Multi-threading: A new dimension to massively parallel scientific computation
NASA Astrophysics Data System (ADS)
Nielsen, Ida M. B.; Janssen, Curtis L.
2000-06-01
Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.
Idle waves in high-performance computing
NASA Astrophysics Data System (ADS)
Markidis, Stefano; Vencels, Juris; Peng, Ivy Bo; Akhmetova, Dana; Laure, Erwin; Henri, Pierre
2015-01-01
The vast majority of parallel scientific applications distributes computation among processes that are in a busy state when computing and in an idle state when waiting for information from other processes. We identify the propagation of idle waves through processes in scientific applications with a local information exchange between the two processes. Idle waves are nondispersive and have a phase velocity inversely proportional to the average busy time. The physical mechanism enabling the propagation of idle waves is the local synchronization between two processes due to remote data dependency. This study provides a description of the large number of processes in parallel scientific applications as a continuous medium. This work also is a step towards an understanding of how localized idle periods can affect remote processes, leading to the degradation of global performance in parallel scientific applications.
The Galley Parallel File System
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David
1996-01-01
Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.
Profiling and Improving I/O Performance of a Large-Scale Climate Scientific Application
NASA Technical Reports Server (NTRS)
Liu, Zhuo; Wang, Bin; Wang, Teng; Tian, Yuan; Xu, Cong; Wang, Yandong; Yu, Weikuan; Cruz, Carlos A.; Zhou, Shujia; Clune, Tom;
2013-01-01
Exascale computing systems are soon to emerge, which will pose great challenges on the huge gap between computing and I/O performance. Many large-scale scientific applications play an important role in our daily life. The huge amounts of data generated by such applications require highly parallel and efficient I/O management policies. In this paper, we adopt a mission-critical scientific application, GEOS-5, as a case to profile and analyze the communication and I/O issues that are preventing applications from fully utilizing the underlying parallel storage systems. Through in-detail architectural and experimental characterization, we observe that current legacy I/O schemes incur significant network communication overheads and are unable to fully parallelize the data access, thus degrading applications' I/O performance and scalability. To address these inefficiencies, we redesign its I/O framework along with a set of parallel I/O techniques to achieve high scalability and performance. Evaluation results on the NASA discover cluster show that our optimization of GEOS-5 with ADIOS has led to significant performance improvements compared to the original GEOS-5 implementation.
Performance and Scalability of the NAS Parallel Benchmarks in Java
NASA Technical Reports Server (NTRS)
Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.
Fast I/O for Massively Parallel Applications
NASA Technical Reports Server (NTRS)
OKeefe, Matthew T.
1996-01-01
The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.
The BLAZE language: A parallel language for scientific programming
NASA Technical Reports Server (NTRS)
Mehrotra, P.; Vanrosendale, J.
1985-01-01
A Pascal-like scientific programming language, Blaze, is described. Blaze contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus Blaze should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with onceptually sequential control flow. A central goal in the design of Blaze is portability across a broad range of parallel architectures. The multiple levels of parallelism present in Blaze code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of Blaze are described and shows how this language would be used in typical scientific programming.
The Galley Parallel File System
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David
1996-01-01
As the I/O needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. The interface conceals the parallelism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. We discuss Galley's file structure and application interface, as well as an application that has been implemented using that interface.
The BLAZE language - A parallel language for scientific programming
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1987-01-01
A Pascal-like scientific programming language, BLAZE, is described. BLAZE contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus BLAZE should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with conceptually sequential control flow. A central goal in the design of BLAZE is portability across a broad range of parallel architectures. The multiple levels of parallelism present in BLAZE code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of BLAZE are described and it is shown how this language would be used in typical scientific programming.
The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit
NASA Technical Reports Server (NTRS)
Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete;
1998-01-01
Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.
File-System Workload on a Scientific Multiprocessor
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1995-01-01
Many scientific applications have intense computational and I/O requirements. Although multiprocessors have permitted astounding increases in computational performance, the formidable I/O needs of these applications cannot be met by current multiprocessors a their I/O subsystems. To prevent I/O subsystems from forever bottlenecking multiprocessors and limiting the range of feasible applications, new I/O subsystems must be designed. The successful design of computer systems (both hardware and software) depends on a thorough understanding of their intended use. A system designer optimizes the policies and mechanisms for the cases expected to most common in the user's workload. In the case of multiprocessor file systems, however, designers have been forced to build file systems based only on speculation about how they would be used, extrapolating from file-system characterizations of general-purpose workloads on uniprocessor and distributed systems or scientific workloads on vector supercomputers (see sidebar on related work). To help these system designers, in June 1993 we began the Charisma Project, so named because the project sought to characterize 1/0 in scientific multiprocessor applications from a variety of production parallel computing platforms and sites. The Charisma project is unique in recording individual read and write requests-in live, multiprogramming, parallel workloads (rather than from selected or nonparallel applications). In this article, we present the first results from the project: a characterization of the file-system workload an iPSC/860 multiprocessor running production, parallel scientific applications at NASA's Ames Research Center.
Methods for design and evaluation of parallel computating systems (The PISCES project)
NASA Technical Reports Server (NTRS)
Pratt, Terrence W.; Wise, Robert; Haught, Mary JO
1989-01-01
The PISCES project started in 1984 under the sponsorship of the NASA Computational Structural Mechanics (CSM) program. A PISCES 1 programming environment and parallel FORTRAN were implemented in 1984 for the DEC VAX (using UNIX processes to simulate parallel processes). This system was used for experimentation with parallel programs for scientific applications and AI (dynamic scene analysis) applications. PISCES 1 was ported to a network of Apollo workstations by N. Fitzgerald.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less
Performance of the Galley Parallel File System
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David
1996-01-01
As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.
Accessing and visualizing scientific spatiotemporal data
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, G. Bruce; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia;
2004-01-01
This paper discusses work done by JPL's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Kamesh
Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less
pFlogger: The Parallel Fortran Logging Utility
NASA Technical Reports Server (NTRS)
Clune, Tom; Cruz, Carlos A.
2017-01-01
In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger)' similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.
Position Paper - pFLogger: The Parallel Fortran Logging framework for HPC Applications
NASA Technical Reports Server (NTRS)
Clune, Thomas L.; Cruz, Carlos A.
2017-01-01
In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or logger) similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.
POSITION PAPER - pFLogger: The Parallel Fortran Logging Framework for HPC Applications
NASA Technical Reports Server (NTRS)
Clune, Thomas L.; Cruz, Carlos A.
2017-01-01
In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger') similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.
Parallel, distributed and GPU computing technologies in single-particle electron microscopy
Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-01-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today’s technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined. PMID:19564686
Paradigms and strategies for scientific computing on distributed memory concurrent computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.T.; Walker, D.W.
1994-06-01
In this work we examine recent advances in parallel languages and abstractions that have the potential for improving the programmability and maintainability of large-scale, parallel, scientific applications running on high performance architectures and networks. This paper focuses on Fortran M, a set of extensions to Fortran 77 that supports the modular design of message-passing programs. We describe the Fortran M implementation of a particle-in-cell (PIC) plasma simulation application, and discuss issues in the optimization of the code. The use of two other methodologies for parallelizing the PIC application are considered. The first is based on the shared object abstraction asmore » embodied in the Orca language. The second approach is the Split-C language. In Fortran M, Orca, and Split-C the ability of the programmer to control the granularity of communication is important is designing an efficient implementation.« less
Parallel, distributed and GPU computing technologies in single-particle electron microscopy.
Schmeisser, Martin; Heisen, Burkhard C; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger
2009-07-01
Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of today's technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.
Automatic Parallelization of Numerical Python Applications using the Global Arrays Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Lewis, Robert R.
2011-11-30
Global Arrays is a software system from Pacific Northwest National Laboratory that enables an efficient, portable, and parallel shared-memory programming interface to manipulate distributed dense arrays. The NumPy module is the de facto standard for numerical calculation in the Python programming language, a language whose use is growing rapidly in the scientific and engineering communities. NumPy provides a powerful N-dimensional array class as well as other scientific computing capabilities. However, like the majority of the core Python modules, NumPy is inherently serial. Using a combination of Global Arrays and NumPy, we have reimplemented NumPy as a distributed drop-in replacement calledmore » Global Arrays in NumPy (GAiN). Serial NumPy applications can become parallel, scalable GAiN applications with only minor source code changes. Scalability studies of several different GAiN applications will be presented showing the utility of developing serial NumPy codes which can later run on more capable clusters or supercomputers.« less
Performance of OVERFLOW-D Applications based on Hybrid and MPI Paradigms on IBM Power4 System
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biegel, Bryan (Technical Monitor)
2002-01-01
This report briefly discusses our preliminary performance experiments with parallel versions of OVERFLOW-D applications. These applications are based on MPI and hybrid paradigms on the IBM Power4 system here at the NAS Division. This work is part of an effort to determine the suitability of the system and its parallel libraries (MPI/OpenMP) for specific scientific computing objectives.
Combining Phase Identification and Statistic Modeling for Automated Parallel Benchmark Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ye; Ma, Xiaosong; Liu, Qing Gary
2015-01-01
Parallel application benchmarks are indispensable for evaluating/optimizing HPC software and hardware. However, it is very challenging and costly to obtain high-fidelity benchmarks reflecting the scale and complexity of state-of-the-art parallel applications. Hand-extracted synthetic benchmarks are time-and labor-intensive to create. Real applications themselves, while offering most accurate performance evaluation, are expensive to compile, port, reconfigure, and often plainly inaccessible due to security or ownership concerns. This work contributes APPRIME, a novel tool for trace-based automatic parallel benchmark generation. Taking as input standard communication-I/O traces of an application's execution, it couples accurate automatic phase identification with statistical regeneration of event parameters tomore » create compact, portable, and to some degree reconfigurable parallel application benchmarks. Experiments with four NAS Parallel Benchmarks (NPB) and three real scientific simulation codes confirm the fidelity of APPRIME benchmarks. They retain the original applications' performance characteristics, in particular the relative performance across platforms.« less
NASA Technical Reports Server (NTRS)
Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David
1987-01-01
The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.
Evaluation of Cache-based Superscalar and Cacheless Vector Architectures for Scientific Computations
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Carter, Jonathan; Shalf, John; Skinner, David; Ethier, Stephane; Biswas, Rupak; Djomehri, Jahed; VanderWijngaart, Rob
2003-01-01
The growing gap between sustained and peak performance for scientific applications has become a well-known problem in high performance computing. The recent development of parallel vector systems offers the potential to bridge this gap for a significant number of computational science codes and deliver a substantial increase in computing capabilities. This paper examines the intranode performance of the NEC SX6 vector processor and the cache-based IBM Power3/4 superscalar architectures across a number of key scientific computing areas. First, we present the performance of a microbenchmark suite that examines a full spectrum of low-level machine characteristics. Next, we study the behavior of the NAS Parallel Benchmarks using some simple optimizations. Finally, we evaluate the perfor- mance of several numerical codes from key scientific computing domains. Overall results demonstrate that the SX6 achieves high performance on a large fraction of our application suite and in many cases significantly outperforms the RISC-based architectures. However, certain classes of applications are not easily amenable to vectorization and would likely require extensive reengineering of both algorithm and implementation to utilize the SX6 effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Zhenhuan; Boyuka, David; Zou, X
Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less
A software architecture for multidisciplinary applications: Integrating task and data parallelism
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Mehrotra, Piyush; Vanrosendale, John; Zima, Hans
1994-01-01
Data parallel languages such as Vienna Fortran and HPF can be successfully applied to a wide range of numerical applications. However, many advanced scientific and engineering applications are of a multidisciplinary and heterogeneous nature and thus do not fit well into the data parallel paradigm. In this paper we present new Fortran 90 language extensions to fill this gap. Tasks can be spawned as asynchronous activities in a homogeneous or heterogeneous computing environment; they interact by sharing access to Shared Data Abstractions (SDA's). SDA's are an extension of Fortran 90 modules, representing a pool of common data, together with a set of Methods for controlled access to these data and a mechanism for providing persistent storage. Our language supports the integration of data and task parallelism as well as nested task parallelism and thus can be used to express multidisciplinary applications in a natural and efficient way.
Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1996-01-01
As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.
Opus: A Coordination Language for Multidisciplinary Applications
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Haines, Matthew; Mehrotra, Piyush; Zima, Hans; vanRosendale, John
1997-01-01
Data parallel languages, such as High Performance fortran, can be successfully applied to a wide range of numerical applications. However, many advanced scientific and engineering applications are multidisciplinary and heterogeneous in nature, and thus do not fit well into the data parallel paradigm. In this paper we present Opus, a language designed to fill this gap. The central concept of Opus is a mechanism called ShareD Abstractions (SDA). An SDA can be used as a computation server, i.e., a locus of computational activity, or as a data repository for sharing data between asynchronous tasks. SDAs can be internally data parallel, providing support for the integration of data and task parallelism as well as nested task parallelism. They can thus be used to express multidisciplinary applications in a natural and efficient way. In this paper we describe the features of the language through a series of examples and give an overview of the runtime support required to implement these concepts in parallel and distributed environments.
Sight Application Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G.
2014-09-17
The scale and complexity of scientific applications makes it very difficult to optimize, debug and extend them to support new capabilities. We have developed a tool that supports developers’ efforts to understand the logical flow of their applications and interactions between application components and hardware in a way that scales with application complexity and parallelism.
An Asynchronous Many-Task Implementation of In-Situ Statistical Analysis using Legion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille
2015-11-01
In this report, we propose a framework for the design and implementation of in-situ analy- ses using an asynchronous many-task (AMT) model, using the Legion programming model together with the MiniAero mini-application as a surrogate for full-scale parallel scientific computing applications. The bulk of this work consists of converting the Learn/Derive/Assess model which we had initially developed for parallel statistical analysis using MPI [PTBM11], from a SPMD to an AMT model. In this goal, we propose an original use of the concept of Legion logical regions as a replacement for the parallel communication schemes used for the only operation ofmore » the statistics engines that require explicit communication. We then evaluate this proposed scheme in a shared memory environment, using the Legion port of MiniAero as a proxy for a full-scale scientific application, as a means to provide input data sets of variable size for the in-situ statistical analyses in an AMT context. We demonstrate in particular that the approach has merit, and warrants further investigation, in collaboration with ongoing efforts to improve the overall parallel performance of the Legion system.« less
Characterizing parallel file-access patterns on a large-scale multiprocessor
NASA Technical Reports Server (NTRS)
Purakayastha, A.; Ellis, Carla; Kotz, David; Nieuwejaar, Nils; Best, Michael L.
1995-01-01
High-performance parallel file systems are needed to satisfy tremendous I/O requirements of parallel scientific applications. The design of such high-performance parallel file systems depends on a comprehensive understanding of the expected workload, but so far there have been very few usage studies of multiprocessor file systems. This paper is part of the CHARISMA project, which intends to fill this void by measuring real file-system workloads on various production parallel machines. In particular, we present results from the CM-5 at the National Center for Supercomputing Applications. Our results are unique because we collect information about nearly every individual I/O request from the mix of jobs running on the machine. Analysis of the traces leads to various recommendations for parallel file-system design.
NASA Technical Reports Server (NTRS)
Agrawal, Gagan; Sussman, Alan; Saltz, Joel
1993-01-01
Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.
Techniques and Tools for Performance Tuning of Parallel and Distributed Scientific Applications
NASA Technical Reports Server (NTRS)
Sarukkai, Sekhar R.; VanderWijngaart, Rob F.; Castagnera, Karen (Technical Monitor)
1994-01-01
Performance degradation in scientific computing on parallel and distributed computer systems can be caused by numerous factors. In this half-day tutorial we explain what are the important methodological issues involved in obtaining codes that have good performance potential. Then we discuss what are the possible obstacles in realizing that potential on contemporary hardware platforms, and give an overview of the software tools currently available for identifying the performance bottlenecks. Finally, some realistic examples are used to illustrate the actual use and utility of such tools.
2017-04-13
modelling code, a parallel benchmark , and a communication avoiding version of the QR algorithm. Further, several improvements to the OmpSs model were...movement; and a port of the dynamic load balancing library to OmpSs. Finally, several updates to the tools infrastructure were accomplished, including: an...OmpSs: a basic algorithm on image processing applications, a mini application representative of an ocean modelling code, a parallel benchmark , and a
Paramedir: A Tool for Programmable Performance Analysis
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Labarta, Jesus; Gimenez, Judit
2004-01-01
Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.
High Performance Fortran for Aerospace Applications
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malony, Allen D; Shende, Sameer
The primary goal of the University of Oregon's DOE "ÃÂcompetitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translationmore » of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.« less
A survey of parallel programming tools
NASA Technical Reports Server (NTRS)
Cheng, Doreen Y.
1991-01-01
This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.
Dynamic file-access characteristics of a production parallel scientific workload
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1994-01-01
Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1995-01-01
The scope of this project dealt with the investigation of the requirements to support distributed computing of scientific computations over a cluster of cooperative workstations. Various experiments on computations for the solution of simultaneous linear equations were performed in the early phase of the project to gain experience in the general nature and requirements of scientific applications. A specification of a distributed integrated computing environment, DICE, based on a distributed shared memory communication paradigm has been developed and evaluated. The distributed shared memory model facilitates porting existing parallel algorithms that have been designed for shared memory multiprocessor systems to the new environment. The potential of this new environment is to provide supercomputing capability through the utilization of the aggregate power of workstations cooperating in a cluster interconnected via a local area network. Workstations, generally, do not have the computing power to tackle complex scientific applications, making them primarily useful for visualization, data reduction, and filtering as far as complex scientific applications are concerned. There is a tremendous amount of computing power that is left unused in a network of workstations. Very often a workstation is simply sitting idle on a desk. A set of tools can be developed to take advantage of this potential computing power to create a platform suitable for large scientific computations. The integration of several workstations into a logical cluster of distributed, cooperative, computing stations presents an alternative to shared memory multiprocessor systems. In this project we designed and evaluated such a system.
Code Parallelization with CAPO: A User Manual
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Frumkin, Michael; Yan, Jerry; Biegel, Bryan (Technical Monitor)
2001-01-01
A software tool has been developed to assist the parallelization of scientific codes. This tool, CAPO, extends an existing parallelization toolkit, CAPTools developed at the University of Greenwich, to generate OpenMP parallel codes for shared memory architectures. This is an interactive toolkit to transform a serial Fortran application code to an equivalent parallel version of the software - in a small fraction of the time normally required for a manual parallelization. We first discuss the way in which loop types are categorized and how efficient OpenMP directives can be defined and inserted into the existing code using the in-depth interprocedural analysis. The use of the toolkit on a number of application codes ranging from benchmark to real-world application codes is presented. This will demonstrate the great potential of using the toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of processors. The second part of the document gives references to the parameters and the graphic user interface implemented in the toolkit. Finally a set of tutorials is included for hands-on experiences with this toolkit.
A high-speed linear algebra library with automatic parallelism
NASA Technical Reports Server (NTRS)
Boucher, Michael L.
1994-01-01
Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.
Six Years of Parallel Computing at NAS (1987 - 1993): What Have we Learned?
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Cooper, D. M. (Technical Monitor)
1994-01-01
In the fall of 1987 the age of parallelism at NAS began with the installation of a 32K processor CM-2 from Thinking Machines. In 1987 this was described as an "experiment" in parallel processing. In the six years since, NAS acquired a series of parallel machines, and conducted an active research and development effort focused on the use of highly parallel machines for applications in the computational aerosciences. In this time period parallel processing for scientific applications evolved from a fringe research topic into the one of main activities at NAS. In this presentation I will review the history of parallel computing at NAS in the context of the major progress, which has been made in the field in general. I will attempt to summarize the lessons we have learned so far, and the contributions NAS has made to the state of the art. Based on these insights I will comment on the current state of parallel computing (including the HPCC effort) and try to predict some trends for the next six years.
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC
NASA Astrophysics Data System (ADS)
Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan
2016-04-01
The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.
File-access characteristics of parallel scientific workloads
NASA Technical Reports Server (NTRS)
Nieuwejaar, Nils; Kotz, David; Purakayastha, Apratim; Best, Michael; Ellis, Carla Schlatter
1995-01-01
Phenomenal improvements in the computational performance of multiprocessors have not been matched by comparable gains in I/O system performance. This imbalance has resulted in I/O becoming a significant bottleneck for many scientific applications. One key to overcoming this bottleneck is improving the performance of parallel file systems. The design of a high-performance parallel file system requires a comprehensive understanding of the expected workload. Unfortunately, until recently, no general workload studies of parallel file systems have been conducted. The goal of the CHARISMA project was to remedy this problem by characterizing the behavior of several production workloads, on different machines, at the level of individual reads and writes. The first set of results from the CHARISMA project describe the workloads observed on an Intel iPSC/860 and a Thinking Machines CM-5. This paper is intended to compare and contrast these two workloads for an understanding of their essential similarities and differences, isolating common trends and platform-dependent variances. Using this comparison, we are able to gain more insight into the general principles that should guide parallel file-system design.
NASA Technical Reports Server (NTRS)
Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)
2001-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.
Parallel Computation of the Regional Ocean Modeling System (ROMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, P; Song, Y T; Chao, Y
2005-04-05
The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less
Directions in parallel programming: HPF, shared virtual memory and object parallelism in pC++
NASA Technical Reports Server (NTRS)
Bodin, Francois; Priol, Thierry; Mehrotra, Piyush; Gannon, Dennis
1994-01-01
Fortran and C++ are the dominant programming languages used in scientific computation. Consequently, extensions to these languages are the most popular for programming massively parallel computers. We discuss two such approaches to parallel Fortran and one approach to C++. The High Performance Fortran Forum has designed HPF with the intent of supporting data parallelism on Fortran 90 applications. HPF works by asking the user to help the compiler distribute and align the data structures with the distributed memory modules in the system. Fortran-S takes a different approach in which the data distribution is managed by the operating system and the user provides annotations to indicate parallel control regions. In the case of C++, we look at pC++ which is based on a concurrent aggregate parallel model.
Cloud parallel processing of tandem mass spectrometry based proteomics data.
Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus
2012-10-05
Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.
Parallel processing for scientific computations
NASA Technical Reports Server (NTRS)
Alkhatib, Hasan S.
1991-01-01
The main contribution of the effort in the last two years is the introduction of the MOPPS system. After doing extensive literature search, we introduced the system which is described next. MOPPS employs a new solution to the problem of managing programs which solve scientific and engineering applications on a distributed processing environment. Autonomous computers cooperate efficiently in solving large scientific problems with this solution. MOPPS has the advantage of not assuming the presence of any particular network topology or configuration, computer architecture, or operating system. It imposes little overhead on network and processor resources while efficiently managing programs concurrently. The core of MOPPS is an intelligent program manager that builds a knowledge base of the execution performance of the parallel programs it is managing under various conditions. The manager applies this knowledge to improve the performance of future runs. The program manager learns from experience.
Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing
NASA Astrophysics Data System (ADS)
Meng, Xiang
The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In particular, parallel computing are forms of computation operating on the principle that large problems can often be divided into smaller ones, which are then solved concurrently. In this dissertation, we report a series of new nanophotonic developments using the advanced parallel computing techniques. The applications include the structure optimizations at the nanoscale to control both the electromagnetic response of materials, and to manipulate nanoscale structures for enhanced field concentration, which enable breakthroughs in imaging, sensing systems (chapter 3 and 4) and improve the spatial-temporal resolutions of spectroscopies (chapter 5). We also report the investigations on the confinement study of optical-matter interactions at the quantum mechanical regime, where the size-dependent novel properties enhanced a wide range of technologies from the tunable and efficient light sources, detectors, to other nanophotonic elements with enhanced functionality (chapter 6 and 7).
Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang
2017-10-01
The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
High Performance Input/Output for Parallel Computer Systems
NASA Technical Reports Server (NTRS)
Ligon, W. B.
1996-01-01
The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.
Real science at the petascale.
Saksena, Radhika S; Boghosian, Bruce; Fazendeiro, Luis; Kenway, Owain A; Manos, Steven; Mazzeo, Marco D; Sadiq, S Kashif; Suter, James L; Wright, David; Coveney, Peter V
2009-06-28
We describe computational science research that uses petascale resources to achieve scientific results at unprecedented scales and resolution. The applications span a wide range of domains, from investigation of fundamental problems in turbulence through computational materials science research to biomedical applications at the forefront of HIV/AIDS research and cerebrovascular haemodynamics. This work was mainly performed on the US TeraGrid 'petascale' resource, Ranger, at Texas Advanced Computing Center, in the first half of 2008 when it was the largest computing system in the world available for open scientific research. We have sought to use this petascale supercomputer optimally across application domains and scales, exploiting the excellent parallel scaling performance found on up to at least 32 768 cores for certain of our codes in the so-called 'capability computing' category as well as high-throughput intermediate-scale jobs for ensemble simulations in the 32-512 core range. Furthermore, this activity provides evidence that conventional parallel programming with MPI should be successful at the petascale in the short to medium term. We also report on the parallel performance of some of our codes on up to 65 636 cores on the IBM Blue Gene/P system at the Argonne Leadership Computing Facility, which has recently been named the fastest supercomputer in the world for open science.
Detecting opportunities for parallel observations on the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Lucks, Michael
1992-01-01
The presence of multiple scientific instruments aboard the Hubble Space Telescope provides opportunities for parallel science, i.e., the simultaneous use of different instruments for different observations. Determining whether candidate observations are suitable for parallel execution depends on numerous criteria (some involving quantitative tradeoffs) that may change frequently. A knowledge based approach is presented for constructing a scoring function to rank candidate pairs of observations for parallel science. In the Parallel Observation Matching System (POMS), spacecraft knowledge and schedulers' preferences are represented using a uniform set of mappings, or knowledge functions. Assessment of parallel science opportunities is achieved via composition of the knowledge functions in a prescribed manner. The knowledge acquisition, and explanation facilities of the system are presented. The methodology is applicable to many other multiple criteria assessment problems.
NASA Technical Reports Server (NTRS)
Pratt, Terrence W.
1987-01-01
PISCES 2 is a programming environment and set of extensions to Fortran 77 for parallel programming. It is intended to provide a basis for writing programs for scientific and engineering applications on parallel computers in a way that is relatively independent of the particular details of the underlying computer architecture. This user's manual provides a complete description of the PISCES 2 system as it is currently implemented on the 20 processor Flexible FLEX/32 at NASA Langley Research Center.
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
A general purpose subroutine for fast fourier transform on a distributed memory parallel machine
NASA Technical Reports Server (NTRS)
Dubey, A.; Zubair, M.; Grosch, C. E.
1992-01-01
One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.
The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less
Enhancing GIS Capabilities for High Resolution Earth Science Grids
NASA Astrophysics Data System (ADS)
Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.
2017-12-01
Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS's parallel subsetting capabilities including challenges in the design and implementation of a scientific data subsetter.
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
On the impact of communication complexity in the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.
On the impact of communication complexity on the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D. B.; Van Rosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn; Zukor, Dorothy (Technical Monitor)
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task, both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation. while maintaining high performance across numerous supercomputer and workstation architectures. This document surveys numerous software frameworks for potential use in Earth science modeling. Several frameworks are evaluated in depth, including Parallel Object-Oriented Methods and Applications (POOMA), Cactus (from (he relativistic physics community), Overture, Goddard Earth Modeling System (GEMS), the National Center for Atmospheric Research Flux Coupler, and UCLA/UCB Distributed Data Broker (DDB). Frameworks evaluated in less detail include ROOT, Parallel Application Workspace (PAWS), and Advanced Large-Scale Integrated Computational Environment (ALICE). A host of other frameworks and related tools are referenced in this context. The frameworks are evaluated individually and also compared with each other.
NASA Technical Reports Server (NTRS)
Schwan, Karsten
1997-01-01
This final report has four sections. We first describe the actual scientific results attained by our research team, followed by a description of the high performance computing research enhancing those results and prompted by the scientific tasks being undertaken. Next, we describe our research in data and program visualization motivated by the scientific research and also enabling it. Last, we comment on the indirect effects this research effort has had on our work, in terms of follow up or additional funding, student training, etc.
Solving Large Problems Quickly: Progress in 2001-2003
NASA Technical Reports Server (NTRS)
Mowry, Todd C.; Colohan, Christopher B.; Brown, Angela Demke; Steffan, J. Gregory; Zhai, Antonia
2004-01-01
This document describes the progress we have made and the lessons we have learned in 2001 through 2003 under the NASA grant entitled "Solving Important Problems Faster". The long-term goal of this research is to accelerate large, irregular scientific applications which have enormous data sets and which are difficult to parallelize. To accomplish this goal, we are exploring two complementary techniques: (i) using compiler-inserted prefetching to automatically hide the I/O latency of accessing these large data sets from disk; and (ii) using thread-level data speculation to enable the optimistic parallelization of applications despite uncertainty as to whether data dependences exist between the resulting threads which would normally make them unsafe to execute in parallel. Overall, we made significant progress in 2001 through 2003, and the project has gone well.
Merlin - Massively parallel heterogeneous computing
NASA Technical Reports Server (NTRS)
Wittie, Larry; Maples, Creve
1989-01-01
Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.
Multicore: Fallout from a Computing Evolution
Yelick, Kathy [Director, NERSC
2017-12-09
July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
Scalable Parallel Density-based Clustering and Applications
NASA Astrophysics Data System (ADS)
Patwary, Mostofa Ali
2014-04-01
Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.
Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in multi-dimensional media. PMID:24497950
Agile parallel bioinformatics workflow management using Pwrake.
Mishima, Hiroyuki; Sasaki, Kensaku; Tanaka, Masahiro; Tatebe, Osamu; Yoshiura, Koh-Ichiro
2011-09-08
In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error.Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows.
Agile parallel bioinformatics workflow management using Pwrake
2011-01-01
Background In bioinformatics projects, scientific workflow systems are widely used to manage computational procedures. Full-featured workflow systems have been proposed to fulfil the demand for workflow management. However, such systems tend to be over-weighted for actual bioinformatics practices. We realize that quick deployment of cutting-edge software implementing advanced algorithms and data formats, and continuous adaptation to changes in computational resources and the environment are often prioritized in scientific workflow management. These features have a greater affinity with the agile software development method through iterative development phases after trial and error. Here, we show the application of a scientific workflow system Pwrake to bioinformatics workflows. Pwrake is a parallel workflow extension of Ruby's standard build tool Rake, the flexibility of which has been demonstrated in the astronomy domain. Therefore, we hypothesize that Pwrake also has advantages in actual bioinformatics workflows. Findings We implemented the Pwrake workflows to process next generation sequencing data using the Genomic Analysis Toolkit (GATK) and Dindel. GATK and Dindel workflows are typical examples of sequential and parallel workflows, respectively. We found that in practice, actual scientific workflow development iterates over two phases, the workflow definition phase and the parameter adjustment phase. We introduced separate workflow definitions to help focus on each of the two developmental phases, as well as helper methods to simplify the descriptions. This approach increased iterative development efficiency. Moreover, we implemented combined workflows to demonstrate modularity of the GATK and Dindel workflows. Conclusions Pwrake enables agile management of scientific workflows in the bioinformatics domain. The internal domain specific language design built on Ruby gives the flexibility of rakefiles for writing scientific workflows. Furthermore, readability and maintainability of rakefiles may facilitate sharing workflows among the scientific community. Workflows for GATK and Dindel are available at http://github.com/misshie/Workflows. PMID:21899774
Early patterns of commercial activity in graphene
NASA Astrophysics Data System (ADS)
Shapira, Philip; Youtie, Jan; Arora, Sanjay
2012-03-01
Graphene, a novel nanomaterial consisting of a single layer of carbon atoms, has attracted significant attention due to its distinctive properties, including great strength, electrical and thermal conductivity, lightness, and potential benefits for diverse applications. The commercialization of scientific discoveries such as graphene is inherently uncertain, with the lag time between the scientific development of a new technology and its adoption by corporate actors revealing the extent to which firms are able to absorb knowledge and engage in learning to implement applications based on the new technology. From this perspective, we test for the existence of three different corporate learning and activity patterns: (1) a linear process where patenting follows scientific discovery; (2) a double-boom phenomenon where corporate (patenting) activity is first concentrated in technological improvements and then followed by a period of technology productization; and (3) a concurrent model where scientific discovery in publications occurs in parallel with patenting. By analyzing corporate publication and patent activity across country and application lines, we find that, while graphene as a whole is experiencing concurrent scientific development and patenting growth, country- and application-specific trends offer some evidence of the linear and double-boom models.
Transputer parallel processing at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1989-01-01
The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.
Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)
Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
2018-05-07
Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
Machine Learning Based Online Performance Prediction for Runtime Parallelization and Task Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Ma, X; Singh, K
2008-10-09
With the emerging many-core paradigm, parallel programming must extend beyond its traditional realm of scientific applications. Converting existing sequential applications as well as developing next-generation software requires assistance from hardware, compilers and runtime systems to exploit parallelism transparently within applications. These systems must decompose applications into tasks that can be executed in parallel and then schedule those tasks to minimize load imbalance. However, many systems lack a priori knowledge about the execution time of all tasks to perform effective load balancing with low scheduling overhead. In this paper, we approach this fundamental problem using machine learning techniques first to generatemore » performance models for all tasks and then applying those models to perform automatic performance prediction across program executions. We also extend an existing scheduling algorithm to use generated task cost estimates for online task partitioning and scheduling. We implement the above techniques in the pR framework, which transparently parallelizes scripts in the popular R language, and evaluate their performance and overhead with both a real-world application and a large number of synthetic representative test scripts. Our experimental results show that our proposed approach significantly improves task partitioning and scheduling, with maximum improvements of 21.8%, 40.3% and 22.1% and average improvements of 15.9%, 16.9% and 4.2% for LMM (a real R application) and synthetic test cases with independent and dependent tasks, respectively.« less
Tuning HDF5 for Lustre File Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howison, Mark; Koziol, Quincey; Knaak, David
2010-09-24
HDF5 is a cross-platform parallel I/O library that is used by a wide variety of HPC applications for the flexibility of its hierarchical object-database representation of scientific data. We describe our recent work to optimize the performance of the HDF5 and MPI-IO libraries for the Lustre parallel file system. We selected three different HPC applications to represent the diverse range of I/O requirements, and measured their performance on three different systems to demonstrate the robustness of our optimizations across different file system configurations and to validate our optimization strategy. We demonstrate that the combined optimizations improve HDF5 parallel I/O performancemore » by up to 33 times in some cases running close to the achievable peak performance of the underlying file system and demonstrate scalable performance up to 40,960-way concurrency.« less
JSD: Parallel Job Accounting on the IBM SP2
NASA Technical Reports Server (NTRS)
Saphir, William; Jones, James Patton; Walter, Howard (Technical Monitor)
1995-01-01
The IBM SP2 is one of the most promising parallel computers for scientific supercomputing - it is fast and usually reliable. One of its biggest problems is a lack of robust and comprehensive system software. Among other things, this software allows a collection of Unix processes to be treated as a single parallel application. It does not, however, provide accounting for parallel jobs other than what is provided by AIX for the individual process components. Without parallel job accounting, it is not possible to monitor system use, measure the effectiveness of system administration strategies, or identify system bottlenecks. To address this problem, we have written jsd, a daemon that collects accounting data for parallel jobs. jsd records information in a format that is easily machine- and human-readable, allowing us to extract the most important accounting information with very little effort. jsd also notifies system administrators in certain cases of system failure.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
Alzaid, Aus; Schlaeger, Christof; Hinzmann, Rolf
2013-12-01
International experts in the fields of diabetes, diabetes technology, endocrinology, and pediatrics gathered for the 6(th) Annual Symposium on Self-Monitoring of Blood Glucose (SMBG) Applications and beyond. The aim of this meeting was to continue setting up a global network of experts in this field and provide an international platform for exchange of ideas to improve life for people with diabetes. The 2013 meeting comprised a comprehensive scientific program, parallel interactive workshops, and two keynote lectures. All these discussions were intended to help identify gaps and areas where further scientific work and clinical studies are warranted.
Accelerating the Pace of Protein Functional Annotation With Intel Xeon Phi Coprocessors.
Feinstein, Wei P; Moreno, Juana; Jarrell, Mark; Brylinski, Michal
2015-06-01
Intel Xeon Phi is a new addition to the family of powerful parallel accelerators. The range of its potential applications in computationally driven research is broad; however, at present, the repository of scientific codes is still relatively limited. In this study, we describe the development and benchmarking of a parallel version of eFindSite, a structural bioinformatics algorithm for the prediction of ligand-binding sites in proteins. Implemented for the Intel Xeon Phi platform, the parallelization of the structure alignment portion of eFindSite using pragma-based OpenMP brings about the desired performance improvements, which scale well with the number of computing cores. Compared to a serial version, the parallel code runs 11.8 and 10.1 times faster on the CPU and the coprocessor, respectively; when both resources are utilized simultaneously, the speedup is 17.6. For example, ligand-binding predictions for 501 benchmarking proteins are completed in 2.1 hours on a single Stampede node equipped with the Intel Xeon Phi card compared to 3.1 hours without the accelerator and 36.8 hours required by a serial version. In addition to the satisfactory parallel performance, porting existing scientific codes to the Intel Xeon Phi architecture is relatively straightforward with a short development time due to the support of common parallel programming models by the coprocessor. The parallel version of eFindSite is freely available to the academic community at www.brylinski.org/efindsite.
A simple hyperbolic model for communication in parallel processing environments
NASA Technical Reports Server (NTRS)
Stoica, Ion; Sultan, Florin; Keyes, David
1994-01-01
We introduce a model for communication costs in parallel processing environments called the 'hyperbolic model,' which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are independent of load are assumed by many existing communication models; such models are unrealistic for workstation networks. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes that initiate the sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. The parameters are evaluated in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by experiments with communication subprograms arising in scientific applications, for which a tight fit of the model predictions with actual measurements of the communication and synchronization time between end processes is demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility of the hyperbolic model with the recently proposed LogP model.
Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Alan
2014-10-21
This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.
2016-01-01
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Models@Home: distributed computing in bioinformatics using a screensaver based approach.
Krieger, Elmar; Vriend, Gert
2002-02-01
Due to the steadily growing computational demands in bioinformatics and related scientific disciplines, one is forced to make optimal use of the available resources. A straightforward solution is to build a network of idle computers and let each of them work on a small piece of a scientific challenge, as done by Seti@Home (http://setiathome.berkeley.edu), the world's largest distributed computing project. We developed a generally applicable distributed computing solution that uses a screensaver system similar to Seti@Home. The software exploits the coarse-grained nature of typical bioinformatics projects. Three major considerations for the design were: (1) often, many different programs are needed, while the time is lacking to parallelize them. Models@Home can run any program in parallel without modifications to the source code; (2) in contrast to the Seti project, bioinformatics applications are normally more sensitive to lost jobs. Models@Home therefore includes stringent control over job scheduling; (3) to allow use in heterogeneous environments, Linux and Windows based workstations can be combined with dedicated PCs to build a homogeneous cluster. We present three practical applications of Models@Home, running the modeling programs WHAT IF and YASARA on 30 PCs: force field parameterization, molecular dynamics docking, and database maintenance.
Multicore Challenges and Benefits for High Performance Scientific Computing
Nielsen, Ida M. B.; Janssen, Curtis L.
2008-01-01
Until recently, performance gains in processors were achieved largely by improvements in clock speeds and instruction level parallelism. Thus, applications could obtain performance increases with relatively minor changes by upgrading to the latest generation of computing hardware. Currently, however, processor performance improvements are realized by using multicore technology and hardware support for multiple threads within each core, and taking full advantage of this technology to improve the performance of applications requires exposure of extreme levels of software parallelism. We will here discuss the architecture of parallel computers constructed from many multicore chips as well as techniques for managing the complexitymore » of programming such computers, including the hybrid message-passing/multi-threading programming model. We will illustrate these ideas with a hybrid distributed memory matrix multiply and a quantum chemistry algorithm for energy computation using Møller–Plesset perturbation theory.« less
NASA Technical Reports Server (NTRS)
Shapiro, Linda G.; Tanimoto, Steven L.; Ahrens, James P.
1996-01-01
The goal of this task was to create a design and prototype implementation of a database environment that is particular suited for handling the image, vision and scientific data associated with the NASA's EOC Amazon project. The focus was on a data model and query facilities that are designed to execute efficiently on parallel computers. A key feature of the environment is an interface which allows a scientist to specify high-level directives about how query execution should occur.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T
2013-01-01
Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting themore » I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.« less
A Systolic Architecture for Singular Value Decomposition,
1983-01-01
Presented at the 1 st International Colloquium on Vector and Parallel Computing in Scientific Applications, Paris, March 191J Contract N00014-82-K.0703...Gene Golub. Private comunication . given inputs x and n 2 , compute 2 2 2 2 /6/ G. H. Golub and F. T. Luk : "Singular Value I + X1 Decomposition
Schlaeger, Christof; Hinzmann, Rolf
2013-01-01
Abstract International experts in the fields of diabetes, diabetes technology, endocrinology, and pediatrics gathered for the 6th Annual Symposium on Self-Monitoring of Blood Glucose (SMBG) Applications and beyond. The aim of this meeting was to continue setting up a global network of experts in this field and provide an international platform for exchange of ideas to improve life for people with diabetes. The 2013 meeting comprised a comprehensive scientific program, parallel interactive workshops, and two keynote lectures. All these discussions were intended to help identify gaps and areas where further scientific work and clinical studies are warranted. PMID:24074038
Large-Scale Distributed Computational Fluid Dynamics on the Information Power Grid Using Globus
NASA Technical Reports Server (NTRS)
Barnard, Stephen; Biswas, Rupak; Saini, Subhash; VanderWijngaart, Robertus; Yarrow, Maurice; Zechtzer, Lou; Foster, Ian; Larsson, Olle
1999-01-01
This paper describes an experiment in which a large-scale scientific application development for tightly-coupled parallel machines is adapted to the distributed execution environment of the Information Power Grid (IPG). A brief overview of the IPG and a description of the computational fluid dynamics (CFD) algorithm are given. The Globus metacomputing toolkit is used as the enabling device for the geographically-distributed computation. Modifications related to latency hiding and Load balancing were required for an efficient implementation of the CFD application in the IPG environment. Performance results on a pair of SGI Origin 2000 machines indicate that real scientific applications can be effectively implemented on the IPG; however, a significant amount of continued effort is required to make such an environment useful and accessible to scientists and engineers.
Component-based integration of chemistry and optimization software.
Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L
2004-11-15
Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.
A Parallel Rendering Algorithm for MIMD Architectures
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.; Orloff, Tobias
1991-01-01
Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.
Parallel algorithm of VLBI software correlator under multiprocessor environment
NASA Astrophysics Data System (ADS)
Zheng, Weimin; Zhang, Dong
2007-11-01
The correlator is the key signal processing equipment of a Very Lone Baseline Interferometry (VLBI) synthetic aperture telescope. It receives the mass data collected by the VLBI observatories and produces the visibility function of the target, which can be used to spacecraft position, baseline length measurement, synthesis imaging, and other scientific applications. VLBI data correlation is a task of data intensive and computation intensive. This paper presents the algorithms of two parallel software correlators under multiprocessor environments. A near real-time correlator for spacecraft tracking adopts the pipelining and thread-parallel technology, and runs on the SMP (Symmetric Multiple Processor) servers. Another high speed prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm is realized on a small Beowulf cluster platform. Both correlators have the characteristic of flexible structure, scalability, and with 10-station data correlating abilities.
High performance computing and communications: Advancing the frontiers of information technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less
MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation
Harrison, Robert J.; Beylkin, Gregory; Bischoff, Florian A.; ...
2016-01-01
We present MADNESS (multiresolution adaptive numerical environment for scientific simulation) that is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision that are based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
Message Passing and Shared Address Space Parallelism on an SMP Cluster
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.
NASA Astrophysics Data System (ADS)
Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.
2014-12-01
The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.
: A Scalable and Transparent System for Simulating MPI Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2010-01-01
is a scalable, transparent system for experimenting with the execution of parallel programs on simulated computing platforms. The level of simulated detail can be varied for application behavior as well as for machine characteristics. Unique features of are repeatability of execution, scalability to millions of simulated (virtual) MPI ranks, scalability to hundreds of thousands of host (real) MPI ranks, portability of the system to a variety of host supercomputing platforms, and the ability to experiment with scientific applications whose source-code is available. The set of source-code interfaces supported by is being expanded to support a wider set of applications, andmore » MPI-based scientific computing benchmarks are being ported. In proof-of-concept experiments, has been successfully exercised to spawn and sustain very large-scale executions of an MPI test program given in source code form. Low slowdowns are observed, due to its use of purely discrete event style of execution, and due to the scalability and efficiency of the underlying parallel discrete event simulation engine, sik. In the largest runs, has been executed on up to 216,000 cores of a Cray XT5 supercomputer, successfully simulating over 27 million virtual MPI ranks, each virtual rank containing its own thread context, and all ranks fully synchronized by virtual time.« less
Kramer, Christopher M; Friedrich, Matthias G; Neubauer, Stefan; Stuber, Matthias; Geva, Tal; Higgins, Charles B; Manning, Warren J
2005-08-02
Parallel tracks for clinical scientists, basic scientists, and pediatric imagers was the novel approach taken for the highly successful 8th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance, held in San Francisco, California, January 21 to 23, 2005. Attendees were immersed in information on the latest scientific advances in cardiovascular magnetic resonance (CMR) from mice to man and technological advances from systems with field strengths from 0.5 T to 11.7 T. State-of-the-art applications were reviewed, spanning a wide range from molecular imaging to predicting outcome with CMR in large patient populations.
A Performance Evaluation of the Cray X1 for Scientific Applications
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David
2004-01-01
The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.
Andersen, Richard A.; Hwang, Eun Jung; Mulliken, Grant H.
2010-01-01
The cognitive neural prosthetic (CNP) is a very versatile method for assisting paralyzed patients and patients with amputations. The CNP records the cognitive state of the subject, rather than signals strictly related to motor execution or sensation. We review a number of high-level cortical signals and their application for CNPs, including intention, motor imagery, decision making, forward estimation, executive function, attention, learning, and multi-effector movement planning. CNPs are defined by the cognitive function they extract, not the cortical region from which the signals are recorded. However, some cortical areas may be better than others for particular applications. Signals can also be extracted in parallel from multiple cortical areas using multiple implants, which in many circumstances can increase the range of applications of CNPs. The CNP approach relies on scientific understanding of the neural processes involved in cognition, and many of the decoding algorithms it uses also have parallels to underlying neural circuit functions. PMID:19575625
Parallel Processing of Adaptive Meshes with Load Balancing
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
Many scientific applications involve grids that lack a uniform underlying structure. These applications are often also dynamic in nature in that the grid structure significantly changes between successive phases of execution. In parallel computing environments, mesh adaptation of unstructured grids through selective refinement/coarsening has proven to be an effective approach. However, achieving load balance while minimizing interprocessor communication and redistribution costs is a difficult problem. Traditional dynamic load balancers are mostly inadequate because they lack a global view of system loads across processors. In this paper, we propose a novel and general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication topology, and compare its performance with a successful global load balancing environment, called PLUM, specifically created to handle adaptive unstructured applications. Our experimental results on an IBM SP2 demonstrate that the SBN-based load balancer achieves lower redistribution costs than that under PLUM by overlapping processing and data migration.
Automated Performance Prediction of Message-Passing Parallel Programs
NASA Technical Reports Server (NTRS)
Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.
Heterogeneous scalable framework for multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Karla Vanessa
2013-09-01
Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computermore » platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.« less
High Performance Computing at NASA
NASA Technical Reports Server (NTRS)
Bailey, David H.; Cooper, D. M. (Technical Monitor)
1994-01-01
The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.
Characterizing parallel file-access patterns on a large-scale multiprocessor
NASA Technical Reports Server (NTRS)
Purakayastha, Apratim; Ellis, Carla Schlatter; Kotz, David; Nieuwejaar, Nils; Best, Michael
1994-01-01
Rapid increases in the computational speeds of multiprocessors have not been matched by corresponding performance enhancements in the I/O subsystem. To satisfy the large and growing I/O requirements of some parallel scientific applications, we need parallel file systems that can provide high-bandwidth and high-volume data transfer between the I/O subsystem and thousands of processors. Design of such high-performance parallel file systems depends on a thorough grasp of the expected workload. So far there have been no comprehensive usage studies of multiprocessor file systems. Our CHARISMA project intends to fill this void. The first results from our study involve an iPSC/860 at NASA Ames. This paper presents results from a different platform, the CM-5 at the National Center for Supercomputing Applications. The CHARISMA studies are unique because we collect information about every individual read and write request and about the entire mix of applications running on the machines. The results of our trace analysis lead to recommendations for parallel file system design. First the file system should support efficient concurrent access to many files, and I/O requests from many jobs under varying load conditions. Second, it must efficiently manage large files kept open for long periods. Third, it should expect to see small requests predominantly sequential access patterns, application-wide synchronous access, no concurrent file-sharing between jobs appreciable byte and block sharing between processes within jobs, and strong interprocess locality. Finally, the trace data suggest that node-level write caches and collective I/O request interfaces may be useful in certain environments.
Charon Toolkit for Parallel, Implicit Structured-Grid Computations: Functional Design
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Kutler, Paul (Technical Monitor)
1997-01-01
In a previous report the design concepts of Charon were presented. Charon is a toolkit that aids engineers in developing scientific programs for structured-grid applications to be run on MIMD parallel computers. It constitutes an augmentation of the general-purpose MPI-based message-passing layer, and provides the user with a hierarchy of tools for rapid prototyping and validation of parallel programs, and subsequent piecemeal performance tuning. Here we describe the implementation of the domain decomposition tools used for creating data distributions across sets of processors. We also present the hierarchy of parallelization tools that allows smooth translation of legacy code (or a serial design) into a parallel program. Along with the actual tool descriptions, we will present the considerations that led to the particular design choices. Many of these are motivated by the requirement that Charon must be useful within the traditional computational environments of Fortran 77 and C. Only the Fortran 77 syntax will be presented in this report.
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
Automatic data partitioning on distributed memory multicomputers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Gupta, Manish
1992-01-01
Distributed-memory parallel computers are increasingly being used to provide high levels of performance for scientific applications. Unfortunately, such machines are not very easy to program. A number of research efforts seek to alleviate this problem by developing compilers that take over the task of generating communication. The communication overheads and the extent of parallelism exploited in the resulting target program are determined largely by the manner in which data is partitioned across different processors of the machine. Most of the compilers provide no assistance to the programmer in the crucial task of determining a good data partitioning scheme. A novel approach is presented, the constraints-based approach, to the problem of automatic data partitioning for numeric programs. In this approach, the compiler identifies some desirable requirements on the distribution of various arrays being referenced in each statement, based on performance considerations. These desirable requirements are referred to as constraints. For each constraint, the compiler determines a quality measure that captures its importance with respect to the performance of the program. The quality measure is obtained through static performance estimation, without actually generating the target data-parallel program with explicit communication. Each data distribution decision is taken by combining all the relevant constraints. The compiler attempts to resolve any conflicts between constraints such that the overall execution time of the parallel program is minimized. This approach has been implemented as part of a compiler called Paradigm, that accepts Fortran 77 programs, and specifies the partitioning scheme to be used for each array in the program. We have obtained results on some programs taken from the Linpack and Eispack libraries, and the Perfect Benchmarks. These results are quite promising, and demonstrate the feasibility of automatic data partitioning for a significant class of scientific application programs with regular computations.
University Research Initiative Research Program Summaries
1987-06-01
application to intelligent tutoring systems (John Anderson), o Autonomous learning systems (Jaime Carbonell), o Learning algorithms for parallel processing...test them. The primary project will be: o Learning mechanisms in scientific discovery (Herbert Simon). Tutoring systems. These projects are aimed at...near-term results. They 19 will produce tutors for training specific subject matter areas. These projects will push theories of learning forward by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Darren S.; Peterson, Elena S.; Oehmen, Chris S.
2008-05-04
This work presents the ScalaBLAST Web Application (SWA), a web based application implemented using the PHP script language, MySQL DBMS, and Apache web server under a GNU/Linux platform. SWA is an application built as part of the Data Intensive Computer for Complex Biological Systems (DICCBS) project at the Pacific Northwest National Laboratory (PNNL). SWA delivers accelerated throughput of bioinformatics analysis via high-performance computing through a convenient, easy-to-use web interface. This approach greatly enhances emerging fields of study in biology such as ontology-based homology, and multiple whole genome comparisons which, in the absence of a tool like SWA, require a heroicmore » effort to overcome the computational bottleneck associated with genome analysis. The current version of SWA includes a user account management system, a web based user interface, and a backend process that generates the files necessary for the Internet scientific community to submit a ScalaBLAST parallel processing job on a dedicated cluster.« less
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
Opinion: Why we need a centralized repository for isotopic data
Pauli, Jonathan N.; Newsome, Seth D.; Cook, Joseph A.; Harrod, Chris; Steffan, Shawn A.; Baker, Christopher J. O.; Ben-David, Merav; Bloom, David; Bowen, Gabriel J.; Cerling, Thure E.; Cicero, Carla; Cook, Craig; Dohm, Michelle; Dharampal, Prarthana S.; Graves, Gary; Gropp, Robert; Hobson, Keith A.; Jordan, Chris; MacFadden, Bruce; Pilaar Birch, Suzanne; Poelen, Jorrit; Ratnasingham, Sujeevan; Russell, Laura; Stricker, Craig A.; Uhen, Mark D.; Yarnes, Christopher T.; Hayden, Brian
2017-01-01
Stable isotopes encode and integrate the origin of matter; thus, their analysis offers tremendous potential to address questions across diverse scientific disciplines (1, 2). Indeed, the broad applicability of stable isotopes, coupled with advancements in high-throughput analysis, have created a scientific field that is growing exponentially, and generating data at a rate paralleling the explosive rise of DNA sequencing and genomics (3). Centralized data repositories, such as GenBank, have become increasingly important as a means for archiving information, and “Big Data” analytics of these resources are revolutionizing science and everyday life.
AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven
Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less
Recent developments and applications of the SEC vidicon for astronomy
NASA Technical Reports Server (NTRS)
Zucchino, P.; Lowrance, J. L.
1971-01-01
The engineering development of the SEC vidicon as an astronomical sensor has continued in parallel with its operational use. One scientific application was the six hour exposure of the quasar PHL-957 at the Coude spectrograph of the 200-inch Hale telescope. The developmental effort includes both the enhancement of the basic attributes that make the SEC an appropriate sensor, namely, high quantum efficiency, low threshold, and long integration; as well as work to broaden its scientific usefulness, such as the development of a MgF2 photocathode window for vacuum ultraviolet sensitivity, and a permanent magnet focus design for thermal compatibility with proposed large space telescopes. Additional details on the characteristics of the SEC tube are discussed, as well as plans to make a larger and higher resolution version.
A Performance Evaluation of the Cray X1 for Scientific Applications
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak; Borrill, Julian; Canning, Andrew; Carter, Jonathan; Djomehri, M. Jahed; Shan, Hongzhang; Skinner, David
2003-01-01
The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end capability and capacity computers because of their generality, scalability, and cost effectiveness. However, the recent development of massively parallel vector systems is having a significant effect on the supercomputing landscape. In this paper, we compare the performance of the recently-released Cray X1 vector system with that of the cacheless NEC SX-6 vector machine, and the superscalar cache-based IBM Power3 and Power4 architectures for scientific applications. Overall results demonstrate that the X1 is quite promising, but performance improvements are expected as the hardware, systems software, and numerical libraries mature. Code reengineering to effectively utilize the complex architecture may also lead to significant efficiency enhancements.
NASA Technical Reports Server (NTRS)
Kikuchi, Hideaki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki; Saini, Subhash
2003-01-01
Scalability of a low-cost, Intel Xeon-based, multi-Teraflop Linux cluster is tested for two high-end scientific applications: Classical atomistic simulation based on the molecular dynamics method and quantum mechanical calculation based on the density functional theory. These scalable parallel applications use space-time multiresolution algorithms and feature computational-space decomposition, wavelet-based adaptive load balancing, and spacefilling-curve-based data compression for scalable I/O. Comparative performance tests are performed on a 1,024-processor Linux cluster and a conventional higher-end parallel supercomputer, 1,184-processor IBM SP4. The results show that the performance of the Linux cluster is comparable to that of the SP4. We also study various effects, such as the sharing of memory and L2 cache among processors, on the performance.
PETSc Users Manual Revision 3.7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, Satish; Abhyankar, S.; Adams, M.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.
PETSc Users Manual Revision 3.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.; Abhyankar, S.; Adams, M.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication.
Test Driven Development of Scientific Models
NASA Technical Reports Server (NTRS)
Clune, Thomas L.
2012-01-01
Test-Driven Development (TDD) is a software development process that promises many advantages for developer productivity and has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices. Of course, scientific/technical software differs from other software categories in a number of important respects, but I nonetheless believe that TDD is quite applicable to the development of such software and has the potential to significantly improve programmer productivity and code quality within the scientific community. After a detailed introduction to TDD, I will present the experience within the Software Systems Support Office (SSSO) in applying the technique to various scientific applications. This discussion will emphasize the various direct and indirect benefits as well as some of the difficulties and limitations of the methodology. I will conclude with a brief description of pFUnit, a unit testing framework I co-developed to support test-driven development of parallel Fortran applications.
Highlights of X-Stack ExM Deliverable Swift/T
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wozniak, Justin M.
Swift/T is a key success from the ExM: System support for extreme-scale, many-task applications1 X-Stack project, which proposed to use concurrent dataflow as an innovative programming model to exploit extreme parallelism in exascale computers. The Swift/T component of the project reimplemented the Swift language from scratch to allow applications that compose scientific modules together to be build and run on available petascale computers (Blue Gene, Cray). Swift/T does this via a new compiler and runtime that generates and executes the application as an MPI program. We assume that mission-critical emerging exascale applications will be composed as scalable applications using existingmore » software components, connected by data dependencies. Developers wrap native code fragments using a higherlevel language, then build composite applications to form a computational experiment. This exemplifies hierarchical concurrency: lower-level messaging libraries are used for fine-grained parallelism; highlevel control is used for inter-task coordination. These patterns are best expressed with dataflow, but static DAGs (i.e., other workflow languages) limit the applications that can be built; they do not provide the expressiveness of Swift, such as conditional execution, iteration, and recursive functions.« less
Final Scientific Report: A Scalable Development Environment for Peta-Scale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karbach, Carsten; Frings, Wolfgang
2013-02-22
This document is the final scientific report of the project DE-SC000120 (A scalable Development Environment for Peta-Scale Computing). The objective of this project is the extension of the Parallel Tools Platform (PTP) for applying it to peta-scale systems. PTP is an integrated development environment for parallel applications. It comprises code analysis, performance tuning, parallel debugging and system monitoring. The contribution of the Juelich Supercomputing Centre (JSC) aims to provide a scalable solution for system monitoring of supercomputers. This includes the development of a new communication protocol for exchanging status data between the target remote system and the client running PTP.more » The communication has to work for high latency. PTP needs to be implemented robustly and should hide the complexity of the supercomputer's architecture in order to provide a transparent access to various remote systems via a uniform user interface. This simplifies the porting of applications to different systems, because PTP functions as abstraction layer between parallel application developer and compute resources. The common requirement for all PTP components is that they have to interact with the remote supercomputer. E.g. applications are built remotely and performance tools are attached to job submissions and their output data resides on the remote system. Status data has to be collected by evaluating outputs of the remote job scheduler and the parallel debugger needs to control an application executed on the supercomputer. The challenge is to provide this functionality for peta-scale systems in real-time. The client server architecture of the established monitoring application LLview, developed by the JSC, can be applied to PTP's system monitoring. LLview provides a well-arranged overview of the supercomputer's current status. A set of statistics, a list of running and queued jobs as well as a node display mapping running jobs to their compute resources form the user display of LLview. These monitoring features have to be integrated into the development environment. Besides showing the current status PTP's monitoring also needs to allow for submitting and canceling user jobs. Monitoring peta-scale systems especially deals with presenting the large amount of status data in a useful manner. Users require to select arbitrary levels of detail. The monitoring views have to provide a quick overview of the system state, but also need to allow for zooming into specific parts of the system, into which the user is interested in. At present, the major batch systems running on supercomputers are PBS, TORQUE, ALPS and LoadLeveler, which have to be supported by both the monitoring and the job controlling component. Finally, PTP needs to be designed as generic as possible, so that it can be extended for future batch systems.« less
A Programming Framework for Scientific Applications on CPU-GPU Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, John
2013-03-24
At a high level, my research interests center around designing, programming, and evaluating computer systems that use new approaches to solve interesting problems. The rapid change of technology allows a variety of different architectural approaches to computationally difficult problems, and a constantly shifting set of constraints and trends makes the solutions to these problems both challenging and interesting. One of the most important recent trends in computing has been a move to commodity parallel architectures. This sea change is motivated by the industry’s inability to continue to profitably increase performance on a single processor and instead to move to multiplemore » parallel processors. In the period of review, my most significant work has been leading a research group looking at the use of the graphics processing unit (GPU) as a general-purpose processor. GPUs can potentially deliver superior performance on a broad range of problems than their CPU counterparts, but effectively mapping complex applications to a parallel programming model with an emerging programming environment is a significant and important research problem.« less
Havery Mudd 2014-2015 Computer Science Conduit Clinic Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aspesi, G; Bai, J; Deese, R
2015-05-12
Conduit, a new open-source library developed at Lawrence Livermore National Laboratories, provides a C++ application programming interface (API) to describe and access scientific data. Conduit’s primary use is for inmemory data exchange in high performance computing (HPC) applications. Our team tested and improved Conduit to make it more appealing to potential adopters in the HPC community. We extended Conduit’s capabilities by prototyping four libraries: one for parallel communication using MPI, one for I/O functionality, one for aggregating performance data, and one for data visualization.
Expansion of Microbial Forensics
Schmedes, Sarah E.; Sajantila, Antti
2016-01-01
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746
Scientific Data Management Center for Enabling Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vouk, Mladen A.
Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systemsmore » is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced data management technologies to DOE application scientists in astrophysics, climate, fusion, and biology. Equally important, it established collaborations with these scientists to better understand their science as well as their forthcoming data management and data analytics challenges. Building on our early successes, we have greatly enhanced, robustified, and deployed our technology to these communities. In some cases, we identified new needs that have been addressed in order to simplify the use of our technology by scientists. This report summarizes our work so far in SciDAC-2. Our approach is to employ an evolutionary development and deployment process: from research through prototypes to deployment and infrastructure. Accordingly, we have organized our activities in three layers that abstract the end-to-end data flow described above. We labeled the layers (from bottom to top): a) Storage Efficient Access (SEA), b) Data Mining and Analysis (DMA), c) Scientific Process Automation (SPA). The SEA layer is immediately on top of hardware, operating systems, file systems, and mass storage systems, and provides parallel data access technology, and transparent access to archival storage. The DMA layer, which builds on the functionality of the SEA layer, consists of indexing, feature identification, and parallel statistical analysis technology. The SPA layer, which is on top of the DMA layer, provides the ability to compose scientific workflows from the components in the DMA layer as well as application specific modules. NCSU work performed under this contract was primarily at the SPA layer.« less
Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael
2015-04-08
The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less
Run-time parallelization and scheduling of loops
NASA Technical Reports Server (NTRS)
Saltz, Joel H.; Mirchandaney, Ravi; Baxter, Doug
1988-01-01
The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
JESPP: Joint Experimentation on Scalable Parallel Processors Supercomputers
2010-03-01
were for the relatively small market of scientific and engineering applications. Contrast this with GPUs that are designed to improve the end- user...experience in mass- market arenas such as gaming. In order to get meaningful speed-up using the GPU, it was determined that the data transfer and...Included) Conference Year Effectively using a Large GPGPU-Enhanced Linux Cluster HPCMP UGC 2009 FLOPS per Watt: Heterogeneous-Computing’s Approach
Optimal cube-connected cube multiprocessors
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Wu, Jie
1993-01-01
Many CFD (computational fluid dynamics) and other scientific applications can be partitioned into subproblems. However, in general the partitioned subproblems are very large. They demand high performance computing power themselves, and the solutions of the subproblems have to be combined at each time step. The cube-connect cube (CCCube) architecture is studied. The CCCube architecture is an extended hypercube structure with each node represented as a cube. It requires fewer physical links between nodes than the hypercube, and provides the same communication support as the hypercube does on many applications. The reduced physical links can be used to enhance the bandwidth of the remaining links and, therefore, enhance the overall performance. The concept and the method to obtain optimal CCCubes, which are the CCCubes with a minimum number of links under a given total number of nodes, are proposed. The superiority of optimal CCCubes over standard hypercubes was also shown in terms of the link usage in the embedding of a binomial tree. A useful computation structure based on a semi-binomial tree for divide-and-conquer type of parallel algorithms was identified. It was shown that this structure can be implemented in optimal CCCubes without performance degradation compared with regular hypercubes. The result presented should provide a useful approach to design of scientific parallel computers.
Petascale Simulation Initiative Tech Base: FY2007 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J; Chen, R; Jefferson, D
The Petascale Simulation Initiative began as an LDRD project in the middle of Fiscal Year 2004. The goal of the project was to develop techniques to allow large-scale scientific simulation applications to better exploit the massive parallelism that will come with computers running at petaflops per second. One of the major products of this work was the design and prototype implementation of a programming model and a runtime system that lets applications extend data-parallel applications to use task parallelism. By adopting task parallelism, applications can use processing resources more flexibly, exploit multiple forms of parallelism, and support more sophisticated multiscalemore » and multiphysics models. Our programming model was originally called the Symponents Architecture but is now known as Cooperative Parallelism, and the runtime software that supports it is called Coop. (However, we sometimes refer to the programming model as Coop for brevity.) We have documented the programming model and runtime system in a submitted conference paper [1]. This report focuses on the specific accomplishments of the Cooperative Parallelism project (as we now call it) under Tech Base funding in FY2007. Development and implementation of the model under LDRD funding alone proceeded to the point of demonstrating a large-scale materials modeling application using Coop on more than 1300 processors by the end of FY2006. Beginning in FY2007, the project received funding from both LDRD and the Computation Directorate Tech Base program. Later in the year, after the three-year term of the LDRD funding ended, the ASC program supported the project with additional funds. The goal of the Tech Base effort was to bring Coop from a prototype to a production-ready system that a variety of LLNL users could work with. Specifically, the major tasks that we planned for the project were: (1) Port SARS [former name of the Coop runtime system] to another LLNL platform, probably Thunder or Peloton (depending on when Peloton becomes available); (2) Improve SARS's robustness and ease-of-use, and develop user documentation; and (3) Work with LLNL code teams to help them determine how Symponents could benefit their applications. The original funding request was $296,000 for the year, and we eventually received $252,000. The remainder of this report describes our efforts and accomplishments for each of the goals listed above.« less
Accessing and Visualizing scientific spatiotemporal data
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, Bruce G.; Block, Gary L.; Collier, Jim; Curkendall, David W.; Good, John; Husman, Laura; Jacob, Joseph C.; Laity, Anastasia;
2004-01-01
This paper discusses work done by JPL 's Parallel Applications Technologies Group in helping scientists access and visualize very large data sets through the use of multiple computing resources, such as parallel supercomputers, clusters, and grids These tools do one or more of the following tasks visualize local data sets for local users, visualize local data sets for remote users, and access and visualize remote data sets The tools are used for various types of data, including remotely sensed image data, digital elevation models, astronomical surveys, etc The paper attempts to pull some common elements out of these tools that may be useful for others who have to work with similarly large data sets.
Shared virtual memory and generalized speedup
NASA Technical Reports Server (NTRS)
Sun, Xian-He; Zhu, Jianping
1994-01-01
Generalized speedup is defined as parallel speed over sequential speed. The generalized speedup and its relation with other existing performance metrics, such as traditional speedup, efficiency, scalability, etc., are carefully studied. In terms of the introduced asymptotic speed, it was shown that the difference between the generalized speedup and the traditional speedup lies in the definition of the efficiency of uniprocessor processing, which is a very important issue in shared virtual memory machines. A scientific application was implemented on a KSR-1 parallel computer. Experimental and theoretical results show that the generalized speedup is distinct from the traditional speedup and provides a more reasonable measurement. In the study of different speedups, various causes of superlinear speedup are also presented.
Center for Technology for Advanced Scientific Componet Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govindaraju, Madhusudhan
Advanced Scientific Computing Research Computer Science FY 2010Report Center for Technology for Advanced Scientific Component Software: Distributed CCA State University of New York, Binghamton, NY, 13902 Summary The overall objective of Binghamton's involvement is to work on enhancements of the CCA environment, motivated by the applications and research initiatives discussed in the proposal. This year we are working on re-focusing our design and development efforts to develop proof-of-concept implementations that have the potential to significantly impact scientific components. We worked on developing parallel implementations for non-hydrostatic code and worked on a model coupling interface for biogeochemical computations coded in MATLAB.more » We also worked on the design and implementation modules that will be required for the emerging MapReduce model to be effective for scientific applications. Finally, we focused on optimizing the processing of scientific datasets on multi-core processors. Research Details We worked on the following research projects that we are working on applying to CCA-based scientific applications. 1. Non-Hydrostatic Hydrodynamics: Non-static hydrodynamics are significantly more accurate at modeling internal waves that may be important in lake ecosystems. Non-hydrostatic codes, however, are significantly more computationally expensive, often prohibitively so. We have worked with Chin Wu at the University of Wisconsin to parallelize non-hydrostatic code. We have obtained a speed up of about 26 times maximum. Although this is significant progress, we hope to improve the performance further, such that it becomes a practical alternative to hydrostatic codes. 2. Model-coupling for water-based ecosystems: To answer pressing questions about water resources requires that physical models (hydrodynamics) be coupled with biological and chemical models. Most hydrodynamics codes are written in Fortran, however, while most ecologists work in MATLAB. This disconnect creates a great barrier. To address this, we are working on a model coupling interface that will allow biogeochemical computations written in MATLAB to couple with Fortran codes. This will greatly improve the productivity of ecosystem scientists. 2. Low overhead and Elastic MapReduce Implementation Optimized for Memory and CPU-Intensive Applications: Since its inception, MapReduce has frequently been associated with Hadoop and large-scale datasets. Its deployment at Amazon in the cloud, and its applications at Yahoo! for large-scale distributed document indexing and database building, among other tasks, have thrust MapReduce to the forefront of the data processing application domain. The applicability of the paradigm however extends far beyond its use with data intensive applications and diskbased systems, and can also be brought to bear in processing small but CPU intensive distributed applications. MapReduce however carries its own burdens. Through experiments using Hadoop in the context of diverse applications, we uncovered latencies and delay conditions potentially inhibiting the expected performance of a parallel execution in CPU-intensive applications. Furthermore, as it currently stands, MapReduce is favored for data-centric applications, and as such tends to be solely applied to disk-based applications. The paradigm, falls short in bringing its novelty to diskless systems dedicated to in-memory applications, and compute intensive programs processing much smaller data, but requiring intensive computations. In this project, we focused both on the performance of processing large-scale hierarchical data in distributed scientific applications, as well as the processing of smaller but demanding input sizes primarily used in diskless, and memory resident I/O systems. We designed LEMO-MR [1], a Low overhead, elastic, configurable for in- memory applications, and on-demand fault tolerance, an optimized implementation of MapReduce, for both on disk and in memory applications. We conducted experiments to identify not only the necessary components of this model, but also trade offs and factors to be considered. We have initial results to show the efficacy of our implementation in terms of potential speedup that can be achieved for representative data sets used by cloud applications. We have quantified the performance gains exhibited by our MapReduce implementation over Apache Hadoop in a compute intensive environment. 3. Cache Performance Optimization for Processing XML and HDF-based Application Data on Multi-core Processors: It is important to design and develop scientific middleware libraries to harness the opportunities presented by emerging multi-core processors. Implementations of scientific middleware and applications that do not adapt to the programming paradigm when executing on emerging processors can severely impact the overall performance. In this project, we focused on the utilization of the L2 cache, which is a critical shared resource on chip multiprocessors (CMP). The access pattern of the shared L2 cache, which is dependent on how the application schedules and assigns processing work to each thread, can either enhance or hurt the ability to hide memory latency on a multi-core processor. Therefore, while processing scientific datasets such as HDF5, it is essential to conduct fine-grained analysis of cache utilization, to inform scheduling decisions in multi-threaded programming. In this project, using the TAU toolkit for performance feedback from dual- and quad-core machines, we conducted performance analysis and recommendations on how processing threads can be scheduled on multi-core nodes to enhance the performance of a class of scientific applications that requires processing of HDF5 data. In particular, we quantified the gains associated with the use of the adaptations we have made to the Cache-Affinity and Balanced-Set scheduling algorithms to improve L2 cache performance, and hence the overall application execution time [2]. References: 1. Zacharia Fadika, Madhusudhan Govindaraju, ``MapReduce Implementation for Memory-Based and Processing Intensive Applications'', accepted in 2nd IEEE International Conference on Cloud Computing Technology and Science, Indianapolis, USA, Nov 30 - Dec 3, 2010. 2. Rajdeep Bhowmik, Madhusudhan Govindaraju, ``Cache Performance Optimization for Processing XML-based Application Data on Multi-core Processors'', in proceedings of The 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, May 17-20, 2010, Melbourne, Victoria, Australia. Contact Information: Madhusudhan Govindaraju Binghamton University State University of New York (SUNY) mgovinda@cs.binghamton.edu Phone: 607-777-4904« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Garth
Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability. The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools. The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz. Because the Institute focusesmore » on low level files systems and storage systems, its role in improving SciDAC systems was one of supporting application middleware such as data management and system-level performance tuning. In retrospect, the Petascale Data Storage Institute’s most innovative and impactful contribution is the Parallel Log-structured File System (PLFS). Published in SC09, PLFS is middleware that operates in MPI-IO or embedded in FUSE for non-MPI applications. Its function is to decouple concurrently written files into a per-process log file, whose impact (the contents of the single file that the parallel application was concurrently writing) is determined on later reading, rather than during its writing. PLFS is transparent to the parallel application, offering a POSIX or MPI-IO interface, and it shows an order of magnitude speedup to the Chombo benchmark and two orders of magnitude to the FLASH benchmark. Moreover, LANL production applications see speedups of 5X to 28X, so PLFS has been put into production at LANL. Originally conceived and prototyped in a PDSI collaboration between LANL and CMU, it has grown to engage many other PDSI institutes, international partners like AWE, and has a large team at EMC supporting and enhancing it. PLFS is open sourced with a BSD license on sourceforge. Post PDSI funding comes from NNSA and industry sources. Moreover, PLFS has spin out half a dozen or more papers, partnered on research with multiple schools and vendors, and has projects to transparently 1) dis- tribute metadata over independent metadata servers, 2) exploit drastically non-POSIX Hadoop storage for HPC POSIX applications, 3) compress checkpoints on the fly, 4) batch delayed writes for write speed, 5) compress read-back indexes and parallelize their redistribution, 6) double-buffer writes in NAND Flash storage to decouple host blocking during checkpoint from disk write time in the storage system, 7) pack small files into a smaller number of bigger containers. There are two large scale open source Linux software projects that PDSI significantly incubated, though neither were initated in PDSI. These are 1) Ceph, a UCSC parallel object storage research project that has continued to be a vehicle for research, and has become a released part of Linux, and 2) Parallel NFS (pNFS) a portion of the IETF’s NFSv4.1 that brings the core data parallelism found in Lustre, PanFS, PVFS, and Ceph to the industry standard NFS, with released code in Linux 3.0, and its vendor offerings, with products from NetApp, EMC, BlueArc and RedHat. Both are fundamentally supported and advanced by vendor companies now, but were critcally transferred from research demonstration to viable product with funding from PDSI, in part. At this point Lustre remains the primary path to scalable IO in Exascale systems, but both Ceph and pNFS are viable alternatives with different fundamental advantages. Finally, research community building was a big success for PDSI. Through the HECFSIO workshops and HECURA project with NSF PDSI stimulated and helped to steer leveraged funding of over $25M. Through the Petascale (now Parallel) Data Storage Workshop series, www.pdsw.org, colocated with SCxy each year, PDSI created and incubated five offerings of this high-attendance workshop. The workshop has gone on without PDSI support with two more highly successfully workshops, rewriting its organizational structure to be community managed. More than 70 peer reviewed papers have been presented at PDSW workshops.« less
National Laboratory for Advanced Scientific Visualization at UNAM - Mexico
NASA Astrophysics Data System (ADS)
Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo
2016-04-01
In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.
I/O-Efficient Scientific Computation Using TPIE
NASA Technical Reports Server (NTRS)
Vengroff, Darren Erik; Vitter, Jeffrey Scott
1996-01-01
In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.
SDS: A Framework for Scientific Data Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Bin; Byna, Surendra; Wu, Kesheng
2013-10-31
Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read callsmore » to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.« less
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Wucherl; Koo, Michelle; Cao, Yu
Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less
Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas
2016-04-01
Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .
NASA Technical Reports Server (NTRS)
Denning, Peter J.; Tichy, Walter F.
1990-01-01
Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.
Introducing Argonne’s Theta Supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Theta, the Argonne Leadership Computing Facility’s (ALCF) new Intel-Cray supercomputer, is officially open to the research community. Theta’s massively parallel, many-core architecture puts the ALCF on the path to Aurora, the facility’s future Intel-Cray system. Capable of nearly 10 quadrillion calculations per second, Theta enables researchers to break new ground in scientific investigations that range from modeling the inner workings of the brain to developing new materials for renewable energy applications.
Parallel Processing and Scientific Applications
1992-11-30
Lattice QCD Calculations on the Connection Machine), SIAM News 24, 1 (May 1991) 5. C. F. Baillie and D. A. Johnston, Crumpling Dynamically Triangulated...hypercubic lattice ; in the second, the surface is randomly triangulated once at the beginning of the simulation; and in the third the random...Sharpe, QCD with Dynamical Wilson Fermions 1I, Phys. Rev. D44, 3272 (1991), 8. R. Gupta and C. F. Baillie, Critical Behavior of the 2D XY Model, Phys
Optimizing Irregular Applications for Energy and Performance on the Tilera Many-core Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavarría-Miranda, Daniel; Panyala, Ajay R.; Halappanavar, Mahantesh
Optimizing applications simultaneously for energy and performance is a complex problem. High performance, parallel, irregular applications are notoriously hard to optimize due to their data-dependent memory accesses, lack of structured locality and complex data structures and code patterns. Irregular kernels are growing in importance in applications such as machine learning, graph analytics and combinatorial scientific computing. Performance- and energy-efficient implementation of these kernels on modern, energy efficient, multicore and many-core platforms is therefore an important and challenging problem. We present results from optimizing two irregular applications { the Louvain method for community detection (Grappolo), and high-performance conjugate gradient (HPCCG) {more » on the Tilera many-core system. We have significantly extended MIT's OpenTuner auto-tuning framework to conduct a detailed study of platform-independent and platform-specific optimizations to improve performance as well as reduce total energy consumption. We explore the optimization design space along three dimensions: memory layout schemes, compiler-based code transformations, and optimization of parallel loop schedules. Using auto-tuning, we demonstrate whole node energy savings of up to 41% relative to a baseline instantiation, and up to 31% relative to manually optimized variants.« less
ERIC Educational Resources Information Center
Uzunöz, Abdulkadir
2018-01-01
The purpose of this study is to identify the conceptual mistakes frequently encountered in teaching geography such as latitude-parallel concepts, and to prepare conceptual change text based on the Scientific Storyline Method, in order to resolve the identified misconceptions. In this study, the special case method, which is one of the qualitative…
Expansion of Microbial Forensics.
Schmedes, Sarah E; Sajantila, Antti; Budowle, Bruce
2016-08-01
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Avenues and incentives for commercial use of a low-gravity environment
NASA Technical Reports Server (NTRS)
Brown, R. L.; Zoller, L. K.
1981-01-01
The scientific and commercial utilization of the low-g environments for materials research and for process and product development is considered. Any products of commercial interest which necessitate processing in space will probably be low volume, high value items. To encourage the commercialization of materials processing in low-g, NASA, in parallel with establishing and demonstrating the scientific/technological precepts for analyzing and using a low-g environment, is establishing the legal and management mechanisms to share in the cost and risk of early commercial ventures, and is now working with commercial firms on a case-by basis to explore applications of this new technology to specific needs of the company.
Component Technology for High-Performance Scientific Simulation Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epperly, T; Kohn, S; Kumfert, G
2000-11-09
We are developing scientific software component technology to manage the complexity of modem, parallel simulation software and increase the interoperability and re-use of scientific software packages. In this paper, we describe a language interoperability tool named Babel that enables the creation and distribution of language-independent software libraries using interface definition language (IDL) techniques. We have created a scientific IDL that focuses on the unique interface description needs of scientific codes, such as complex numbers, dense multidimensional arrays, complicated data types, and parallelism. Preliminary results indicate that in addition to language interoperability, this approach provides useful tools for thinking about themore » design of modem object-oriented scientific software libraries. Finally, we also describe a web-based component repository called Alexandria that facilitates the distribution, documentation, and re-use of scientific components and libraries.« less
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
The Parallelism between Scientists' and Students' Resistance to New Scientific Ideas.
ERIC Educational Resources Information Center
Campanario, Juan Miguel
2002-01-01
Compares resistance by scientists to new ideas in scientific discovery with students' resistance to conceptual change in scientific learning. Studies the resistance by students to abandoning their misconceptions concerning scientific topics and the resistance by scientists to scientific discovery. (Contains 64 references.) (Author/YDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langer, S; Rotman, D; Schwegler, E
The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO petabyte-class storage facility on the green network for use in data intensive external collaborations; and (6) continued support for visualization and other methods for analyzing large simulations. We also recommend that M and IC begin planning in FY07 for the next upgrade of its parallel clusters. LLNL investments in M and IC have resulted in a world-class simulation capability leading to innovative science. We thank the LLNL management for its continued support and thank the M and IC staff for its vision and dedicated efforts to make it all happen.« less
Enabling large-scale next-generation sequence assembly with Blacklight
Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.
2014-01-01
Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974
Pairwise Sequence Alignment Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Daily, PNNL
2015-05-20
Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Song
CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less
Compiled MPI: Cost-Effective Exascale Applications Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronevetsky, G; Quinlan, D; Lumsdaine, A
2012-04-10
The complexity of petascale and exascale machines makes it increasingly difficult to develop applications that can take advantage of them. Future systems are expected to feature billion-way parallelism, complex heterogeneous compute nodes and poor availability of memory (Peter Kogge, 2008). This new challenge for application development is motivating a significant amount of research and development on new programming models and runtime systems designed to simplify large-scale application development. Unfortunately, DoE has significant multi-decadal investment in a large family of mission-critical scientific applications. Scaling these applications to exascale machines will require a significant investment that will dwarf the costs of hardwaremore » procurement. A key reason for the difficulty in transitioning today's applications to exascale hardware is their reliance on explicit programming techniques, such as the Message Passing Interface (MPI) programming model to enable parallelism. MPI provides a portable and high performance message-passing system that enables scalable performance on a wide variety of platforms. However, it also forces developers to lock the details of parallelization together with application logic, making it very difficult to adapt the application to significant changes in the underlying system. Further, MPI's explicit interface makes it difficult to separate the application's synchronization and communication structure, reducing the amount of support that can be provided by compiler and run-time tools. This is in contrast to the recent research on more implicit parallel programming models such as Chapel, OpenMP and OpenCL, which promise to provide significantly more flexibility at the cost of reimplementing significant portions of the application. We are developing CoMPI, a novel compiler-driven approach to enable existing MPI applications to scale to exascale systems with minimal modifications that can be made incrementally over the application's lifetime. It includes: (1) New set of source code annotations, inserted either manually or automatically, that will clarify the application's use of MPI to the compiler infrastructure, enabling greater accuracy where needed; (2) A compiler transformation framework that leverages these annotations to transform the original MPI source code to improve its performance and scalability; (3) Novel MPI runtime implementation techniques that will provide a rich set of functionality extensions to be used by applications that have been transformed by our compiler; and (4) A novel compiler analysis that leverages simple user annotations to automatically extract the application's communication structure and synthesize most complex code annotations.« less
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Stone, John E; Hallock, Michael J; Phillips, James C; Peterson, Joseph R; Luthey-Schulten, Zaida; Schulten, Klaus
2016-05-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers.
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Labarta, Jesus; Gimenez, Judit
2004-01-01
With the current trend in parallel computer architectures towards clusters of shared memory symmetric multi-processors, parallel programming techniques have evolved that support parallelism beyond a single level. When comparing the performance of applications based on different programming paradigms, it is important to differentiate between the influence of the programming model itself and other factors, such as implementation specific behavior of the operating system (OS) or architectural issues. Rewriting-a large scientific application in order to employ a new programming paradigms is usually a time consuming and error prone task. Before embarking on such an endeavor it is important to determine that there is really a gain that would not be possible with the current implementation. A detailed performance analysis is crucial to clarify these issues. The multilevel programming paradigms considered in this study are hybrid MPI/OpenMP, MLP, and nested OpenMP. The hybrid MPI/OpenMP approach is based on using MPI [7] for the coarse grained parallelization and OpenMP [9] for fine grained loop level parallelism. The MPI programming paradigm assumes a private address space for each process. Data is transferred by explicitly exchanging messages via calls to the MPI library. This model was originally designed for distributed memory architectures but is also suitable for shared memory systems. The second paradigm under consideration is MLP which was developed by Taft. The approach is similar to MPi/OpenMP, using a mix of coarse grain process level parallelization and loop level OpenMP parallelization. As it is the case with MPI, a private address space is assumed for each process. The MLP approach was developed for ccNUMA architectures and explicitly takes advantage of the availability of shared memory. A shared memory arena which is accessible by all processes is required. Communication is done by reading from and writing to the shared memory.
Improving Scientific Research and Writing Skills through Peer Review and Empirical Group Learning †
Senkevitch, Emilee; Smith, Ann C.; Marbach-Ad, Gili; Song, Wenxia
2011-01-01
Here we describe a semester-long, multipart activity called “Read and wRite to reveal the Research process” (R3) that was designed to teach students the elements of a scientific research paper. We implemented R3 in an advanced immunology course. In R3, we paralleled the activities of reading, discussion, and presentation of relevant immunology work from primary research papers with student writing, discussion, and presentation of their own lab findings. We used reading, discussing, and writing activities to introduce students to the rationale for basic components of a scientific research paper, the method of composing a scientific paper, and the applications of course content to scientific research. As a final part of R3, students worked collaboratively to construct a Group Research Paper that reported on a hypothesis-driven research project, followed by a peer review activity that mimicked the last stage of the scientific publishing process. Assessment of student learning revealed a statistically significant gain in student performance on writing in the style of a research paper from the start of the semester to the end of the semester. PMID:23653760
Bonsai: an event-based framework for processing and controlling data streams
Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.
2015-01-01
The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861
Scientific Data Services -- A High-Performance I/O System with Array Semantics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Byna, Surendra; Rotem, Doron
2011-09-21
As high-performance computing approaches exascale, the existing I/O system design is having trouble keeping pace in both performance and scalability. We propose to address this challenge by adopting database principles and techniques in parallel I/O systems. First, we propose to adopt an array data model because many scientific applications represent their data in arrays. This strategy follows a cardinal principle from database research, which separates the logical view from the physical layout of data. This high-level data model gives the underlying implementation more freedom to optimize the physical layout and to choose the most effective way of accessing the data.more » For example, knowing that a set of write operations is working on a single multi-dimensional array makes it possible to keep the subarrays in a log structure during the write operations and reassemble them later into another physical layout as resources permit. While maintaining the high-level view, the storage system could compress the user data to reduce the physical storage requirement, collocate data records that are frequently used together, or replicate data to increase availability and fault-tolerance. Additionally, the system could generate secondary data structures such as database indexes and summary statistics. We expect the proposed Scientific Data Services approach to create a “live” storage system that dynamically adjusts to user demands and evolves with the massively parallel storage hardware.« less
Dispel4py: An Open-Source Python library for Data-Intensive Seismology
NASA Astrophysics Data System (ADS)
Filgueira, Rosa; Krause, Amrey; Spinuso, Alessandro; Klampanos, Iraklis; Danecek, Peter; Atkinson, Malcolm
2015-04-01
Scientific workflows are a necessary tool for many scientific communities as they enable easy composition and execution of applications on computing resources while scientists can focus on their research without being distracted by the computation management. Nowadays, scientific communities (e.g. Seismology) have access to a large variety of computing resources and their computational problems are best addressed using parallel computing technology. However, successful use of these technologies requires a lot of additional machinery whose use is not straightforward for non-experts: different parallel frameworks (MPI, Storm, multiprocessing, etc.) must be used depending on the computing resources (local machines, grids, clouds, clusters) where applications are run. This implies that for achieving the best applications' performance, users usually have to change their codes depending on the features of the platform selected for running them. This work presents dispel4py, a new open-source Python library for describing abstract stream-based workflows for distributed data-intensive applications. Special care has been taken to provide dispel4py with the ability to map abstract workflows to different platforms dynamically at run-time. Currently dispel4py has four mappings: Apache Storm, MPI, multi-threading and sequential. The main goal of dispel4py is to provide an easy-to-use tool to develop and test workflows in local resources by using the sequential mode with a small dataset. Later, once a workflow is ready for long runs, it can be automatically executed on different parallel resources. dispel4py takes care of the underlying mappings by performing an efficient parallelisation. Processing Elements (PE) represent the basic computational activities of any dispel4Py workflow, which can be a seismologic algorithm, or a data transformation process. For creating a dispel4py workflow, users only have to write very few lines of code to describe their PEs and how they are connected by using Python, which is widely supported on many platforms and is popular in many scientific domains, such as in geosciences. Once, a dispel4py workflow is written, a user only has to select which mapping they would like to use, and everything else (parallelisation, distribution of data) is carried on by dispel4py without any cost to the user. Among all dispel4py features we would like to highlight the following: * The PEs are connected by streams and not by writing to and reading from intermediate files, avoiding many IO operations. * The PEs can be stored into a registry. Therefore, different users can recombine PEs in many different workflows. * dispel4py has been enriched with a provenance mechanism to support runtime provenance analysis. We have adopted the W3C-PROV data model, which is accessible via a prototypal browser-based user interface and a web API. It supports the users with the visualisation of graphical products and offers combined operations to access and download the data, which may be selectively stored at runtime, into dedicated data archives. dispel4py has been already used by seismologists in the VERCE project to develop different seismic workflows. One of them is the Seismic Ambient Noise Cross-Correlation workflow, which preprocesses and cross-correlates traces from several stations. First, this workflow was tested on a local machine by using a small number of stations as input data. Later, it was executed on different parallel platforms (SuperMUC cluster, and Terracorrelator machine), automatically scaling up by using MPI and multiprocessing mappings and up to 1000 stations as input data. The results show that the dispel4py achieves scalable performance in both mappings tested on different parallel platforms.
Assessing the Need for Supercomputing Resources Within the Pacific Area of Responsibility
2015-05-26
portion of today’s research and development dollars are going toward developing machines that will be better suited for addressing big data applications...2009; Radu Sion, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data Management, Vol. 8425, May 2014, pp. 3–5; Yao Chen...Applied Parallel and Scientific Computing, Vol. 7134, 2010. Sion, Radu, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data
NASA Technical Reports Server (NTRS)
Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince
1987-01-01
Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.
Automated problem scheduling and reduction of synchronization delay effects
NASA Technical Reports Server (NTRS)
Saltz, Joel H.
1987-01-01
It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.
Wegener, Mai
2009-01-01
The article traces the rise and fall of "psychophysical parallelism" - which was the most advanced scientific formulation of the mind / body relationship in the second half of the 19th century - through an interdisciplinary and broad geographical spectrum. It sheds light on the extremely different positions that rallied round this discursive figure, ranging from Fechner, Hering, Mach, Wundt, Bain, Hughlings Jackson, and Taine to Freud and Saussure. The article develops the thesis that the psychophysical parallelism functioned as a 'hot zone' within and a symptom of the changes in the order of sciences at that time. Against that background, the criticism of the psychophysical parallelism which became prominent around 1900 (Stumpf, Busse, Bergson, Mauthner et. al.) indicates the cooling of this 'hot zone' and the establishment of a new order within the scientific disciplines. The article pays particular attention to the position of this figure in contemporaneous language theories. Its basic assumption is that the relationship between the body and the psyche is itself constituted by language.
NASA Astrophysics Data System (ADS)
Alameda, J. C.
2011-12-01
Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into computational science and engineering codes. Finally, we are partnering with the lead PTP developers at IBM, to ensure we are as effective as possible within the Eclipse community development. We are also conducting training and outreach to our user community, including conference BOF sessions, monthly user calls, and an annual user meeting, so that we can best inform the improvements we make to Eclipse PTP. With these activities we endeavor to encourage use of modern software engineering practices, as enabled through the Eclipse IDE, with computational science and engineering applications. These practices include proper use of source code repositories, tracking and rectifying issues, measuring and monitoring code performance changes against both optimizations as well as ever-changing software stacks and configurations on HPC systems, as well as ultimately encouraging development and maintenance of testing suites -- things that have become commonplace in many software endeavors, but have lagged in the development of science applications. We view that the challenge with the increased complexity of both HPC systems and science applications demands the use of better software engineering methods, preferably enabled by modern tools such as Eclipse PTP, to help the computational science community thrive as we evolve the HPC landscape.
A Comparison of PETSC Library and HPF Implementations of an Archetypal PDE Computation
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Keyes, David E.; Mehrotra, Piyush
1997-01-01
Two paradigms for distributed-memory parallel computation that free the application programmer from the details of message passing are compared for an archetypal structured scientific computation a nonlinear, structured-grid partial differential equation boundary value problem using the same algorithm on the same hardware. Both paradigms, parallel libraries represented by Argonne's PETSC, and parallel languages represented by the Portland Group's HPF, are found to be easy to use for this problem class, and both are reasonably effective in exploiting concurrency after a short learning curve. The level of involvement required by the application programmer under either paradigm includes specification of the data partitioning (corresponding to a geometrically simple decomposition of the domain of the PDE). Programming in SPAM style for the PETSC library requires writing the routines that discretize the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global- to-local index mappings), and interfacing to library solver routines. Programming for HPF requires a complete sequential implementation of the same algorithm, introducing concurrency through subdomain blocking (an effort similar to the index mapping), and modest experimentation with rewriting loops to elucidate to the compiler the latent concurrency. Correctness and scalability are cross-validated on up to 32 nodes of an IBM SP2.
WFIRST: Science from the Guest Investigator and Parallel Observation Programs
NASA Astrophysics Data System (ADS)
Postman, Marc; Nataf, David; Furlanetto, Steve; Milam, Stephanie; Robertson, Brant; Williams, Ben; Teplitz, Harry; Moustakas, Leonidas; Geha, Marla; Gilbert, Karoline; Dickinson, Mark; Scolnic, Daniel; Ravindranath, Swara; Strolger, Louis; Peek, Joshua; Marc Postman
2018-01-01
The Wide Field InfraRed Survey Telescope (WFIRST) mission will provide an extremely rich archival dataset that will enable a broad range of scientific investigations beyond the initial objectives of the proposed key survey programs. The scientific impact of WFIRST will thus be significantly expanded by a robust Guest Investigator (GI) archival research program. We will present examples of GI research opportunities ranging from studies of the properties of a variety of Solar System objects, surveys of the outer Milky Way halo, comprehensive studies of cluster galaxies, to unique and new constraints on the epoch of cosmic re-ionization and the assembly of galaxies in the early universe.WFIRST will also support the acquisition of deep wide-field imaging and slitless spectroscopic data obtained in parallel during campaigns with the coronagraphic instrument (CGI). These parallel wide-field imager (WFI) datasets can provide deep imaging data covering several square degrees at no impact to the scheduling of the CGI program. A competitively selected program of well-designed parallel WFI observation programs will, like the GI science above, maximize the overall scientific impact of WFIRST. We will give two examples of parallel observations that could be conducted during a proposed CGI program centered on a dozen nearby stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strout, Michelle
Programming parallel machines is fraught with difficulties: the obfuscation of algorithms due to implementation details such as communication and synchronization, the need for transparency between language constructs and performance, the difficulty of performing program analysis to enable automatic parallelization techniques, and the existence of important "dusty deck" codes. The SAIMI project developed abstractions that enable the orthogonal specification of algorithms and implementation details within the context of existing DOE applications. The main idea is to enable the injection of small programming models such as expressions involving transcendental functions, polyhedral iteration spaces with sparse constraints, and task graphs into full programsmore » through the use of pragmas. These smaller, more restricted programming models enable orthogonal specification of many implementation details such as how to map the computation on to parallel processors, how to schedule the computation, and how to allocation storage for the computation. At the same time, these small programming models enable the expression of the most computationally intense and communication heavy portions in many scientific simulations. The ability to orthogonally manipulate the implementation for such computations will significantly ease performance programming efforts and expose transformation possibilities and parameter to automated approaches such as autotuning. At Colorado State University, the SAIMI project was supported through DOE grant DE-SC3956 from April 2010 through August 2015. The SAIMI project has contributed a number of important results to programming abstractions that enable the orthogonal specification of implementation details in scientific codes. This final report summarizes the research that was funded by the SAIMI project.« less
What do you mean, 'resilient geomorphic systems'?
NASA Astrophysics Data System (ADS)
Thoms, M. C.; Piégay, H.; Parsons, M.
2018-03-01
Resilience thinking has many parallels in the study of geomorphology. Similarities and intersections exist between the scientific discipline of geomorphology and the scientific concept of resilience. Many of the core themes fundamental to geomorphology are closely related to the key themes of resilience. Applications of resilience thinking in the study of natural and human systems have expanded, based on the fundamental premise that ecosystems, economies, and societies must be managed as linked social-ecological systems. Despite geomorphology and resilience sharing core themes, appreciation is limited of the history and development of geomorphology as a field of scientific endeavor by many in the field of resilience, as well as a limited awareness of the foundations of the former in the more recent emergence of resilience. This potentially limits applications of resilience concepts to the study of geomorphology. In this manuscript we provide a collective examination of geomorphology and resilience as a means to conceptually advance both areas of study, as well as to further cement the relevance and importance of not only understanding the complexities of geomorphic systems in an emerging world of interdisciplinary challenges but also the importance of viewing humans as an intrinsic component of geomorphic systems rather than just an external driver. The application of the concepts of hierarchy and scale, fundamental tenets of the study of geomorphic systems, provide a means to overcome contemporary scale-limited approaches within resilience studies. Resilience offers a framework for geomorphology to expand its application into the broader social-ecological domain.
Stone, John E.; Hallock, Michael J.; Phillips, James C.; Peterson, Joseph R.; Luthey-Schulten, Zaida; Schulten, Klaus
2016-01-01
Many of the continuing scientific advances achieved through computational biology are predicated on the availability of ongoing increases in computational power required for detailed simulation and analysis of cellular processes on biologically-relevant timescales. A critical challenge facing the development of future exascale supercomputer systems is the development of new computing hardware and associated scientific applications that dramatically improve upon the energy efficiency of existing solutions, while providing increased simulation, analysis, and visualization performance. Mobile computing platforms have recently become powerful enough to support interactive molecular visualization tasks that were previously only possible on laptops and workstations, creating future opportunities for their convenient use for meetings, remote collaboration, and as head mounted displays for immersive stereoscopic viewing. We describe early experiences adapting several biomolecular simulation and analysis applications for emerging heterogeneous computing platforms that combine power-efficient system-on-chip multi-core CPUs with high-performance massively parallel GPUs. We present low-cost power monitoring instrumentation that provides sufficient temporal resolution to evaluate the power consumption of individual CPU algorithms and GPU kernels. We compare the performance and energy efficiency of scientific applications running on emerging platforms with results obtained on traditional platforms, identify hardware and algorithmic performance bottlenecks that affect the usability of these platforms, and describe avenues for improving both the hardware and applications in pursuit of the needs of molecular modeling tasks on mobile devices and future exascale computers. PMID:27516922
2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation
Warren, Michael S.
2014-01-01
We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2 18 ) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096 3 ) particle cosmological simulations, accounting for 4×10 20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy andmore » scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.« less
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi; ...
2016-07-21
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
Tigres Workflow Library: Supporting Scientific Pipelines on HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrix, Valerie; Fox, James; Ghoshal, Devarshi
The growth in scientific data volumes has resulted in the need for new tools that enable users to operate on and analyze data on large-scale resources. In the last decade, a number of scientific workflow tools have emerged. These tools often target distributed environments, and often need expert help to compose and execute the workflows. Data-intensive workflows are often ad-hoc, they involve an iterative development process that includes users composing and testing their workflows on desktops, and scaling up to larger systems. In this paper, we present the design and implementation of Tigres, a workflow library that supports the iterativemore » workflow development cycle of data-intensive workflows. Tigres provides an application programming interface to a set of programming templates i.e., sequence, parallel, split, merge, that can be used to compose and execute computational and data pipelines. We discuss the results of our evaluation of scientific and synthetic workflows showing Tigres performs with minimal template overheads (mean of 13 seconds over all experiments). We also discuss various factors (e.g., I/O performance, execution mechanisms) that affect the performance of scientific workflows on HPC systems.« less
Monte Carlo: in the beginning and some great expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metropolis, N.
1985-01-01
The central theme will be on the historical setting and origins of the Monte Carlo Method. The scene was post-war Los Alamos Scientific Laboratory. There was an inevitability about the Monte Carlo Event: the ENIAC had recently enjoyed its meteoric rise (on a classified Los Alamos problem); Stan Ulam had returned to Los Alamos; John von Neumann was a frequent visitor. Techniques, algorithms, and applications developed rapidly at Los Alamos. Soon, the fascination of the Method reached wider horizons. The first paper was submitted for publication in the spring of 1949. In the summer of 1949, the first open conferencemore » was held at the University of California at Los Angeles. Of some interst perhaps is an account of Fermi's earlier, independent application in neutron moderation studies while at the University of Rome. The quantum leap expected with the advent of massively parallel processors will provide stimuli for very ambitious applications of the Monte Carlo Method in disciplines ranging from field theories to cosmology, including more realistic models in the neurosciences. A structure of multi-instruction sets for parallel processing is ideally suited for the Monte Carlo approach. One may even hope for a modest hardening of the soft sciences.« less
NASA Astrophysics Data System (ADS)
Li, J.; Zhang, T.; Huang, Q.; Liu, Q.
2014-12-01
Today's climate datasets are featured with large volume, high degree of spatiotemporal complexity and evolving fast overtime. As visualizing large volume distributed climate datasets is computationally intensive, traditional desktop based visualization applications fail to handle the computational intensity. Recently, scientists have developed remote visualization techniques to address the computational issue. Remote visualization techniques usually leverage server-side parallel computing capabilities to perform visualization tasks and deliver visualization results to clients through network. In this research, we aim to build a remote parallel visualization platform for visualizing and analyzing massive climate data. Our visualization platform was built based on Paraview, which is one of the most popular open source remote visualization and analysis applications. To further enhance the scalability and stability of the platform, we have employed cloud computing techniques to support the deployment of the platform. In this platform, all climate datasets are regular grid data which are stored in NetCDF format. Three types of data access methods are supported in the platform: accessing remote datasets provided by OpenDAP servers, accessing datasets hosted on the web visualization server and accessing local datasets. Despite different data access methods, all visualization tasks are completed at the server side to reduce the workload of clients. As a proof of concept, we have implemented a set of scientific visualization methods to show the feasibility of the platform. Preliminary results indicate that the framework can address the computation limitation of desktop based visualization applications.
Design and optimization of a portable LQCD Monte Carlo code using OpenACC
NASA Astrophysics Data System (ADS)
Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele
The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.
Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.
2002-01-01
As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.
FastQuery: A Parallel Indexing System for Scientific Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Jerry; Wu, Kesheng; Prabhat,
2011-07-29
Modern scientific datasets present numerous data management and analysis challenges. State-of-the- art index and query technologies such as FastBit can significantly improve accesses to these datasets by augmenting the user data with indexes and other secondary information. However, a challenge is that the indexes assume the relational data model but the scientific data generally follows the array data model. To match the two data models, we design a generic mapping mechanism and implement an efficient input and output interface for reading and writing the data and their corresponding indexes. To take advantage of the emerging many-core architectures, we also developmore » a parallel strategy for indexing using threading technology. This approach complements our on-going MPI-based parallelization efforts. We demonstrate the flexibility of our software by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using data from a particle accelerator model and a global climate model. We also conducted a detailed performance study using these scientific datasets. The results show that FastQuery speeds up the query time by a factor of 2.5x to 50x, and it reduces the indexing time by a factor of 16 on 24 cores.« less
NASA Astrophysics Data System (ADS)
Gassmöller, Rene; Bangerth, Wolfgang
2016-04-01
Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a modern advection-field approach, and demonstrate under which conditions which method is more efficient. We implemented the presented methods in ASPECT (aspect.dealii.org), a freely available open-source community code for geodynamic simulations. The structure of the particle code is highly modular, and segregated from the PDE solver, and can thus be easily transferred to other programs, or adapted for various application cases.
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
NASA Astrophysics Data System (ADS)
Moon, Hongsik
What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.
Benestan, Laura Marilyn; Ferchaud, Anne-Laure; Hohenlohe, Paul A; Garner, Brittany A; Naylor, Gavin J P; Baums, Iliana Brigitta; Schwartz, Michael K; Kelley, Joanna L; Luikart, Gordon
2016-07-01
The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time-consuming. To address this gap, a recent workshop entitled 'ConGen 2015' was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges. © 2016 John Wiley & Sons Ltd.
Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo
2012-01-01
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element. PMID:23202240
An Application-Based Performance Characterization of the Columbia Supercluster
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Djomehri, Jahed M.; Hood, Robert; Jin, Hoaqiang; Kiris, Cetin; Saini, Subhash
2005-01-01
Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors.
Cagnin, Stefano; Cimetta, Elisa; Guiducci, Carlotta; Martini, Paolo; Lanfranchi, Gerolamo
2012-11-19
In the past few decades the scientific community has been recognizing the paramount role of the cell microenvironment in determining cell behavior. In parallel, the study of human stem cells for their potential therapeutic applications has been progressing constantly. The use of advanced technologies, enabling one to mimic the in vivo stem cell microenviroment and to study stem cell physiology and physio-pathology, in settings that better predict human cell biology, is becoming the object of much research effort. In this review we will detail the most relevant and recent advances in the field of biosensors and micro- and nano-technologies in general, highlighting advantages and disadvantages. Particular attention will be devoted to those applications employing stem cells as a sensing element.
Near Real-Time Image Reconstruction
NASA Astrophysics Data System (ADS)
Denker, C.; Yang, G.; Wang, H.
2001-08-01
In recent years, post-facto image-processing algorithms have been developed to achieve diffraction-limited observations of the solar surface. We present a combination of frame selection, speckle-masking imaging, and parallel computing which provides real-time, diffraction-limited, 256×256 pixel images at a 1-minute cadence. Our approach to achieve diffraction limited observations is complementary to adaptive optics (AO). At the moment, AO is limited by the fact that it corrects wavefront abberations only for a field of view comparable to the isoplanatic patch. This limitation does not apply to speckle-masking imaging. However, speckle-masking imaging relies on short-exposure images which limits its spectroscopic applications. The parallel processing of the data is performed on a Beowulf-class computer which utilizes off-the-shelf, mass-market technologies to provide high computational performance for scientific calculations and applications at low cost. Beowulf computers have a great potential, not only for image reconstruction, but for any kind of complex data reduction. Immediate access to high-level data products and direct visualization of dynamic processes on the Sun are two of the advantages to be gained.
PoPLAR: Portal for Petascale Lifescience Applications and Research
2013-01-01
Background We are focusing specifically on fast data analysis and retrieval in bioinformatics that will have a direct impact on the quality of human health and the environment. The exponential growth of data generated in biology research, from small atoms to big ecosystems, necessitates an increasingly large computational component to perform analyses. Novel DNA sequencing technologies and complementary high-throughput approaches--such as proteomics, genomics, metabolomics, and meta-genomics--drive data-intensive bioinformatics. While individual research centers or universities could once provide for these applications, this is no longer the case. Today, only specialized national centers can deliver the level of computing resources required to meet the challenges posed by rapid data growth and the resulting computational demand. Consequently, we are developing massively parallel applications to analyze the growing flood of biological data and contribute to the rapid discovery of novel knowledge. Methods The efforts of previous National Science Foundation (NSF) projects provided for the generation of parallel modules for widely used bioinformatics applications on the Kraken supercomputer. We have profiled and optimized the code of some of the scientific community's most widely used desktop and small-cluster-based applications, including BLAST from the National Center for Biotechnology Information (NCBI), HMMER, and MUSCLE; scaled them to tens of thousands of cores on high-performance computing (HPC) architectures; made them robust and portable to next-generation architectures; and incorporated these parallel applications in science gateways with a web-based portal. Results This paper will discuss the various developmental stages, challenges, and solutions involved in taking bioinformatics applications from the desktop to petascale with a front-end portal for very-large-scale data analysis in the life sciences. Conclusions This research will help to bridge the gap between the rate of data generation and the speed at which scientists can study this data. The ability to rapidly analyze data at such a large scale is having a significant, direct impact on science achieved by collaborators who are currently using these tools on supercomputers. PMID:23902523
ERIC Educational Resources Information Center
Tweney, Ryan D.
Drawing parallels with critical thinking and creative thinking, this document describes some ways that scientific thinking is utilized. Cognitive approaches to scientific thinking are discussed, and it is argued that all science involves an attempt to construct a testable mental model of some aspect of reality. The role of mental models is…
Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool
NASA Astrophysics Data System (ADS)
Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.
1997-12-01
Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.
On the utility of threads for data parallel programming
NASA Technical Reports Server (NTRS)
Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush
1995-01-01
Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.
PETSc Users Manual Revision 3.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.; Brown, J.; Buschelman, K.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less
PETSc Users Manual Revision 3.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.; Brown, J.; Buschelman, K.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself; For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less
PETSc Users Manual Revision 3.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.; Abhyankar, S.; Adams, M.
This manual describes the use of PETSc for the numerical solution of partial differential equations and related problems on high-performance computers. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data structures and routines that provide the building blocks for the implementation of large-scale application codes on parallel (and serial) computers. PETSc uses the MPI standard for all message-passing communication. PETSc includes an expanding suite of parallel linear, nonlinear equation solvers and time integrators that may be used in application codes written in Fortran, C, C++, Python, and MATLAB (sequential). PETSc provides many of the mechanisms neededmore » within parallel application codes, such as parallel matrix and vector assembly routines. The library is organized hierarchically, enabling users to employ the level of abstraction that is most appropriate for a particular problem. By using techniques of object-oriented programming, PETSc provides enormous flexibility for users. PETSc is a sophisticated set of software tools; as such, for some users it initially has a much steeper learning curve than a simple subroutine library. In particular, for individuals without some computer science background, experience programming in C, C++ or Fortran and experience using a debugger such as gdb or dbx, it may require a significant amount of time to take full advantage of the features that enable efficient software use. However, the power of the PETSc design and the algorithms it incorporates may make the efficient implementation of many application codes simpler than “rolling them” yourself. ;For many tasks a package such as MATLAB is often the best tool; PETSc is not intended for the classes of problems for which effective MATLAB code can be written. PETSc also has a MATLAB interface, so portions of your code can be written in MATLAB to “try out” the PETSc solvers. The resulting code will not be scalable however because currently MATLAB is inherently not scalable; and PETSc should not be used to attempt to provide a “parallel linear solver” in an otherwise sequential code. Certainly all parts of a previously sequential code need not be parallelized but the matrix generation portion must be parallelized to expect any kind of reasonable performance. Do not expect to generate your matrix sequentially and then “use PETSc” to solve the linear system in parallel. Since PETSc is under continued development, small changes in usage and calling sequences of routines will occur. PETSc is supported; see the web site http://www.mcs.anl.gov/petsc for information on contacting support. A http://www.mcs.anl.gov/petsc/publications may be found a list of publications and web sites that feature work involving PETSc. We welcome any reports of corrections for this document.« less
A bioinformatics knowledge discovery in text application for grid computing
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-01-01
Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749
A bioinformatics knowledge discovery in text application for grid computing.
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-06-16
A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.
NASA Astrophysics Data System (ADS)
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; Qin, Jian; Karpeev, Dmitry; Hernandez-Ortiz, Juan; de Pablo, Juan J.; Heinonen, Olle
2016-08-01
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O(N2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Method (FMM) to evaluate the integrals in O(N) operations, with O(N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. The results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.
Jiang, Xikai; Li, Jiyuan; Zhao, Xujun; ...
2016-08-10
Large classes of materials systems in physics and engineering are governed by magnetic and electrostatic interactions. Continuum or mesoscale descriptions of such systems can be cast in terms of integral equations, whose direct computational evaluation requires O( N 2) operations, where N is the number of unknowns. Such a scaling, which arises from the many-body nature of the relevant Green's function, has precluded wide-spread adoption of integral methods for solution of large-scale scientific and engineering problems. In this work, a parallel computational approach is presented that relies on using scalable open source libraries and utilizes a kernel-independent Fast Multipole Methodmore » (FMM) to evaluate the integrals in O( N) operations, with O( N) memory cost, thereby substantially improving the scalability and efficiency of computational integral methods. We demonstrate the accuracy, efficiency, and scalability of our approach in the context of two examples. In the first, we solve a boundary value problem for a ferroelectric/ferromagnetic volume in free space. In the second, we solve an electrostatic problem involving polarizable dielectric bodies in an unbounded dielectric medium. Lastly, the results from these test cases show that our proposed parallel approach, which is built on a kernel-independent FMM, can enable highly efficient and accurate simulations and allow for considerable flexibility in a broad range of applications.« less
Parallel Tensor Compression for Large-Scale Scientific Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan
As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less
Parallel Polarization State Generation
NASA Astrophysics Data System (ADS)
She, Alan; Capasso, Federico
2016-05-01
The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.
Distributed data mining on grids: services, tools, and applications.
Cannataro, Mario; Congiusta, Antonio; Pugliese, Andrea; Talia, Domenico; Trunfio, Paolo
2004-12-01
Data mining algorithms are widely used today for the analysis of large corporate and scientific datasets stored in databases and data archives. Industry, science, and commerce fields often need to analyze very large datasets maintained over geographically distributed sites by using the computational power of distributed and parallel systems. The grid can play a significant role in providing an effective computational support for distributed knowledge discovery applications. For the development of data mining applications on grids we designed a system called Knowledge Grid. This paper describes the Knowledge Grid framework and presents the toolset provided by the Knowledge Grid for implementing distributed knowledge discovery. The paper discusses how to design and implement data mining applications by using the Knowledge Grid tools starting from searching grid resources, composing software and data components, and executing the resulting data mining process on a grid. Some performance results are also discussed.
Portable LQCD Monte Carlo code using OpenACC
NASA Astrophysics Data System (ADS)
Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele
2018-03-01
Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.
Collectively loading an application in a parallel computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Collectively loading an application in a parallel computer, the parallel computer comprising a plurality of compute nodes, including: identifying, by a parallel computer control system, a subset of compute nodes in the parallel computer to execute a job; selecting, by the parallel computer control system, one of the subset of compute nodes in the parallel computer as a job leader compute node; retrieving, by the job leader compute node from computer memory, an application for executing the job; and broadcasting, by the job leader to the subset of compute nodes in the parallel computer, the application for executing the job.
Evolution of the SOFIA tracking control system
NASA Astrophysics Data System (ADS)
Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen
2014-07-01
The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.
NASA Technical Reports Server (NTRS)
Edgington, Susan
2014-01-01
Today, space is no longer just a field of advanced technological development and of scientific research of excellence, but has become an essential asset for everyday life. Space has spurred countless scientific and technological achievements which are commonly used in aeronautics, medicine, material science and production, in information and communications technology. In parallel, more and more services are carried out through the use of space applications, ranging from detection of natural disasters and environmental monitoring to global navigation and telecommunication. Using space missions to build a better understanding of the universe fulfills our centuries-old curiosity and leads humanity into the future, opening up new frontiers of knowledge. The International Astronautical Congresses have always represented an arena in which issues have been discussed with friendship and among experts: scientists, technicians and managers from universities, agencies, research centres and industry. At the same time it introduces students and young professionals to the field.
Application Portable Parallel Library
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott
1995-01-01
Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.
Implementation of a parallel unstructured Euler solver on the CM-5
NASA Technical Reports Server (NTRS)
Morano, Eric; Mavriplis, D. J.
1995-01-01
An efficient unstructured 3D Euler solver is parallelized on a Thinking Machine Corporation Connection Machine 5, distributed memory computer with vectoring capability. In this paper, the single instruction multiple data (SIMD) strategy is employed through the use of the CM Fortran language and the CMSSL scientific library. The performance of the CMSSL mesh partitioner is evaluated and the overall efficiency of the parallel flow solver is discussed.
PISCES: An environment for parallel scientific computation
NASA Technical Reports Server (NTRS)
Pratt, T. W.
1985-01-01
The parallel implementation of scientific computing environment (PISCES) is a project to provide high-level programming environments for parallel MIMD computers. Pisces 1, the first of these environments, is a FORTRAN 77 based environment which runs under the UNIX operating system. The Pisces 1 user programs in Pisces FORTRAN, an extension of FORTRAN 77 for parallel processing. The major emphasis in the Pisces 1 design is in providing a carefully specified virtual machine that defines the run-time environment within which Pisces FORTRAN programs are executed. Each implementation then provides the same virtual machine, regardless of differences in the underlying architecture. The design is intended to be portable to a variety of architectures. Currently Pisces 1 is implemented on a network of Apollo workstations and on a DEC VAX uniprocessor via simulation of the task level parallelism. An implementation for the Flexible Computing Corp. FLEX/32 is under construction. An introduction to the Pisces 1 virtual computer and the FORTRAN 77 extensions is presented. An example of an algorithm for the iterative solution of a system of equations is given. The most notable features of the design are the provision for several granularities of parallelism in programs and the provision of a window mechanism for distributed access to large arrays of data.
A survey of GPU-based medical image computing techniques
Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming
2012-01-01
Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080
Playback system designed for X-Band SAR
NASA Astrophysics Data System (ADS)
Yuquan, Liu; Changyong, Dou
2014-03-01
SAR(Synthetic Aperture Radar) has extensive application because it is daylight and weather independent. In particular, X-Band SAR strip map, designed by Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, provides high ground resolution images, at the same time it has a large spatial coverage and a short acquisition time, so it is promising in multi-applications. When sudden disaster comes, the emergency situation acquires radar signal data and image as soon as possible, in order to take action to reduce loss and save lives in the first time. This paper summarizes a type of X-Band SAR playback processing system designed for disaster response and scientific needs. It describes SAR data workflow includes the payload data transmission and reception process. Playback processing system completes signal analysis on the original data, providing SAR level 0 products and quick image. Gigabit network promises radar signal transmission efficiency from recorder to calculation unit. Multi-thread parallel computing and ping pong operation can ensure computation speed. Through gigabit network, multi-thread parallel computing and ping pong operation, high speed data transmission and processing meet the SAR radar data playback real time requirement.
1993 Gordon Bell Prize Winners
NASA Technical Reports Server (NTRS)
Karp, Alan H.; Simon, Horst; Heller, Don; Cooper, D. M. (Technical Monitor)
1994-01-01
The Gordon Bell Prize recognizes significant achievements in the application of supercomputers to scientific and engineering problems. In 1993, finalists were named for work in three categories: (1) Performance, which recognizes those who solved a real problem in the quickest elapsed time. (2) Price/performance, which encourages the development of cost-effective supercomputing. (3) Compiler-generated speedup, which measures how well compiler writers are facilitating the programming of parallel processors. The winners were announced November 17 at the Supercomputing 93 conference in Portland, Oregon. Gordon Bell, an independent consultant in Los Altos, California, is sponsoring $2,000 in prizes each year for 10 years to promote practical parallel processing research. This is the sixth year of the prize, which Computer administers. Something unprecedented in Gordon Bell Prize competition occurred this year: A computer manufacturer was singled out for recognition. Nine entries reporting results obtained on the Cray C90 were received, seven of the submissions orchestrated by Cray Research. Although none of these entries showed sufficiently high performance to win outright, the judges were impressed by the breadth of applications that ran well on this machine, all nine running at more than a third of the peak performance of the machine.
Efficient Use of Distributed Systems for Scientific Applications
NASA Technical Reports Server (NTRS)
Taylor, Valerie; Chen, Jian; Canfield, Thomas; Richard, Jacques
2000-01-01
Distributed computing has been regarded as the future of high performance computing. Nationwide high speed networks such as vBNS are becoming widely available to interconnect high-speed computers, virtual environments, scientific instruments and large data sets. One of the major issues to be addressed with distributed systems is the development of computational tools that facilitate the efficient execution of parallel applications on such systems. These tools must exploit the heterogeneous resources (networks and compute nodes) in distributed systems. This paper presents a tool, called PART, which addresses this issue for mesh partitioning. PART takes advantage of the following heterogeneous system features: (1) processor speed; (2) number of processors; (3) local network performance; and (4) wide area network performance. Further, different finite element applications under consideration may have different computational complexities, different communication patterns, and different element types, which also must be taken into consideration when partitioning. PART uses parallel simulated annealing to partition the domain, taking into consideration network and processor heterogeneity. The results of using PART for an explicit finite element application executing on two IBM SPs (located at Argonne National Laboratory and the San Diego Supercomputer Center) indicate an increase in efficiency by up to 36% as compared to METIS, a widely used mesh partitioning tool. The input to METIS was modified to take into consideration heterogeneous processor performance; METIS does not take into consideration heterogeneous networks. The execution times for these applications were reduced by up to 30% as compared to METIS. These results are given in Figure 1 for four irregular meshes with number of elements ranging from 30,269 elements for the Barth5 mesh to 11,451 elements for the Barth4 mesh. Future work with PART entails using the tool with an integrated application requiring distributed systems. In particular this application, illustrated in the document entails an integration of finite element and fluid dynamic simulations to address the cooling of turbine blades of a gas turbine engine design. It is not uncommon to encounter high-temperature, film-cooled turbine airfoils with 1,000,000s of degrees of freedom. This results because of the complexity of the various components of the airfoils, requiring fine-grain meshing for accuracy. Additional information is contained in the original.
Emphasizing history in communicating scientific debates
NASA Astrophysics Data System (ADS)
Sherwood, S. C.
2010-12-01
Communication to the public of the reality of anthropogenic climate change has been less successful than many expect. The scientists themselves, the media, special interest groups, or the complexity of modern society are often blamed. However a look at past scientific paradigm shifts, in particular the Copernican revolution and the discovery of relativity, shows close parallels with the modern situation. Common aspects include the gradual formation of a scientific consensus in advance of the public; a politically partisan backlash against the new theory that, paradoxically, occurs after the arrival of conclusive supporting evidence; the prevalence of convincing but invalid pseudo-scientific counterarguments; the general failure of "debates" to increase public acceptance of the scientists' position; and, in the case of the heliocentric solar system, a very long time scale to final public acceptance (> 100 years). Greater emphasis on the lessons from such historical parallels, and on the success so far of consensus predictions of global warming made up to and including the first IPCC report in 1990, might be one useful way of enhancing the public's trust in science and scientists and thereby accelerate acceptance of uncomfortable scientific findings.
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Michael E.; Attinella, John E.; Gooding, Thomas M.
Aggregating job exit statuses of a plurality of compute nodes executing a parallel application, including: identifying a subset of compute nodes in the parallel computer to execute the parallel application; selecting one compute node in the subset of compute nodes in the parallel computer as a job leader compute node; initiating execution of the parallel application on the subset of compute nodes; receiving an exit status from each compute node in the subset of compute nodes, where the exit status for each compute node includes information describing execution of some portion of the parallel application by the compute node; aggregatingmore » each exit status from each compute node in the subset of compute nodes; and sending an aggregated exit status for the subset of compute nodes in the parallel computer.« less
Real-time computation of parameter fitting and image reconstruction using graphical processing units
NASA Astrophysics Data System (ADS)
Locans, Uldis; Adelmann, Andreas; Suter, Andreas; Fischer, Jannis; Lustermann, Werner; Dissertori, Günther; Wang, Qiulin
2017-06-01
In recent years graphical processing units (GPUs) have become a powerful tool in scientific computing. Their potential to speed up highly parallel applications brings the power of high performance computing to a wider range of users. However, programming these devices and integrating their use in existing applications is still a challenging task. In this paper we examined the potential of GPUs for two different applications. The first application, created at Paul Scherrer Institut (PSI), is used for parameter fitting during data analysis of μSR (muon spin rotation, relaxation and resonance) experiments. The second application, developed at ETH, is used for PET (Positron Emission Tomography) image reconstruction and analysis. Applications currently in use were examined to identify parts of the algorithms in need of optimization. Efficient GPU kernels were created in order to allow applications to use a GPU, to speed up the previously identified parts. Benchmarking tests were performed in order to measure the achieved speedup. During this work, we focused on single GPU systems to show that real time data analysis of these problems can be achieved without the need for large computing clusters. The results show that the currently used application for parameter fitting, which uses OpenMP to parallelize calculations over multiple CPU cores, can be accelerated around 40 times through the use of a GPU. The speedup may vary depending on the size and complexity of the problem. For PET image analysis, the obtained speedups of the GPU version were more than × 40 larger compared to a single core CPU implementation. The achieved results show that it is possible to improve the execution time by orders of magnitude.
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth; ...
2016-03-29
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo
2014-01-01
The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072
NASA Astrophysics Data System (ADS)
Decyk, Viktor K.; Dauger, Dean E.
We have constructed a parallel cluster consisting of Apple Macintosh G4 computers running both Classic Mac OS as well as the Unix-based Mac OS X, and have achieved very good performance on numerically intensive, parallel plasma particle-in-cell simulations. Unlike other Unix-based clusters, no special expertise in operating systems is required to build and run the cluster. This enables us to move parallel computing from the realm of experts to the mainstream of computing.
Locality Aware Concurrent Start for Stencil Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Sunil; Gao, Guang R.; Manzano Franco, Joseph B.
Stencil computations are at the heart of many physical simulations used in scientific codes. Thus, there exists a plethora of optimization efforts for this family of computations. Among these techniques, tiling techniques that allow concurrent start have proven to be very efficient in providing better performance for these critical kernels. Nevertheless, with many core designs being the norm, these optimization techniques might not be able to fully exploit locality (both spatial and temporal) on multiple levels of the memory hierarchy without compromising parallelism. It is no longer true that the machine can be seen as a homogeneous collection of nodesmore » with caches, main memory and an interconnect network. New architectural designs exhibit complex grouping of nodes, cores, threads, caches and memory connected by an ever evolving network-on-chip design. These new designs may benefit greatly from carefully crafted schedules and groupings that encourage parallel actors (i.e. threads, cores or nodes) to be aware of the computational history of other actors in close proximity. In this paper, we provide an efficient tiling technique that allows hierarchical concurrent start for memory hierarchy aware tile groups. Each execution schedule and tile shape exploit the available parallelism, load balance and locality present in the given applications. We demonstrate our technique on the Intel Xeon Phi architecture with selected and representative stencil kernels. We show improvement ranging from 5.58% to 31.17% over existing state-of-the-art techniques.« less
Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok
Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledgemore » discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.« less
IOPA: I/O-aware parallelism adaption for parallel programs
Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei
2017-01-01
With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads. PMID:28278236
IOPA: I/O-aware parallelism adaption for parallel programs.
Liu, Tao; Liu, Yi; Qian, Chen; Qian, Depei
2017-01-01
With the development of multi-/many-core processors, applications need to be written as parallel programs to improve execution efficiency. For data-intensive applications that use multiple threads to read/write files simultaneously, an I/O sub-system can easily become a bottleneck when too many of these types of threads exist; on the contrary, too few threads will cause insufficient resource utilization and hurt performance. Therefore, programmers must pay much attention to parallelism control to find the appropriate number of I/O threads for an application. This paper proposes a parallelism control mechanism named IOPA that can adjust the parallelism of applications to adapt to the I/O capability of a system and balance computing resources and I/O bandwidth. The programming interface of IOPA is also provided to programmers to simplify parallel programming. IOPA is evaluated using multiple applications with both solid state and hard disk drives. The results show that the parallel applications using IOPA can achieve higher efficiency than those with a fixed number of threads.
The Literacy Component of Mathematical and Scientific Literacy
ERIC Educational Resources Information Center
Yore, Larry D.; Pimm, David; Tuan, Hsiao-Lin
2007-01-01
This opening article of the Special Issue makes an argument for parallel definitions of scientific literacy and mathematical literacy that have shared features: importance of general cognitive and metacognitive abilities and reasoning/thinking and discipline-specific language, habits-of-mind/emotional dispositions, and information communication…
Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.
2000-01-01
Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining, gather/scatter, and redistribution. At the end of the conversion process most intermediate Charon function calls will have been removed, the non-distributed arrays will have been deleted, and virtually the only remaining Charon functions calls are the high-level, highly optimized communications. Distribution of the data is under complete control of the programmer, although a wide range of useful distributions is easily available through predefined functions. A crucial aspect of the library is that it does not allocate space for distributed arrays, but accepts programmer-specified memory. This has two major consequences. First, codes parallelized using Charon do not suffer from encapsulation; user data is always directly accessible. This provides high efficiency, and also retains the possibility of using message passing directly for highly irregular communications. Second, non-distributed arrays can be interpreted as (trivial) distributions in the Charon sense, which allows them to be mapped to truly distributed arrays, and vice versa. This is the mechanism that enables incremental parallelization. In this paper we provide a brief introduction of the library and then focus on the actual steps in the parallelization process, using some representative examples from, among others, the NAS Parallel Benchmarks. We show how a complicated two-dimensional pipeline-the prototypical non-data-parallel algorithm- can be constructed with ease. To demonstrate the flexibility of the library, we give examples of the stepwise, efficient parallel implementation of nonlocal boundary conditions common in aircraft simulations, as well as the construction of the sequence of grids required for multigrid.
Translational research in infectious disease: current paradigms and challenges ahead
Fontana, Judith M.; Alexander, Elizabeth; Salvatore, Mirella
2012-01-01
In recent years, the biomedical community has witnessed a rapid scientific and technological evolution following the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology, to the “holistic” approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics and other “omics” have become the predominant tools by which large amounts of data are amassed, analyzed and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been steadily decreasing, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this paper we will review, in a non-inclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field. PMID:22633095
Fully accelerating quantum Monte Carlo simulations of real materials on GPU clusters
NASA Astrophysics Data System (ADS)
Esler, Kenneth
2011-03-01
Quantum Monte Carlo (QMC) has proved to be an invaluable tool for predicting the properties of matter from fundamental principles, combining very high accuracy with extreme parallel scalability. By solving the many-body Schrödinger equation through a stochastic projection, it achieves greater accuracy than mean-field methods and better scaling with system size than quantum chemical methods, enabling scientific discovery across a broad spectrum of disciplines. In recent years, graphics processing units (GPUs) have provided a high-performance and low-cost new approach to scientific computing, and GPU-based supercomputers are now among the fastest in the world. The multiple forms of parallelism afforded by QMC algorithms make the method an ideal candidate for acceleration in the many-core paradigm. We present the results of porting the QMCPACK code to run on GPU clusters using the NVIDIA CUDA platform. Using mixed precision on GPUs and MPI for intercommunication, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core CPUs alone, while reproducing the double-precision CPU results within statistical error. We discuss the algorithm modifications necessary to achieve good performance on this heterogeneous architecture and present the results of applying our code to molecules and bulk materials. Supported by the U.S. DOE under Contract No. DOE-DE-FG05-08OR23336 and by the NSF under No. 0904572.
NASA Technical Reports Server (NTRS)
Dongarra, Jack (Editor); Messina, Paul (Editor); Sorensen, Danny C. (Editor); Voigt, Robert G. (Editor)
1990-01-01
Attention is given to such topics as an evaluation of block algorithm variants in LAPACK and presents a large-grain parallel sparse system solver, a multiprocessor method for the solution of the generalized Eigenvalue problem on an interval, and a parallel QR algorithm for iterative subspace methods on the CM2. A discussion of numerical methods includes the topics of asynchronous numerical solutions of PDEs on parallel computers, parallel homotopy curve tracking on a hypercube, and solving Navier-Stokes equations on the Cedar Multi-Cluster system. A section on differential equations includes a discussion of a six-color procedure for the parallel solution of elliptic systems using the finite quadtree structure, data parallel algorithms for the finite element method, and domain decomposition methods in aerodynamics. Topics dealing with massively parallel computing include hypercube vs. 2-dimensional meshes and massively parallel computation of conservation laws. Performance and tools are also discussed.
NASA Astrophysics Data System (ADS)
Huang, Qian
2014-09-01
Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.
Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher R. Johnson, Charles D. Hansen
2001-10-29
The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less
NASA Astrophysics Data System (ADS)
Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.
2017-12-01
As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.
Time-domain fiber loop ringdown sensor and sensor network
NASA Astrophysics Data System (ADS)
Kaya, Malik
Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and parallel by using a 2x1 micro-electromechanical system optical switch to control sensors individually. For both configurations, contributions of each sensor to two or three coupled signals were simulated theoretically. Results show that numerous FLRD sensors can be connected in different configurations, and a sensor network can be built up for multi-function sensing applications.
Toward a definition of sarcopenia.
Cederholm, Tommy E; Bauer, Juergen M; Boirie, Yves; Schneider, Stephane M; Sieber, Cornel C; Rolland, Yves
2011-08-01
The definition of sarcopenia has been thoroughly discussed by scientific stakeholders and industry representatives to increase the clinical applicability of the concept. The pooled consensus from 3 of 5 recent and parallel processes, of which 2 are pending, is that sarcopenia is mainly, but not only, an age-related condition defined by the combined presence of reduced muscle mass and muscle function. Contributing factors to sarcopenia are senescence, chronic disease, physical inactivity, and poor food intake. Cachexia may be considered as one etiologic pathway of an accelerated sarcopenia. The adjusted and extended definitions of sarcopenia promote the clinical use of the concept. Copyright © 2011 Elsevier Inc. All rights reserved.
Genten: Software for Generalized Tensor Decompositions v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel
Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Disciplinary Authority and Accountability in Scientific Practice and Learning
ERIC Educational Resources Information Center
Ford, Michael
2008-01-01
This article explores the relation between how scientific knowledge is created and the reasoning involved in learning content with understanding. Although an asserted parallel between these underpins reform, little is actually known about this relation. This article offers a model of this relation that draws coherent connections between the…
Grider, Gary A.; Poole, Stephen W.
2015-09-01
Collective buffering and data pattern solutions are provided for storage, retrieval, and/or analysis of data in a collective parallel processing environment. For example, a method can be provided for data storage in a collective parallel processing environment. The method comprises receiving data to be written for a plurality of collective processes within a collective parallel processing environment, extracting a data pattern for the data to be written for the plurality of collective processes, generating a representation describing the data pattern, and saving the data and the representation.
Evaluation of usefulness of 3D views for clinical photography.
Jinnin, Masatoshi; Fukushima, Satoshi; Masuguchi, Shinichi; Tanaka, Hiroki; Kawashita, Yoshio; Ishihara, Tsuyoshi; Ihn, Hironobu
2011-01-01
This is the first report investigating the usefulness of a 3D viewing technique (parallel viewing and cross-eyed viewing) for presenting clinical photography. Using the technique, we can grasp 3D structure of various lesions (e.g. tumors, wounds) or surgical procedures (e.g. lymph node dissection, flap) much more easily even without any cost and optical aids compared to 2D photos. Most recently 3D cameras started to be commercially available, but they may not be useful for presentation in scientific papers or poster sessions. To create a stereogram, two different pictures were taken from the right and left eye views using a digital camera. Then, the two pictures were placed next to one another. Using 9 stereograms, we performed a questionnaire-based survey. Our survey revealed 57.7% of the doctors/students had acquired the 3D viewing technique and an additional 15.4% could learn parallel viewing with 10 minutes training. Among the subjects capable of 3D views, 73.7% used the parallel view technique whereas only 26.3% chose the cross-eyed view. There was no significant difference in the results of the questionnaire about the efficiency and usefulness of 3D views between parallel view users and cross-eyed users. Almost all subjects (94.7%) answered that the technique is useful. Lesions with multiple undulations are a good application. 3D views, especially parallel viewing, are likely to be common and easy enough to consider for practical use in doctors/students. The wide use of the technique may revolutionize presentation of clinical pictures in meetings, educational lectures, or manuscripts.
Parallel Algorithms for the Exascale Era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robey, Robert W.
New parallel algorithms are needed to reach the Exascale level of parallelism with millions of cores. We look at some of the research developed by students in projects at LANL. The research blends ideas from the early days of computing while weaving in the fresh approach brought by students new to the field of high performance computing. We look at reproducibility of global sums and why it is important to parallel computing. Next we look at how the concept of hashing has led to the development of more scalable algorithms suitable for next-generation parallel computers. Nearly all of this workmore » has been done by undergraduates and published in leading scientific journals.« less
Adding Data Management Services to Parallel File Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Scott
2015-03-04
The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decadesmore » the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce’s failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford’s Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.« less
Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0
NASA Technical Reports Server (NTRS)
Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine
2004-01-01
We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.
NASA Astrophysics Data System (ADS)
Ganikhodjaev, Nasir; Mukhamedov, Farrukh; Hee, Pah Chin
2013-04-01
The 4th International Conference on the Advancement of Science and Technology 2012 (iCAST 2012), with theme 'Contemporary Mathematics, Mathematical Physics and their Applications', took place in Kuantan, Malaysia, from Wednesday 7 to Friday 9 November 2012. The conference was attended by more than 100 participants, and hosted about 160 oral and poster papers by more than 140 pre-registered authors. The key topics of the 4th iCAST 2012 include Pure Mathematics, Applied Mathematics, Theoretical/Mathematical Physics, Dynamical Systems, Statistics and Financial Mathematics. The scientific program was rather full since after the Keynote and Invited Talks in the morning, four parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The conference aimed to promote the knowledge and development of high-quality research in mathematical fields concerned with the application of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology and environmental sciences. We would like to thank the Keynote and the Invited Speakers for their significant contributions to 4th iCAST 2012. We would also like to thank the members of the International Scientific Committee and the members of the Organizing Committee. We cannot end without expressing our many thanks to International Islamic University Malaysia and our sponsors for their financial support . This volume presents selected papers which have been peer-reviewed. The editors hope that it may be useful and fruitful for scholars, researchers, and advanced technical members of the industrial laboratory facilities for developing new tools and products. Guest Editors Nasir Ganikhodjaev, Farrukh Mukhamedov and Pah Chin Hee The PDF contains the committee lists, board list and biographies of the plenary speakers.
Software engineering and automatic continuous verification of scientific software
NASA Astrophysics Data System (ADS)
Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.
2011-12-01
Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.
Creationism as a Misconception: Socio-Cognitive Conflict in the Teaching of Evolution
ERIC Educational Resources Information Center
Foster, Colin
2012-01-01
This position paper argues that students' understanding and acceptance of evolution may be supported, rather than hindered, by classroom discussion of creationism. Parallels are drawn between creationism and other scientific misconceptions, both of the scientific community in the past and of students in the present. Science teachers frequently…
Java Performance for Scientific Applications on LLNL Computer Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapfer, C; Wissink, A
2002-05-10
Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less
Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.; Silva, Claudio
2013-09-30
For the past three years, a large analysis and visualization effort—funded by the Department of Energy’s Office of Biological and Environmental Research (BER), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA)—has brought together a wide variety of industry-standard scientific computing libraries and applications to create Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) to serve the global climate simulation and observational research communities. To support interactive analysis and visualization, all components connect through a provenance application–programming interface to capture meaningful history and workflow. Components can be loosely coupled into the framework for fast integrationmore » or tightly coupled for greater system functionality and communication with other components. The overarching goal of UV-CDAT is to provide a new paradigm for access to and analysis of massive, distributed scientific data collections by leveraging distributed data architectures located throughout the world. The UV-CDAT framework addresses challenges in analysis and visualization and incorporates new opportunities, including parallelism for better efficiency, higher speed, and more accurate scientific inferences. Today, it provides more than 600 users access to more analysis and visualization products than any other single source.« less
Parallel programming of industrial applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, M; Koniges, A; Simon, H
1998-07-21
In the introductory material, we overview the typical MPP environment for real application computing and the special tools available such as parallel debuggers and performance analyzers. Next, we draw from a series of real applications codes and discuss the specific challenges and problems that are encountered in parallelizing these individual applications. The application areas drawn from include biomedical sciences, materials processing and design, plasma and fluid dynamics, and others. We show how it was possible to get a particular application to run efficiently and what steps were necessary. Finally we end with a summary of the lessons learned from thesemore » applications and predictions for the future of industrial parallel computing. This tutorial is based on material from a forthcoming book entitled: "Industrial Strength Parallel Computing" to be published by Morgan Kaufmann Publishers (ISBN l-55860-54).« less
NASA Astrophysics Data System (ADS)
Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.
2011-12-01
With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Performance Evaluation in Network-Based Parallel Computing
NASA Technical Reports Server (NTRS)
Dezhgosha, Kamyar
1996-01-01
Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.
A design methodology for portable software on parallel computers
NASA Technical Reports Server (NTRS)
Nicol, David M.; Miller, Keith W.; Chrisman, Dan A.
1993-01-01
This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven.
High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away
NASA Astrophysics Data System (ADS)
Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.
2012-09-01
By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.
Performance of the Wavelet Decomposition on Massively Parallel Architectures
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)
2001-01-01
Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De; ...
2017-01-28
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
Homemade Buckeye-Pi: A Learning Many-Node Platform for High-Performance Parallel Computing
NASA Astrophysics Data System (ADS)
Amooie, M. A.; Moortgat, J.
2017-12-01
We report on the "Buckeye-Pi" cluster, the supercomputer developed in The Ohio State University School of Earth Sciences from 128 inexpensive Raspberry Pi (RPi) 3 Model B single-board computers. Each RPi is equipped with fast Quad Core 1.2GHz ARMv8 64bit processor, 1GB of RAM, and 32GB microSD card for local storage. Therefore, the cluster has a total RAM of 128GB that is distributed on the individual nodes and a flash capacity of 4TB with 512 processors, while it benefits from low power consumption, easy portability, and low total cost. The cluster uses the Message Passing Interface protocol to manage the communications between each node. These features render our platform the most powerful RPi supercomputer to date and suitable for educational applications in high-performance-computing (HPC) and handling of large datasets. In particular, we use the Buckeye-Pi to implement optimized parallel codes in our in-house simulator for subsurface media flows with the goal of achieving a massively-parallelized scalable code. We present benchmarking results for the computational performance across various number of RPi nodes. We believe our project could inspire scientists and students to consider the proposed unconventional cluster architecture as a mainstream and a feasible learning platform for challenging engineering and scientific problems.
NASA Technical Reports Server (NTRS)
Kramer, Williams T. C.; Simon, Horst D.
1994-01-01
This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicer, Tekin; Gursoy, Doga; Andrade, Vincent De
Here, synchrotron light source and detector technologies enable scientists to perform advanced experiments. These scientific instruments and experiments produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used data acquisition technique at light sources is Computed Tomography, which can generate tens of GB/s depending on x-ray range. A large-scale tomographic dataset, such as mouse brain, may require hours of computation time with a medium size workstation. In this paper, we present Trace, a data-intensive computing middleware we developed for implementation and parallelization of iterative tomographic reconstruction algorithms. Tracemore » provides fine-grained reconstruction of tomography datasets using both (thread level) shared memory and (process level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations we have done on the replicated reconstruction objects and evaluate them using a shale and a mouse brain sinogram. Our experimental evaluations show that the applied optimizations and parallelization techniques can provide 158x speedup (using 32 compute nodes) over single core configuration, which decreases the reconstruction time of a sinogram (with 4501 projections and 22400 detector resolution) from 12.5 hours to less than 5 minutes per iteration.« less
The future of medical diagnostics: review paper
2011-01-01
While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. PMID:21861912
GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data
NASA Astrophysics Data System (ADS)
Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.
2016-12-01
Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.
Communications oriented programming of parallel iterative solutions of sparse linear systems
NASA Technical Reports Server (NTRS)
Patrick, M. L.; Pratt, T. W.
1986-01-01
Parallel algorithms are developed for a class of scientific computational problems by partitioning the problems into smaller problems which may be solved concurrently. The effectiveness of the resulting parallel solutions is determined by the amount and frequency of communication and synchronization and the extent to which communication can be overlapped with computation. Three different parallel algorithms for solving the same class of problems are presented, and their effectiveness is analyzed from this point of view. The algorithms are programmed using a new programming environment. Run-time statistics and experience obtained from the execution of these programs assist in measuring the effectiveness of these algorithms.
Parallelized direct execution simulation of message-passing parallel programs
NASA Technical Reports Server (NTRS)
Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.
1994-01-01
As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.
Data communications in a parallel active messaging interface of a parallel computer
Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E
2013-11-12
Data communications in a parallel active messaging interface (`PAMI`) of a parallel computer composed of compute nodes that execute a parallel application, each compute node including application processors that execute the parallel application and at least one management processor dedicated to gathering information regarding data communications. The PAMI is composed of data communications endpoints, each endpoint composed of a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task, the compute nodes and the endpoints coupled for data communications through the PAMI and through data communications resources. Embodiments function by gathering call site statistics describing data communications resulting from execution of data communications instructions and identifying in dependence upon the call cite statistics a data communications algorithm for use in executing a data communications instruction at a call site in the parallel application.
Equation solvers for distributed-memory computers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
A large number of scientific and engineering problems require the rapid solution of large systems of simultaneous equations. The performance of parallel computers in this area now dwarfs traditional vector computers by nearly an order of magnitude. This talk describes the major issues involved in parallel equation solvers with particular emphasis on the Intel Paragon, IBM SP-1 and SP-2 processors.
Software Issues at the User Interface
1991-05-01
successful integration of parallel computers into mainstream scientific computing. Clearly a compiler is the most important software tool available to a...Computer Science University of Colorado Boulder, CO 80309 ABSTRACT We review software issues that are critical to the successful integration of parallel...The development of an optimizing compiler of this quality, addressing communicaton instructions as well as computational instructions is a major
DOE Office of Scientific and Technical Information (OSTI.GOV)
BYNA, SUNRENDRA; DONG, BIN; WU, KESHENG
Data Elevator: Efficient Asynchronous Data Movement in Hierarchical Storage Systems Multi-layer storage subsystems, including SSD-based burst buffers and disk-based parallel file systems (PFS), are becoming part of HPC systems. However, software for this storage hierarchy is still in its infancy. Applications may have to explicitly move data among the storage layers. We propose Data Elevator for transparently and efficiently moving data between a burst buffer and a PFS. Users specify the final destination for their data, typically on PFS, Data Elevator intercepts the I/O calls, stages data on burst buffer, and then asynchronously transfers the data to their final destinationmore » in the background. This system allows extensive optimizations, such as overlapping read and write operations, choosing I/O modes, and aligning buffer boundaries. In tests with large-scale scientific applications, Data Elevator is as much as 4.2X faster than Cray DataWarp, the start-of-art software for burst buffer, and 4X faster than directly writing to PFS. The Data Elevator library uses HDF5's Virtual Object Layer (VOL) for intercepting parallel I/O calls that write data to PFS. The intercepted calls are redirected to the Data Elevator, which provides a handle to write the file in a faster and intermediate burst buffer system. Once the application finishes writing the data to the burst buffer, the Data Elevator job uses HDF5 to move the data to final destination in an asynchronous manner. Hence, using the Data Elevator library is currently useful for applications that call HDF5 for writing data files. Also, the Data Elevator depends on the HDF5 VOL functionality.« less
A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.
1999-01-01
The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.
Parallel and Scalable Clustering and Classification for Big Data in Geosciences
NASA Astrophysics Data System (ADS)
Riedel, M.
2015-12-01
Machine learning, data mining, and statistical computing are common techniques to perform analysis in earth sciences. This contribution will focus on two concrete and widely used data analytics methods suitable to analyse 'big data' in the context of geoscience use cases: clustering and classification. From the broad class of available clustering methods we focus on the density-based spatial clustering of appliactions with noise (DBSCAN) algorithm that enables the identification of outliers or interesting anomalies. A new open source parallel and scalable DBSCAN implementation will be discussed in the light of a scientific use case that detects water mixing events in the Koljoefjords. The second technique we cover is classification, with a focus set on the support vector machines algorithm (SVMs), as one of the best out-of-the-box classification algorithm. A parallel and scalable SVM implementation will be discussed in the light of a scientific use case in the field of remote sensing with 52 different classes of land cover types.
Automatic Data Traffic Control on DSM Architecture
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2000-01-01
We study data traffic on distributed shared memory machines and conclude that data placement and grouping improve performance of scientific codes. We present several methods which user can employ to improve data traffic in his code. We report on implementation of a tool which detects the code fragments causing data congestions and advises user on improvements of data routing in these fragments. The capabilities of the tool include deduction of data alignment and affinity from the source code; detection of the code constructs having abnormally high cache or TLB misses; generation of data placement constructs. We demonstrate the capabilities of the tool on experiments with NAS parallel benchmarks and with a simple computational fluid dynamics application ARC3D.
Scientific Writing: Strategies and Tools for Students and Advisors
ERIC Educational Resources Information Center
Singh, Vikash; Mayer, Philipp
2014-01-01
Scientific writing is a demanding task and many students need more time than expected to finish their research articles. To speed up the process, we highlight some tools, strategies as well as writing guides. We recommend starting early in the research process with writing and to prepare research articles, not after but in parallel to the lab or…
ERIC Educational Resources Information Center
Stevens, Courtney; Witkow, Melissa R.
2014-01-01
The present study reports on the development and evaluation of a classroom module to train scientific thinking skills. The module was implemented in two of four parallel sections of introductory psychology. To assess learning, a passage-based question set from the medical college admissions test (MCAT[superscript 2015]) preview guide was included…
An Anthropologist's Reflections on Defining Quality in Education Research
ERIC Educational Resources Information Center
Tobin, Joseph
2007-01-01
In the USA there is a contemporary discourse of crisis about the state of education and a parallel discourse that lays a large portion of the blame onto the poor quality of educational research. The solution offered is "scientific research." This article presents critiques of the core assumptions of the scientific research as secure argument.…
Speeding up parallel processing
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1988-01-01
In 1967 Amdahl expressed doubts about the ultimate utility of multiprocessors. The formulation, now called Amdahl's law, became part of the computing folklore and has inspired much skepticism about the ability of the current generation of massively parallel processors to efficiently deliver all their computing power to programs. The widely publicized recent results of a group at Sandia National Laboratory, which showed speedup on a 1024 node hypercube of over 500 for three fixed size problems and over 1000 for three scalable problems, have convincingly challenged this bit of folklore and have given new impetus to parallel scientific computing.
A language comparison for scientific computing on MIMD architectures
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.; Voigt, Robert G.
1989-01-01
Choleski's method for solving banded symmetric, positive definite systems is implemented on a multiprocessor computer using three FORTRAN based parallel programming languages, the Force, PISCES and Concurrent FORTRAN. The capabilities of the language for expressing parallelism and their user friendliness are discussed, including readability of the code, debugging assistance offered, and expressiveness of the languages. The performance of the different implementations is compared. It is argued that PISCES, using the Force for medium-grained parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor computer, Flex/32.
Review of An Introduction to Parallel and Vector Scientific Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, David H.; Lefton, Lew
2006-06-30
On one hand, the field of high-performance scientific computing is thriving beyond measure. Performance of leading-edge systems on scientific calculations, as measured say by the Top500 list, has increased by an astounding factor of 8000 during the 15-year period from 1993 to 2008, which is slightly faster even than Moore's Law. Even more importantly, remarkable advances in numerical algorithms, numerical libraries and parallel programming environments have led to improvements in the scope of what can be computed that are entirely on a par with the advances in computing hardware. And these successes have spread far beyond the confines of largemore » government-operated laboratories, many universities, modest-sized research institutes and private firms now operate clusters that differ only in scale from the behemoth systems at the large-scale facilities. In the wake of these recent successes, researchers from fields that heretofore have not been part of the scientific computing world have been drawn into the arena. For example, at the recent SC07 conference, the exhibit hall, which long has hosted displays from leading computer systems vendors and government laboratories, featured some 70 exhibitors who had not previously participated. In spite of all these exciting developments, and in spite of the clear need to present these concepts to a much broader technical audience, there is a perplexing dearth of training material and textbooks in the field, particularly at the introductory level. Only a handful of universities offer coursework in the specific area of highly parallel scientific computing, and instructors of such courses typically rely on custom-assembled material. For example, the present reviewer and Robert F. Lucas relied on materials assembled in a somewhat ad-hoc fashion from colleagues and personal resources when presenting a course on parallel scientific computing at the University of California, Berkeley, a few years ago. Thus it is indeed refreshing to see the publication of the book An Introduction to Parallel and Vector Scientic Computing, written by Ronald W. Shonkwiler and Lew Lefton, both of the Georgia Institute of Technology. They have taken the bull by the horns and produced a book that appears to be entirely satisfactory as an introductory textbook for use in such a course. It is also of interest to the much broader community of researchers who are already in the field, laboring day by day to improve the power and performance of their numerical simulations. The book is organized into 11 chapters, plus an appendix. The first three chapters describe the basics of system architecture including vector, parallel and distributed memory systems, the details of task dependence and synchronization, and the various programming models currently in use - threads, MPI and OpenMP. Chapters four through nine provide a competent introduction to floating-point arithmetic, numerical error and numerical linear algebra. Some of the topics presented include Gaussian elimination, LU decomposition, tridiagonal systems, Givens rotations, QR decompositions, Gauss-Seidel iterations and Householder transformations. Chapters 10 and 11 introduce Monte Carlo methods and schemes for discrete optimization such as genetic algorithms.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
On the Impact of Widening Vector Registers on Sequence Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram
2016-09-22
Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based onmore » striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.« less
A Computational Framework for Efficient Low Temperature Plasma Simulations
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Venkattraman, Ayyaswamy
2016-10-01
Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.
Space activity and programs at SOFRADIR
NASA Astrophysics Data System (ADS)
Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fieque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré-Laperne, N.
2016-09-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc.). In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.
Space activity and programs at Sofradir
NASA Astrophysics Data System (ADS)
Bouakka-Manesse, A.; Jamin, N.; Delannoy, A.; Fièque, B.; Leroy, C.; Pidancier, P.; Vial, L.; Chorier, P.; Péré Laperne, N.
2016-10-01
SOFRADIR is one of the leading companies involved in the development and manufacturing of infrared detectors for space applications. As a matter of fact, SOFRADIR is involved in many space programs from visible up to VLWIR spectral ranges. These programs concern operational missions for earth imagery, meteorology and also scientific missions for universe exploration. One of the last space detectors available at SOFRADIR is a visible - SWIR detector named Next Generation Panchromatic Detector (NGP) which is well adapted for hyperspectral, imagery and spectroscopy applications. In parallel of this new space detector, numerous programs are currently running for different kind of missions: meteorology (MTG), Copernicus with the Sentinel detectors series, Metop-SG system (3MI), Mars exploration (Mamiss, etc….)… In this paper, we present the last developments made for space activity and in particular the NGP detector. We will also present the space applications using this detector and show appropriateness of its use to answer space programs specifications, as for example those of Sentinel-5.
Integrated Task and Data Parallel Programming
NASA Technical Reports Server (NTRS)
Grimshaw, A. S.
1998-01-01
This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Integrated Task And Data Parallel Programming: Language Design
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; West, Emily A.
1998-01-01
his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
A General-purpose Framework for Parallel Processing of Large-scale LiDAR Data
NASA Astrophysics Data System (ADS)
Li, Z.; Hodgson, M.; Li, W.
2016-12-01
Light detection and ranging (LiDAR) technologies have proven efficiency to quickly obtain very detailed Earth surface data for a large spatial extent. Such data is important for scientific discoveries such as Earth and ecological sciences and natural disasters and environmental applications. However, handling LiDAR data poses grand geoprocessing challenges due to data intensity and computational intensity. Previous studies received notable success on parallel processing of LiDAR data to these challenges. However, these studies either relied on high performance computers and specialized hardware (GPUs) or focused mostly on finding customized solutions for some specific algorithms. We developed a general-purpose scalable framework coupled with sophisticated data decomposition and parallelization strategy to efficiently handle big LiDAR data. Specifically, 1) a tile-based spatial index is proposed to manage big LiDAR data in the scalable and fault-tolerable Hadoop distributed file system, 2) two spatial decomposition techniques are developed to enable efficient parallelization of different types of LiDAR processing tasks, and 3) by coupling existing LiDAR processing tools with Hadoop, this framework is able to conduct a variety of LiDAR data processing tasks in parallel in a highly scalable distributed computing environment. The performance and scalability of the framework is evaluated with a series of experiments conducted on a real LiDAR dataset using a proof-of-concept prototype system. The results show that the proposed framework 1) is able to handle massive LiDAR data more efficiently than standalone tools; and 2) provides almost linear scalability in terms of either increased workload (data volume) or increased computing nodes with both spatial decomposition strategies. We believe that the proposed framework provides valuable references on developing a collaborative cyberinfrastructure for processing big earth science data in a highly scalable environment.
Extending Automatic Parallelization to Optimize High-Level Abstractions for Multicore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, C; Quinlan, D J; Willcock, J J
2008-12-12
Automatic introduction of OpenMP for sequential applications has attracted significant attention recently because of the proliferation of multicore processors and the simplicity of using OpenMP to express parallelism for shared-memory systems. However, most previous research has only focused on C and Fortran applications operating on primitive data types. C++ applications using high-level abstractions, such as STL containers and complex user-defined types, are largely ignored due to the lack of research compilers that are readily able to recognize high-level object-oriented abstractions and leverage their associated semantics. In this paper, we automatically parallelize C++ applications using ROSE, a multiple-language source-to-source compiler infrastructuremore » which preserves the high-level abstractions and gives us access to their semantics. Several representative parallelization candidate kernels are used to explore semantic-aware parallelization strategies for high-level abstractions, combined with extended compiler analyses. Those kernels include an array-base computation loop, a loop with task-level parallelism, and a domain-specific tree traversal. Our work extends the applicability of automatic parallelization to modern applications using high-level abstractions and exposes more opportunities to take advantage of multicore processors.« less
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John
2015-04-01
We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.
Understanding Aprun Use Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hwa-Chun Wendy
2009-05-06
On the Cray XT, aprun is the command to launch an application to a set of compute nodes reserved through the Application Level Placement Scheduler (ALPS). At the National Energy Research Scientific Computing Center (NERSC), interactive aprun is disabled. That is, invocations of aprun have to go through the batch system. Batch scripts can and often do contain several apruns which either use subsets of the reserved nodes in parallel, or use all reserved nodes in consecutive apruns. In order to better understand how NERSC users run on the XT, it is necessary to associate aprun information with jobs. Itmore » is surprisingly more challenging than it sounds. In this paper, we describe those challenges and how we solved them to produce daily per-job reports for completed apruns. We also describe additional uses of the data, e.g. adjusting charging policy accordingly or associating node failures with jobs/users, and plans for enhancements.« less
GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed
NASA Astrophysics Data System (ADS)
Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.
2008-12-01
GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.
Software Engineering for Scientific Computer Simulations
NASA Astrophysics Data System (ADS)
Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.
2004-11-01
Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.
UMAMI: A Recipe for Generating Meaningful Metrics through Holistic I/O Performance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, Glenn K.; Yoo, Wucherl; Byna, Suren
I/O efficiency is essential to productivity in scientific computing, especially as many scientific domains become more data-intensive. Many characterization tools have been used to elucidate specific aspects of parallel I/O performance, but analyzing components of complex I/O subsystems in isolation fails to provide insight into critical questions: how do the I/O components interact, what are reasonable expectations for application performance, and what are the underlying causes of I/O performance problems? To address these questions while capitalizing on existing component-level characterization tools, we propose an approach that combines on-demand, modular synthesis of I/O characterization data into a unified monitoring and metricsmore » interface (UMAMI) to provide a normalized, holistic view of I/O behavior. We evaluate the feasibility of this approach by applying it to a month-long benchmarking study on two distinct largescale computing platforms. We present three case studies that highlight the importance of analyzing application I/O performance in context with both contemporaneous and historical component metrics, and we provide new insights into the factors affecting I/O performance. By demonstrating the generality of our approach, we lay the groundwork for a production-grade framework for holistic I/O analysis.« less
The Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Primm, Lowell (Technical Monitor)
2001-01-01
The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbara Chapman
OpenMP was not well recognized at the beginning of the project, around year 2003, because of its limited use in DoE production applications and the inmature hardware support for an efficient implementation. Yet in the recent years, it has been graduately adopted both in HPC applications, mostly in the form of MPI+OpenMP hybrid code, and in mid-scale desktop applications for scientific and experimental studies. We have observed this trend and worked deligiently to improve our OpenMP compiler and runtimes, as well as to work with the OpenMP standard organization to make sure OpenMP are evolved in the direction close tomore » DoE missions. In the Center for Programming Models for Scalable Parallel Computing project, the HPCTools team at the University of Houston (UH), directed by Dr. Barbara Chapman, has been working with project partners, external collaborators and hardware vendors to increase the scalability and applicability of OpenMP for multi-core (and future manycore) platforms and for distributed memory systems by exploring different programming models, language extensions, compiler optimizations, as well as runtime library support.« less
Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
NASA Astrophysics Data System (ADS)
Junghans, Christoph; Mniszewski, Susan; Voter, Arthur; Perez, Danny; Eidenbenz, Stephan
2014-03-01
We present an example of a new class of tools that we call application simulators, parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation (PDES). We demonstrate our approach with a TADSim application simulator that models the Temperature Accelerated Dynamics (TAD) method, which is an algorithmically complex member of the Accelerated Molecular Dynamics (AMD) family. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We further extend TADSim to model algorithm extensions to standard TAD, such as speculative spawning of the compute-bound stages of the algorithm, and predict performance improvements without having to implement such a method. Focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights into the TAD algorithm behavior and suggested extensions to the TAD method.
A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less
Use Hierarchical Storage and Analysis to Exploit Intrinsic Parallelism
NASA Astrophysics Data System (ADS)
Zender, C. S.; Wang, W.; Vicente, P.
2013-12-01
Big Data is an ugly name for the scientific opportunities and challenges created by the growing wealth of geoscience data. How to weave large, disparate datasets together to best reveal their underlying properties, to exploit their strengths and minimize their weaknesses, to continually aggregate more information than the world knew yesterday and less than we will learn tomorrow? Data analytics techniques (statistics, data mining, machine learning, etc.) can accelerate pattern recognition and discovery. However, often researchers must, prior to analysis, organize multiple related datasets into a coherent framework. Hierarchical organization permits entire dataset to be stored in nested groups that reflect their intrinsic relationships and similarities. Hierarchical data can be simpler and faster to analyze by coding operators to automatically parallelize processes over isomorphic storage units, i.e., groups. The newest generation of netCDF Operators (NCO) embody this hierarchical approach, while still supporting traditional analysis approaches. We will use NCO to demonstrate the trade-offs involved in processing a prototypical Big Data application (analysis of CMIP5 datasets) using hierarchical and traditional analysis approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adelmann, Andreas; Gsell, Achim; Oswald, Benedikt
Significant problems facing all experimental andcomputationalsciences arise from growing data size and complexity. Commonto allthese problems is the need to perform efficient data I/O ondiversecomputer architectures. In our scientific application, thelargestparallel particle simulations generate vast quantitiesofsix-dimensional data. Such a simulation run produces data foranaggregate data size up to several TB per run. Motived by the needtoaddress data I/O and access challenges, we have implemented H5Part,anopen source data I/O API that simplifies the use of the HierarchicalDataFormat v5 library (HDF5). HDF5 is an industry standard forhighperformance, cross-platform data storage and retrieval that runsonall contemporary architectures from large parallel supercomputerstolaptops. H5Part, whichmore » is oriented to the needs of the particlephysicsand cosmology communities, provides support for parallelstorage andretrieval of particles, structured and in the future unstructuredmeshes.In this paper, we describe recent work focusing on I/O supportforparticles and structured meshes and provide data showing performance onmodernsupercomputer architectures like the IBM POWER 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Formulas such as these, are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearlymore » the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
A microkernel design for component-based parallel numerical software systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balay, S.
1999-01-13
What is the minimal software infrastructure and what type of conventions are needed to simplify development of sophisticated parallel numerical application codes using a variety of software components that are not necessarily available as source code? We propose an opaque object-based model where the objects are dynamically loadable from the file system or network. The microkernel required to manage such a system needs to include, at most: (1) a few basic services, namely--a mechanism for loading objects at run time via dynamic link libraries, and consistent schemes for error handling and memory management; and (2) selected methods that all objectsmore » share, to deal with object life (destruction, reference counting, relationships), and object observation (viewing, profiling, tracing). We are experimenting with these ideas in the context of extensible numerical software within the ALICE (Advanced Large-scale Integrated Computational Environment) project, where we are building the microkernel to manage the interoperability among various tools for large-scale scientific simulations. This paper presents some preliminary observations and conclusions from our work with microkernel design.« less
Integrated design and management of complex and fast track projects
NASA Astrophysics Data System (ADS)
Mancini, Dario
2003-02-01
Modern scientific and technological projects are increasingly in competition over scientific aims, technological innovation, performance, time and cost. They require a dedicated and innovative organization able to satisfy contemporarily various technical and logistic constraints imposed by the final user, and guarantee the satisfaction of technical specifications, identified on the basis of scientific aims. In order to satisfy all the above, the management has to be strategically innovative and intuitive, by removing, first of all, the bottlenecks that are pointed out, usually only at the end of the projects, as the causes of general dissatisfaction. More than 30 years spent working on complex multidisciplinary systems and 20 years of formative experience in managing contemporarily both scientific, technological and industrial projects have given the author the possibility to study, test and validate strategies for parallel project management and integrated design, merged in a sort of unique optimized task, using the newly-coined word "Technomethodology". The paper highlights useful information to be taken into consideration during project organization to minimize the program deviations from the expected goals and describe some of the basic meanings of this new advanced method that is the key for parallel successful management of multiple and interdisciplinary activities.
Characterizing and Mitigating Work Time Inflation in Task Parallel Programs
Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; ...
2013-01-01
Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMA systems.more » Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less
Creating a Parallel Version of VisIt for Microsoft Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlock, B J; Biagas, K S; Rawson, P L
2011-12-07
VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing powermore » is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.« less
By Hand or Not By-Hand: A Case Study of Alternative Approaches to Parallelize CFD Applications
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Bailey, David (Technical Monitor)
1997-01-01
While parallel processing promises to speed up applications by several orders of magnitude, the performance achieved still depends upon several factors, including the multiprocessor architecture, system software, data distribution and alignment, as well as the methods used for partitioning the application and mapping its components onto the architecture. The existence of the Gorden Bell Prize given out at Supercomputing every year suggests that while good performance can be attained for real applications on general purpose multiprocessors, the large investment in man-power and time still has to be repeated for each application-machine combination. As applications and machine architectures become more complex, the cost and time-delays for obtaining performance by hand will become prohibitive. Computer users today can turn to three possible avenues for help: parallel libraries, parallel languages and compilers, interactive parallelization tools. The success of these methodologies, in turn, depends on proper application of data dependency analysis, program structure recognition and transformation, performance prediction as well as exploitation of user supplied knowledge. NASA has been developing multidisciplinary applications on highly parallel architectures under the High Performance Computing and Communications Program. Over the past six years, the transition of underlying hardware and system software have forced the scientists to spend a large effort to migrate and recede their applications. Various attempts to exploit software tools to automate the parallelization process have not produced favorable results. In this paper, we report our most recent experience with CAPTOOL, a package developed at Greenwich University. We have chosen CAPTOOL for three reasons: 1. CAPTOOL accepts a FORTRAN 77 program as input. This suggests its potential applicability to a large collection of legacy codes currently in use. 2. CAPTOOL employs domain decomposition to obtain parallelism. Although the fact that not all kinds of parallelism are handled may seem unappealing, many NASA applications in computational aerosciences as well as earth and space sciences are amenable to domain decomposition. 3. CAPTOOL generates code for a large variety of environments employed across NASA centers: MPI/PVM on network of workstations to the IBS/SP2 and CRAY/T3D.
TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; ...
2015-04-16
Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less
Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, Christopher M.
2012-08-13
How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less
SpectraCAM SPM: a camera system with high dynamic range for scientific and medical applications
NASA Astrophysics Data System (ADS)
Bhaskaran, S.; Baiko, D.; Lungu, G.; Pilon, M.; VanGorden, S.
2005-08-01
A scientific camera system having high dynamic range designed and manufactured by Thermo Electron for scientific and medical applications is presented. The newly developed CID820 image sensor with preamplifier-per-pixel technology is employed in this camera system. The 4 Mega-pixel imaging sensor has a raw dynamic range of 82dB. Each high-transparent pixel is based on a preamplifier-per-pixel architecture and contains two photogates for non-destructive readout of the photon-generated charge (NDRO). Readout is achieved via parallel row processing with on-chip correlated double sampling (CDS). The imager is capable of true random pixel access with a maximum operating speed of 4MHz. The camera controller consists of a custom camera signal processor (CSP) with an integrated 16-bit A/D converter and a PowerPC-based CPU running a Linux embedded operating system. The imager is cooled to -40C via three-stage cooler to minimize dark current. The camera housing is sealed and is designed to maintain the CID820 imager in the evacuated chamber for at least 5 years. Thermo Electron has also developed custom software and firmware to drive the SpectraCAM SPM camera. Included in this firmware package is the new Extreme DRTM algorithm that is designed to extend the effective dynamic range of the camera by several orders of magnitude up to 32-bit dynamic range. The RACID Exposure graphical user interface image analysis software runs on a standard PC that is connected to the camera via Gigabit Ethernet.
NASA Technical Reports Server (NTRS)
Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Jost, Gabriele
2004-01-01
In this paper we describe the parallelization of the multi-zone code versions of the NAS Parallel Benchmarks employing multi-level OpenMP parallelism. For our study we use the NanosCompiler, which supports nesting of OpenMP directives and provides clauses to control the grouping of threads, load balancing, and synchronization. We report the benchmark results, compare the timings with those of different hybrid parallelization paradigms and discuss OpenMP implementation issues which effect the performance of multi-level parallel applications.
NASA Technical Reports Server (NTRS)
Luke, Edward Allen
1993-01-01
Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.
Development of high resolution NMR spectroscopy as a structural tool
NASA Astrophysics Data System (ADS)
Feeney, James
1992-06-01
The discovery of the nuclear magnetic resonance (NMR) phenomenon and its development and exploitation as a scientific tool provide an excellent basis for a case-study for examining the factors which control the evolution of scientific techniques. Since the detection of the NMR phenomenon and the subsequent rapid discovery of all the important NMR spectral parameters in the late 1940s, the method has emerged as one of the most powerful techniques for determining structures of molecules in solution and for analysis of complex mixtures. The method has made a dramatic impact on the development of structural chemistry over the last 30 years and is now one of the key techniques in this area. Support for NMR instrumentation attracts a dominant slice of public funding in most scientifically developed countries. The technique is an excellent example of how instrumentation and technology have revolutionised structural chemistry and it is worth exploring how it has been developed so successfully. Clearly its wide range of application and the relatively direct connection between the NMR data and molecular structure has created a major market for the instrumentation. This has provided several competing manufacturers with the incentive to develop better and better instruments. Understanding the complexity of the basics of NMR spectroscopy has been an ongoing challenge attracting the attention of physicists. The well-organised specialist NMR literature and regular scientific meetings have ensured rapid exploitation of any theoretical advances that have a practical relevance. In parallel, the commercial development of the technology has allowed the fruits of such theoretical advances to be enjoyed by the wider scientific community.
Automated Generation of Message-Passing Programs: An Evaluation Using CAPTools
NASA Technical Reports Server (NTRS)
Hribar, Michelle R.; Jin, Haoqiang; Yan, Jerry C.; Saini, Subhash (Technical Monitor)
1998-01-01
Scientists at NASA Ames Research Center have been developing computational aeroscience applications on highly parallel architectures over the past ten years. During that same time period, a steady transition of hardware and system software also occurred, forcing us to expend great efforts into migrating and re-coding our applications. As applications and machine architectures become increasingly complex, the cost and time required for this process will become prohibitive. In this paper, we present the first set of results in our evaluation of interactive parallelization tools. In particular, we evaluate CAPTool's ability to parallelize computational aeroscience applications. CAPTools was tested on serial versions of the NAS Parallel Benchmarks and ARC3D, a computational fluid dynamics application, on two platforms: the SGI Origin 2000 and the Cray T3E. This evaluation includes performance, amount of user interaction required, limitations and portability. Based on these results, a discussion on the feasibility of computer aided parallelization of aerospace applications is presented along with suggestions for future work.
Simplified Parallel Domain Traversal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson III, David J
2011-01-01
Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep bymore » performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.« less
schwimmbad: A uniform interface to parallel processing pools in Python
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Foreman-Mackey, Daniel
2017-09-01
Many scientific and computing problems require doing some calculation on all elements of some data set. If the calculations can be executed in parallel (i.e. without any communication between calculations), these problems are said to be perfectly parallel. On computers with multiple processing cores, these tasks can be distributed and executed in parallel to greatly improve performance. A common paradigm for handling these distributed computing problems is to use a processing "pool": the "tasks" (the data) are passed in bulk to the pool, and the pool handles distributing the tasks to a number of worker processes when available. schwimmbad provides a uniform interface to parallel processing pools and enables switching easily between local development (e.g., serial processing or with multiprocessing) and deployment on a cluster or supercomputer (via, e.g., MPI or JobLib).
An efficient parallel algorithm for matrix-vector multiplication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Plimpton, S.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less
Implementing Access to Data Distributed on Many Processors
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A reference architecture is defined for an object-oriented implementation of domains, arrays, and distributions written in the programming language Chapel. This technology primarily addresses domains that contain arrays that have regular index sets with the low-level implementation details being beyond the scope of this discussion. What is defined is a complete set of object-oriented operators that allows one to perform data distributions for domain arrays involving regular arithmetic index sets. What is unique is that these operators allow for the arbitrary regions of the arrays to be fragmented and distributed across multiple processors with a single point of access giving the programmer the illusion that all the elements are collocated on a single processor. Today's massively parallel High Productivity Computing Systems (HPCS) are characterized by a modular structure, with a large number of processing and memory units connected by a high-speed network. Locality of access as well as load balancing are primary concerns in these systems that are typically used for high-performance scientific computation. Data distributions address these issues by providing a range of methods for spreading large data sets across the components of a system. Over the past two decades, many languages, systems, tools, and libraries have been developed for the support of distributions. Since the performance of data parallel applications is directly influenced by the distribution strategy, users often resort to low-level programming models that allow fine-tuning of the distribution aspects affecting performance, but, at the same time, are tedious and error-prone. This technology presents a reusable design of a data-distribution framework for data parallel high-performance applications. Distributions are a means to express locality in systems composed of large numbers of processor and memory components connected by a network. Since distributions have a great effect on the performance of applications, it is important that the distribution strategy is flexible, so its behavior can change depending on the needs of the application. At the same time, high productivity concerns require that the user be shielded from error-prone, tedious details such as communication and synchronization.
A Parallel Processing Algorithm for Remote Sensing Classification
NASA Technical Reports Server (NTRS)
Gualtieri, J. Anthony
2005-01-01
A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.
Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker
2017-01-01
In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1993-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.
Parallel Scaling Characteristics of Selected NERSC User ProjectCodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skinner, David; Verdier, Francesca; Anand, Harsh
This report documents parallel scaling characteristics of NERSC user project codes between Fiscal Year 2003 and the first half of Fiscal Year 2004 (Oct 2002-March 2004). The codes analyzed cover 60% of all the CPU hours delivered during that time frame on seaborg, a 6080 CPU IBM SP and the largest parallel computer at NERSC. The scale in terms of concurrency and problem size of the workload is analyzed. Drawing on batch queue logs, performance data and feedback from researchers we detail the motivations, benefits, and challenges of implementing highly parallel scientific codes on current NERSC High Performance Computing systems.more » An evaluation and outlook of the NERSC workload for Allocation Year 2005 is presented.« less
Review and analysis of dense linear system solver package for distributed memory machines
NASA Technical Reports Server (NTRS)
Narang, H. N.
1993-01-01
A dense linear system solver package recently developed at the University of Texas at Austin for distributed memory machine (e.g. Intel Paragon) has been reviewed and analyzed. The package contains about 45 software routines, some written in FORTRAN, and some in C-language, and forms the basis for parallel/distributed solutions of systems of linear equations encountered in many problems of scientific and engineering nature. The package, being studied by the Computer Applications Branch of the Analysis and Computation Division, may provide a significant computational resource for NASA scientists and engineers in parallel/distributed computing. Since the package is new and not well tested or documented, many of its underlying concepts and implementations were unclear; our task was to review, analyze, and critique the package as a step in the process that will enable scientists and engineers to apply it to the solution of their problems. All routines in the package were reviewed and analyzed. Underlying theory or concepts which exist in the form of published papers or technical reports, or memos, were either obtained from the author, or from the scientific literature; and general algorithms, explanations, examples, and critiques have been provided to explain the workings of these programs. Wherever the things were still unclear, communications were made with the developer (author), either by telephone or by electronic mail, to understand the workings of the routines. Whenever possible, tests were made to verify the concepts and logic employed in their implementations. A detailed report is being separately documented to explain the workings of these routines.
NASA Technical Reports Server (NTRS)
Quealy, Angela; Cole, Gary L.; Blech, Richard A.
1993-01-01
The Application Portable Parallel Library (APPL) is a subroutine-based library of communication primitives that is callable from applications written in FORTRAN or C. APPL provides a consistent programmer interface to a variety of distributed and shared-memory multiprocessor MIMD machines. The objective of APPL is to minimize the effort required to move parallel applications from one machine to another, or to a network of homogeneous machines. APPL encompasses many of the message-passing primitives that are currently available on commercial multiprocessor systems. This paper describes APPL (version 2.3.1) and its usage, reports the status of the APPL project, and indicates possible directions for the future. Several applications using APPL are discussed, as well as performance and overhead results.
Adenosine and inflammation: what's new on the horizon?
Antonioli, Luca; Csóka, Balázs; Fornai, Matteo; Colucci, Rocchina; Kókai, Endre; Blandizzi, Corrado; Haskó, György
2014-08-01
Adenosine contributes to the maintenance of tissue integrity by modulating the immune system. Encouraging results have emerged with adenosine receptor ligands for the management of several inflammatory conditions in preclinical and clinical settings. However, therapeutic applications of these drugs are sometimes complicated by the occurrence of serious adverse effects. The scientific community is making intensive efforts to design novel adenosine receptor ligands endowed with greater selectivity or to develop innovative compounds acting as allosteric receptor modulators. In parallel, research is focusing on novel pharmacological entities (designated as adenosine-regulating agents) that can increase, in a site- and event-specific manner, adenosine concentrations at the inflammatory site, thereby minimizing the adverse systemic effects of adenosine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrating Grid Services into the Cray XT4 Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NERSC; Cholia, Shreyas; Lin, Hwa-Chun Wendy
2009-05-01
The 38640 core Cray XT4"Franklin" system at the National Energy Research Scientific Computing Center (NERSC) is a massively parallel resource available to Department of Energy researchers that also provides on-demand grid computing to the Open Science Grid. The integration of grid services on Franklin presented various challenges, including fundamental differences between the interactive and compute nodes, a stripped down compute-node operating system without dynamic library support, a shared-root environment and idiosyncratic application launching. Inour work, we describe how we resolved these challenges on a running, general-purpose production system to provide on-demand compute, storage, accounting and monitoring services through generic gridmore » interfaces that mask the underlying system-specific details for the end user.« less
NASA Astrophysics Data System (ADS)
Kintsakis, Athanassios M.; Psomopoulos, Fotis E.; Symeonidis, Andreas L.; Mitkas, Pericles A.
Hermes introduces a new "describe once, run anywhere" paradigm for the execution of bioinformatics workflows in hybrid cloud environments. It combines the traditional features of parallelization-enabled workflow management systems and of distributed computing platforms in a container-based approach. It offers seamless deployment, overcoming the burden of setting up and configuring the software and network requirements. Most importantly, Hermes fosters the reproducibility of scientific workflows by supporting standardization of the software execution environment, thus leading to consistent scientific workflow results and accelerating scientific output.
Parallelization and checkpointing of GPU applications through program transformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano-Quinde, Lizandro Damian
2012-01-01
GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solvemore » the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. To achieve our goal, this work designs and implements a framework for enhancing a single-GPU OpenCL application through application transformation.« less
A Debugger for Computational Grid Applications
NASA Technical Reports Server (NTRS)
Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of a debugger for computational grid applications. Details are given on NAS parallel tools groups (including parallelization support tools, evaluation of various parallelization strategies, and distributed and aggregated computing), debugger dependencies, scalability, initial implementation, the process grid, and information on Globus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher Meyer
This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.
The International Conference on Vector and Parallel Computing (2nd)
1989-01-17
Computation of the SVD of Bidiagonal Matrices" ...................................... 11 " Lattice QCD -As a Large Scale Scientific Computation...vectorizcd for the IBM 3090 Vector Facility. In addition, elapsed times " Lattice QCD -As a Large Scale Scientific have been reduced by using 3090...benchmarked Lattice QCD on a large number ofcompu- come from the wavefront solver routine. This was exten- ters: CrayX-MP and Cray 2 (vector
Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2008-10-16
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Implementation of DFT application on ternary optical computer
NASA Astrophysics Data System (ADS)
Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei
2018-03-01
As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.
David Hull's generalized natural selection as an explanation for scientific change
NASA Astrophysics Data System (ADS)
Little, Michelle Yvette
2001-10-01
Philosophers of science such as Karl Popper and Thomas Kuhn have employed evolutionary idiom in describing scientific change. In Science as a Process (1988) Hull makes evolutionary theory explanatorily applicable. He modifies key evolutionary terms in order that both biological evolution and scientific change are instances of a general selection process. According to Hull, because of naturally-existing competition for credit among researchers and the professional lineages they constitute, scientists are constrained to cooperate and collaborate. This process entails two important philosophical consequences. First, it allows for a natural justification of why the sciences can provide objective empirical knowledge. Second, appreciating its strength means that a philosophical analysis of scientific change is solidly difficult features to combine. I work on strengthening two weaknesses in Hull's arguments. First, operating in his analysis is an unexplicated notion of ``information'' running parallel to the equally opaque notion of genetic information. My third chapter provides a clear account of ``genetic information'' whose usefulness extends beyond the assistance it can render Hull as a clear concept is needed in biological contexts as well. The fourth and fifth chapters submit evidence of scientific change from radio astronomy. Hull insists on empirical backing for philosophical theses but his own book stands to suffer from selection effects as it offers cases drawn from a single subspecialty in the biological sciences. I found that in the main scientists and the change they propel accords well with Hull's explanation. However, instances of major change reveal credit- and resource-sharing to a degree contrary with what Hull would expect. My conclusion is that the naturalness of competition, instantiated during the course of standardized and relatively ``normal'' scientific research, is not the norm during periods of new research and its uncertain standards of protocol. As such my position is an inversion of the relationship Hull views between cooperation and competition in scientific change. Cooperation is a precondition for competition, rather than the other way around.
A software tool for modeling and simulation of numerical P systems.
Buiu, Catalin; Arsene, Octavian; Cipu, Corina; Patrascu, Monica
2011-03-01
A P system represents a distributed and parallel bio-inspired computing model in which basic data structures are multi-sets or strings. Numerical P systems have been recently introduced and they use numerical variables and local programs (or evolution rules), usually in a deterministic way. They may find interesting applications in areas such as computational biology, process control or robotics. The first simulator of numerical P systems (SNUPS) has been designed, implemented and made available to the scientific community by the authors of this paper. SNUPS allows a wide range of applications, from modeling and simulation of ordinary differential equations, to the use of membrane systems as computational blocks of cognitive architectures, and as controllers for autonomous mobile robots. This paper describes the functioning of a numerical P system and presents an overview of SNUPS capabilities together with an illustrative example. SNUPS is freely available to researchers as a standalone application and may be downloaded from a dedicated website, http://snups.ics.pub.ro/, which includes an user manual and sample membrane structures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
A Parallel Numerical Micromagnetic Code Using FEniCS
NASA Astrophysics Data System (ADS)
Nagy, L.; Williams, W.; Mitchell, L.
2013-12-01
Many problems in the geosciences depend on understanding the ability of magnetic minerals to provide stable paleomagnetic recordings. Numerical micromagnetic modelling allows us to calculate the domain structures found in naturally occurring magnetic materials. However the computational cost rises exceedingly quickly with respect to the size and complexity of the geometries that we wish to model. This problem is compounded by the fact that the modern processor design no longer focuses on the speed at which calculations are performed, but rather on the number of computational units amongst which we may distribute our calculations. Consequently to better exploit modern computational resources our micromagnetic simulations must "go parallel". We present a parallel and scalable micromagnetics code written using FEniCS. FEniCS is a multinational collaboration involving several institutions (University of Cambridge, University of Chicago, The Simula Research Laboratory, etc.) that aims to provide a set of tools for writing scientific software; in particular software that employs the finite element method. The advantages of this approach are the leveraging of pre-existing projects from the world of scientific computing (PETSc, Trilinos, Metis/Parmetis, etc.) and exposing these so that researchers may pose problems in a manner closer to the mathematical language of their domain. Our code provides a scriptable interface (in Python) that allows users to not only run micromagnetic models in parallel, but also to perform pre/post processing of data.
IPython: components for interactive and parallel computing across disciplines. (Invited)
NASA Astrophysics Data System (ADS)
Perez, F.; Bussonnier, M.; Frederic, J. D.; Froehle, B. M.; Granger, B. E.; Ivanov, P.; Kluyver, T.; Patterson, E.; Ragan-Kelley, B.; Sailer, Z.
2013-12-01
Scientific computing is an inherently exploratory activity that requires constantly cycling between code, data and results, each time adjusting the computations as new insights and questions arise. To support such a workflow, good interactive environments are critical. The IPython project (http://ipython.org) provides a rich architecture for interactive computing with: 1. Terminal-based and graphical interactive consoles. 2. A web-based Notebook system with support for code, text, mathematical expressions, inline plots and other rich media. 3. Easy to use, high performance tools for parallel computing. Despite its roots in Python, the IPython architecture is designed in a language-agnostic way to facilitate interactive computing in any language. This allows users to mix Python with Julia, R, Octave, Ruby, Perl, Bash and more, as well as to develop native clients in other languages that reuse the IPython clients. In this talk, I will show how IPython supports all stages in the lifecycle of a scientific idea: 1. Individual exploration. 2. Collaborative development. 3. Production runs with parallel resources. 4. Publication. 5. Education. In particular, the IPython Notebook provides an environment for "literate computing" with a tight integration of narrative and computation (including parallel computing). These Notebooks are stored in a JSON-based document format that provides an "executable paper": notebooks can be version controlled, exported to HTML or PDF for publication, and used for teaching.
NASA Astrophysics Data System (ADS)
Work, Paul R.
1991-12-01
This thesis investigates the parallelization of existing serial programs in computational electromagnetics for use in a parallel environment. Existing algorithms for calculating the radar cross section of an object are covered, and a ray-tracing code is chosen for implementation on a parallel machine. Current parallel architectures are introduced and a suitable parallel machine is selected for the implementation of the chosen ray-tracing algorithm. The standard techniques for the parallelization of serial codes are discussed, including load balancing and decomposition considerations, and appropriate methods for the parallelization effort are selected. A load balancing algorithm is modified to increase the efficiency of the application, and a high level design of the structure of the serial program is presented. A detailed design of the modifications for the parallel implementation is also included, with both the high level and the detailed design specified in a high level design language called UNITY. The correctness of the design is proven using UNITY and standard logic operations. The theoretical and empirical results show that it is possible to achieve an efficient parallel application for a serial computational electromagnetic program where the characteristics of the algorithm and the target architecture critically influence the development of such an implementation.
Molecular dynamics simulations through GPU video games technologies
Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia
2016-01-01
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251
Using Java for distributed computing in the Gaia satellite data processing
NASA Astrophysics Data System (ADS)
O'Mullane, William; Luri, Xavier; Parsons, Paul; Lammers, Uwe; Hoar, John; Hernandez, Jose
2011-10-01
In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.
Modeling and analysis of hybrid pixel detector deficiencies for scientific applications
NASA Astrophysics Data System (ADS)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman
2015-08-01
Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.
Social behavioural epistemology and the scientific community.
Watve, Milind
2017-07-01
The progress of science is influenced substantially by social behaviour of and social interactions within the scientific community. Similar to innovations in primate groups, the social acceptance of an innovation depends not only upon the relevance of the innovation but also on the social dominance and connectedness of the innovator. There are a number of parallels between many well-known phenomena in behavioural evolution and various behavioural traits observed in the scientific community. It would be useful, therefore, to use principles of behavioural evolution as hypotheses to study the social behaviour of the scientific community. I argue in this paper that a systematic study of social behavioural epistemology is likely to boost the progress of science by addressing several prevalent biases and other problems in scientific communication and by facilitating appropriate acceptance/rejection of novel concepts.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Interactive Parallel Data Analysis within Data-Centric Cluster Facilities using the IPython Notebook
NASA Astrophysics Data System (ADS)
Pascoe, S.; Lansdowne, J.; Iwi, A.; Stephens, A.; Kershaw, P.
2012-12-01
The data deluge is making traditional analysis workflows for many researchers obsolete. Support for parallelism within popular tools such as matlab, IDL and NCO is not well developed and rarely used. However parallelism is necessary for processing modern data volumes on a timescale conducive to curiosity-driven analysis. Furthermore, for peta-scale datasets such as the CMIP5 archive, it is no longer practical to bring an entire dataset to a researcher's workstation for analysis, or even to their institutional cluster. Therefore, there is an increasing need to develop new analysis platforms which both enable processing at the point of data storage and which provides parallelism. Such an environment should, where possible, maintain the convenience and familiarity of our current analysis environments to encourage curiosity-driven research. We describe how we are combining the interactive python shell (IPython) with our JASMIN data-cluster infrastructure. IPython has been specifically designed to bridge the gap between the HPC-style parallel workflows and the opportunistic curiosity-driven analysis usually carried out using domain specific languages and scriptable tools. IPython offers a web-based interactive environment, the IPython notebook, and a cluster engine for parallelism all underpinned by the well-respected Python/Scipy scientific programming stack. JASMIN is designed to support the data analysis requirements of the UK and European climate and earth system modeling community. JASMIN, with its sister facility CEMS focusing the earth observation community, has 4.5 PB of fast parallel disk storage alongside over 370 computing cores provide local computation. Through the IPython interface to JASMIN, users can make efficient use of JASMIN's multi-core virtual machines to perform interactive analysis on all cores simultaneously or can configure IPython clusters across multiple VMs. Larger-scale clusters can be provisioned through JASMIN's batch scheduling system. Outputs can be summarised and visualised using the full power of Python's many scientific tools, including Scipy, Matplotlib, Pandas and CDAT. This rich user experience is delivered through the user's web browser; maintaining the interactive feel of a workstation-based environment with the parallel power of a remote data-centric processing facility.
Sripada, Chandra; Railton, Peter; Baumeister, Roy F; Seligman, Martin E P
2013-03-01
Evidence of prospective processes is increasingly common in psychological research, which suggests the fruitfulness of a theoretical framework for mind and brain built around future orientation. No metaphysics of determinism or indeterminism is presupposed by this framework, nor do considerations of scientific method require determinism-successful scientific theories in the natural sciences all involve probabilistic elements. We speculate that expressive behavior and moral decision making use prospective processes parallel to those used in nonmoral decisions. © The Author(s) 2013.
Access and visualization using clusters and other parallel computers
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Bergou, Attila; Berriman, Bruce; Block, Gary; Collier, Jim; Curkendall, Dave; Good, John; Husman, Laura; Jacob, Joe; Laity, Anastasia;
2003-01-01
JPL's Parallel Applications Technologies Group has been exploring the issues of data access and visualization of very large data sets over the past 10 or so years. this work has used a number of types of parallel computers, and today includes the use of commodity clusters. This talk will highlight some of the applications and tools we have developed, including how they use parallel computing resources, and specifically how we are using modern clusters. Our applications focus on NASA's needs; thus our data sets are usually related to Earth and Space Science, including data delivered from instruments in space, and data produced by telescopes on the ground.
Exploiting variability for energy optimization of parallel programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrijsen, Wim; Iancu, Costin; de Jong, Wibe
2016-04-18
Here in this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes withmore » highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost.« less
Wesson, R.L.
1988-01-01
Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author
Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchett, John M; Ahrens, James P; Lo, Li - Ta
2010-10-15
Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2013-11-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.
Hyperspectral anomaly detection using Sony PlayStation 3
NASA Astrophysics Data System (ADS)
Rosario, Dalton; Romano, João; Sepulveda, Rene
2009-05-01
We present a proof-of-principle demonstration using Sony's IBM Cell processor-based PlayStation 3 (PS3) to run-in near real-time-a hyperspectral anomaly detection algorithm (HADA) on real hyperspectral (HS) long-wave infrared imagery. The PS3 console proved to be ideal for doing precisely the kind of heavy computational lifting HS based algorithms require, and the fact that it is a relatively open platform makes programming scientific applications feasible. The PS3 HADA is a unique parallel-random sampling based anomaly detection approach that does not require prior spectra of the clutter background. The PS3 HADA is designed to handle known underlying difficulties (e.g., target shape/scale uncertainties) often ignored in the development of autonomous anomaly detection algorithms. The effort is part of an ongoing cooperative contribution between the Army Research Laboratory and the Army's Armament, Research, Development and Engineering Center, which aims at demonstrating performance of innovative algorithmic approaches for applications requiring autonomous anomaly detection using passive sensors.
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review
Johnson, Steven
2017-01-01
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface. PMID:28880211
Collisionless current sheet equilibria
NASA Astrophysics Data System (ADS)
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Solving lattice QCD systems of equations using mixed precision solvers on GPUs
NASA Astrophysics Data System (ADS)
Clark, M. A.; Babich, R.; Barros, K.; Brower, R. C.; Rebbi, C.
2010-09-01
Modern graphics hardware is designed for highly parallel numerical tasks and promises significant cost and performance benefits for many scientific applications. One such application is lattice quantum chromodynamics (lattice QCD), where the main computational challenge is to efficiently solve the discretized Dirac equation in the presence of an SU(3) gauge field. Using NVIDIA's CUDA platform we have implemented a Wilson-Dirac sparse matrix-vector product that performs at up to 40, 135 and 212 Gflops for double, single and half precision respectively on NVIDIA's GeForce GTX 280 GPU. We have developed a new mixed precision approach for Krylov solvers using reliable updates which allows for full double precision accuracy while using only single or half precision arithmetic for the bulk of the computation. The resulting BiCGstab and CG solvers run in excess of 100 Gflops and, in terms of iterations until convergence, perform better than the usual defect-correction approach for mixed precision.
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review.
Juan-Colás, José; Johnson, Steven; Krauss, Thomas F
2017-09-07
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface.
An object-oriented approach for parallel self adaptive mesh refinement on block structured grids
NASA Technical Reports Server (NTRS)
Lemke, Max; Witsch, Kristian; Quinlan, Daniel
1993-01-01
Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
Parallel multiphase microflows: fundamental physics, stabilization methods and applications.
Aota, Arata; Mawatari, Kazuma; Kitamori, Takehiko
2009-09-07
Parallel multiphase microflows, which can integrate unit operations in a microchip under continuous flow conditions, are discussed. Fundamental physics, stabilization methods and some applications are shown.
Ensuring correct rollback recovery in distributed shared memory systems
NASA Technical Reports Server (NTRS)
Janssens, Bob; Fuchs, W. Kent
1995-01-01
Distributed shared memory (DSM) implemented on a cluster of workstations is an increasingly attractive platform for executing parallel scientific applications. Checkpointing and rollback techniques can be used in such a system to allow the computation to progress in spite of the temporary failure of one or more processing nodes. This paper presents the design of an independent checkpointing method for DSM that takes advantage of DSM's specific properties to reduce error-free and rollback overhead. The scheme reduces the dependencies that need to be considered for correct rollback to those resulting from transfers of pages. Furthermore, in-transit messages can be recovered without the use of logging. We extend the scheme to a DSM implementation using lazy release consistency, where the frequency of dependencies is further reduced.
Developing science gateways for drug discovery in a grid environment.
Pérez-Sánchez, Horacio; Rezaei, Vahid; Mezhuyev, Vitaliy; Man, Duhu; Peña-García, Jorge; den-Haan, Helena; Gesing, Sandra
2016-01-01
Methods for in silico screening of large databases of molecules increasingly complement and replace experimental techniques to discover novel compounds to combat diseases. As these techniques become more complex and computationally costly we are faced with an increasing problem to provide the research community of life sciences with a convenient tool for high-throughput virtual screening on distributed computing resources. To this end, we recently integrated the biophysics-based drug-screening program FlexScreen into a service, applicable for large-scale parallel screening and reusable in the context of scientific workflows. Our implementation is based on Pipeline Pilot and Simple Object Access Protocol and provides an easy-to-use graphical user interface to construct complex workflows, which can be executed on distributed computing resources, thus accelerating the throughput by several orders of magnitude.
Biology and Medicine Division annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Modern biology is characterized by rapid change. The development of new tools and the results derived from their application to various biological systems require significant shifts in our concepts and the strategies that are adopted to analyze and elucidate mechanisms. In parallel with exciting new scientific developments our organizational structure and programmatic emphases have altered. These changes and developments have enabled the life sciences at LBL to be better positioned to create and respond to new opportunities. The work summarized in this annual report reflects a vital multifaceted research program that is in the vanguard of the areas represented. Wemore » are committed to justifying the confidence expressed by LBL through the new mission statement and reorganizational changes designed to give greater prominence to the life sciences.« less
An intelligent ground operator support system
NASA Technical Reports Server (NTRS)
Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe
1994-01-01
This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.
Applied mediation analyses: a review and tutorial.
Lange, Theis; Hansen, Kim Wadt; Sørensen, Rikke; Galatius, Søren
2017-01-01
In recent years, mediation analysis has emerged as a powerful tool to disentangle causal pathways from an exposure/treatment to clinically relevant outcomes. Mediation analysis has been applied in scientific fields as diverse as labour market relations and randomized clinical trials of heart disease treatments. In parallel to these applications, the underlying mathematical theory and computer tools have been refined. This combined review and tutorial will introduce the reader to modern mediation analysis including: the mathematical framework; required assumptions; and software implementation in the R package medflex. All results are illustrated using a recent study on the causal pathways stemming from the early invasive treatment of acute coronary syndrome, for which the rich Danish population registers allow us to follow patients' medication use and more after being discharged from hospital.
YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste
Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less
Function algorithms for MPP scientific subroutines, volume 1
NASA Technical Reports Server (NTRS)
Gouch, J. G.
1984-01-01
Design documentation and user documentation for function algorithms for the Massively Parallel Processor (MPP) are presented. The contract specifies development of MPP assembler instructions to perform the following functions: natural logarithm; exponential (e to the x power); square root; sine; cosine; and arctangent. To fulfill the requirements of the contract, parallel array and solar implementations for these functions were developed on the PDP11/34 Program Development and Management Unit (PDMU) that is resident at the MPP testbed installation located at the NASA Goddard facility.
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
NASA Technical Reports Server (NTRS)
Larson, Jay W.
1998-01-01
Atmospheric data assimilation is a method of combining actual observations with model forecasts to produce a more accurate description of the earth system than the observations or forecast alone can provide. The output of data assimilation, sometimes called the analysis, are regular, gridded datasets of observed and unobserved variables. Analysis plays a key role in numerical weather prediction and is becoming increasingly important for climate research. These applications, and the need for timely validation of scientific enhancements to the data assimilation system pose computational demands that are best met by distributed parallel software. The mission of the NASA Data Assimilation Office (DAO) is to provide datasets for climate research and to support NASA satellite and aircraft missions. The system used to create these datasets is the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The core components of the the GEOS DAS are: the GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler (which feeds analysis increments back to the GCM), and an I/O package for processing the large amounts of data the system produces (which will be described in another presentation in this session). The discussion will center on the following issues: the computational complexity for the whole GEOS DAS, assessment of the performance of the individual elements of GEOS DAS, and parallelization strategy for some of the components of the system.
Feasibility of optically interconnected parallel processors using wavelength division multiplexing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deri, R.J.; De Groot, A.J.; Haigh, R.E.
1996-03-01
New national security demands require enhanced computing systems for nearly ab initio simulations of extremely complex systems and analyzing unprecedented quantities of remote sensing data. This computational performance is being sought using parallel processing systems, in which many less powerful processors are ganged together to achieve high aggregate performance. Such systems require increased capability to communicate information between individual processor and memory elements. As it is likely that the limited performance of today`s electronic interconnects will prevent the system from achieving its ultimate performance, there is great interest in using fiber optic technology to improve interconnect communication. However, little informationmore » is available to quantify the requirements on fiber optical hardware technology for this application. Furthermore, we have sought to explore interconnect architectures that use the complete communication richness of the optical domain rather than using optics as a simple replacement for electronic interconnects. These considerations have led us to study the performance of a moderate size parallel processor with optical interconnects using multiple optical wavelengths. We quantify the bandwidth, latency, and concurrency requirements which allow a bus-type interconnect to achieve scalable computing performance using up to 256 nodes, each operating at GFLOP performance. Our key conclusion is that scalable performance, to {approx}150 GFLOPS, is achievable for several scientific codes using an optical bus with a small number of WDM channels (8 to 32), only one WDM channel received per node, and achievable optoelectronic bandwidth and latency requirements. 21 refs. , 10 figs.« less
TOUGH3: A new efficient version of the TOUGH suite of multiphase flow and transport simulators
NASA Astrophysics Data System (ADS)
Jung, Yoojin; Pau, George Shu Heng; Finsterle, Stefan; Pollyea, Ryan M.
2017-11-01
The TOUGH suite of nonisothermal multiphase flow and transport simulators has been updated by various developers over many years to address a vast range of challenging subsurface problems. The increasing complexity of the simulated processes as well as the growing size of model domains that need to be handled call for an improvement in the simulator's computational robustness and efficiency. Moreover, modifications have been frequently introduced independently, resulting in multiple versions of TOUGH that (1) led to inconsistencies in feature implementation and usage, (2) made code maintenance and development inefficient, and (3) caused confusion to users and developers. TOUGH3-a new base version of TOUGH-addresses these issues. It consolidates both the serial (TOUGH2 V2.1) and parallel (TOUGH2-MP V2.0) implementations, enabling simulations to be performed on desktop computers and supercomputers using a single code. New PETSc parallel linear solvers are added to the existing serial solvers of TOUGH2 and the Aztec solver used in TOUGH2-MP. The PETSc solvers generally perform better than the Aztec solvers in parallel and the internal TOUGH3 linear solver in serial. TOUGH3 also incorporates many new features, addresses bugs, and improves the flexibility of data handling. Due to the improved capabilities and usability, TOUGH3 is more robust and efficient for solving tough and computationally demanding problems in diverse scientific and practical applications related to subsurface flow modeling.
Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.
Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T
2017-01-01
Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.
An Adaptable Seismic Data Format for Modern Scientific Workflows
NASA Astrophysics Data System (ADS)
Smith, J. A.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Podhorszki, N.; Tromp, J.
2013-12-01
Data storage, exchange, and access play a critical role in modern seismology. Current seismic data formats, such as SEED, SAC, and SEG-Y, were designed with specific applications in mind and are frequently a major bottleneck in implementing efficient workflows. We propose a new modern parallel format that can be adapted for a variety of seismic workflows. The Adaptable Seismic Data Format (ASDF) features high-performance parallel read and write support and the ability to store an arbitrary number of traces of varying sizes. Provenance information is stored inside the file so that users know the origin of the data as well as the precise operations that have been applied to the waveforms. The design of the new format is based on several real-world use cases, including earthquake seismology and seismic interferometry. The metadata is based on the proven XML schemas StationXML and QuakeML. Existing time-series analysis tool-kits are easily interfaced with this new format so that seismologists can use robust, previously developed software packages, such as ObsPy and the SAC library. ADIOS, netCDF4, and HDF5 can be used as the underlying container format. At Princeton University, we have chosen to use ADIOS as the container format because it has shown superior scalability for certain applications, such as dealing with big data on HPC systems. In the context of high-performance computing, we have implemented ASDF into the global adjoint tomography workflow on Oak Ridge National Laboratory's supercomputer Titan.
A feasibility study on porting the community land model onto accelerators using OpenACC
Wang, Dali; Wu, Wei; Winkler, Frank; ...
2014-01-01
As environmental models (such as Accelerated Climate Model for Energy (ACME), Parallel Reactive Flow and Transport Model (PFLOTRAN), Arctic Terrestrial Simulator (ATS), etc.) became more and more complicated, we are facing enormous challenges regarding to porting those applications onto hybrid computing architecture. OpenACC appears as a very promising technology, therefore, we have conducted a feasibility analysis on porting the Community Land Model (CLM), a terrestrial ecosystem model within the Community Earth System Models (CESM)). Specifically, we used automatic function testing platform to extract a small computing kernel out of CLM, then we apply this kernel into the actually CLM dataflowmore » procedure, and investigate the strategy of data parallelization and the benefit of data movement provided by current implementation of OpenACC. Even it is a non-intensive kernel, on a single 16-core computing node, the performance (based on the actual computation time using one GPU) of OpenACC implementation is 2.3 time faster than that of OpenMP implementation using single OpenMP thread, but it is 2.8 times slower than the performance of OpenMP implementation using 16 threads. On multiple nodes, MPI_OpenACC implementation demonstrated very good scalability on up to 128 GPUs on 128 computing nodes. This study also provides useful information for us to look into the potential benefits of “deep copy” capability and “routine” feature of OpenACC standards. In conclusion, we believe that our experience on the environmental model, CLM, can be beneficial to many other scientific research programs who are interested to porting their large scale scientific code using OpenACC onto high-end computers, empowered by hybrid computing architecture.« less
NAS Requirements Checklist for Job Queuing/Scheduling Software
NASA Technical Reports Server (NTRS)
Jones, James Patton
1996-01-01
The increasing reliability of parallel systems and clusters of computers has resulted in these systems becoming more attractive for true production workloads. Today, the primary obstacle to production use of clusters of computers is the lack of a functional and robust Job Management System for parallel applications. This document provides a checklist of NAS requirements for job queuing and scheduling in order to make most efficient use of parallel systems and clusters for parallel applications. Future requirements are also identified to assist software vendors with design planning.
NASA Technical Reports Server (NTRS)
Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)
1993-01-01
A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.
INVITED TOPICAL REVIEW: Parallel magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Larkman, David J.; Nunes, Rita G.
2007-04-01
Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed.
Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Rodila, D.; Bacu, V.; Gorgan, D.
2012-04-01
The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric
2015-01-16
This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less
ProperCAD: A portable object-oriented parallel environment for VLSI CAD
NASA Technical Reports Server (NTRS)
Ramkumar, Balkrishna; Banerjee, Prithviraj
1993-01-01
Most parallel algorithms for VLSI CAD proposed to date have one important drawback: they work efficiently only on machines that they were designed for. As a result, algorithms designed to date are dependent on the architecture for which they are developed and do not port easily to other parallel architectures. A new project under way to address this problem is described. A Portable object-oriented parallel environment for CAD algorithms (ProperCAD) is being developed. The objectives of this research are (1) to develop new parallel algorithms that run in a portable object-oriented environment (CAD algorithms using a general purpose platform for portable parallel programming called CARM is being developed and a C++ environment that is truly object-oriented and specialized for CAD applications is also being developed); and (2) to design the parallel algorithms around a good sequential algorithm with a well-defined parallel-sequential interface (permitting the parallel algorithm to benefit from future developments in sequential algorithms). One CAD application that has been implemented as part of the ProperCAD project, flat VLSI circuit extraction, is described. The algorithm, its implementation, and its performance on a range of parallel machines are discussed in detail. It currently runs on an Encore Multimax, a Sequent Symmetry, Intel iPSC/2 and i860 hypercubes, a NCUBE 2 hypercube, and a network of Sun Sparc workstations. Performance data for other applications that were developed are provided: namely test pattern generation for sequential circuits, parallel logic synthesis, and standard cell placement.
Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications
NASA Technical Reports Server (NTRS)
Sun, Xian-He
1997-01-01
Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD) algorithm have been carefully studied on different parallel platforms for different applications, and a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and implemented based on data dependency analysis. These achievements are addressed in detail in the paper.
Parallelization Issues and Particle-In Codes.
NASA Astrophysics Data System (ADS)
Elster, Anne Cathrine
1994-01-01
"Everything should be made as simple as possible, but not simpler." Albert Einstein. The field of parallel scientific computing has concentrated on parallelization of individual modules such as matrix solvers and factorizers. However, many applications involve several interacting modules. Our analyses of a particle-in-cell code modeling charged particles in an electric field, show that these accompanying dependencies affect data partitioning and lead to new parallelization strategies concerning processor, memory and cache utilization. Our test-bed, a KSR1, is a distributed memory machine with a globally shared addressing space. However, most of the new methods presented hold generally for hierarchical and/or distributed memory systems. We introduce a novel approach that uses dual pointers on the local particle arrays to keep the particle locations automatically partially sorted. Complexity and performance analyses with accompanying KSR benchmarks, have been included for both this scheme and for the traditional replicated grids approach. The latter approach maintains load-balance with respect to particles. However, our results demonstrate it fails to scale properly for problems with large grids (say, greater than 128-by-128) running on as few as 15 KSR nodes, since the extra storage and computation time associated with adding the grid copies, becomes significant. Our grid partitioning scheme, although harder to implement, does not need to replicate the whole grid. Consequently, it scales well for large problems on highly parallel systems. It may, however, require load balancing schemes for non-uniform particle distributions. Our dual pointer approach may facilitate this through dynamically partitioned grids. We also introduce hierarchical data structures that store neighboring grid-points within the same cache -line by reordering the grid indexing. This alignment produces a 25% savings in cache-hits for a 4-by-4 cache. A consideration of the input data's effect on the simulation may lead to further improvements. For example, in the case of mean particle drift, it is often advantageous to partition the grid primarily along the direction of the drift. The particle-in-cell codes for this study were tested using physical parameters, which lead to predictable phenomena including plasma oscillations and two-stream instabilities. An overview of the most central references related to parallel particle codes is also given.
Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures
NASA Technical Reports Server (NTRS)
Biegel, Bryan A. (Technical Monitor); Jost, G.; Jin, H.; Labarta J.; Gimenez, J.; Caubet, J.
2003-01-01
Parallel programming paradigms include process level parallelism, thread level parallelization, and multilevel parallelism. This viewgraph presentation describes a detailed performance analysis of these paradigms for Shared Memory Architecture (SMA). This analysis uses the Paraver Performance Analysis System. The presentation includes diagrams of a flow of useful computations.
3D hyperpolarized C-13 EPI with calibrationless parallel imaging
NASA Astrophysics Data System (ADS)
Gordon, Jeremy W.; Hansen, Rie B.; Shin, Peter J.; Feng, Yesu; Vigneron, Daniel B.; Larson, Peder E. Z.
2018-04-01
With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.
Equalizer: a scalable parallel rendering framework.
Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato
2009-01-01
Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.
Parallel Computing Strategies for Irregular Algorithms
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Shan, Hongzhang; Biegel, Bryan (Technical Monitor)
2002-01-01
Parallel computing promises several orders of magnitude increase in our ability to solve realistic computationally-intensive problems, but relies on their efficient mapping and execution on large-scale multiprocessor architectures. Unfortunately, many important applications are irregular and dynamic in nature, making their effective parallel implementation a daunting task. Moreover, with the proliferation of parallel architectures and programming paradigms, the typical scientist is faced with a plethora of questions that must be answered in order to obtain an acceptable parallel implementation of the solution algorithm. In this paper, we consider three representative irregular applications: unstructured remeshing, sparse matrix computations, and N-body problems, and parallelize them using various popular programming paradigms on a wide spectrum of computer platforms ranging from state-of-the-art supercomputers to PC clusters. We present the underlying problems, the solution algorithms, and the parallel implementation strategies. Smart load-balancing, partitioning, and ordering techniques are used to enhance parallel performance. Overall results demonstrate the complexity of efficiently parallelizing irregular algorithms.
Parallelization of NAS Benchmarks for Shared Memory Multiprocessors
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)
1998-01-01
This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.
Parallel algorithms for mapping pipelined and parallel computations
NASA Technical Reports Server (NTRS)
Nicol, David M.
1988-01-01
Many computational problems in image processing, signal processing, and scientific computing are naturally structured for either pipelined or parallel computation. When mapping such problems onto a parallel architecture it is often necessary to aggregate an obvious problem decomposition. Even in this context the general mapping problem is known to be computationally intractable, but recent advances have been made in identifying classes of problems and architectures for which optimal solutions can be found in polynomial time. Among these, the mapping of pipelined or parallel computations onto linear array, shared memory, and host-satellite systems figures prominently. This paper extends that work first by showing how to improve existing serial mapping algorithms. These improvements have significantly lower time and space complexities: in one case a published O(nm sup 3) time algorithm for mapping m modules onto n processors is reduced to an O(nm log m) time complexity, and its space requirements reduced from O(nm sup 2) to O(m). Run time complexity is further reduced with parallel mapping algorithms based on these improvements, which run on the architecture for which they create the mappings.
Automatic Generation of OpenMP Directives and Its Application to Computational Fluid Dynamics Codes
NASA Technical Reports Server (NTRS)
Yan, Jerry; Jin, Haoqiang; Frumkin, Michael; Yan, Jerry (Technical Monitor)
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate OpenMP-based parallel programs with nominal user assistance. We outline techniques used in the implementation of the tool and discuss the application of this tool on the NAS Parallel Benchmarks and several computational fluid dynamics codes. This work demonstrates the great potential of using the tool to quickly port parallel programs and also achieve good performance that exceeds some of the commercial tools.
Scientific Revolutions to the nth power: n = 0, 1, 2, 3.
NASA Astrophysics Data System (ADS)
Beichler, James
2008-04-01
Thomas Kuhn's description and characterization of scientific revolutions set the standard for interpreting and understanding these events, but his characterization introduced an anomaly. Newtonian science was at the pinnacle of its success immediately prior to the Second Scientific Revolution. From an evolutionary point-of-view, there were no crises to be solved just problems within the Newtonian paradigm, whereas the specific crises that initiated the revolution are evident from everyone's point-of-view after the revolution. This paradox is well recognized, but it seems not to be a problem and is just ignored as if it were not important or significant. Yet this discrepancy strikes at the very heart of physics and the overall progress of science. Historical conditions currently parallel the period immediately prior to the Second Scientific Revolution indicating that a new scientific revolution is approaching. When a comparison of the two periods is made, new characteristics of scientific revolutions are identified, the paradox is solved and evidence of a Zeroth Scientific Revolution emerges from the historical record.
The paradigm compiler: Mapping a functional language for the connection machine
NASA Technical Reports Server (NTRS)
Dennis, Jack B.
1989-01-01
The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.
Communication library for run-time visualization of distributed, asynchronous data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowlan, J.; Wightman, B.T.
1994-04-01
In this paper we present a method for collecting and visualizing data generated by a parallel computational simulation during run time. Data distributed across multiple processes is sent across parallel communication lines to a remote workstation, which sorts and queues the data for visualization. We have implemented our method in a set of tools called PORTAL (for Parallel aRchitecture data-TrAnsfer Library). The tools comprise generic routines for sending data from a parallel program (callable from either C or FORTRAN), a semi-parallel communication scheme currently built upon Unix Sockets, and a real-time connection to the scientific visualization program AVS. Our methodmore » is most valuable when used to examine large datasets that can be efficiently generated and do not need to be stored on disk. The PORTAL source libraries, detailed documentation, and a working example can be obtained by anonymous ftp from info.mcs.anl.gov from the file portal.tar.Z from the directory pub/portal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
Reliability of a science admission test (HAM-Nat) at Hamburg medical school.
Hissbach, Johanna; Klusmann, Dietrich; Hampe, Wolfgang
2011-01-01
The University Hospital in Hamburg (UKE) started to develop a test of knowledge in natural sciences for admission to medical school in 2005 (Hamburger Auswahlverfahren für Medizinische Studiengänge, Naturwissenschaftsteil, HAM-Nat). This study is a step towards establishing the HAM-Nat. We are investigating parallel forms reliability, the effect of a crash course in chemistry on test results, and correlations of HAM-Nat test results with a test of scientific reasoning (similar to a subtest of the "Test for Medical Studies", TMS). 316 first-year students participated in the study in 2007. They completed different versions of the HAM-Nat test which consisted of items that had already been used (HN2006) and new items (HN2007). Four weeks later half of the participants were tested on the HN2007 version of the HAM-Nat again, while the other half completed the test of scientific reasoning. Within this four week interval students were offered a five day chemistry course. Parallel forms reliability for four different test versions ranged from r(tt)=.53 to r(tt)=.67. The retest reliabilities of the HN2007 halves were r(tt)=.54 and r(tt )=.61. Correlations of the two HAM-Nat versions with the test of scientific reasoning were r=.34 und r=.21. The crash course in chemistry had no effect on HAM-Nat scores. The results suggest that further versions of the test of natural sciences will not easily conform to the standards of internal consistency, parallel-forms reliability and retest reliability. Much care has to be taken in order to assemble items which could be used interchangeably for the construction of new test versions. The test of scientific reasoning and the HAM-Nat are tapping different constructs. Participation in a chemistry course did not improve students' achievement, probably because the content of the course was not coordinated with the test and many students lacked of motivation to do well in the second test.
Reliability of a science admission test (HAM-Nat) at Hamburg medical school
Hissbach, Johanna; Klusmann, Dietrich; Hampe, Wolfgang
2011-01-01
Objective: The University Hospital in Hamburg (UKE) started to develop a test of knowledge in natural sciences for admission to medical school in 2005 (Hamburger Auswahlverfahren für Medizinische Studiengänge, Naturwissenschaftsteil, HAM-Nat). This study is a step towards establishing the HAM-Nat. We are investigating parallel forms reliability, the effect of a crash course in chemistry on test results, and correlations of HAM-Nat test results with a test of scientific reasoning (similar to a subtest of the "Test for Medical Studies", TMS). Methods: 316 first-year students participated in the study in 2007. They completed different versions of the HAM-Nat test which consisted of items that had already been used (HN2006) and new items (HN2007). Four weeks later half of the participants were tested on the HN2007 version of the HAM-Nat again, while the other half completed the test of scientific reasoning. Within this four week interval students were offered a five day chemistry course. Results: Parallel forms reliability for four different test versions ranged from rtt=.53 to rtt=.67. The retest reliabilities of the HN2007 halves were rtt=.54 and rtt =.61. Correlations of the two HAM-Nat versions with the test of scientific reasoning were r=.34 und r=.21. The crash course in chemistry had no effect on HAM-Nat scores. Conclusions: The results suggest that further versions of the test of natural sciences will not easily conform to the standards of internal consistency, parallel-forms reliability and retest reliability. Much care has to be taken in order to assemble items which could be used interchangeably for the construction of new test versions. The test of scientific reasoning and the HAM-Nat are tapping different constructs. Participation in a chemistry course did not improve students’ achievement, probably because the content of the course was not coordinated with the test and many students lacked of motivation to do well in the second test. PMID:21866246
The Ophidia framework: toward cloud-based data analytics for climate change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; D'Anca, Alessandro; Elia, Donatello; Mancini, Marco; Mariello, Andrea; Mirto, Maria; Palazzo, Cosimo; Aloisio, Giovanni
2015-04-01
The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in the climate change domain. It provides parallel (server-side) data analysis, an internal storage model and a hierarchical data organization to manage large amount of multidimensional scientific data. The Ophidia analytics platform provides several MPI-based parallel operators to manipulate large datasets (data cubes) and array-based primitives to perform data analysis on large arrays of scientific data. The most relevant data analytics use cases implemented in national and international projects target fire danger prevention (OFIDIA), interactions between climate change and biodiversity (EUBrazilCC), climate indicators and remote data analysis (CLIP-C), sea situational awareness (TESSA), large scale data analytics on CMIP5 data in NetCDF format, Climate and Forecast (CF) convention compliant (ExArch). Two use cases regarding the EU FP7 EUBrazil Cloud Connect and the INTERREG OFIDIA projects will be presented during the talk. In the former case (EUBrazilCC) the Ophidia framework is being extended to integrate scalable VM-based solutions for the management of large volumes of scientific data (both climate and satellite data) in a cloud-based environment to study how climate change affects biodiversity. In the latter one (OFIDIA) the data analytics framework is being exploited to provide operational support regarding processing chains devoted to fire danger prevention. To tackle the project challenges, data analytics workflows consisting of about 130 operators perform, among the others, parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, import/export of datasets in NetCDF format. Finally, the entire Ophidia software stack has been deployed at CMCC on 24-nodes (16-cores/node) of the Athena HPC cluster. Moreover, a cloud-based release tested with OpenNebula is also available and running in the private cloud infrastructure of the CMCC Supercomputing Centre.
pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2014-01-01
This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.
NASA Technical Reports Server (NTRS)
Bailey, D. H.; Barszcz, E.; Barton, J. T.; Carter, R. L.; Lasinski, T. A.; Browning, D. S.; Dagum, L.; Fatoohi, R. A.; Frederickson, P. O.; Schreiber, R. S.
1991-01-01
A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers in the framework of the NASA Ames Numerical Aerodynamic Simulation (NAS) Program. These consist of five 'parallel kernel' benchmarks and three 'simulated application' benchmarks. Together they mimic the computation and data movement characteristics of large-scale computational fluid dynamics applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification-all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.
Automatic Management of Parallel and Distributed System Resources
NASA Technical Reports Server (NTRS)
Yan, Jerry; Ngai, Tin Fook; Lundstrom, Stephen F.
1990-01-01
Viewgraphs on automatic management of parallel and distributed system resources are presented. Topics covered include: parallel applications; intelligent management of multiprocessing systems; performance evaluation of parallel architecture; dynamic concurrent programs; compiler-directed system approach; lattice gaseous cellular automata; and sparse matrix Cholesky factorization.
77 FR 61739 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... DEPARTMENT OF COMMERCE International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials... combustion, such as hydroxyl (OH) radicals. The [[Page 61740
Some Thoughts Regarding Practical Quantum Computing
NASA Astrophysics Data System (ADS)
Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey
2006-03-01
Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.
Execution of parallel algorithms on a heterogeneous multicomputer
NASA Astrophysics Data System (ADS)
Isenstein, Barry S.; Greene, Jonathon
1995-04-01
Many aerospace/defense sensing and dual-use applications require high-performance computing, extensive high-bandwidth interconnect and realtime deterministic operation. This paper will describe the architecture of a scalable multicomputer that includes DSP and RISC processors. A single chassis implementation is capable of delivering in excess of 10 GFLOPS of DSP processing power with 2 Gbytes/s of realtime sensor I/O. A software approach to implementing parallel algorithms called the Parallel Application System (PAS) is also presented. An example of applying PAS to a DSP application is shown.
Dynamic load balancing of applications
Wheat, Stephen R.
1997-01-01
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.
Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Oliker, Leonid; Sohn, Andrew
1996-01-01
Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu
1995-01-01
As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
Visualizing Parallel Computer System Performance
NASA Technical Reports Server (NTRS)
Malony, Allen D.; Reed, Daniel A.
1988-01-01
Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.
Architecture-Adaptive Computing Environment: A Tool for Teaching Parallel Programming
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2002-01-01
Recently, networked and cluster computation have become very popular. This paper is an introduction to a new C based parallel language for architecture-adaptive programming, aCe C. The primary purpose of aCe (Architecture-adaptive Computing Environment) is to encourage programmers to implement applications on parallel architectures by providing them the assurance that future architectures will be able to run their applications with a minimum of modification. A secondary purpose is to encourage computer architects to develop new types of architectures by providing an easily implemented software development environment and a library of test applications. This new language should be an ideal tool to teach parallel programming. In this paper, we will focus on some fundamental features of aCe C.
Parallel Computation of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB
NASA Technical Reports Server (NTRS)
Rose, Geoffrey K.; Nguyen, Duc T.; Newman, Brett A.
2017-01-01
Demonstrating speedup for parallel code on a multicore shared memory PC can be challenging in MATLAB due to underlying parallel operations that are often opaque to the user. This can limit potential for improvement of serial code even for the so-called embarrassingly parallel applications. One such application is the computation of the Jacobian matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the primary bottleneck in nonlinear solver speed such that commercial finite element (FE) and multi-body-dynamic (MBD) codes attempt to minimize computations. A timing study using MATLAB's Parallel Computing Toolbox was performed for numerical computation of the Jacobian. Several approaches for implementing parallel code were investigated while only the single program multiple data (spmd) method using composite objects provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup through the addition of processors was not achieved due to PC architecture.
Parallelization of ARC3D with Computer-Aided Tools
NASA Technical Reports Server (NTRS)
Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Guoping; D'Azevedo, Ed F; Zhang, Fan
2010-01-01
Calibration of groundwater models involves hundreds to thousands of forward solutions, each of which may solve many transient coupled nonlinear partial differential equations, resulting in a computationally intensive problem. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelisms in software and hardware to reduce calibration time on multi-core computers. HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for direct solutions for a reactive transport model application, and a field-scale coupled flow and transport model application. In the reactive transport model, a single parallelizable loop is identified to account for over 97% of the total computational time using GPROF.more » Addition of a few lines of OpenMP compiler directives to the loop yields a speedup of about 10 on a 16-core compute node. For the field-scale model, parallelizable loops in 14 of 174 HGC5 subroutines that require 99% of the execution time are identified. As these loops are parallelized incrementally, the scalability is found to be limited by a loop where Cray PAT detects over 90% cache missing rates. With this loop rewritten, similar speedup as the first application is achieved. The OpenMP-parallelized code can be run efficiently on multiple workstations in a network or multiple compute nodes on a cluster as slaves using parallel PEST to speedup model calibration. To run calibration on clusters as a single task, the Levenberg Marquardt algorithm is added to HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, 100 200 compute cores are used to reduce the calibration time from weeks to a few hours for these two applications. This approach is applicable to most of the existing groundwater model codes for many applications.« less
NASA Astrophysics Data System (ADS)
Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.
2016-12-01
New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.
Identifying, Quantifying, Extracting and Enhancing Implicit Parallelism
ERIC Educational Resources Information Center
Agarwal, Mayank
2009-01-01
The shift of the microprocessor industry towards multicore architectures has placed a huge burden on the programmers by requiring explicit parallelization for performance. Implicit Parallelization is an alternative that could ease the burden on programmers by parallelizing applications "under the covers" while maintaining sequential semantics…
Developing Information Power Grid Based Algorithms and Software
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.
Bilingual parallel programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.; Overbeek, R.
1990-01-01
Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach providesmore » and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.« less
MHD Code Optimizations and Jets in Dense Gaseous Halos
NASA Astrophysics Data System (ADS)
Gaibler, Volker; Vigelius, Matthias; Krause, Martin; Camenzind, Max
We have further optimized and extended the 3D-MHD-code NIRVANA. The magnetized part runs in parallel, reaching 19 Gflops per SX-6 node, and has a passively advected particle population. In addition, the code is MPI-parallel now - on top of the shared memory parallelization. On a 512^3 grid, we reach 561 Gflops with 32 nodes on the SX-8. Also, we have successfully used FLASH on the Opteron cluster. Scientific results are preliminary so far. We report one computation of highly resolved cocoon turbulence. While we find some similarities to earlier 2D work by us and others, we note a strange reluctancy of cold material to enter the low density cocoon, which has to be investigated further.
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J. (Editor); Voels, Stephen A. (Editor)
2012-01-01
Topics covered include: Antarctic Exploration Parallels for Future Human Planetary Exploration: Science Operations Lessons Learned, Planning, and Equipment Capabilities for Long Range, Long Duration Traverses; Parallels Between Antarctic Travel in 1950 and Planetary Travel in 2050 (to Accompany Notes on "The Norwegian British-Swedish Antarctic Expedition 1949-52"); My IGY in Antarctica; Short Trips and a Traverse; Geologic Traverse Planning for Apollo Missions; Desert Research and Technology Studies (DRATS) Traverse Planning; Science Traverses in the Canadian High Arctic; NOR-USA Scientific Traverse of East Antarctica: Science and Logistics on a Three-Month Expedition Across Antarctica's Farthest Frontier; A Notional Example of Understanding Human Exploration Traverses on the Lunar Surface; and The Princess Elisabeth Station.
Parallel design patterns for a low-power, software-defined compressed video encoder
NASA Astrophysics Data System (ADS)
Bruns, Michael W.; Hunt, Martin A.; Prasad, Durga; Gunupudi, Nageswara R.; Sonachalam, Sekar
2011-06-01
Video compression algorithms such as H.264 offer much potential for parallel processing that is not always exploited by the technology of a particular implementation. Consumer mobile encoding devices often achieve real-time performance and low power consumption through parallel processing in Application Specific Integrated Circuit (ASIC) technology, but many other applications require a software-defined encoder. High quality compression features needed for some applications such as 10-bit sample depth or 4:2:2 chroma format often go beyond the capability of a typical consumer electronics device. An application may also need to efficiently combine compression with other functions such as noise reduction, image stabilization, real time clocks, GPS data, mission/ESD/user data or software-defined radio in a low power, field upgradable implementation. Low power, software-defined encoders may be implemented using a massively parallel memory-network processor array with 100 or more cores and distributed memory. The large number of processor elements allow the silicon device to operate more efficiently than conventional DSP or CPU technology. A dataflow programming methodology may be used to express all of the encoding processes including motion compensation, transform and quantization, and entropy coding. This is a declarative programming model in which the parallelism of the compression algorithm is expressed as a hierarchical graph of tasks with message communication. Data parallel and task parallel design patterns are supported without the need for explicit global synchronization control. An example is described of an H.264 encoder developed for a commercially available, massively parallel memorynetwork processor device.
Russell, Mark C
2008-12-01
In this study, Barber's [(1961). Resistance by scientists to scientific discovery. Science, 134, 596-602] analysis of scientists' resistance to discoveries is examined in relation to an 18-year controversy between the dominant cognitive-behavioral paradigm or zeitgeist and its chief rival - eye movement desensitization and reprocessing (EMDR) in treating trauma-related disorders. Reasons for persistent opposition to training, utilization and research into an identified 'evidence-based treatment for post-traumatic stress disorder' (EBT-PTSD) within US military and veterans' agencies closely parallels Barber's description of resistance based upon socio-cultural factors and scientific bias versus genuine scientific skepticism. The implications of sustained resistance to EMDR for combat veterans and other trauma sufferers are discussed. A unified or super-ordinate goal is offered to reverse negative trends impacting current and future mental healthcare of military personnel, veterans and other trauma survivors, and to bridge the scientific impasse.
A Queue Simulation Tool for a High Performance Scientific Computing Center
NASA Technical Reports Server (NTRS)
Spear, Carrie; McGalliard, James
2007-01-01
The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
15 CFR 301.3 - Application for duty-free entry of scientific instruments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... scientific instruments. 301.3 Section 301.3 Commerce and Foreign Trade Regulations Relating to Commerce and... REGULATIONS INSTRUMENTS AND APPARATUS FOR EDUCATIONAL AND SCIENTIFIC INSTITUTIONS § 301.3 Application for duty-free entry of scientific instruments. (a) Who may apply. An applicant for duty-free entry of an...
75 FR 3895 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
..., materials science and nanotechnology. Justification for Duty-Free Entry: There are no domestic manufacturers... DEPARTMENT OF COMMERCE International Trade Administration Application(s) for Duty-Free Entry of Scientific Instruments Pursuant to Section 6(c) of the Educational, Scientific and Cultural Materials...
Parallel MR imaging: a user's guide.
Glockner, James F; Hu, Houchun H; Stanley, David W; Angelos, Lisa; King, Kevin
2005-01-01
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques. (c) RSNA, 2005.
PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)
NASA Astrophysics Data System (ADS)
Wu, Z. Y.
2013-04-01
The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers, accepted after a rigorous peer review procedure. A group of about 90 outstanding scientists in the field reviewed and suggested revisions of the manuscripts to improve scientific presentation. As a result, we believe the entire volume has reached a high standard. The 19 topics covered are listed as follows: Theory Data analysis New technology and devices of XAFS Applications in Nano science and technology Applications in Life Science Applications in Chemistry Applications in Catalytic Science Applications in Surface and Interface Science Applications in Material Science Applications in Energy and Environmental Science Applications in Magnetic and Related Material Science Applications in Nuclear Science Applications in Disordered Systems Applications in Extreme Conditions Applications for Time-resolved experiments XMCD technology and its applications Advanced methods (e.g., new coherent sources and spectroscopic imaging techniques) XAFS combined with other experimental methods Other related studies We hope this volume will be a useful reference for the ongoing scientific activity in XAFS. We would also like to express our sincere appreciation to the sponsors for their generous support: Chinese Academy of Science, National Natural Science Foundation of China, China Center of Advanced Science and Technology World Laboratory, University of Science and Technology of China, National Synchrotron Radiation Laboratory, Institute of High Energy Physics Chinese Academy of Sciences, and our commercial sponsors (AREVA, Xi'an Action Power Electric Co., Ltd). Finally, we would like to acknowledge the entire local organizing staff (names are given below) and particularly the collaborators and members of the XAS group at the National Natural Science Foundation of China and Institute of High Energy Physics Chinese Academy of Sciences for their efforts to make the XAFS15 conference a success. Ziyu Wu Chair of the Conference and Proceedings Editor Hefei, P. R. China, 28 September 2012 Committees and Staff Chair of the Conference Ziyu Wu International Advisory Committee Adam Hitchcock, Canada Adriano Filipponi, Italy Alain Manceau, France Alexander Soldatov, Russia Andrea Di Cicco, Italy Britt Hedman, USA Bruce Bunker, USA Calogero R. Natoli, Italy Christopher T. Chantler, Australia Frank M. F. De Groot, Netherlands Hiroyuki Oyanagi, Japan Ingolf Lindau, USA J. Mustre de Leon, México James E Penner-Hahn, USA Joaquin Garcia Ruiz, Spain John Evans, UK John J. Rehr, USA Kiyotaka Asakura, Japan Majed Chergui, Switzerland Mark Newton, UK Shiqiang Wei, P. R. China Tsun-Kong Sham, Canada Ziyu Wu, P. R. China International Program Committee Antonio Bianconi, Italy Augusto Marcelli, Italy Emad Flear Aziz, Germany Jinghua Guo, USA Joly Yves, France Masaharu Nomura, Japan Maurizio Benfatto, Italy Pieter Glatzel, France Shiqiang Wei, China Tiandou Hu, China Toshihiko Yokoyama, Japan Way-Faung Pong, Taiwan Xinyi Zhang, China Yi Xie, China Yuying Huang, China Zhonghua Wu, China Ziyu Wu, China Local Organizing Committee Bo He Fengchun Hu Haifeng Zhao Jing Zhang Meijuan Yu Qin Yu Shuo Zhang Wangsheng Chu Wei He Wei Xu Wensheng Yan Xiaomei Gong Xing Chen Yang Zou Yi Xia Zheng Jiang Zhi Xie Zhihu Sun Zhiyun Pan Additional Staff Chengxun Liu
Ecology and Biotechnology of Selenium-Respiring Bacteria
2015-01-01
SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289
Ecology and biotechnology of selenium-respiring bacteria.
Nancharaiah, Y V; Lens, P N L
2015-03-01
In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yang; Fu, Haohuan; Song, Shuaiwen
2014-07-18
Wave propagation forward modeling is a widely used computational method in oil and gas exploration. The iterative stencil loops in such problems have broad applications in scientific computing. However, executing such loops can be highly time time-consuming, which greatly limits application’s performance and power efficiency. In this paper, we accelerate the forward modeling technique on the latest multi-core and many-core architectures such as Intel Sandy Bridge CPUs, NVIDIA Fermi C2070 GPU, NVIDIA Kepler K20x GPU, and the Intel Xeon Phi Co-processor. For the GPU platforms, we propose two parallel strategies to explore the performance optimization opportunities for our stencil kernels.more » For Sandy Bridge CPUs and MIC, we also employ various optimization techniques in order to achieve the best.« less
Successful applications of computer aided drug discovery: moving drugs from concept to the clinic.
Talele, Tanaji T; Khedkar, Santosh A; Rigby, Alan C
2010-01-01
Drug discovery and development is an interdisciplinary, expensive and time-consuming process. Scientific advancements during the past two decades have changed the way pharmaceutical research generate novel bioactive molecules. Advances in computational techniques and in parallel hardware support have enabled in silico methods, and in particular structure-based drug design method, to speed up new target selection through the identification of hits to the optimization of lead compounds in the drug discovery process. This review is focused on the clinical status of experimental drugs that were discovered and/or optimized using computer-aided drug design. We have provided a historical account detailing the development of 12 small molecules (Captopril, Dorzolamide, Saquinavir, Zanamivir, Oseltamivir, Aliskiren, Boceprevir, Nolatrexed, TMI-005, LY-517717, Rupintrivir and NVP-AUY922) that are in clinical trial or have become approved for therapeutic use.
Adjusting process count on demand for petascale global optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.
2012-11-23
There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, themore » modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.« less
Practical application of stereological methods in experimental kidney animal models.
Fernández García, María Teresa; Núñez Martínez, Paula; García de la Fuente, Vanessa; Sánchez Pitiot, Marta; Muñiz Salgueiro, María Del Carmen; Perillán Méndez, Carmen; Argüelles Luis, Juan; Astudillo González, Aurora
The kidneys are vital organs responsible for excretion, fluid and electrolyte balance and hormone production. The nephrons are the kidney's functional and structural units. The number, size and distribution of the nephron components contain relevant information on renal function. Stereology is a branch of morphometry that applies mathematical principles to obtain three-dimensional information from serial, parallel and equidistant two-dimensional microscopic sections. Because of the complexity of stereological studies and the lack of scientific literature on the subject, the aim of this paper is to clearly explain, through animal models, the basic concepts of stereology and how to calculate the main kidney stereological parameters that can be applied in future experimental studies. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Dynamic load balancing of applications
Wheat, S.R.
1997-05-13
An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, R.; Filgueira, R.; Deelman, E.; Atkinson, M.
2016-12-01
We present Asterism, an open source data-intensive framework, which combines the Pegasus and dispel4py workflow systems. Asterism aims to simplify the effort required to develop data-intensive applications that run across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment systems; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. Asterism's key element is to leverage the strengths of each workflow system: dispel4py allows developing scientific applications locally and then automatically parallelize and scale them on a wide range of HPC infrastructures with no changes to the application's code; Pegasus orchestrates the distributed execution of applications while providing portability, automated data management, recovery, debugging, and monitoring, without users needing to worry about the particulars of the target execution systems. Asterism leverages the level of abstractions provided by each workflow system to describe hybrid workflows where no information about the underlying infrastructure is required beforehand. The feasibility of Asterism has been evaluated using the seismic ambient noise cross-correlation application, a common data-intensive analysis pattern used by many seismologists. The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The Asterism workflow is implemented as a Pegasus workflow composed of two tasks (Phase1 and Phase2), where each phase represents a dispel4py workflow. Pegasus tasks describe the in/output data at a logical level, the data dependency between tasks, and the e-Infrastructures and the execution engine to run each dispel4py workflow. We have instantiated the workflow using data from 1000 stations from the IRIS services, and run it across two heterogeneous resources described as Docker containers: MPI (Container2) and Storm (Container3) clusters (Figure 1). Each dispel4py workflow is mapped to a particular execution engine, and data transfers between resources are automatically handled by Pegasus. Asterism is freely available online at http://github.com/dispel4py/pegasus_dispel4py.
TRIO: Burst Buffer Based I/O Orchestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Teng; Oral, H Sarp; Pritchard, Michael
The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desiredmore » to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.« less
Message Passing vs. Shared Address Space on a Cluster of SMPs
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Singh, Jaswinder Pal; Oliker, Leonid; Biswas, Rupak
2000-01-01
The convergence of scalable computer architectures using clusters of PCs (or PC-SMPs) with commodity networking has become an attractive platform for high end scientific computing. Currently, message-passing and shared address space (SAS) are the two leading programming paradigms for these systems. Message-passing has been standardized with MPI, and is the most common and mature programming approach. However message-passing code development can be extremely difficult, especially for irregular structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality, and high protocol overhead. In this paper, we compare the performance of and programming effort, required for six applications under both programming models on a 32 CPU PC-SMP cluster. Our application suite consists of codes that typically do not exhibit high efficiency under shared memory programming. due to their high communication to computation ratios and complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications: however, on certain classes of problems SAS performance is competitive with MPI. We also present new algorithms for improving the PC cluster performance of MPI collective operations.
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, James M.; Voigt, Robert G.; Romine, Charles H.
1988-01-01
This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, J. M.; Voigt, R. G.
1987-01-01
This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also.
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, James M.; Voigt, Robert G.; Romine, Charles H.
1990-01-01
This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.
ERIC Educational Resources Information Center
Coley, John D.; Tanner, Kimberly
2015-01-01
Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…
Creationism as a Misconception: Socio-cognitive conflict in the teaching of evolution
NASA Astrophysics Data System (ADS)
Foster, Colin
2012-09-01
This position paper argues that students' understanding and acceptance of evolution may be supported, rather than hindered, by classroom discussion of creationism. Parallels are drawn between creationism and other scientific misconceptions, both of the scientific community in the past and of students in the present. Science teachers frequently handle their students' misconceptions as they arise by offering appropriate socio-cognitive conflict, which highlights reasons to disbelieve one idea and to believe another. It is argued that this way of working, rather than outlawing discussion, is more scientific and more honest. Scientific truth does not win the day by attempting to deny its opponents a voice but by engaging them with evidence. Teachers can be confident that evolution has nothing to fear from a free and frank discussion in which claims can be rebutted with evidence. Such an approach is accessible to children of all ages and is ultimately more likely to drive out pre-scientific superstitions. It also models the scientific process more authentically and develops students' ability to think critically.
AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications
NASA Astrophysics Data System (ADS)
Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.
2017-12-01
This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.
Observing with HST V: Improvements to the Scheduling of HST Parallel Observations
NASA Astrophysics Data System (ADS)
Taylor, D. K.; Vanorsow, D.; Lucks, M.; Henry, R.; Ratnatunga, K.; Patterson, A.
1994-12-01
Recent improvements to the Hubble Space Telescope (HST) ground system have significantly increased the frequency of pure parallel observations, i.e. the simultaneous use of multiple HST instruments by different observers. Opportunities for parallel observations are limited by a variety of timing, hardware, and scientific constraints. Formerly, such opportunities were heuristically predicted prior to the construction of the primary schedule (or calendar), and lack of complete information resulted in high rates of scheduling failures and missed opportunities. In the current process the search for parallel opportunities is delayed until the primary schedule is complete, at which point new software tools are employed to identify places where parallel observations are supported. The result has been a considerable increase in parallel throughput. A new technique, known as ``parallel crafting,'' is currently under development to streamline further the parallel scheduling process. This radically new method will replace the standard exposure logsheet with a set of abstract rules from which observation parameters will be constructed ``on the fly'' to best match the constraints of the parallel opportunity. Currently, parallel observers must specify a huge (and highly redundant) set of exposure types in order to cover all possible types of parallel opportunities. Crafting rules permit the observer to express timing, filter, and splitting preferences in a far more succinct manner. The issue of coordinated parallel observations (same PI using different instruments simultaneously), long a troublesome aspect of the ground system, is also being addressed. For Cycle 5, the Phase II Proposal Instructions now have an exposure-level PAR WITH special requirement. While only the primary's alignment will be scheduled on the calendar, new commanding will provide for parallel exposures with both instruments.
Manyscale Computing for Sensor Processing in Support of Space Situational Awareness
NASA Astrophysics Data System (ADS)
Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.
2014-09-01
Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus-connected and/or networked architectures. The feasibility of the manyscale paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability of design as well as implementation, and (4) efficient representation/expression of parallel applications. Examples will demonstrate how manyscale computing helps solve these challenges efficiently on real-world computing systems.
Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides
NASA Astrophysics Data System (ADS)
Qaddouri, Abdessamad
Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.
NASA Technical Reports Server (NTRS)
Krosel, S. M.; Milner, E. J.
1982-01-01
The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.
The Small- and Medium-sized Enterprises Office (SME Office) at the European Medicines Agency.
Carr, M
2010-01-01
On 15 December 2005, the European Medicines Agency (EMEA) launched an "SME Office" to provide financial and administrative assistance to micro-, small- and medium-sized enterprises (SMEs), with the aim of promoting innovation and the development of new human and veterinary medicinal products by SMEs. According to current EU definition of an SME, companies with fewer than 250 employees, and an annual turnover of not more than 50 million euro or an annual balance sheet total of not more than 43 million euro, are eligible for assistance from the SME Office. Incentives available from the EMEA for SMEs, include: Administrative and procedural assistance from SME Office within the Agency; Fee reductions (90%) for scientific advice and inspections; Fee exemptions for certain administrative services (excluding parallel distribution); Deferral of the fee payable for an application for marketing authorisation or related inspection until after the grant of the marketing authorisation; Conditional fee exemption where scientific advice followed and marketing application is unsuccessful; Assistance with translations of the product information documents. At the end of May 2009, more than 380 companies from 21 countries across the European Economic Area (EEA) had SME status assigned by the EMEA. The large majority of companies are developing medicinal products for human use, 16 are veterinary companies, 15 companies are developing products for both human and veterinary use and 38 are regulatory consultants. Since the SME initiative started the Agency has processed more than 130 requests for scientific advice with fee reductions totalling of 6.9 million euro. Regulatory assistance has been provided to more than 170 companies and 12 companies have benefited from the SME translation service. Stakeholders have acknowledged the significant role the SME Office now plays as a service provider. In the period between January 2006 and June 2009, 34 applications for marketing authorization from SME applicants were filed for medicinal products for human use. Current analysis shows SMEs to have a lower success rate compared to non-SME companies. Major objections for SMEs are particularly high in the area of quality. Although the SME initiative is still at an early stage, it is apparent from the experience gained with applications for marketing authorisation to date that it is important for companies to open up an early dialogue with the EMEA. Scientific advice should be sought early, proactively and comprehensively on key issues in development (quality, non-clinical, clinical) and follow-up advice should be sought as development proceeds. For advanced therapy medicinal products, the assistance available to SMEs will be reinforced in 2009, with the introduction of the certification process.
Parallelization of Finite Element Analysis Codes Using Heterogeneous Distributed Computing
NASA Technical Reports Server (NTRS)
Ozguner, Fusun
1996-01-01
Performance gains in computer design are quickly consumed as users seek to analyze larger problems to a higher degree of accuracy. Innovative computational methods, such as parallel and distributed computing, seek to multiply the power of existing hardware technology to satisfy the computational demands of large applications. In the early stages of this project, experiments were performed using two large, coarse-grained applications, CSTEM and METCAN. These applications were parallelized on an Intel iPSC/860 hypercube. It was found that the overall speedup was very low, due to large, inherently sequential code segments present in the applications. The overall execution time T(sub par), of the application is dependent on these sequential segments. If these segments make up a significant fraction of the overall code, the application will have a poor speedup measure.
Graphics applications utilizing parallel processing
NASA Technical Reports Server (NTRS)
Rice, John R.
1990-01-01
The results are presented of research conducted to develop a parallel graphic application algorithm to depict the numerical solution of the 1-D wave equation, the vibrating string. The research was conducted on a Flexible Flex/32 multiprocessor and a Sequent Balance 21000 multiprocessor. The wave equation is implemented using the finite difference method. The synchronization issues that arose from the parallel implementation and the strategies used to alleviate the effects of the synchronization overhead are discussed.
Taiwanese middle school students' materialistic concepts of sound
NASA Astrophysics Data System (ADS)
Eshach, Haim; Lin, Tzu-Chiang; Tsai, Chin-Chung
2016-06-01
This study investigated if and to what extent grade 8 and 9 students in Taiwan attributed materialistic properties to sound concepts, and whether they hold scientific views in parallel with materialistic views. Taiwanese middle school students are a special population since their scores in international academic comparison tests such as TIMSS and PISA are among the highest in the world. The "Sound Concept Inventory Instrument" with both materialistic and scientific statements of sound concepts was applied to explore Taiwanese students' ideas and corresponding confidence. The results showed that although the subject of sound is taught extensively in grade 8 in Taiwan, students still hold materialistic views of sound. The participants agreed, on average, with 41% of the statements that associate sound with materialistic properties. Moreover, they were quite confident in their materialistic answers (mean=3.27 on a 5-point Likert scale). In parallel, they also agreed with 71% of the scientific statements in the questions. They were also confident of their scientific answers (mean=3.21 ). As for the difference between grade 8 and 9 students, it seems that in grade 9, when students do not learn about sound, there is a kind of regression to a more materialistic view of sound. The girls performed better than the boys (t =3.59 , p <0. 001 ). The paper uses Vosniadou and Brewer's [Cogn. Sci. 18, 123 (1994)., 10.1207/s15516709cog1801_4] framework theory to explain the results, and suggests some ideas for improving the teaching of sound.
[Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].
Furuta, Takuya; Sato, Tatsuhiko
2015-01-01
Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.
Nixon, Kari
2017-09-01
This essay teases out the intimate connections between the scientific and fiscal realms in the context of American germ theory and obstetrics. By uncovering the economic and medical contexts of Henry James's Washington Square-set during the infancy of germ theory and the heyday of American obstetrics-this essay exposes a previously unexplored subtextual history of contagion in the text. Although this scientific history seems relegated to the novel's margins, understanding the changing scientific cosmologies and professional organizations in the context of the novel's setting and composition reveals that these tiny infectious particles and their vectors fundamentally shape the plot of the novel.
Sublattice parallel replica dynamics.
Martínez, Enrique; Uberuaga, Blas P; Voter, Arthur F
2014-06-01
Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998)] by combining it with the synchronous sublattice approach of Shim and Amar [ and , Phys. Rev. B 71, 125432 (2005)], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-08-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
NASA Astrophysics Data System (ADS)
Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan
2017-02-01
In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.
Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel
2013-01-01
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650
Grid Computing Environment using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Alanis, Fransisco; Mahmood, Akhtar
2003-10-01
Custom-made Beowulf clusters using PCs are currently replacing expensive supercomputers to carry out complex scientific computations. At the University of Texas - Pan American, we built a 8 Gflops Beowulf Cluster for doing HEP research using RedHat Linux 7.3 and the LAM-MPI middleware. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes that were compiled in C on the cluster using the LAM-XMPI graphics user environment. We will demonstrate a "simple" prototype grid environment, where we will submit and run parallel jobs remotely across multiple cluster nodes over the internet from the presentation room at Texas Tech. University. The Sphinx Beowulf Cluster will be used for monte-carlo grid test-bed studies for the LHC-ATLAS high energy physics experiment. Grid is a new IT concept for the next generation of the "Super Internet" for high-performance computing. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J
The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with anmore » approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.« less
Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce
Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng
2016-01-01
The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325
The Science and Technology of Future Space Missions
NASA Astrophysics Data System (ADS)
Bonati, A.; Fusi, R.; Longoni, F.
1999-12-01
The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data processing. Powerful computers with customized architectures are designed and developed. High-speed intercommunication networks are studied and tested. In parallel to the hardware research activities, software development is undertaken for several purposes: digital and video compression algorithms, payload and spacecraft control and diagnostics, scientific processing algorithms, etc. Besides, embedded Java virtual machines are studied for tele-science applications (direct link between scientist console and scientific payload). At system engineering level, the demand for spacecraft autonomy is increased for planetology missions: reliable intelligent systems that can operate for long periods of time without human intervention from ground are requested and investigated. A technologically challenging but less glamorous area of development is represented by the laboratory equipment for end-to-end testing (on ground) of payload instruments. The main fields are cryogenics, laser and X-ray optics, microwave radiometry, UV and infrared testing systems.
Parallel careers: a parasitologist and a vet.
Wright, Ian
2017-09-02
Ian Wright heads the European Scientific Counsel Companion Animal Parasites (ESCCAP) UK and Ireland, which involves some international travel. He and his wife are also practice owners and they have two children. He admits that work-life balance can be a challenge. British Veterinary Association.
Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...
Optimization of sparse matrix-vector multiplication on emerging multicore platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2007-01-01
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Pythran: enabling static optimization of scientific Python programs
NASA Astrophysics Data System (ADS)
Guelton, Serge; Brunet, Pierrick; Amini, Mehdi; Merlini, Adrien; Corbillon, Xavier; Raynaud, Alan
2015-01-01
Pythran is an open source static compiler that turns modules written in a subset of Python language into native ones. Assuming that scientific modules do not rely much on the dynamic features of the language, it trades them for powerful, possibly inter-procedural, optimizations. These optimizations include detection of pure functions, temporary allocation removal, constant folding, Numpy ufunc fusion and parallelization, explicit thread-level parallelism through OpenMP annotations, false variable polymorphism pruning, and automatic vector instruction generation such as AVX or SSE. In addition to these compilation steps, Pythran provides a C++ runtime library that leverages the C++ STL to provide generic containers, and the Numeric Template Toolbox for Numpy support. It takes advantage of modern C++11 features such as variadic templates, type inference, move semantics and perfect forwarding, as well as classical idioms such as expression templates. Unlike the Cython approach, Pythran input code remains compatible with the Python interpreter. Output code is generally as efficient as the annotated Cython equivalent, if not more, but without the backward compatibility loss.
ORNL Cray X1 evaluation status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, P.K.; Alexander, R.A.; Apra, E.
2004-05-01
On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of themore » architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of photon echo run 8 times faster than previously achieved. Even at 256 processors, the Cray X1 system is already outperforming other supercomputers with thousands of processors for a certain class of applications such as climate modeling and some fusion applications. This evaluation is the outcome of a number of meetings with both high-performance computing (HPC) system vendors and application experts over the past 9 months and has received broad-based support from the scientific community and other agencies.« less
MPI, HPF or OpenMP: A Study with the NAS Benchmarks
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Frumkin, Michael; Hribar, Michelle; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1999-01-01
Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but the task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study,potentials of applying some of the techniques to realistic aerospace applications will be presented
NASA Technical Reports Server (NTRS)
OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)
1998-01-01
This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).
MPI, HPF or OpenMP: A Study with the NAS Benchmarks
NASA Technical Reports Server (NTRS)
Jin, H.; Frumkin, M.; Hribar, M.; Waheed, A.; Yan, J.; Saini, Subhash (Technical Monitor)
1999-01-01
Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but this task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study, we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study, potentials of applying some of the techniques to realistic aerospace applications will be presented.
Performance Characteristics of the Multi-Zone NAS Parallel Benchmarks
NASA Technical Reports Server (NTRS)
Jin, Haoqiang; VanderWijngaart, Rob F.
2003-01-01
We describe a new suite of computational benchmarks that models applications featuring multiple levels of parallelism. Such parallelism is often available in realistic flow computations on systems of grids, but had not previously been captured in bench-marks. The new suite, named NPB Multi-Zone, is extended from the NAS Parallel Benchmarks suite, and involves solving the application benchmarks LU, BT and SP on collections of loosely coupled discretization meshes. The solutions on the meshes are updated independently, but after each time step they exchange boundary value information. This strategy provides relatively easily exploitable coarse-grain parallelism between meshes. Three reference implementations are available: one serial, one hybrid using the Message Passing Interface (MPI) and OpenMP, and another hybrid using a shared memory multi-level programming model (SMP+OpenMP). We examine the effectiveness of hybrid parallelization paradigms in these implementations on three different parallel computers. We also use an empirical formula to investigate the performance characteristics of the multi-zone benchmarks.
ERIC Educational Resources Information Center
Bluemel, Brody
2014-01-01
This article illustrates the pedagogical value of incorporating parallel corpora in foreign language education. It explores the development of a Chinese/English parallel corpus designed specifically for pedagogical application. The corpus tool was created to aid language learners in reading comprehension and writing development by making foreign…
Using CLIPS in the domain of knowledge-based massively parallel programming
NASA Technical Reports Server (NTRS)
Dvorak, Jiri J.
1994-01-01
The Program Development Environment (PDE) is a tool for massively parallel programming of distributed-memory architectures. Adopting a knowledge-based approach, the PDE eliminates the complexity introduced by parallel hardware with distributed memory and offers complete transparency in respect of parallelism exploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal task is to find an efficient parallel realization of the application specified by the user in a comfortable, abstract, domain-oriented formalism. A large collection of fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hierarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule modules and procedural parts, encoding expertise about application domain, parallel programming, software engineering, and parallel hardware, enables a high degree of automation in the software development process. In this paper, important aspects of the implementation of the PDE using CLIPS and COOL are shown, including the embedding of CLIPS with C++-based parts of the PDE. The appropriateness of the chosen approach and of the CLIPS language for knowledge-based software engineering are discussed.
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Williams, Dean; Aloisio, Giovanni
2016-04-01
In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF) Compute Working Team. Also highlighted will be the results of large scale climate model intercomparison data analysis experiments, for example: (1) defined in the context of the EU H2020 INDIGO-DataCloud project; (2) implemented in a real geographically distributed environment involving CMCC (Italy) and LLNL (US) sites; (3) exploiting Ophidia as server-side, parallel analytics engine; and (4) applied on real CMIP5 data sets available through ESGF.
Distributed and parallel Ada and the Ada 9X recommendations
NASA Technical Reports Server (NTRS)
Volz, Richard A.; Goldsack, Stephen J.; Theriault, R.; Waldrop, Raymond S.; Holzbacher-Valero, A. A.
1992-01-01
Recently, the DoD has sponsored work towards a new version of Ada, intended to support the construction of distributed systems. The revised version, often called Ada 9X, will become the new standard sometimes in the 1990s. It is intended that Ada 9X should provide language features giving limited support for distributed system construction. The requirements for such features are given. Many of the most advanced computer applications involve embedded systems that are comprised of parallel processors or networks of distributed computers. If Ada is to become the widely adopted language envisioned by many, it is essential that suitable compilers and tools be available to facilitate the creation of distributed and parallel Ada programs for these applications. The major languages issues impacting distributed and parallel programming are reviewed, and some principles upon which distributed/parallel language systems should be built are suggested. Based upon these, alternative language concepts for distributed/parallel programming are analyzed.
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
NASA Astrophysics Data System (ADS)
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-07-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.
Applying Parallel Processing Techniques to Tether Dynamics Simulation
NASA Technical Reports Server (NTRS)
Wells, B. Earl
1996-01-01
The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.
I/O load balancing for big data HPC applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi
High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less
Lessons Learned through the Development and Publication of AstroImageJ
NASA Astrophysics Data System (ADS)
Collins, Karen
2018-01-01
As lead author of the scientific image processing software package AstroImageJ (AIJ), I will discuss the reasoning behind why we decided to release AIJ to the public, and the lessons we learned related to the development, publication, distribution, and support of AIJ. I will also summarize the AIJ code language selection, code documentation and testing approaches, code distribution, update, and support facilities used, and the code citation and licensing decisions. Since AIJ was initially developed as part of my graduate research and was my first scientific open source software publication, many of my experiences and difficulties encountered may parallel those of others new to scientific software publication. Finally, I will discuss the benefits and disadvantages of releasing scientific software that I now recognize after having AIJ in the public domain for more than five years.
Cheetah: A Framework for Scalable Hierarchical Collective Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Richard L; Gorentla Venkata, Manjunath; Ladd, Joshua S
2011-01-01
Collective communication operations, used by many scientific applications, tend to limit overall parallel application performance and scalability. Computer systems are becoming more heterogeneous with increasing node and core-per-node counts. Also, a growing number of data-access mechanisms, of varying characteristics, are supported within a single computer system. We describe a new hierarchical collective communication framework that takes advantage of hardware-specific data-access mechanisms. It is flexible, with run-time hierarchy specification, and sharing of collective communication primitives between collective algorithms. Data buffers are shared between levels in the hierarchy reducing collective communication management overhead. We have implemented several versions of the Message Passingmore » Interface (MPI) collective operations, MPI Barrier() and MPI Bcast(), and run experiments using up to 49, 152 processes on a Cray XT5, and a small InfiniBand based cluster. At 49, 152 processes our barrier implementation outperforms the optimized native implementation by 75%. 32 Byte and one Mega-Byte broadcasts outperform it by 62% and 11%, respectively, with better scalability characteristics. Improvements relative to the default Open MPI implementation are much larger.« less
Nanotechnology on duty in medical applications.
Kubik, T; Bogunia-Kubik, K; Sugisaka, M
2005-02-01
At the beginning of 21(st) century, fifty years after discovery of deoxyribonucleic acid (DNA) double helix structure, scientific world is faced with a great progress in many disciplines of biological research, especially in the field of molecular biology and operating on nucleid acid molecules. Many molecular biology techniques have been implemented successfully in biology, biotechnology, medical science, diagnostics, and many more. The introduction of polymerase chain reaction (PCR) resulted in improving old and designing new laboratory devices for PCR amplification and analysis of amplified DNA fragments. In parallel to these efforts, the nature of DNA molecules and their construction have attracted many researchers. In addition, some studies concerning mimicking living systems, as well as developing and constructing artificial nanodevices, such as biomolecular sensors and artificial cells, have been conducted. This review is focused on the potential of nanotechnology in health care and medicine, including the development of nanoparticles for diagnostic and screening purposes, the manufacture of unique drug delivery systems, antisense and gene therapy applications and the enablement of tissue engineering, including the future of nanorobot construction.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sancho Pitarch, Jose Carlos; Kerbyson, Darren; Lang, Mike
Increasing the core-count on current and future processors is posing critical challenges to the memory subsystem to efficiently handle concurrent memory requests. The current trend to cope with this challenge is to increase the number of memory channels available to the processor's memory controller. In this paper we investigate the effectiveness of this approach on the performance of parallel scientific applications. Specifically, we explore the trade-off between employing multiple memory channels per memory controller and the use of multiple memory controllers. Experiments conducted on two current state-of-the-art multicore processors, a 6-core AMD Istanbul and a 4-core Intel Nehalem-EP, for amore » wide range of production applications shows that there is a diminishing return when increasing the number of memory channels per memory controller. In addition, we show that this performance degradation can be efficiently addressed by increasing the ratio of memory controllers to channels while keeping the number of memory channels constant. Significant performance improvements can be achieved in this scheme, up to 28%, in the case of using two memory controllers with each with one channel compared with one controller with two memory channels.« less
Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalz, Mark S
2011-07-24
Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less
NASA Technical Reports Server (NTRS)
Schutz, Bob E.; Baker, Gregory A.
1997-01-01
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
NASA Astrophysics Data System (ADS)
Baker, Gregory Allen
The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.
Multitasking TORT under UNICOS: Parallel performance models and measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, A.; Azmy, Y.Y.
1999-09-27
The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.
Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azmy, Y.Y.; Barnett, D.A.
1999-09-27
The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.
NASA Technical Reports Server (NTRS)
Hockney, George; Lee, Seungwon
2008-01-01
A computer program known as PyPele, originally written as a Pythonlanguage extension module of a C++ language program, has been rewritten in pure Python language. The original version of PyPele dispatches and coordinates parallel-processing tasks on cluster computers and provides a conceptual framework for spacecraft-mission- design and -analysis software tools to run in an embarrassingly parallel mode. The original version of PyPele uses SSH (Secure Shell a set of standards and an associated network protocol for establishing a secure channel between a local and a remote computer) to coordinate parallel processing. Instead of SSH, the present Python version of PyPele uses Message Passing Interface (MPI) [an unofficial de-facto standard language-independent application programming interface for message- passing on a parallel computer] while keeping the same user interface. The use of MPI instead of SSH and the preservation of the original PyPele user interface make it possible for parallel application programs written previously for the original version of PyPele to run on MPI-based cluster computers. As a result, engineers using the previously written application programs can take advantage of embarrassing parallelism without need to rewrite those programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, B R; Miller, B P; Liblit, B
2011-09-13
Petascale platforms with O(10{sup 5}) and O(10{sup 6}) processing cores are driving advancements in a wide range of scientific disciplines. These large systems create unprecedented application development challenges. Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE application developers use primitive manual debugging based on printf or traditional debuggers such as TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or else perform repeated runs at scale using only primitive techniques.more » Even when traditional tools run at scale, the approach wastes substantial effort and computation cycles. Continued scientific progress demands new paradigms for debugging large-scale applications. The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme that will reduce the debugging problem to a scale that human developers can comprehend. The scheme can provide precise diagnoses of the root causes of failure, including suggestions of the location and the type of errors down to the level of code regions or even a single execution point. Our fundamentally new strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally, we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory usage in the Memgrind tool. In the first two years of the project, we have successfully extended STAT to determine the relative progress of different MPI processes. We have shown that the STAT, which is now included in the debugging tools distributed by Cray with their large-scale systems, substantially reduces the scale at which traditional debugging techniques are applied. We have extended CBI to large-scale systems and developed new compiler based analyses that reduce its instrumentation overhead. Our results demonstrate that CBI can identify the source of errors in large-scale applications. Finally, we have developed MPIecho, a new technique that will reduce the time required to perform key correctness analyses, such as the detection of writes to unallocated memory. Overall, our research results are the foundations for new debugging paradigms that will improve application scientist productivity by reducing the time to determine which package or module contains the root cause of a problem that arises at all scales of our high end systems. While we have made substantial progress in the first two years of CoPS research, significant work remains. While STAT provides scalable debugging assistance for incorrect application runs, we could apply its techniques to assertions in order to observe deviations from expected behavior. Further, we must continue to refine STAT's techniques to represent behavioral equivalence classes efficiently as we expect systems with millions of threads in the next year. We are exploring new CBI techniques that can assess the likelihood that execution deviations from past behavior are the source of erroneous execution. Finally, we must develop usable correctness analyses that apply the MPIecho parallelization strategy in order to locate coding errors. We expect to make substantial progress on these directions in the next year but anticipate that significant work will remain to provide usable, scalable debugging paradigms.« less
Automatic Multilevel Parallelization Using OpenMP
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)
2002-01-01
In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.
A look at the "Luminous sphere"
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Ani
2015-07-01
Hovhannes Toumanyan's watchful eye was fascinated by the mysterious and charming image of the sky since an early childhood. His poetic soul first intuitively, then parallel with the enrichment of his life experience got to know universal luminaries scientifically, became "a universe reader" and the talker of Sirius.