controllability and desirability of the behaviors, and to judge the plausibility of seven different types of explanations derived from a recently proposed psychological model of lay causal explanation of human behavior. Results indicate: substantially similar judgments of human and robot behavior, both in terms of (1a) ascriptions of intentionality/controllability/desirability and in terms of (1b) plausibility judgments of behavior explanations; (2a) high level of agreement in judgments of robot behavior – (2b) slightly lower but still largely similar to agreement over human behaviors; (3) systematic differences in judgments concerning the plausibility of goals and dispositions as explanations of human vs. humanoid behavior. Taken together, these results suggest that people’s intentional stance toward the robot was in this case very similar to their stance toward the human. PMID:29184519

  11. Integrating Software Modules For Robot Control

    NASA Technical Reports Server (NTRS)

    Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.

    1993-01-01

    Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.

  12. A New Conflict Resolution Method for Multiple Mobile Robots in Cluttered Environments With Motion-Liveness.

    PubMed

    Shahriari, Mohammadali; Biglarbegian, Mohammad

    2018-01-01

    This paper presents a new conflict resolution methodology for multiple mobile robots while ensuring their motion-liveness, especially for cluttered and dynamic environments. Our method constructs a mathematical formulation in a form of an optimization problem by minimizing the overall travel times of the robots subject to resolving all the conflicts in their motion. This optimization problem can be easily solved through coordinating only the robots' speeds. To overcome the computational cost in executing the algorithm for very cluttered environments, we develop an innovative method through clustering the environment into independent subproblems that can be solved using parallel programming techniques. We demonstrate the scalability of our approach through performing extensive simulations. Simulation results showed that our proposed method is capable of resolving the conflicts of 100 robots in less than 1.23 s in a cluttered environment that has 4357 intersections in the paths of the robots. We also developed an experimental testbed and demonstrated that our approach can be implemented in real time. We finally compared our approach with other existing methods in the literature both quantitatively and qualitatively. This comparison shows while our approach is mathematically sound, it is more computationally efficient, scalable for very large number of robots, and guarantees the live and smooth motion of robots.

  13. Experimental Robot Model Adjustments Based on Force–Torque Sensor Information

    PubMed Central

    2018-01-01

    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force–torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamics. PMID:29534477

  14. Visual Detection and Tracking System for a Spherical Amphibious Robot

    PubMed Central

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-01-01

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation. PMID:28420134

  15. Visual Detection and Tracking System for a Spherical Amphibious Robot.

    PubMed

    Guo, Shuxiang; Pan, Shaowu; Shi, Liwei; Guo, Ping; He, Yanlin; Tang, Kun

    2017-04-15

    With the goal of supporting close-range observation tasks of a spherical amphibious robot, such as ecological observations and intelligent surveillance, a moving target detection and tracking system was designed and implemented in this study. Given the restrictions presented by the amphibious environment and the small-sized spherical amphibious robot, an industrial camera and vision algorithms using adaptive appearance models were adopted to construct the proposed system. To handle the problem of light scattering and absorption in the underwater environment, the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used to detect moving targets entering the field of view of the robot. A fast compressive tracker with a Kalman prediction mechanism was used to track the specified target. Considering the limited load space and the unique mechanical structure of the robot, the proposed vision system was fabricated with a low power system-on-chip using an asymmetric and heterogeneous computing architecture. Experimental results confirmed the validity and high efficiency of the proposed system. The design presented in this paper is able to meet future demands of spherical amphibious robots in biological monitoring and multi-robot cooperation.

  16. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.

    PubMed

    Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong

    2014-09-01

    Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Modelling of industrial robot in LabView Robotics

    NASA Astrophysics Data System (ADS)

    Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.

    2017-08-01

    Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.

  18. The use of soft robotics in cardiovascular therapy.

    PubMed

    Wamala, Isaac; Roche, Ellen T; Pigula, Frank A

    2017-10-01

    Robots have been employed in cardiovascular therapy as surgical tools and for automation of hospital systems. Soft robots are a new kind of robot made of soft deformable materials, that are uniquely suited for biomedical applications because they are inherently less likely to injure body tissues and more likely to adapt to biological environments. Awareness of the soft robotic systems under development will help promote clinician involvement in their successful clinical translation. Areas covered: The most advanced soft robotic systems, across the size scale from nano to macro, that have shown the most promise for clinical application in cardiovascular therapy because they offer solutions where a clear therapeutic need still exists. We discuss nano and micro scale technology that could help improve targeted therapy for cardiac regeneration in ischemic heart disease, and soft robots for mechanical circulatory support. Additionally, we suggest where the gaps in the technology currently lie. Expert commentary: Soft robotic technology has now matured from the proof-of-concept phase to successful animal testing. With further refinement in materials and clinician guided application, they will be a useful complement for cardiovascular therapy.

  19. Considerations for designing robotic upper limb rehabilitation devices

    NASA Astrophysics Data System (ADS)

    Nadas, I.; Vaida, C.; Gherman, B.; Pisla, D.; Carbone, G.

    2017-12-01

    The present study highlights the advantages of robotic systems for post-stroke rehabilitation of the upper limb. The latest demographic studies illustrate a continuous increase of the average life span, which leads to a continuous increase of stroke incidents and patients requiring rehabilitation. Some studies estimate that by 2030 the number of physical therapists will be insufficient for the patients requiring physical rehabilitation, imposing a shift in the current methodologies. A viable option is the implementation of robotic systems that assist the patient in performing rehabilitation exercises, the physical therapist role being to establish the therapeutic program for each patient and monitor their individual progress. Using a set of clinical measurements for the upper limb motions, the analysis of rehabilitation robotic systems provides a comparative study between the motions required by clinicians and the ones that robotic systems perform for different therapeutic exercises. A critical analysis of existing robots is performed using several classifications: mechanical design, assistance type, actuation and power transmission, control systems and human robot interaction (HRI) strategies. This classification will determine a set of pre-requirements for the definition of new concepts and efficient solutions for robotic assisted rehabilitation therapy.

  20. Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Kadir, Mohd Asmadi Akmal; Daud, Mohd Hisam

    2017-09-01

    The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

  1. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  2. Linkage mechanisms in the vertebrate skull: Structure and function of three-dimensional, parallel transmission systems.

    PubMed

    Olsen, Aaron M; Westneat, Mark W

    2016-12-01

    Many musculoskeletal systems, including the skulls of birds, fishes, and some lizards consist of interconnected chains of mobile skeletal elements, analogous to linkage mechanisms used in engineering. Biomechanical studies have applied linkage models to a diversity of musculoskeletal systems, with previous applications primarily focusing on two-dimensional linkage geometries, bilaterally symmetrical pairs of planar linkages, or single four-bar linkages. Here, we present new, three-dimensional (3D), parallel linkage models of the skulls of birds and fishes and use these models (available as free kinematic simulation software), to investigate structure-function relationships in these systems. This new computational framework provides an accessible and integrated workflow for exploring the evolution of structure and function in complex musculoskeletal systems. Linkage simulations show that kinematic transmission, although a suitable functional metric for linkages with single rotating input and output links, can give misleading results when applied to linkages with substantial translational components or multiple output links. To take into account both linear and rotational displacement we define force mechanical advantage for a linkage (analogous to lever mechanical advantage) and apply this metric to measure transmission efficiency in the bird cranial mechanism. For linkages with multiple, expanding output points we propose a new functional metric, expansion advantage, to measure expansion amplification and apply this metric to the buccal expansion mechanism in fishes. Using the bird cranial linkage model, we quantify the inaccuracies that result from simplifying a 3D geometry into two dimensions. We also show that by combining single-chain linkages into parallel linkages, more links can be simulated while decreasing or maintaining the same number of input parameters. This generalized framework for linkage simulation and analysis can accommodate linkages of differing

  3. Robotics: An Introduction to Today’s Robot and Future Trends.

    DTIC Science & Technology

    1983-07-01

    trial applications." What qualities define a machine as a robot? The Robot Institute of Amer- ica defines a robot as follows: "A robot is a reprogrammable ...manufactures a robot with a spin- ning wrist. Second, and this is the key feature, robots are reprogrammable and hence versatile. An automatic lathe is not...robot spot-welds an automobile frame. In Figure 8, a single robot transferring a transmission case is shown, but a total of eight robots are

  4. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.

    PubMed

    Chapman, Edward M; Jenkins, Tyler E; Bryant, Matthew

    2017-11-08

    This paper presents a fully coupled electro-hydraulic model of a bio-inspired climbing robot actuated by fluidic artificial muscles (FAMs). This analysis expands upon previous FAM literature by considering not only the force and contraction characteristics of the actuator, but the complete hydraulic and electromechanical circuits as well as the dynamics of the climbing robot. This analysis allows modeling of the time-varying applied pressure, electrical current, and actuator contraction for accurate prediction of the robot motion, energy consumption, and mechanical work output. The developed model is first validated against mechanical and electrical data collected from a proof-of-concept prototype robot. The model is then employed to study the system-level sensitivities of the robot locomotion efficiency and average climbing speed to several design and operating parameters. The results of this analysis demonstrate that considering only the transduction efficiency of the FAM actuators is insufficient to maximize the efficiency of the complete robot, and that a holistic approach can lead to significant improvements in performance.

  5. Infant discrimination of humanoid robots

    PubMed Central

    Matsuda, Goh; Ishiguro, Hiroshi; Hiraki, Kazuo

    2015-01-01

    Recently, extremely humanlike robots called “androids” have been developed, some of which are already being used in the field of entertainment. In the context of psychological studies, androids are expected to be used in the future as fully controllable human stimuli to investigate human nature. In this study, we used an android to examine infant discrimination ability between human beings and non-human agents. Participants (N = 42 infants) were assigned to three groups based on their age, i.e., 6- to 8-month-olds, 9- to 11-month-olds, and 12- to 14-month-olds, and took part in a preferential looking paradigm. Of three types of agents involved in the paradigm—a human, an android modeled on the human, and a mechanical-looking robot made from the android—two at a time were presented side-by-side as they performed a grasping action. Infants’ looking behavior was measured using an eye tracking system, and the amount of time spent focusing on each of three areas of interest (face, goal, and body) was analyzed. Results showed that all age groups predominantly looked at the robot and at the face area, and that infants aged over 9 months watched the goal area for longer than the body area. There was no difference in looking times and areas focused on between the human and the android. These findings suggest that 6- to 14-month-olds are unable to discriminate between the human and the android, although they can distinguish the mechanical robot from the human. PMID:26441772

  6. Soft Robotics: New Perspectives for Robot Bodyware and Control

    PubMed Central

    Laschi, Cecilia; Cianchetti, Matteo

    2014-01-01

    The remarkable advances of robotics in the last 50 years, which represent an incredible wealth of knowledge, are based on the fundamental assumption that robots are chains of rigid links. The use of soft materials in robotics, driven not only by new scientific paradigms (biomimetics, morphological computation, and others), but also by many applications (biomedical, service, rescue robots, and many more), is going to overcome these basic assumptions and makes the well-known theories and techniques poorly applicable, opening new perspectives for robot design and control. The current examples of soft robots represent a variety of solutions for actuation and control. Though very first steps, they have the potential for a radical technological change. Soft robotics is not just a new direction of technological development, but a novel approach to robotics, unhinging its fundamentals, with the potential to produce a new generation of robots, in the support of humans in our natural environments. PMID:25022259

  7. Soft Robotics.

    PubMed

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Large-scale deep learning for robotically gathered imagery for science

    NASA Astrophysics Data System (ADS)

    Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.

    2016-12-01

    With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.

  9. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  10. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    PubMed

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  11. New diagnostic tool for robotic psychology and robotherapy studies.

    PubMed

    Libin, Elena; Libin, Alexander

    2003-08-01

    Robotic psychology and robotherapy as a new research area employs a systematic approach in studying psycho-physiological, psychological, and social aspects of person-robot communication. An analysis of the mechanisms underlying different forms of computer-mediated behavior requires both an adequate methodology and research tools. In the proposed article we discuss the concept, basic principles, structure, and contents of the newly designed Person-Robot Complex Interactive Scale (PRCIS), proposed for the purpose of investigating psychological specifics and therapeutic potentials of multilevel person-robot interactions. Assuming that human-robot communication has symbolic meaning, each interactive pattern evaluated via the newly developed scale is assigned certain psychological value associated with the person's past life experiences, likes and dislikes, emotional, cognitive, and behavioral traits or states. PRCIS includes (1) assessment of a person's individual style of communication with the robotic creature based on direct observations; (2) the participant's evaluation of his/her new experiences with an interactive robot and evaluation of its features, advantages and disadvantages, as well as past experiences with modern technology; and (3) the instructor's overall evaluation of the session.

  12. Live video monitoring robot controlled by web over internet

    NASA Astrophysics Data System (ADS)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  13. Design, implementation and stabilization of a Bipedal robot

    NASA Astrophysics Data System (ADS)

    Nath, Alok; Das, Goutam; Mallick, Anik; Chowdhury, Shovan

    2017-12-01

    In this paper, we have presented the mechanical design and fabrication of a Bipedal walking robot as well as control strategies to be implemented for walking and balance recovery. For this robot, we considered Six Degree of Freedom (D.O.P) in the lower body one at each hip, one at each knee and one at each ankle. Each degree of freedom is powered by a RC servo motor and this robot is controlled by Arduino Mega 2560 micro controller. By balancing center of mass (C.O.M) it walks in rhythmic way as like as human one.

  14. Robotic surgery.

    PubMed

    Stoianovici, D

    2000-09-01

    The industrial revolution demonstrated the capability of robotic systems to facilitate and improve manufacturing. As a result, robotics extended to various other domains, including the delivery of health care. Hence, robots have been developed to assist hospital staff, to facilitate laboratory analyses, to augment patient rehabilitation, and even to advance surgical performance. As robotics lead usefulness and gain wider acceptance among the surgical community, the urologist should become familiar with this new interdisciplinary field and its "URobotics" subset: robotics applied to urology. This article reviews the current applications and experience, issues and debates in surgical robotics, and highlights future directions in the field.

  15. Robot-assisted radical prostatectomy: advances since 2005.

    PubMed

    Su, Li-Ming

    2010-03-01

    To provide an update of recent studies relevant to robot-assisted radical prostatectomy, highlighting technical modifications and associated functional outcomes, mid-term oncologic results and patient perception and satisfaction. Several recent studies have investigated methods of further reducing the morbidities associated with prostatectomy, namely erectile dysfunction and incontinence. These studies provide important anatomic insights into additional mechanisms responsible for potency and incontinence and measures for preserving both. Mid-term oncologic outcomes have also been reported; further substantiating the role of robotics in the treatment of clinically localized prostate cancer. The technique of robotic prostatectomy has evolved over the last decade with significant efforts in improving functional outcomes following surgery. However, aggressive-marketing campaigns and lack of regulation of hospital websites may be contributing to unrealistic expectations in patients who choose to undergo robotic prostatectomy, resulting in dissatisfaction for some patients. National interests in this topic will likely result in the mandate for more stringent studies to assess the comparative effectiveness of robot-assisted prostatectomy with other competing therapies for clinically localized prostate cancer.

  16. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  17. Enhanced Locomotion Efficiency of a Bio-inspired Walking Robot using Contact Surfaces with Frictional Anisotropy

    PubMed Central

    Manoonpong, Poramate; Petersen, Dennis; Kovalev, Alexander; Wörgötter, Florentin; Gorb, Stanislav N.; Spinner, Marlene; Heepe, Lars

    2016-01-01

    Based on the principles of morphological computation, we propose a novel approach that exploits the interaction between a passive anisotropic scale-like material (e.g., shark skin) and a non-smooth substrate to enhance locomotion efficiency of a robot walking on inclines. Real robot experiments show that passive tribologically-enhanced surfaces of the robot belly or foot allow the robot to grip on specific surfaces and move effectively with reduced energy consumption. Supplementing the robot experiments, we investigated tribological properties of the shark skin as well as its mechanical stability. It shows high frictional anisotropy due to an array of sloped denticles. The orientation of the denticles to the underlying collagenous material also strongly influences their mechanical interlocking with the substrate. This study not only opens up a new way of achieving energy-efficient legged robot locomotion but also provides a better understanding of the functionalities and mechanical properties of anisotropic surfaces. That understanding will assist developing new types of material for other real-world applications. PMID:28008936

  18. Geometric mechanics for modelling bioinspired robots locomotion: from rigid to continuous (soft) systems

    NASA Astrophysics Data System (ADS)

    Boyer, Frederic; Porez, Mathieu; Renda, Federico

    This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.

  19. Evolutionary Design and Simulation of a Tube Crawling Inspection Robot

    NASA Technical Reports Server (NTRS)

    Craft, Michael; Howsman, Tom; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The Space Robotics Assembly Team Simulation (SpaceRATS) is an expansive concept that will hopefully lead to a space flight demonstration of a robotic team cooperatively assembling a system from its constitutive parts. A primary objective of the SpaceRATS project is to develop a generalized evolutionary design approach for multiple classes of robots. The portion of the overall SpaceRats program associated with the evolutionary design and simulation of an inspection robot's morphology is the subject of this paper. The vast majority of this effort has concentrated on the use and modification of Darwin2K, a robotic design and simulation software package, to analyze the design of a tube crawling robot. This robot is designed for carrying out inspection duties in relatively inaccessible locations within a liquid rocket engine similar to the SSME. A preliminary design of the tube crawler robot was completed, and the mechanical dynamics of the system were simulated. An evolutionary approach to optimizing a few parameters of the system was utilized, resulting in a more optimum design.

  20. Robotic Surgery

    PubMed Central

    Lanfranco, Anthony R.; Castellanos, Andres E.; Desai, Jaydev P.; Meyers, William C.

    2004-01-01

    Objective: To review the history, development, and current applications of robotics in surgery. Background: Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. Methods: A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Results: Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Conclusions: Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures. PMID:14685095

  1. A brittle star-like robot capable of immediately adapting to unexpected physical damage.

    PubMed

    Kano, Takeshi; Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-12-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star-a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion.

  2. A brittle star-like robot capable of immediately adapting to unexpected physical damage

    PubMed Central

    Sato, Eiki; Ono, Tatsuya; Aonuma, Hitoshi; Matsuzaka, Yoshiya; Ishiguro, Akio

    2017-01-01

    A major challenge in robotic design is enabling robots to immediately adapt to unexpected physical damage. However, conventional robots require considerable time (more than several tens of seconds) for adaptation because the process entails high computational costs. To overcome this problem, we focus on a brittle star—a primitive creature with expendable body parts. Brittle stars, most of which have five flexible arms, occasionally lose some of them and promptly coordinate the remaining arms to escape from predators. We adopted a synthetic approach to elucidate the essential mechanism underlying this resilient locomotion. Specifically, based on behavioural experiments involving brittle stars whose arms were amputated in various ways, we inferred the decentralized control mechanism that self-coordinates the arm motions by constructing a simple mathematical model. We implemented this mechanism in a brittle star-like robot and demonstrated that it adapts to unexpected physical damage within a few seconds by automatically coordinating its undamaged arms similar to brittle stars. Through the above-mentioned process, we found that physical interaction between arms plays an essential role for the resilient inter-arm coordination of brittle stars. This finding will help develop resilient robots that can work in inhospitable environments. Further, it provides insights into the essential mechanism of resilient coordinated motions characteristic of animal locomotion. PMID:29308250

  3. Bio-inspired robot design for viscous fluids

    NASA Astrophysics Data System (ADS)

    Ma, Grace; Lipman, Tyler; Jung, Sunghwan

    Many modern micro-robots are designed for biomedical applications to transport drugs to targets or to operate tests in the body for diagnosis. However, most micro-robots simply mimic the morphology and the propulsive mechanism of micro-organisms without understanding the underlying physics of low-Re swimming. Two types of swimming motions have been observed in micro-organisms; stresslet and source-dipole swimming. The stresslet swimmer (e.g. E. coli) uses a rotating helical appendage, whereas the source-dipole swimmer (e.g. Paramecium) creates surface velocity for propulsion. Using this principle, we designed a robot to swim in very viscous fluids either by rotating a helix or creating surface velocity, simply by changing the orientation of the appendage. Further, we will discuss the performance of this robot (swimming speed and rotation speed) with respect to the number, winding angle, and radius of helices in a very viscous fluid.

  4. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  5. Cooperating mobile robots

    DOEpatents

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  6. Multipurpose surgical robot as a laparoscope assistant.

    PubMed

    Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry

    2010-07-01

    This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.

  7. Project InterActions: A Multigenerational Robotic Learning Environment

    NASA Astrophysics Data System (ADS)

    Bers, Marina U.

    2007-12-01

    This paper presents Project InterActions, a series of 5-week workshops in which very young learners (4- to 7-year-old children) and their parents come together to build and program a personally meaningful robotic project in the context of a multigenerational robotics-based community of practice. The goal of these family workshops is to teach both parents and children about the mechanical and programming aspects involved in robotics, as well as to initiate them in a learning trajectory with and about technology. Results from this project address different ways in which parents and children learn together and provide insights into how to develop educational interventions that would educate parents, as well as children, in new domains of knowledge and skills such as robotics and new technologies.

  8. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  9. Modeling of Two-Wheeled Self-Balancing Robot Driven by DC Gearmotors

    NASA Astrophysics Data System (ADS)

    Frankovský, P.; Dominik, L.; Gmiterko, A.; Virgala, I.; Kurylo, P.; Perminova, O.

    2017-08-01

    This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A mathematical model consists of two main parts, the model of robot's mechanical structure and the model of the actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing robot is represented in state-space realization for the purpose of state feedback controller design.

  10. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  11. Virtual collaborative environments: programming and controlling robotic devices remotely

    NASA Astrophysics Data System (ADS)

    Davies, Brady R.; McDonald, Michael J., Jr.; Harrigan, Raymond W.

    1995-12-01

    This paper describes a technology for remote sharing of intelligent electro-mechanical devices. An architecture and actual system have been developed and tested, based on the proposed National Information Infrastructure (NII) or Information Highway, to facilitate programming and control of intelligent programmable machines (like robots, machine tools, etc.). Using appropriate geometric models, integrated sensors, video systems, and computing hardware; computer controlled resources owned and operated by different (in a geographic sense as well as legal sense) entities can be individually or simultaneously programmed and controlled from one or more remote locations. Remote programming and control of intelligent machines will create significant opportunities for sharing of expensive capital equipment. Using the technology described in this paper, university researchers, manufacturing entities, automation consultants, design entities, and others can directly access robotic and machining facilities located across the country. Disparate electro-mechanical resources will be shared in a manner similar to the way supercomputers are accessed by multiple users. Using this technology, it will be possible for researchers developing new robot control algorithms to validate models and algorithms right from their university labs without ever owning a robot. Manufacturers will be able to model, simulate, and measure the performance of prospective robots before selecting robot hardware optimally suited for their intended application. Designers will be able to access CNC machining centers across the country to fabricate prototypic parts during product design validation. An existing prototype architecture and system has been developed and proven. Programming and control of a large gantry robot located at Sandia National Laboratories in Albuquerque, New Mexico, was demonstrated from such remote locations as Washington D.C., Washington State, and Southern California.

  12. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    NASA Astrophysics Data System (ADS)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike

  13. The walking robot project

    NASA Technical Reports Server (NTRS)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  14. Facing competition: Neural mechanisms underlying parallel programming of antisaccades and prosaccades.

    PubMed

    Talanow, Tobias; Kasparbauer, Anna-Maria; Steffens, Maria; Meyhöfer, Inga; Weber, Bernd; Smyrnis, Nikolaos; Ettinger, Ulrich

    2016-08-01

    The antisaccade task is a prominent tool to investigate the response inhibition component of cognitive control. Recent theoretical accounts explain performance in terms of parallel programming of exogenous and endogenous saccades, linked to the horse race metaphor. Previous studies have tested the hypothesis of competing saccade signals at the behavioral level by selectively slowing the programming of endogenous or exogenous processes e.g. by manipulating the probability of antisaccades in an experimental block. To gain a better understanding of inhibitory control processes in parallel saccade programming, we analyzed task-related eye movements and blood oxygenation level dependent (BOLD) responses obtained using functional magnetic resonance imaging (fMRI) at 3T from 16 healthy participants in a mixed antisaccade and prosaccade task. The frequency of antisaccade trials was manipulated across blocks of high (75%) and low (25%) antisaccade frequency. In blocks with high antisaccade frequency, antisaccade latencies were shorter and error rates lower whilst prosaccade latencies were longer and error rates were higher. At the level of BOLD, activations in the task-related saccade network (left inferior parietal lobe, right inferior parietal sulcus, left precentral gyrus reaching into left middle frontal gyrus and inferior frontal junction) and deactivations in components of the default mode network (bilateral temporal cortex, ventromedial prefrontal cortex) compensated increased cognitive control demands. These findings illustrate context dependent mechanisms underlying the coordination of competing decision signals in volitional gaze control. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Robotics].

    PubMed

    Bier, J

    2000-05-01

    Content of this paper is the current state of the art of robots in surgery and the ongoing work on the field of surgical robotics at the Clinic for Maxillofacial Surgery at the Charité. Robots in surgery allows the surgeon to transform the accuracy of the imaging systems directly during the intervention and to plan an intervention beforehand. In this paper firstly the state of the art is described. Subsequently the scientific work at the clinic is described in detail. The paper closes with a outlook for future applications of robotics systems in maxillofacial surgery.

  16. Adaptive Control Strategies for Interlimb Coordination in Legged Robots: A Review

    PubMed Central

    Aoi, Shinya; Manoonpong, Poramate; Ambe, Yuichi; Matsuno, Fumitoshi; Wörgötter, Florentin

    2017-01-01

    Walking animals produce adaptive interlimb coordination during locomotion in accordance with their situation. Interlimb coordination is generated through the dynamic interactions of the neural system, the musculoskeletal system, and the environment, although the underlying mechanisms remain unclear. Recently, investigations of the adaptation mechanisms of living beings have attracted attention, and bio-inspired control systems based on neurophysiological findings regarding sensorimotor interactions are being developed for legged robots. In this review, we introduce adaptive interlimb coordination for legged robots induced by various factors (locomotion speed, environmental situation, body properties, and task). In addition, we show characteristic properties of adaptive interlimb coordination, such as gait hysteresis and different time-scale adaptations. We also discuss the underlying mechanisms and control strategies to achieve adaptive interlimb coordination and the design principle for the control system of legged robots. PMID:28878645

  17. Robot-Aided Neurorehabilitation: A Robot for Wrist Rehabilitation

    PubMed Central

    Krebs, Hermano Igo; Volpe, Bruce T.; Williams, Dustin; Celestino, James; Charles, Steven K.; Lynch, Daniel; Hogan, Neville

    2009-01-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments. PMID:17894265

  18. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.

    PubMed

    Krebs, Hermano Igo; Volpe, Bruce T; Williams, Dustin; Celestino, James; Charles, Steven K; Lynch, Daniel; Hogan, Neville

    2007-09-01

    In 1991, a novel robot, MIT-MANUS, was introduced to study the potential that robots might assist in and quantify the neuro-rehabilitation of motor function. MIT-MANUS proved an excellent tool for shoulder and elbow rehabilitation in stroke patients, showing in clinical trials a reduction of impairment in movements confined to the exercised joints. This successful proof of principle as to additional targeted and intensive movement treatment prompted a test of robot training examining other limb segments. This paper focuses on a robot for wrist rehabilitation designed to provide three rotational degrees-of-freedom. The first clinical trial of the device will enroll 200 stroke survivors. Ultimately 160 stroke survivors will train with both the proximal shoulder and elbow MIT-MANUS robot, as well as with the novel distal wrist robot, in addition to 40 stroke survivor controls. So far 52 stroke patients have completed the robot training (ongoing protocol). Here, we report on the initial results on 36 of these volunteers. These results demonstrate that further improvement should be expected by adding additional training to other limb segments.

  19. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.

    PubMed

    Kinnaird, Catherine R; Ferris, Daniel P

    2009-02-01

    A previous study from our laboratory showed that when soleus electromyography was used to control the amount of plantar flexion assistance from a robotic ankle exoskeleton, subjects significantly reduced their soleus activity to quickly return to normal gait kinematics. We speculated that subjects were primarily responding to the local mechanical assistance of the exoskeleton rather than directly attempting to reduce exoskeleton mechanical power via decreases in soleus activity. To test this observation we studied ten healthy subjects walking on a treadmill at 1.25 m/s while wearing a robotic exoskeleton proportionally controlled by medial gastrocnemius activation. We hypothesized that subjects would primarily decrease soleus activity due to its synergistic mechanics with the exoskeleton. Subjects decreased medial gastrocnemius recruitment by 12% ( p < 0.05 ) but decreased soleus recruitment by 27% ( p < 0.05). In agreement with our hypothesis, the primary reduction in muscle activity was not for the control muscle (medial gastrocnemius) but for the anatomical synergist to the exoskeleton (soleus). These findings indicate that anatomical morphology needs to be considered carefully when designing software and hardware for robotic exoskeletons.

  20. Interactive-rate Motion Planning for Concentric Tube Robots.

    PubMed

    Torres, Luis G; Baykal, Cenk; Alterovitz, Ron

    2014-05-01

    Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.