Sample records for parallel shear flows

  1. How pattern is selected in drift wave turbulence: Role of parallel flow shear

    NASA Astrophysics Data System (ADS)

    Kosuga, Y.

    2017-12-01

    The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.

  2. Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Xiong, Y. Y.; Chen, S. Y., E-mail: sychen531@163.com

    2016-04-15

    The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognizedmore » as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.« less

  3. Symmetry Breaking by Parallel Flow Shear

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, Patrick

    2015-11-01

    Plasma rotation is important in reducing turbulent transport, suppressing MHD instabilities, and is beneficial to confinement. Intrinsic rotation without an external momentum input is of interest for its plausible application on ITER. k∥ spectrum asymmetry is required for residual Reynolds stress that drives the intrinsic rotation. Parallel flows are reported in linear devices without magnetic shear. In CSDX, parallel flows are mostly peaked in the core [Thakur et al., 2014]; more robust flows and reversed profiles are seen in PANTA [Oldenburger, et al. 2012]. A novel mechanism for symmetry breaking in momentum transport is proposed. Magnetic shear or mean flow profile are not required. A seed parallel flow shear (PFS) sets the sign of residual stress by selecting certain modes to grow faster. The resulted spectrum imbalance leads to a nonzero residual stress, which further drives a parallel flow with ∇n as the free energy source, adding to the shear until saturated by diffusion. Balanced flow gradient is set by Π∥Res /χϕ . Residual stress is calculated for ITG turbulence and collisional drift wave turbulence where electron-ion and electron-neutral collisions are discussed and compared. Numerical simulation is proposed for testing the effect of PFS.

  4. A multi-component parallel-plate flow chamber system for studying the effect of exercise-induced wall shear stress on endothelial cells.

    PubMed

    Wang, Yan-Xia; Xiang, Cheng; Liu, Bo; Zhu, Yong; Luan, Yong; Liu, Shu-Tian; Qin, Kai-Rong

    2016-12-28

    In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery. The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound. According to the above in vivo wall shear stress waveforms, we designed and fabricated a parallel-plate flow chamber system with appropriate components based on a lumped parameter hemodynamics model. To validate the feasibility of this system, human umbilical vein endothelial cells (HUVECs) line were cultured within the parallel-plate flow chamber under abovementioned two types of wall shear stress waveforms and the intracellular actin microfilaments and nitric oxide (NO) production level were evaluated using fluorescence microscope. Our results show that the trends of resting and exercise-induced wall shear stress waveforms, especially the maximal, minimal and mean wall shear stress as well as oscillatory shear index, generated by the parallel-plate flow chamber system are similar to those acquired from the common carotid artery. In addition, the cellular experiments demonstrate that the actin microfilaments and the production of NO within cells exposed to the two different wall shear stress waveforms exhibit different dynamic behaviors; there are larger numbers of actin microfilaments and higher level NO in cells exposed in exercise-induced wall shear stress condition than resting wall shear stress condition. The parallel-plate flow chamber system can well reproduce wall shear stress waveforms acquired from the common carotid artery in resting and immediately after exercise states. Furthermore, it can be used for studying the endothelial cells responses under resting and exercise-induced wall shear stress environments in vitro.

  5. Toroidal equilibrium states with reversed magnetic shear and parallel flow in connection with the formation of Internal Transport Barriers

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap.; Throumoulopoulos, G. N.

    2015-08-01

    We construct nonlinear toroidal equilibria of fixed diverted boundary shaping with reversed magnetic shear and flows parallel to the magnetic field. The equilibria have hole-like current density and the reversed magnetic shear increases as the equilibrium nonlinearity becomes stronger. Also, application of a sufficient condition for linear stability implies that the stability is improved as the equilibrium nonlinearity correlated to the reversed magnetic shear gets stronger with a weaker stabilizing contribution from the flow. These results indicate synergetic stabilizing effects of reversed magnetic shear, equilibrium nonlinearity and flow in the establishment of Internal Transport Barriers (ITBs).

  6. Superposition rheology.

    PubMed

    Dhont, J K; Wagner, N J

    2001-02-01

    The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.

  7. Exact coherent structures in an asymptotically reduced description of parallel shear flows

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith

    2015-02-01

    A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.

  8. Mantle flow through a tear in the Nazca slab inferred from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh

    2017-07-01

    A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.

  9. Mineral lineation produced by 3-D rotation of rigid inclusions in confined viscous simple shear

    NASA Astrophysics Data System (ADS)

    Marques, Fernando O.

    2016-08-01

    The solid-state flow of rocks commonly produces a parallel arrangement of elongate minerals with their longest axes coincident with the direction of flow-a mineral lineation. However, this does not conform to Jeffery's theory of the rotation of rigid ellipsoidal inclusions (REIs) in viscous simple shear, because rigid inclusions rotate continuously with applied shear. In 2-dimensional (2-D) flow, the REI's greatest axis (e1) is already in the shear direction; therefore, the problem is to find mechanisms that can prevent the rotation of the REI about one axis, the vorticity axis. In 3-D flow, the problem is to find a mechanism that can make e1 rotate towards the shear direction, and so generate a mineral lineation by rigid rotation about two axes. 3-D analogue and numerical modelling was used to test the effects of confinement on REI rotation and, for narrow channels (shear zone thickness over inclusion's least axis, Wr < 2), the results show that: (1) the rotational behaviour deviates greatly from Jeffery's model; (2) inclusions with aspect ratio Ar (greatest over least principle axis, e1/e3) > 1 can rotate backwards from an initial orientation w e1 parallel to the shear plane, in great contrast to Jeffery's model; (3) back rotation is limited because inclusions reach a stable equilibrium orientation; (4) most importantly and, in contrast to Jeffery's model and to the 2-D simulations, in 3-D, the confined REI gradually rotated about an axis orthogonal to the shear plane towards an orientation with e1 parallel to the shear direction, thus producing a lineation parallel to the shear direction. The modelling results lead to the conclusion that confined simple shear can be responsible for the mineral alignment (lineation) observed in ductile shear zones.

  10. A three-dimensional spectral algorithm for simulations of transition and turbulence

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1985-01-01

    A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.

  11. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less

  12. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting up to 250 km from the corner. Transition from horizontal shear to upwelling also produces weakening of the CPO and complex seismic anisotropy patterns, with dominantly inclined fast ScS and SKKS polarizations, over most of the upwelling path. Models that take into account twinning in PPv explain most observations of seismic anisotropy in D″, but heterogeneity of the flow at scales <1000 km is needed to comply with the seismological evidence for low apparent birefringence in D″.

  13. Parallel and perpendicular velocity sheared flows driven tripolar vortices in an inhomogeneous electron-ion quantum magnetoplasma

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Masood, W.

    2011-12-01

    Nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves are derived by taking into account sheared ion flows parallel and perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on very short scales in dense quantum plasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  14. Utility of Squeeze Flow in the Food Industry

    NASA Astrophysics Data System (ADS)

    Huang, T. A.

    2008-07-01

    Squeeze flow for obtaining shear viscosity on Newtonian and non-Newtonian fluids has long been established in the literature. Rotational shear flow using cone/plate, a set of parallel plates, or concentric cylinders all develop wall slip, shear fracture, or instability on food related materials such as peanut butter or mayonnaise. Viscosity data obtained using any one of the above mentioned set-ups is suspect or potentially results in significant error. They are unreliable to support or predict the textural differences perceived by consumer evaluation. RMS-800, from Rheometrics Inc., was employed to conduct the squeezing flow under constant speeds on a set of parallel plates. Viscosity data, over a broad range of shear rates, is compared between Hellmann's real (HRM) and light mayonnaise (HLM). The Consistency and shear-thinning indices, as defined in the Power-Law Model, were determined. HRM exhibits a more pronounced shear-thinning when compared to HLM yet the Consistency of HRM is significantly higher. Sensory evaluation by a trained expert panel ranked that adhesiveness and cohesiveness of HLM are significantly higher. It appears that the degree of shear thinning is one of the key rheological parameters in predicting the above mentioned difference in textural attributes. Error involved in determining viscosity from non-parallelism between two plates can be significant to affect the accuracy of the viscosity, in particular, shear-thinning index. Details are a subject for the next presentation. Nevertheless, the method is proven to be fast, rugged, simple, and reliable. It can be developed as a QC tool.

  15. Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George

    2017-10-01

    In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  16. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models

    NASA Astrophysics Data System (ADS)

    Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan

    2018-03-01

    While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.

  17. How shear increments affect the flow production branching ratio in CSDX

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.

    2018-06-01

    The coupling of turbulence-driven azimuthal and axial flows in a linear device absent magnetic shear (Controlled Shear Decorrelation Experiment) is investigated. In particular, we examine the apportionment of Reynolds power between azimuthal and axial flows, and how the azimuthal flow shear affects axial flow generation and saturation by drift wave turbulence. We study the response of the energy branching ratio, i.e., ratio of axial and azimuthal Reynolds powers, PzR/PyR , to incremental changes of azimuthal and axial flow shears. We show that increasing azimuthal flow shear decreases the energy branching ratio. When axial flow shear increases, this ratio first increases but then decreases to zero. The axial flow shear saturates below the threshold for parallel shear flow instability. The effects of azimuthal flow shear on the generation and saturation of intrinsic axial flows are analyzed. Azimuthal flow shear slows down the modulational growth of the seed axial flow shear, and thus reduces intrinsic axial flow production. Azimuthal flow shear reduces both the residual Reynolds stress (of axial flow, i.e., ΠxzR e s ) and turbulent viscosity ( χzDW ) by the same factor |⟨vy⟩'|-2Δx-2Ln-2ρs2cs2 , where Δx is the distance relative to the reference point where ⟨vy⟩=0 in the plasma frame. Therefore, the stationary state axial flow shear is not affected by azimuthal flow shear to leading order since ⟨vz⟩'˜ΠxzR e s/χzDW .

  18. A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow.

    PubMed

    Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout

    2007-10-01

    We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.

  19. Shear flow of one-component polarizable fluid in a strong electric field

    NASA Astrophysics Data System (ADS)

    Sun, J. M.; Tao, R.

    1996-04-01

    A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.

  20. Suppression of thermally excited capillary waves by shear flow.

    PubMed

    Derks, Didi; Aarts, Dirk G A L; Bonn, Daniel; Lekkerkerker, Henk N W; Imhof, Arnout

    2006-07-21

    We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. This phenomenon can be described by introducing an effective interfacial tension that increases with the shear rate. The increase of sigma(eff) is a direct consequence of the loss of interfacial entropy caused by the flow, which affects especially the slow fluctuations. This demonstrates that the interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.

  1. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  2. A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress

    PubMed Central

    Wong, Andrew K.; LLanos, Pierre; Boroda, Nickolas; Rosenberg, Seth R.; Rabbany, Sina Y.

    2017-01-01

    Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by Atomic Force Microscopy (AFM). Parallel Plate Flow Chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational Fluid Dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow. PMID:28989541

  3. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE PAGES

    Sutherland, John C.

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  4. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, John C.

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonalmore » orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configuration. Approaches for measuring the dichroic increment ratio with modern dichrometers are further discussed.« less

  5. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear.

    PubMed

    Sutherland, John C

    2017-04-15

    Linear dichroism provides information on the orientation of chromophores part of, or bound to, an orientable molecule such as DNA. For molecular alignment induced by hydrodynamic shear, the principal axes orthogonal to the direction of alignment are not equivalent. Thus, the magnitude of the flow-induced change in absorption for light polarized parallel to the direction of flow can be more than a factor of two greater than the corresponding change for light polarized perpendicular to both that direction and the shear axis. The ratio of the two flow-induced changes in absorption, the dichroic increment ratio, is characterized using the orthogonal orientation model, which assumes that each absorbing unit is aligned parallel to one of the principal axes of the apparatus. The absorption of the alienable molecules is characterized by components parallel and perpendicular to the orientable axis of the molecule. The dichroic increment ratio indicates that for the alignment of DNA in rectangular flow cells, average alignment is not uniaxial, but for higher shear, as produced in a Couette cell, it can be. The results from the simple model are identical to tensor models for typical experimental configurations. Approaches for measuring the dichroic increment ratio with modern dichrometers are discussed. Copyright © 2017. Published by Elsevier Inc.

  6. The mean and turbulent flow structure of a weak hydraulic jump

    NASA Astrophysics Data System (ADS)

    Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.

    2008-03-01

    The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.

  7. Tracing the Pathway from Drift-Wave Turbulence with Broken Symmetry to the Production of Sheared Axial Mean Flow

    NASA Astrophysics Data System (ADS)

    Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.

  8. Shear-induced partial translational ordering of a colloidal solid

    NASA Astrophysics Data System (ADS)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a <111> direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  9. Emission of sound from turbulence convected by a parallel flow in the presence of solid boundaries

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1973-01-01

    A theoretical description is given of the sound emitted from an arbitrary point in a parallel or nearly parallel turbulent shear flow confined to a region near solid boundaries. The analysis begins with Lighthill's formulation of aerodynamic noise and assumes that the turbulence is axisymmetric. Specific results are obtained for the sound emitted from an arbitrary point in a turbulent flow within a semi-infinite, open-ended duct.

  10. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    NASA Astrophysics Data System (ADS)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J < 10-3, where J is the hydraulic gradient. When the fluid flow is in a linear regime (i.e., J < 10-4), the relative deviation of equivalent permeability induced by shear, δ2, is linearly correlated with J with small variations, while for fluid flow in the nonlinear regime (J 〉 10-3), δ2 is nonlinearly correlated with J. A shear process would reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when solving fluid flow problems in fracture networks.

  11. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  12. Transport in the plateau regime in a tokamak pedestal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, J.; Shaing, K. C.

    In a tokamak H-mode, a strong E Multiplication-Sign B flow shear is generated during the L-H transition. Turbulence in a pedestal is suppressed significantly by this E Multiplication-Sign B flow shear. In this case, neoclassical transport may become important. The neoclassical fluxes are calculated in the plateau regime with the parallel plasma flow using their kinetic definitions. In an axisymmetric tokamak, the neoclassical particles fluxes can be decomposed into the banana-plateau flux and the Pfirsch-Schlueter flux. The banana-plateau particle flux is driven by the parallel viscous force and the Pfirsch-Schlueter flux by the poloidal variation of the friction force. Themore » combined quantity of the radial electric field and the parallel flow is determined by the flux surface averaged parallel momentum balance equation rather than requiring the ambipolarity of the total particle fluxes. In this process, the Pfirsch-Schlueter flux does not appear in the flux surface averaged parallel momentum equation. Only the banana-plateau flux is used to determine the parallel flow in the form of the flux surface averaged parallel viscosity. The heat flux, obtained using the solution of the parallel momentum balance equation, decreases exponentially in the presence of sonic M{sub p} without any enhancement over that in the standard neoclassical theory. Here, M{sub p} is a combination of the poloidal E Multiplication-Sign B flow and the parallel mass flow. The neoclassical bootstrap current in the plateau regime is presented. It indicates that the neoclassical bootstrap current also is related only to the banana-plateau fluxes. Finally, transport fluxes are calculated when M{sub p} is large enough to make the parallel electron viscosity comparable with the parallel ion viscosity. It is found that the bootstrap current has a finite value regardless of the magnitude of M{sub p}.« less

  13. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed Central

    Munn, L L; Melder, R J; Jain, R K

    1994-01-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702

  14. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    DOE PAGES

    Halpern, Federico D.; Ricci, Paolo

    2016-12-19

    The narrow power decay-length (λ q), recently found in the scrape-off layer (SOL) of inner wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared E×B poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. As a result, analytical calculations suggest that the IWL λ q is roughlymore » equal to the turbulent correlation length.« less

  15. Experimental Studies of the Interaction Between a Parallel Shear Flow and a Directionally-Solidifying Front

    NASA Technical Reports Server (NTRS)

    Zhang, Meng; Maxworthy, Tony

    1999-01-01

    It has long been recognized that flow in the melt can have a profound influence on the dynamics of a solidifying interface and hence the quality of the solid material. In particular, flow affects the heat and mass transfer, and causes spatial and temporal variations in the flow and melt composition. This results in a crystal with nonuniform physical properties. Flow can be generated by buoyancy, expansion or contraction upon phase change, and thermo-soluto capillary effects. In general, these flows can not be avoided and can have an adverse effect on the stability of the crystal structures. This motivates crystal growth experiments in a microgravity environment, where buoyancy-driven convection is significantly suppressed. However, transient accelerations (g-jitter) caused by the acceleration of the spacecraft can affect the melt, while convection generated from the effects other than buoyancy remain important. Rather than bemoan the presence of convection as a source of interfacial instability, Hurle in the 1960s suggested that flow in the melt, either forced or natural convection, might be used to stabilize the interface. Delves considered the imposition of both a parabolic velocity profile and a Blasius boundary layer flow over the interface. He concluded that fast stirring could stabilize the interface to perturbations whose wave vector is in the direction of the fluid velocity. Forth and Wheeler considered the effect of the asymptotic suction boundary layer profile. They showed that the effect of the shear flow was to generate travelling waves parallel to the flow with a speed proportional to the Reynolds number. There have been few quantitative, experimental works reporting on the coupling effect of fluid flow and morphological instabilities. Huang studied plane Couette flow over cells and dendrites. It was found that this flow could greatly enhance the planar stability and even induce the cell-planar transition. A rotating impeller was buried inside the sample cell, driven by an outside rotating magnet, in order to generate the flow. However, it appears that this was not a well-controlled flow and may also have been unsteady. In the present experimental study, we want to study how a forced parallel shear flow in a Hele-Shaw cell interacts with the directionally solidifying crystal interface. The comparison of experimental data show that the parallel shear flow in a Hele-Shaw cell has a strong stabilizing effect on the planar interface by damping the existing initial perturbations. The flow also shows a stabilizing effect on the cellular interface by slightly reducing the exponential growth rate of cells. The left-right symmetry of cells is broken by the flow with cells tilting toward the incoming flow direction. The tilting angle increases with the velocity ratio. The experimental results are explained through the parallel flow effect on lateral solute transport. The phenomenon of cells tilting against the flow is consistent with the numerical result of Dantzig and Chao.

  16. Predicting the stability of a compressible periodic parallel jet flow

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    1996-01-01

    It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.

  17. SPOT satellite mapping of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Merry, Carolyn J.

    1993-01-01

    Numerous features of glaciological significance appear on two adjoining SPOT High Resolution Visible (HRV) images that cover the onset region of ice stream B. Many small-scale features, such as crevasses and drift plumes, have been previously observed in aerial photography. Subtle features, such as long flow traces that have not been mapped previously, are also clear in the satellite imagery. Newly discovered features include ladder-like runners and rungs within certain shear margins, flow traces that are parallel to ice flow, unusual crevasse patterns, and flow traces originating within shear margins. An objective of our work is to contribute to an understanding of the genesis of the features observed in satellite imagery. The genetic possibilities for flow traces, other lineations, bands of transverse crevasses, shear margins, mottles, and lumps and warps are described.

  18. ITG modes in the presence of inhomogeneous field-aligned flow

    NASA Astrophysics Data System (ADS)

    Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.

    2010-02-01

    In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.

  19. Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction

    NASA Technical Reports Server (NTRS)

    Miura, A.; Pritchett, P. L.

    1982-01-01

    A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.

  20. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  1. A conservative scheme for electromagnetic simulation of magnetized plasmas with kinetic electrons

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Lu, Z. X.

    2018-02-01

    A conservative scheme has been formulated and verified for gyrokinetic particle simulations of electromagnetic waves and instabilities in magnetized plasmas. An electron continuity equation derived from the drift kinetic equation is used to time advance the electron density perturbation by using the perturbed mechanical flow calculated from the parallel vector potential, and the parallel vector potential is solved by using the perturbed canonical flow from the perturbed distribution function. In gyrokinetic particle simulations using this new scheme, the shear Alfvén wave dispersion relation in the shearless slab and continuum damping in the sheared cylinder have been recovered. The new scheme overcomes the stringent requirement in the conventional perturbative simulation method that perpendicular grid size needs to be as small as electron collisionless skin depth even for the long wavelength Alfvén waves. The new scheme also avoids the problem in the conventional method that an unphysically large parallel electric field arises due to the inconsistency between electrostatic potential calculated from the perturbed density and vector potential calculated from the perturbed canonical flow. Finally, the gyrokinetic particle simulations of the Alfvén waves in sheared cylinder have superior numerical properties compared with the fluid simulations, which suffer from numerical difficulties associated with singular mode structures.

  2. Computational fluid dynamics study of the end-side and sequential coronary artery bypass anastomoses in a native coronary occlusion model.

    PubMed

    Matsuura, Kaoru; Jin, Wei Wei; Liu, Hao; Matsumiya, Goro

    2018-04-01

    The objective of this study was to evaluate the haemodynamic patterns in each anastomosis fashion using a computational fluid dynamic study in a native coronary occlusion model. Fluid dynamic computations were carried out with ANSYS CFX (ANSYS Inc., Canonsburg, PA, USA) software. The incision lengths for parallel and diamond anastomoses were fixed at 2 mm. Native vessels were set to be totally occluded. The diameter of both the native and graft vessels was set to be 2 mm. The inlet boundary condition was set by a sample of the transient time flow measurement which was measured intraoperatively. The diamond anastomosis was observed to reduce flow to the native outlet and increase flow to the bypass outlet; the opposite was observed in the parallel anastomosis. Total energy efficiency was higher in the diamond anastomosis than the parallel anastomosis. Wall shear stress was higher in the diamond anastomosis than in the parallel anastomosis; it was the highest at the top of the outlet. A high oscillatory shear index was observed at the bypass inlet in the parallel anastomosis and at the native inlet in the diamond anastomosis. The diamond sequential anastomosis would be an effective option for multiple sequential bypasses because of the better flow to the bypass outlet than with the parallel anastomosis. However, flow competition should be kept in mind while using the diamond anastomosis for moderately stenotic vessels because of worsened flow to the native outlet. Care should be taken to ensure that the fluid dynamics patterns are optimal and prevent future native and bypass vessel disease progression.

  3. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Russo, R. M.

    2016-12-01

    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.

  4. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  5. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  6. New views of granular mass flows

    USGS Publications Warehouse

    Iverson, R.M.; Vallance, J.W.

    2001-01-01

    Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.

  7. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  8. Population splitting of rodlike swimmers in Couette flow.

    PubMed

    Nili, Hossein; Kheyri, Masoud; Abazari, Javad; Fahimniya, Ali; Naji, Ali

    2017-06-28

    We present a quantitative analysis on the response of a dilute active suspension of self-propelled rods (swimmers) in a planar channel subjected to an imposed shear flow. To best capture the salient features of the shear-induced effects, we consider the case of an imposed Couette flow, providing a constant shear rate across the channel. We argue that the steady-state behavior of swimmers can be understood in the light of a population splitting phenomenon, occurring as the shear rate exceeds a certain threshold, initiating the reversal of the swimming direction for a finite fraction of swimmers from down- to upstream or vice versa, depending on the swimmer position within the channel. Swimmers thus split into two distinct, statistically significant and oppositely swimming majority and minority populations. The onset of population splitting translates into a transition from a self-propulsion-dominated regime to a shear-dominated regime, corresponding to a unimodal-to-bimodal change in the probability distribution function of the swimmer orientation. We present a phase diagram in terms of the swim and flow Péclet numbers showing the separation of these two regimes by a discontinuous transition line. Our results shed further light on the behavior of swimmers in a shear flow and provide an explanation for the previously reported non-monotonic behavior of the mean, near-wall, parallel-to-flow orientation of swimmers with increasing shear strength.

  9. Shear flow driven tripolar vortices in a nonuniform electron-ion magnetoplasma with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.

    2014-04-01

    A set of nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves is derived for sheared ion flows parallel and perpendicular to the ambient magnetic field in the presence of Cairns and Kappa distributed electrons. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on a scale of the order of ion Larmor radius ρ i which is calculated to be around a Kilometer for the plasma parameters found in the Saturn's E-ring. The relevance of the present investigation in planetary environments is also pointed out.

  10. Numerical modelling of strain in lava tubes

    NASA Astrophysics Data System (ADS)

    Merle, Olivier

    The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.

  11. A novel rheo-optical device for studying complex fluids in a double shear plate geometry.

    PubMed

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s(-1)), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD(®) promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non-food systems.

  12. A novel rheo-optical device for studying complex fluids in a double shear plate geometry

    NASA Astrophysics Data System (ADS)

    Boitte, Jean-Baptiste; Vizcaïno, Claude; Benyahia, Lazhar; Herry, Jean-Marie; Michon, Camille; Hayert, Murielle

    2013-01-01

    A new rheo-optical shearing device was designed to investigate the structural evolution of complex material under shear flow. Seeking to keep the area under study constantly within the field of vision, it was conceived to produce shear flow by relying on the uniaxial translation of two parallel plates. The device features three modes of translation motion: step strain (0.02-320), constant shear rate (0.01-400 s-1), and oscillation (0.01-20 Hz) flow. Because the temperature is controlled by using a Peltier module coupled with a water cooling system, temperatures can range from 10 to 80 °C. The sample is loaded onto a user-friendly plate on which standard glasses can be attached with a depression vacuum pump. The principle innovation of the proposed rheo-optical shearing device lies in the fact that this suction system renders the microscopy glasses one with the plates, thereby ensuring their perfect planarity and parallelism. The gap width between the two plates can range from 0 to 5 mm. The device was designed to fit on any inverted confocal laser scanning microscope. In terms of controlled deformation, the conception and technical solutions achieve a high level of accuracy. Moreover, user-friendly software has been developed to control both shear flow parameters and temperature. The validation of specifications as well as the three modes of motion was carried out, first of all without a sample, and then by tracking fluorescent particles in a model system, in our case a micro-gel. Real values agreed well with those we targeted. In addition, an experiment with bread dough deformation under shear flow was initiated to gain some insight into the potential use of our device. These results show that the RheOptiCAD® promises to be a useful tool to better understand, from both a fundamental and an industrial point of view, the rheological behavior of the microstructure of complex fluids under controlled thermo-mechanical parameters in the case of food and non-food systems.

  13. Impact of E × B shear flow on low-n MHD instabilities.

    PubMed

    Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al. , Phys. Plasmas 23 , 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E  ×  B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E  ×  B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the E r shear. Adopting the much more general shape of E  ×  B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  14. Impact of E × B shear flow on low-n MHD instabilities

    NASA Astrophysics Data System (ADS)

    Chen, J. G.; Xu, X. Q.; Ma, C. H.; Xi, P. W.; Kong, D. F.; Lei, Y. A.

    2017-05-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ( ω E = E r / R B θ ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.

  15. Impact of E × B shear flow on low-n MHD instabilities

    PubMed Central

    Chen, J. G.; Ma, C. H.; Xi, P. W.; Lei, Y. A.

    2017-01-01

    Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear (ωE=Er/RBθ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode. PMID:28579732

  16. Elastic turbulence in entangled semi-dilute DNA solutions measured with optical coherence tomography velocimetry.

    PubMed

    Malm, A V; Waigh, T A

    2017-04-26

    The flow instabilities of solutions of high molecular weight DNA in the entangled semi-dilute concentration regime were investigated using optical coherence tomography velocimetry, a technique that provides high spatial (probe volumes of 3.4 pL) and temporal resolution (sub μs) information on the flow behaviour of complex fluids in a rheometer. The velocity profiles of the opaque DNA solutions (high and low salt) were measured as a function of the distance across the gap of a parallel plate rheometer, and their evolution over time was measured. At lower DNA concentrations and low shear rates, the velocity fluctuations were well described by Gaussian functions and the velocity gradient was uniform across the rheometer gap, which is expected for Newtonian flows. As the DNA concentration and shear rate were increased there was a stable wall slip regime followed by an evolving wall slip regime, which is finally followed by the onset of elastic turbulence. Strain localization (shear banding) is observed on the boundaries of the flows at intermediate shear rates, but decreases in the high shear elastic turbulence regime, where bulk strain localization occurs. A dynamic phase diagram for non-linear flow was created to describe the different behaviours.

  17. Comparison with Analytical Solution: Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.

  18. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    PubMed

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  19. Turbulence and mixing from optimal perturbations to a stratified shear layer

    NASA Astrophysics Data System (ADS)

    Kaminski, Alexis; Caulfield, C. P.; Taylor, John

    2014-11-01

    The stability and mixing of stratified shear layers is a canonical problem in fluid dynamics with relevance to flows in the ocean and atmosphere. The Miles-Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the gradient Richardson number, Rig is less than 1/4 somewhere in the flow. However, substantial transient growth of non-normal modes may be possible at finite times even when Rig > 1 / 4 everywhere in the flow. We have calculated the ``optimal perturbations'' associated with maximum perturbation energy gain for a stably-stratified shear layer. These optimal perturbations are then used to initialize direct numerical simulations. For small but finite perturbation amplitudes, the optimal perturbations grow at the predicted linear rate initially, but then experience sufficient transient growth to become nonlinear and susceptible to secondary instabilities, which then break down into turbulence. Remarkably, this occurs even in flows for which Rig > 1 / 4 everywhere. We will describe the nonlinear evolution of the optimal perturbations and characterize the resulting turbulence and mixing.

  20. Microfluidic rheology of active particle suspensions: Kinetic theory

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-11-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles between two infinite parallel plates in a pressure-driven flow. We use a continuum kinetic model to study the dynamics and transport of particles, where hydrodynamic interactions induced by the swimmers are taken into account. Using finite volume simulations we study how the activity of the swimmer and the external flow modify the rheological properties of the system. Results indicate that at low flow rates, activity decreases the value of the viscosity for pushers and increases its value for pullers. Both effects become weaker with increasing the flow strength due to the alignment of the particles with the flow. In the case of puller particles, shear thinning is observed over the entire range of flow rates. Pusher particles exhibit shear thickening at intermediate flow rates, where passive stresses start dominating over active stresses, reaching a viscosity greater than that of the Newtonian fluid. Finally shear thinning is observed at high flow rates. Both pushers and pullers exhibit a Newtonian plateau at very high flow rates. We demonstrate a good agreement between numerical results and experiments.

  1. Asymmetric Reconnection With A Shear Flow and Applications to X-line Motion at the Polar Cusps

    NASA Astrophysics Data System (ADS)

    Doss, C.; Komar, C. M.; Beidler, M.; Cassak, P.; Wilder, F. D.; Eriksson, S.

    2014-12-01

    Magnetic reconnection at the polar cusps of the magnetosphere is marked by strong asymmetries in plasma density and magnetic field strength in addition to a potentially strong bulk flow shear parallel to the reconnecting magnetic field caused by the solar wind. Much has been learned about the effect of either asymmetries or shear flow on reconnection, but only a handful of studies have addressed systems with both. We perform a careful theoretical, numerical, and observational study of such systems. It is known that an asymmetry in magnetic field offsets the X-line from the center of the diffusion region in the inflow direction toward the weaker magnetic field. A key finding is that this alters the flow profile seen at the X-line relative to expectations from symmetric reconnection results. This causes the X-line to drift in the outflow direction due to the shear flow. We calculate a prediction for the X-line drift speed for arbitrary asymmetric magnetic field strengths and show the result is consistent with two-fluid numerical simulations. These predictions are also shown to be consistent with recent observations of a tailward moving X-line in Cluster observations of reconnection at the polar cusp. The reconnection rate with a shear flow is observed to drop as in symmetric reconnection, and the behavior of the reconnection qualitatively changes when the shear flow speed exceeds the hybrid Alfven speed of the outflow known from asymmetric reconnection theory.

  2. E × B flow shear drive of the linear low- n modes of EHO in the QH-mode regime [ E × B flow shear drive of EHO in the QH-mode regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G. S.; Wan, B. N.; Wang, Y. F.

    A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less

  3. E × B flow shear drive of the linear low- n modes of EHO in the QH-mode regime [ E × B flow shear drive of EHO in the QH-mode regime

    DOE PAGES

    Xu, G. S.; Wan, B. N.; Wang, Y. F.; ...

    2017-07-18

    A new mechanism is identified for driving the edge harmonic oscillations (EHOs) in the quiescent H-mode (QH-mode) regime, where a strong E × B flow shear destabilizes low-n kink/peeling modes, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E × B flows modifies the two-dimensional pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drivemore » as the parallel wavenumber increases significantly away from the rational surface where the magnetic shear is also strong. A newly developed model reproduces the observations that at high E × B flow shear only a few low-n modes remain unstable, consistent with the EHO behavior, while at low E × B flow shear the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior observed recently in the DIII-D tokamak. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into 2 / 46 account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.« less

  4. Analysis of the leading edge effects on the boundary layer transition

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1990-01-01

    A general theory of boundary layer control by surface heating is presented. Some analytical results for a simplified model, i.e., the optimal control of temperature fluctuations in a shear flow are described. The results may provide a clue to the effectiveness of the active feedback control of a boundary layer flow by wall heating. In a practical situation, the feedback control may not be feasible from the instrumentational point of view. In this case the vibrational control introduced in systems science can provide a useful alternative. This principle is briefly explained and applied to the control of an unstable wavepacket in a parallel shear flow.

  5. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.

    PubMed

    Fielding, S M; Marenduzzo, D; Cates, M E

    2011-04-01

    We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society

  6. Magnetic Shear Damped Polar Convective Fluid Instabilities

    NASA Astrophysics Data System (ADS)

    Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.

    2018-01-01

    The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarman, Sten, E-mail: sarman@ownit.nu; Wang, Yong-Lei; Laaksonen, Aatto

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlinesmore » and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.« less

  8. Negative viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field

    DOE PAGES

    Li, J. C.; Diamond, P. H.

    2017-03-23

    Here, negative compressibility ITG turbulence in a linear plasma device (CSDX) can induce a negative viscosity increment. However, even with this negative increment, we show that the total axial viscosity remains positive definite, i.e. no intrinsic axial flow can be generated by pure ITG turbulence in a straight magnetic field. This differs from the case of electron drift wave (EDW) turbulence, where the total viscosity can turn negative, at least transiently. When the flow gradient is steepened by any drive mechanism, so that the parallel shear flow instability (PSFI) exceeds the ITG drive, the flow profile saturates at a level close to the value above which PSFI becomes dominant. This saturated flow gradient exceeds the PSFI linear threshold, and grows withmore » $$\

  9. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.

    PubMed

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-06-15

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.

  10. Generation and Radiation of Acoustic Waves from a 2D Shear Layer

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2000-01-01

    A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.

  11. Expression of endothelin-1 and constitutional nitric oxide synthase messenger RNA in saphenous vein endothelial cells exposed to arterial flow shear stress.

    PubMed

    Zhu, Z G; Li, H H; Zhang, B R

    1997-11-01

    It has long been speculated that increased blood flow shear stress might be one of the major factors affecting the patency of grafted saphenous vein in coronary artery bypass operations. The underlying cellular and molecular mechanisms for so-called "shear stress damage" have not yet been well elucidated. Endothelial cells harvested from human saphenous vein were cultured in vitro and then exposed to a high arterial level flow shear stress in the parallel flow chamber. The expression levels of endothelin-1 and constitutional nitric oxide synthase by the endothelial cells were evaluated semiquantitatively at the gene transcription (messenger RNA) level using reverse transcription polymerase chain reaction. After 7 hours of exposure to arterial level shear stress, the expression of constitutional nitric oxide synthase messenger RNA by saphenous vein endothelial cells was significantly reduced, whereas the expression of endothelin-1 messenger RNA was substantially increased. These changes were more predominant at 24 hours. Arterial level flow shear stress could cause important changes in the gene transcription level in saphenous vein endothelial cells within a short period of time. The functional alterations of saphenous vein endothelial cells, as manifested by the increased expression of endothelin-1 and decreased expression of nitric oxide synthase messenger RNA, might play a crucial role in the vein graft remodeling process.

  12. Features of sound propagation through and stability of a finite shear layer

    NASA Technical Reports Server (NTRS)

    Koutsoyannis, S. P.

    1976-01-01

    The plane wave propagation, the stability and the rectangular duct mode problems of a compressible inviscid linearly sheared parallel, but otherwise homogeneous flow, are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially Whittaker M-functions. A number of known results are obtained as limiting cases of exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies and shear layer velocity profile slopes except in the singular case of the vortex sheet.

  13. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  14. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces.

    PubMed

    Boks, Niels P; Norde, Willem; van der Mei, Henny C; Busscher, Henk J

    2008-10-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air-liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air-liquid interface. F(prev) varied from 0.03 to 0.70 pN, while F(det) varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory (F(DLVO)) towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air-liquid interface passages) to the substratum surface.

  15. Turbulent Mixing in Gravity Currents with Transverse Shear

    NASA Astrophysics Data System (ADS)

    White, Brian; Helfrich, Karl; Scotti, Alberto

    2010-11-01

    A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.

  16. Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn's moon Enceladus

    NASA Astrophysics Data System (ADS)

    Yin, An; Pappalardo, Robert T.

    2015-11-01

    Despite a decade of intense research the mechanical origin of the tiger-stripe fractures (TSF) and their geologic relationship to the hosting South Polar Terrain (SPT) of Enceladus remain poorly understood. Here we show via systematic photo-geological mapping that the semi-squared SPT is bounded by right-slip, left-slip, extensional, and contractional zones on its four edges. Discrete deformation along the edges in turn accommodates translation of the SPT as a single sheet with its transport direction parallel to the regional topographic gradient. This parallel relationship implies that the gradient of gravitational potential energy drove the SPT motion. In map view, internal deformation of the SPT is expressed by distributed right-slip shear parallel to the SPT transport direction. The broad right-slip shear across the whole SPT was facilitated by left-slip bookshelf faulting along the parallel TSF. We suggest that the flow-like tectonics, to the first approximation across the SPT on Enceladus, is best explained by the occurrence of a transient thermal event, which allowed the release of gravitational potential energy via lateral viscous flow within the thermally weakened ice shell.

  17. Effect of shear stress on the migration of hepatic stellate cells.

    PubMed

    Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu

    2018-01-01

    When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.

  18. Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...

    2016-04-11

    Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less

  19. Large-scale trench-normal mantle flow beneath central South America

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.

    2018-01-01

    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab.

  20. Gyrokinetic studies on turbulence-driven and neoclassical nondiffusive toroidal-momentum transport and the effect of residual fluctuations in strong E x B shear.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Rewoldt, G; Lee, W W; Tang, W M; Kaye, S M; Diamond, P H

    2009-01-23

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong E x B flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments.

  1. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  2. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  3. A hydrodynamic mechanism for spontaneous formation of ordered drop arrays in confined shear flow

    NASA Astrophysics Data System (ADS)

    Singha, Sagnik; Zurita-Gotor, Mauricio; Loewenberg, Michael; Migler, Kalman; Blawzdziewicz, Jerzy

    2017-11-01

    It has been experimentally demonstrated that a drop monolayer driven by a confined shear flow in a Couette device can spontaneously arrange into a flow-oriented parallel chain microstructure. However, the hydrodynamic mechanism of this puzzling self-assembly phenomenon has so far eluded explanation. In a recent publication we suggested that the observed spontaneous drop ordering may arise from hydrodynamic interparticle interactions via a far-field quadrupolar Hele-Shaw flow associated with drop deformation. To verify this conjecture we have developed a simple numerical-simulation model that includes the far-field Hele-Shaw flow quadrupoles and a near-field short-range repulsion. Our simulations show that an initially disordered particle configuration self-organizes into a system of particle chains, similar to the experimentally observed drop-chain structures. The initial stage of chain formation is fast; subsequently, microstructural defects in a partially ordered system are removed by slow annealing, leading to an array of equally spaced parallel chains with a small number of defects. The microstructure evolution is analyzed using angular and spatial order parameters and correlation functions. Supported by NSF Grants No. CBET 1603627 and CBET 1603806.

  4. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.

  5. Self-diffusion in the non-Newtonian regime of shearing liquid crystal model systems based on the Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Sarman, Sten; Wang, Yong-Lei; Laaksonen, Aatto

    2016-02-01

    The self-diffusion coefficients of nematic phases of various model systems consisting of regular convex calamitic and discotic ellipsoids and non-convex bodies such as bent-core molecules and soft ellipsoid strings have been obtained as functions of the shear rate in a shear flow. Then the self-diffusion coefficient is a second rank tensor with three different diagonal components and two off-diagonal components. These coefficients were found to be determined by a combination of two mechanisms, which previously have been found to govern the self-diffusion of shearing isotropic liquids, namely, (i) shear alignment enhancing the diffusion in the direction parallel to the streamlines and hindering the diffusion in the perpendicular directions and (ii) the distortion of the shell structure in the liquid whereby a molecule more readily can escape from a surrounding shell of nearest neighbors, so that the mobility increases in every direction. Thus, the diffusion parallel to the streamlines always increases with the shear rate since these mechanisms cooperate in this direction. In the perpendicular directions, these mechanisms counteract each other so that the behaviour becomes less regular. In the case of the nematic phases of the calamitic and discotic ellipsoids and of the bent core molecules, mechanism (ii) prevails so that the diffusion coefficients increase. However, the diffusion coefficients of the soft ellipsoid strings decrease in the direction of the velocity gradient because the broadsides of these molecules are oriented perpendicularly to this direction due the shear alignment (i). The cross coupling coefficient relating a gradient of tracer particles in the direction of the velocity gradient and their flow in the direction of the streamlines is negative and rather large, whereas the other coupling coefficient relating a gradient in the direction of the streamlines and a flow in the direction of the velocity gradient is very small.

  6. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).

  7. Design of a novel bioreactor and application in vascular tissue engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Xiong; Xi, Ting-Fei; Wang, Ying-Jun; Chen, Xiao-Song; Zhang, Jian; Wang, Chun-Ren; Gu, Yong-Quan; Chen, Liang; Li, Jian-Xin; Chen, Bing

    2008-11-01

    Endothelial cells (ECs) detachment under high shear stress at the early period of transplantation resulted in thrombosis and occlusion. To solve this problem, we developed a novel bioreactor. The bioreactor mimicked the formation of pulsatile flow in physiological conditions. Human umbilical vein ECs were seeded onto the lumen of living tissue conduits grown within dog peritoneal cavity. The shear stress generated by the bioreactor was increased step by step from 1.5 ± 0.8 dyn/cm 2 to 5.3 ± 2.4 dyn/cm 2, and was applied to ECs after static culture for 2 days. The results showed that completely confluent monolayer ECs were elongated, and were oriented parallel to the flow direction. The bioreactor could provide good environment for formation of endothelium. Stepwise increase shear stress could strengthen cell-cell and cell-extracellular matrix. The flow conditions of the bioreactor play a key role to determine the quality of the ECs lining.

  8. The steady inhomogeneous rapid granular shear flow of nearly elastic spheres

    NASA Astrophysics Data System (ADS)

    Chou, Chuen-Shii

    2000-11-01

    The steady inhomogeneous rapid granular shear flows of identical, smooth, nearly elastic spheres were considered, which interact with a flat wall to which identical, evenly spaced half-spheres have been attached. The boundary-value problem for the steady inhomogeneous shear flows, which are maintained by the relative motion of parallel bumpy boundaries, was solved by employing the constitutive relations of Jenkins and Richman (Arch. Rational Mech. Anal. 87 (1985) 355) and the boundary conditions of Richman (Acta. Mech. 75 (1988) 227) in the balance equations for mean fields of mass density of flow, velocity, and the granular temperature. How the resulting profiles of velocity, solid fraction, and granular temperature were affected by changes in the geometrical configuration of the boundary and the coefficient of restitution was demonstrated. Additionally, predicting how the slip velocity would vary with the geometrical configuration of the boundary, the coefficient of restitution, the flow depth and the average solid fraction within the flow was under taken. Special emphasis was placed on the manner in which the shear and normal stresses vary with boundary characteristics and the coefficient of restitution, primarily because the stresses are the quantities most easily measured by the experimentalist. Variations in slip velocity were observed to be partially responsible for the corresponding variations in the stresses.

  9. Features of sound propagation through and stability of a finite shear layer

    NASA Technical Reports Server (NTRS)

    Koutsoyannis, S. P.

    1977-01-01

    The plane wave propagation, the stability, and the rectangular duct mode problems of a compressible, inviscid, linearly sheared, parallel, homogeneous flow are shown to be governed by Whittaker's equation. The exact solutions for the perturbation quantities are essentially the Whittaker M-functions where the nondimensional quantities have precise physical meanings. A number of known results are obtained as limiting cases of the exact solutions. For the compressible finite thickness shear layer it is shown that no resonances and no critical angles exist for all Mach numbers, frequencies, and shear layer velocity profile slopes except in the singular case of the vortex sheet.

  10. Brownian Dynamics Simulations of Polyelectrolyte Adsorption in Shear Flow

    NASA Astrophysics Data System (ADS)

    Panwar, Ajay

    2005-03-01

    The adsorption of polyelectrolytes onto charged surfaces often occurs in microfludic devices and can influence their operation. We employ Brownian dynamics simulations to investigate the effect of a simple shear flow on the adsorption of an isolated polyelectrolyte molecule onto an oppositely charged surface. The polyelectrolyte is modeled as a freely-jointed bead-rod chain where the total charge is distributed uniformly among all the beads, and the beads are allowed to interact with one another and the charged surface through screened Coulombic interactions. The simulations are performed by placing the chain some distance above the surface, and the adsorption behavior is studied as a function of the screening length. Specifically, we look at the components of the radius of gyration, normal and parallel to the adsorbing surface, as functions of the screening length, both in the absence and presence of the flow. We find that in the absence of flow, the chain lies flat and stretched on the adsorbing surface in the limit of weak screening, but attains free solution behavior in the limit of strong screening. In the presence of a shear flow, the chain orientation in the direction of the flow increases with increasing Weissenberg number over the entire range of screening lengths studied. We also find that increasing the strength of the shear flow leads to an increased contact of the chain with the surface compared to the case when no flow is present.

  11. E  ×  B flow shear drive of the linear low-n modes of EHO in the QH-mode regime

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Wan, B. N.; Wang, Y. F.; Wu, X. Q.; Chen, Xi; Peng, Y.-K. Martin; Guo, H. Y.; Burrell, K. H.; Garofalo, A. M.; Osborne, T. H.; Groebner, R. J.; Wang, H. Q.; Chen, R.; Yan, N.; Wang, L.; Ding, S. Y.; Shao, L. M.; Hu, G. H.; Li, Y. L.; Lan, H.; Yang, Q. Q.; Chen, L.; Ye, Y.; Xu, J. C.; Li, J.

    2017-08-01

    A new model for the edge harmonic oscillations (EHOs) in the quiescent H-mode regime has been developed, which successfully reproduces the recent observations in the DIII-D tokamak. In particular, at high E  ×  B flow shear only a few low-n kink modes remain unstable at the plasma edge, consistent with the EHO behavior, while at low E  ×  B flow shear, the unstable mode spectrum is significantly broadened, consistent with the low-n broadband electromagnetic turbulence behavior. The model is based on a new mechanism for destabilizing low-n kink/peeling modes by the E  ×  B flow shear, which underlies the EHOs, separately from the previously found Kelvin-Helmholtz drive. We find that the differential advection of mode vorticity by sheared E  ×  B flows modifies the 2D pattern of mode electrostatic potential perpendicular to the magnetic field lines, which in turn causes a radial expansion of the mode structure, an increase of field line bending away from the mode rational surface, and a reduction of inertial stabilization. This enhances the kink drive as the parallel wavenumber increases significantly away from the rational surface at the plasma edge where the magnetic shear is also strong. This destabilization is also shown to be independent of the sign of the flow shear, as observed experimentally, and has not been taken into account in previous pedestal linear stability analyses. Verification of the veracity of this EHO mechanism will require analysis of the nonlinear evolution of low-n kink/peeling modes so destabilized in the linear regime.

  12. Trench-parallel flow beneath the nazca plate from seismic anisotropy.

    PubMed

    Russo, R M; Silver, P G

    1994-02-25

    Shear-wave splitting of S and SKS phases reveals the anisotropy and strain field of the mantle beneath the subducting Nazca plate, Cocos plate, and the Caribbean region. These observations can be used to test models of mantle flow. Two-dimensional entrained mantle flow beneath the subducting Nazca slab is not consistent with the data. Rather, there is evidence for horizontal trench-parallel flow in the mantle beneath the Nazca plate along much of the Andean subduction zone. Trench-parallel flow is attributale utable to retrograde motion of the slab, the decoupling of the slab and underlying mantle, and a partial barrier to flow at depth, resulting in lateral mantle flow beneath the slab. Such flow facilitates the transfer of material from the shrinking mantle reservoir beneath the Pacific basin to the growing mantle reservoir beneath the Atlantic basin. Trenchparallel flow may explain the eastward motions of the Caribbean and Scotia sea plates, the anomalously shallow bathymetry of the eastern Nazca plate, the long-wavelength geoid high over western South America, and it may contribute to the high elevation and intense deformation of the central Andes.

  13. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  14. Stochastic transitions and jamming in granular pipe flow

    NASA Astrophysics Data System (ADS)

    Brand, Samuel; Ball, Robin C.; Nicodemi, Mario

    2011-03-01

    We study a model granular suspension driven down a channel by an embedding fluid via computer simulations. We characterize the different system flow regimes and the stochastic nature of the transitions between them. For packing fractions below a threshold ϕm, granular flow is disordered and exhibits an Ostwald-de Waele-type power-law shear-stress constitutive relation. Above ϕm, two asymptotic states exist; disordered flow can persist indefinitely, yet, in a fraction of samples, the system self-organizes in an ordered form of flow where grains move in parallel ordered layers. In the latter regime, the Ostwald-de Waele relationship breaks down and a nearly solid plug appears in the center, with linear shear regions at the boundaries. Above a higher threshold ϕg, an abrupt jamming transition is observed if ordering is avoided.

  15. Optimal energy growth in a stably stratified shear flow

    NASA Astrophysics Data System (ADS)

    Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama

    2018-02-01

    Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.

  16. Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, Z. H.; Zhang, H. H.; Lin, Z. Y.

    2018-04-01

    The Kelvin-Helmholtz instability of a parallel shear flow with a hyperbolic-tangent velocity profile has been simulated numerically at a high Reynolds number. The fluid is perfectly conducting with low viscosity, and the strength of the applied magnetic field varies from weak to strong. We found that the magnetic field parallel to the mainstream direction has a stabilizing effect on the shear flow. The magnetic field mainly stabilizes short-wave perturbations. Small viscosity and/or slight compressibility could introduce some instability even in the presence of a strong magnetic field in a certain circumstance. The suppressing effect of the magnetic field on the instability is accomplished by two parts: the separating effect of the transverse magnetic pressure and the anti-bending effect of magnetic tension pointing to the center of curvature. The former shows prevailingly stronger effect on the fluid interface than the latter does, which is different from the conventional opinion that magnetic tension dominates. Essentially it is mainly the Maxwell stress that weakens and balances the momentum transport conducted by the Reynolds stress, reducing the mixing degree of the upper fluid and the lower fluid.

  17. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  18. A Unified View of Global Instabilities of Compressible Flow Over Open Cavities

    DTIC Science & Technology

    2005-06-30

    the early work of Rossiter [3], have treated the shear-layer emanating from the upstream comer of the cavity in isolation ( using parallel flow... using a domain-decomposition method. The code has optional equation sets to solve either (i) nonlinear Navier-Stokes, (ii) Navier-Stokes equations...early experments of Maull and East [15]. They used oil flow visualization of surface streamlines on the cavity bottom to show the existence, under certain

  19. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  20. Dynamics of model blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Podgorski, Thomas; Callens, Natacha; Minetti, Christophe; Coupier, Gwennou; Dubois, Frank; Misbah, Chaouqi

    The dynamics of a vesicle suspension in shear flow was investigated by digital holographic microscopy [1] in parabolic flights and in the MASER 11 sounding rocket. Vesicles are lipid membranes which mimic the mechanical behaviour of cells, such as red blood cells in flow. In a simple shear flow between parallel walls, a lift force of purely viscous origin pushes vesicles away from walls. Our parabolic flight experiments [2] reveal that the lift velocity in a dilute suspen-sion is well described by theoretical predictions by Olla. As vesicles gather near the center of the flow chamber due to lift forces from both walls, one expects hydrodynamic interactions of pairs of vesicles to result in shear induced diffusion in the suspension. The BIOMICS experi-ment in the MASER 11 sounding rocket revealed a complex spatial structure of a polydisperse vesicle suspension due to the interplay between lift forces from the walls and hydrodynamic interactions. These phenomena have a strong impact on the structure and rheology of blood in small vessels, and a precise knowledge of the dynamics of migration and diffusion of soft particles in flow can lead to alternative ways to separate and sort blood cells. 1. Dubois, F., Schockaert, C., Callens, N., Yourrassowsky, C., "Focus plane detection criteria in digital holography microscopy by amplitude analysis", Opt. Express, Vol. 14, pp 5895-5908, 2006 2. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C., Podgorski, T., "Hydrodynamics lift of vesicles under shear flow in microgravity", Europhys. Lett., Vol. 83, p. 24002, 2008

  1. Study of electrostatic electron cyclotron parallel flow velocity shear instability in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Pandey, R. S.

    2018-05-01

    In the present paper, the study of electrostatic electron cyclotron parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field has been carried out in the magnetosphere of Saturn. Dimensionless growth rate variation of electron cyclotron waves has been observed with respect to k⊥ ρe for various plasma parameters. Effect of velocity shear scale length (Ae), inhomogeneity (P/a), the ratio of ion to electron temperature (Ti/Te) and density gradient (ɛnρe) on the growth of electron cyclotron waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation and computation of dispersion relation and growth rate have been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the relevant data from the Cassini spacecraft in the inner magnetosphere of Saturn. We have considered ambient magnetic field data and other relevant data for this study at the radial distance of ˜4.82-5.00 Rs. In our study velocity shear and ion to electron temperature ratio have been observed to be the major sources of free energy for the electron cyclotron instability. The inhomogeneity of electric field caused a small noticeable impact on the growth rate of electrostatic electron cyclotron instability. Density gradient has been observed playing stabilizing effect on electron cyclotron instability.

  2. Structural, micro-structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh

    2018-02-01

    One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate mechanism, especially in the core of diapir with higher pure shear component relative to simple shear component, whilst a Couette flow at the margins of diapir is the dominate mechanism with higher simple shear component relative to pure shear component. The obtained kinematic vorticity number reflects spatial partitioning of dominantly Poiseuille flow in core and Couette flow along edges of diapir. These two mechanisms reflect a persistent flow governed by a simultaneous combination of pure shear and simple shear in a hybrid Poiseuille-Coutte Flow.

  3. Large-scale trench-perpendicular mantle flow beneath northern Chile

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.

    2017-12-01

    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental plate. This is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel the overall strike of the Andean range. Our results do not provide any evidence for a significant contribution of trench-parallel mantle flow beneath the subducting slab to the measurements.

  4. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.

    PubMed

    Badiei, N; Sowedan, A M; Curtis, D J; Brown, M R; Lawrence, M J; Campbell, A I; Sabra, A; Evans, P A; Weisel, J W; Chernysh, I N; Nagaswami, C; Williams, P R; Hawkins, K

    2015-01-01

    Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.

  5. Laser reflection method for determination of shear stress in low density transitional flows

    NASA Astrophysics Data System (ADS)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  6. Cyclical shear fracture and viscous flow during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, California

    NASA Astrophysics Data System (ADS)

    Compton, Katharine E.; Kirkpatrick, James D.; Holk, Gregory J.

    2017-06-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures, such as veins and pseudotachylytes, which record broadly contemporaneous brittle and ductile deformation. Here, we investigate veins within the Saddlebag Lake Shear Zone, central Sierra Nevada, California, to constrain the conditions and processes that caused fractures to form during ductile deformation. The shear zone mylonites contain compositional banding at centimeter- to meter- scales, and a ubiquitous, grain-scale, continuous- to spaced-foliation defined by aligned muscovite and chlorite grains. Veins of multiple compositions formed in two predominant sets: sub-parallel to the foliation and at high angle to the foliation. Some foliation sub-parallel veins show apparent shear offset consistent with the overall kinematics of the shear zone. These veins are folded with the foliation and are commonly boudinaged, showing they were rigid inclusions after formation. Quartz microstructures and fluid inclusion thermobarometry measurements indicate the veins formed by fracture at temperatures between 400-600 °C. Quartz, feldspar and tourmaline δ18O values (+ 2.5 to + 16.5) suggest extended fluid-rock interaction that involved magmatic, metamorphic, and meteoric-hydrothermal fluids. The orientation and spatial distribution of the veins shows that shear fractures formed along mechanically weak foliation planes. We infer fracture was promoted by perturbations to the strain rate and/or pore pressure during frictional-viscous deformation in a low effective stress environment. Evidence for repeated fracture and subsequent flow suggest both the stress and pore pressure varied, and that the tendency to fracture was controlled by the rates of pore pressure recovery, facilitated by fracture cementation. The tectonic setting and inferred phenomenological behavior were similar to intra-continental transform faults that host triggered tectonic tremor, suggesting the mechanisms that caused brittle fracture during viscous deformation may be important for comparable active systems.

  7. Pronounced zonation of seismic anisotropy in the Western Hellenic subduction zone and its geodynamic significance

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Pearce, Frederick; Rondenay, Stéphane; Behn, Mark D.

    2014-04-01

    Many subduction zones exhibit significant retrograde motion of their arc and trench. The observation of fast shear-wave velocities parallel to the trench in such settings has been inferred to represent trench-parallel mantle flow beneath a retreating slab. Here, we investigate this process by measuring seismic anisotropy in the shallow Aegean mantle. We carry out shear-wave splitting analysis on a dense array of seismometers across the Western Hellenic Subduction Zone, and find a pronounced zonation of anisotropy at the scale of the subduction zone. Fast SKS splitting directions subparallel to the trench-retreat direction dominate the region nearest to the trench. Fast splitting directions abruptly transition to trench-parallel above the corner of the mantle wedge, and rotate back to trench-normal over the back-arc. We argue that the trench-normal anisotropy near the trench is explained by entrainment of an asthenospheric layer beneath the shallow-dipping portion of the slab. Toward the volcanic arc this signature is overprinted by trench-parallel anisotropy in the mantle wedge, likely caused by a layer of strained serpentine immediately above the slab. Arcward steepening of the slab and horizontal divergence of mantle flow due to rollback may generate an additional component of sub-slab trench-parallel anisotropy in this region. Poloidal flow above the retreating slab is likely the dominant source of back-arc trench-normal anisotropy. We hypothesize that trench-normal anisotropy associated with significant entrainment of the asthenospheric mantle near the trench may be widespread but only observable at shallow-dipping subduction zones where stations nearest the trench do not overlie the mantle wedge.

  8. Preferential particle concentration in wall-bounded turbulence with zero skin friction

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhao, Lihao; Andersson, Helge I.

    2017-11-01

    Inertial particles dispersed in turbulence distribute themselves unevenly. Besides their tendency to segregate near walls, they also concentrate preferentially in wall-parallel planes. We explore the latter phenomenon in a tailor-made flow with the view to examine the homogeneity and anisotropy of particle clustering in the absence of mean shear as compared with conventional, i.e., sheared, wall turbulence. Inertial particles with some different Stokes numbers are suspended in a turbulent Couette-Poiseuille flow, in which one of the walls moves such that the shear rate vanishes at that wall. The anisotropies of the velocity and vorticity fluctuations are therefore qualitatively different from those at the opposite non-moving wall, along which quasi-coherent streaky structures prevail, similarly as in turbulent pipe and channel flows. Preferential particle concentration is observed near both walls. The inhomogeneity of the concentration is caused by the strain-vorticity selection mechanism, whereas the anisotropy originates from coherent flow structures. In order to analyse anisotropic clustering, a two-dimensional Shannon entropy method is developed. Streaky particle structures are observed near the stationary wall where the flow field resembles typical wall-turbulence, whereas particle clusters near the moving friction-free wall are similar to randomly oriented clusters in homogeneous isotropic turbulence, albeit with a modest streamwise inclination. In the absence of mean-shear and near-wall streaks, the observed anisotropy is ascribed to the imprint of large-scale flow structures which reside in the bulk flow and are global in nature.

  9. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    NASA Astrophysics Data System (ADS)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  10. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    NASA Astrophysics Data System (ADS)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.

  11. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xu, Lanxi; Lan, Wanli

    2017-12-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M, where M is the maximum of the absolute value of the velocity field of the laminar flow.

  12. Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    PubMed Central

    Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

  13. Approach to the origin of turbulence on the basis of two-point kinetic theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1974-01-01

    Equations for the fluctuation correlation in an incompressible shear flow are derived on the basis of kinetic theory, utilizing the two-point distribution function which obeys the BBGKY hierarchy equation truncated with the hypothesis of 'ternary' molecular chaos. The step from the molecular to the hydrodynamic description is accomplished by a moment expansion which is a two-point version of the thirteen-moment method, and which leads to a series of correlation equations, viz., the two-point counterparts of the continuity equation, the Navier-Stokes equation, etc. For almost parallel shearing flows the two-point equation is separable and reduces to two Orr-Sommerfeld equations with different physical implications.

  14. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  15. Experimental determination of interfacial tension by different dynamical methods under simple shear flow conditions with a novel computer-controlled parallel band apparatus.

    PubMed

    Megías-Alguacil, David; Fischer, Peter; Windhab, Erich J

    2004-06-15

    We present experimental investigations on droplet deformation under simple shear flow conditions, using a computer-controlled parallel band apparatus and an optical device which allows us to record the time dependence of the droplet shape. Several methods are applied to determine the interfacial tension from the observed shape and relaxation mechanism. Specific software developed in our laboratory allows the droplet to be fixed in a certain position for extended times, in fact, indefinite. This is an advantage over most other work done in this area, where only limited time is available. In our experiments, the transient deformation of sheared droplets can be observed to reach the steady state. The measured systems were Newtonian, both droplet and fluid phase. Droplet deformation, orientation angle and retraction were studied and compared to several models. The interfacial tension of the different systems was calculated using the theories of Taylor, Rallison, and Hinch and Acrivos. The results obtained from the analysis of the droplet deformation were in very good agreement with drop detachment experiments of Feigl and co-workers. The study of orientation angle shows qualitative agreement to the theory of Hinch and Acrivos but reveals larger quantitative discrepancies for several empirical fitting parameters of the used model. Analysis of the relaxation of sheared drops provided estimates of the interfacial tension that were in very good agreement with the steady-state measurements.

  16. A comparative study of the effects of cone-plate and parallel-plate geometries on rheological properties under oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu

    2017-11-01

    In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.

  17. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  18. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  19. Nonlinear study of the parallel velocity/tearing instability using an implicit, nonlinear resistive MHD solver

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Finn, J. M.; Knoll, D. A.

    2000-10-01

    Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.

  20. Hybrid channel flow-type mechanisms in the Greater Himalayan Sequence (West Nepal): new constraints from vorticity of flow and quartz petrofabric analyses.

    NASA Astrophysics Data System (ADS)

    Frassi, Chiara

    2016-04-01

    Three main tectono-metamorphic units are classically recognized along the Himalayan belt: the Lesser Himalayan (LH), the Greater Himalayan sequence (GHS) and the Tibetan Sedimentary sequence (TSS). The GHS may be interpreted as a low-viscosity tabular body of mid-crustal rocks extruded southward in Miocene times beneath the Tibetan plateau between two parallel and opposite-sense crustal-scale shear zones: the Main Central thrust at the base, and the South Tibetan Detachment system at the top. The pre-/syn-shearing mineral assemblage documented within these crustal-scale shear zones indicates that the metamorphic grade increases toward the core of the GHS producing an inverted and a normal thermal gradient respectively on the top and on the bottom of the slab. In addition, thermal profiles estimated using both petrology- and microstructures/fabrics-based thermometers indicate that the metamorphic isograds are condensed. Although horizontal extension and vorticity estimates collected across the GHS could be strongly biased by the criteria used to define the map position of the MCT, published vorticity data document general shear flow (1>Wk>0) within the slab with a pure-shear component of flow slightly predominant within the core of the GHS whereas the simple-shear component seems to dominate at the top of the slab. The lower boundary of the GHS records a general shear flow with a comparable contribution of simple and pure shearing. The associated crustal extrusion is compatible with Couette - Poiseuille velocity flow profile as assumed in crustal-scale channel flow-type models In this study, the quartz c-axis petrofabrics, vorticity and deformation-temperature studies are integrated with microstructures and metamorphic studies to individuate the location of the MCT and to document the spatial distribution of ductile deformation patterns across the lower portion of the GHS exposed in the Chaudabise river valley in western Nepal. My results indicate that the Main Central Thrust is located ˜5 km structurally below the previous mapped locations. Deformation temperature increases up structural section from ˜450°C to ˜650°C and overlaps with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. The results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectono-metamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.

  1. RF stabilization of plasma instabilities: a note on physical mechanism

    NASA Astrophysics Data System (ADS)

    Sen, S.; Martinell, J.; Imadera, K.; Kishimoto, Y.; Vahala, G.

    2018-02-01

    In a series of recent works, we have developed models including realistic spatial profiles of both flow and radio-frequency-induced ponderomotive force. With these inclusions, the picture of stability of various plasma and fluid instabilities is expected to be changed drastically with ground-breaking consequences. The inhomogeneous parallel flow and the radio-frequency waves can actually stabilize turbulence. This is different from the prevalent notion that both parallel flow shear and radio-frequency waves are responsible for the excitation (destabilization) of plasma turbulence. This model thus aims to open-up new channels and provide a major breakthrough in our knowledge of plasma and fluid turbulence and its consequent roles in energy, space and processing technology. In this short note, we elucidate the physical mechanism behind this novel observation.

  2. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  3. Solar wind interaction with dusty plasmas produces instabilities and solitary structures

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Ali, S.

    2017-12-01

    It is pointed out that the solar wind interaction with dusty magnetospheres of the planets can give rise to purely growing instabilities as well as nonlinear electric field structures. Linear dispersion relation of the low frequency electrostatic ion-acoustic wave (IAW) is modified in the presence of stationary dust and its frequency becomes larger than its frequency in usual electron ion plasma even if ion temperature is equal to the electron temperature. This dust-ion-acoustic wave (DIAW) either becomes a purely growing electrostatic instability or turns out to be the modified dust-ion-acoustic wave (mDIAW) depending upon the magnitude of shear flow scale length and its direction. Growth rate of shear flow-driven electrostatic instability in a plasma having negatively charged stationary dust is larger than the usual D'Angelo instability of electron-ion plasma. It is shown that shear modified dust ion acoustic wave (mDIAW) produces electrostatic solitons in the nonlinear regime. The fluid theory predicts the existence of electrostatic solitons in the dusty plasmas in those regions where the inhomogeneous solar wind flow is parallel to the planetary or cometary magnetic field lines. The amplitude and width of the solitary structure depends upon dust density and magnitude of shear in the flow. This is a general theoretical model which is applied to dusty plasma of Saturn's F-ring for illustration.

  4. Ceramic-metal composites prepared via tape casting and melt infiltration methods

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jun

    Melt infiltration of preforms prepared by tape casting and lamination has been accomplished using a short-time infiltration process that significantly suppresses reaction product formation. For layered materials produced via infiltration of laminated ceramic tapes, of particular interest is the effect that a large change in microstructure has on infiltration, phase formation, and mechanical properties. Hardness of the fine scale composite layers is approximately three times higher than coarse scale layers, due to greater strength of the fine B4C network. Fractography showed that crack propagation occurred by brittle fracture of the carbide and ductile extension of the metal. Despite large differences in hardness, the fracture mode of the fine and coarse scale microstructures appears identical. Fluid flow modeling for tape casting was conducted with a Newtonian slurry under a parallel blade, and the effect of beveling the blade based on a one dimensional flow model is shown. The discussion on slurry deformation after the blade exit suggests that the mode of slurry deformation depends on the relative importance of the pressure gradient and wall shear and that the existence of zero shear plane might have a negative effect on particle alignment in the tape. The analysis of the flow under a beveled blade predicts that this configuration is more advantageous than the parallel blade for productivity and parallel blade is better for producing uniform particle alignment and thinner tape. Also, the one dimensional flow model for the beveled blade is shown to be a valid approximation of the fluid behavior below a blade angle of 45 degrees. The flow visualization study on tape casting was conducted with a transparent apparatus and model slurry. Most investigators have concluded that the shear stress between the doctor blade and moving carrier causes the particle alignment, but, according to the result of visualization experiment, some degree of particle alignment is already established in the reservoir. The fluid flow concept of tape casting is incorporated with a metal infiltration technique to prepare the ceramic-metal composites with tailored porosity and pore orientation. Boron carbide-aluminum system was used to prepare the composites, and its stiffness constants were investigated. The aligned metal ligaments rarely affect the stiffness constant anisotropy which appears to be caused by tape casting operation.

  5. Numerical simulation of blood flow in femoral perfusion: comparison between side-armed femoral artery perfusion and direct femoral artery perfusion.

    PubMed

    Kitamura, Shingo; Shirota, Minori; Fukuda, Wakako; Inamura, Takao; Fukuda, Ikuo

    2016-12-01

    Computational numerical analysis was performed to elucidate the flow dynamics of femoral artery perfusion. Numerical simulation of blood flow was performed from the right femoral artery in an aortic model. An incompressible Navier-Stokes equation and continuity equation were solved using computed flow dynamics software. Three different perfusion models were analyzed: a 4.0-mm cannula (outer diameter 15 French size), a 5.2-mm cannula (18 French size) and an 8-mm prosthetic graft. The cannula was inserted parallel to the femoral artery, while the graft was anastomosed perpendicular to the femoral artery. Shear stress was highest with the 4-mm cannula (172 Pa) followed by the graft (127 Pa) and the 5.2-mm cannula (99 Pa). The cannula exit velocity was high, even when the 5.2-mm cannula was used. Although side-armed perfusion with an 8-mm graft generated a high shear stress area near the point of anastomosis, flow velocity at the external iliac artery was decreased. The jet speed decreased due to the Coanda effect caused by the recirculation behind sudden expansion of diameter, and the flow velocity maintains a constant speed after the reattachment length of the flow. This study showed that iliac artery shear stress was lower with the 5.2-mm cannula than with the 4-mm cannula when used for femoral perfusion. Side-armed graft perfusion generates a high shear stress area around the anastomotic site, but flow velocity in the iliac artery is slower in the graft model than in the 5.2-mm cannula model.

  6. The role of density discontinuity in the inviscid instability of two-phase parallel flows

    NASA Astrophysics Data System (ADS)

    Behzad, M.; Ashgriz, N.

    2014-02-01

    We re-examine the inviscid instability of two-phase parallel flows with piecewise linear velocity profiles. Although such configuration has been theoretically investigated, we employ the concept of waves resonance to physically interpret the instability mechanism as well as the essential role of density discontinuity in the flow. Upon performing linear stability analysis, we demonstrate the existence of neutrally stable "density" and "density-vorticity" waves which are emerged due to the density jump in the flow, in addition to the well-known vorticity waves. Such waves are capable of resonating with each other to form unstable modes in the flow. Although unstable modes in this study are classified as the "shear instability" type, we demonstrate that they are not necessarily of the Rayleigh type. The results also show that the density can have both stabilizing and destabilizing effects on the flow stability. We verify that the difference in the resonating pair of neutral waves leads to such distinct behavior of the density variation.

  7. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    NASA Astrophysics Data System (ADS)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction factor and enhancements in the fluid slip are greater as the cavity-to-rib length ratio is increased (increasing shear-free fraction) and as the channel hydraulic diameter is decreased. The results also show that the slip length and average friction factor-Reynolds number product exhibit a flow Reynolds dependence. Furthermore, the predictions reveal the global impact of the vapor cavity depth on the overall frictional resistance.

  8. Influence of neighboring adherent cells on laminar flow induced shear stress in vitro—A systematic study

    PubMed Central

    Djukelic, Mario; Westerhausen, Christoph

    2017-01-01

    Cells experience forces if subjected to laminar flow. These forces, mostly of shear force character, are strongly dependent not only on the applied flow field itself but also on hydrodynamic effects originating from neighboring cells. This particularly becomes important for the interpretation of data from in vitro experiments in flow chambers without confluent cell layers. By employing numerical Finite Element Method simulations of such assemblies of deformable objects under shear flow, we investigate the occurring stress within elastic adherent cells and the influence of neighboring cells on these quantities. For this, we simulate single and multiple adherent cells of different shapes fixed on a solid substrate under laminar flow parallel to the substrate for different velocities. We determine the local stress within the cells close to the cell-substrate-interface and the overall stress of the cells by surface integration over the cell surface. Comparing each measurand in the case of a multiple cell situation with the corresponding one of single cells under identical conditions, we introduce a dimensionless influence factor. The systematic variation of the distance and angle between cells, where the latter is with respect to the flow direction, flow velocity, Young's modulus, cell shape, and cell number, enables us to describe the actual influence on a cell. Overall, we here demonstrate that the cell density is a crucial parameter for all studies on flow induced experiments on adherent cells in vitro. PMID:28798851

  9. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.

    PubMed

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-05-25

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.

  10. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

    PubMed Central

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-01-01

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530

  11. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  12. Effects of Gravity on Sheared Turbulence Laden with Bubbles or Droplets

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lasheras, Juan

    1996-01-01

    This is a new project which started in May 1996. The main objective of the experimental/numerical study is to improve the understanding of the physics of two-way coupling between the dispersed phase and turbulence in a prototypical turbulent shear flow - homogeneous shear, laden with small liquid droplets (in gas) or gaseous bubbles (in liquid). The method of direct numerical simulation (DNS) is used to solve the full three-dimensional, time-dependent Navier-Stokes equations including the terms describing the two-way coupling between the dispersed phase and the carrier flow. The results include the temporal evolution of the three-dimensional energy and dissipation spectra and the rate of energy transfer across the energy spectrum to understand the fundamental physics of turbulence modulation, especially the effects of varying the magnitude of gravitational acceleration. The mean-square displacement and diffusivity of the droplets (or bubbles) of a given size and the preferential accumulation of droplets in low vorticity regions and bubbles in high vorticity regions will be examined in detail for different magnitudes of gravitational acceleration. These numerical results which will be compared with their corresponding measured data will provide a data base from which a subgrid-scale (SGS) model can be developed and validated for use in large-eddy simulation (LES) of particle-laden shear flows. Two parallel sets of experiments will be conducted: bubbles in an immiscible liquid and droplets in air. In both experiments homogeneous shear will be imposed on the turbulent carrier flow. The instantaneous velocities of the fluid and polydispersed-size particles (droplets or bubbles) will be measured simultaneously using a two-component Phase-Doppler Particle Analyzer (PDPA). Also, the velocity statistics and energy spectra for the carrier flow will be measured.

  13. Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres

    PubMed Central

    Deng, Mingge; Li, Xuejin; Liang, Haojun; Caswell, Bruce; Karniadakis, George Em

    2013-01-01

    Fabrication of functionalized surfaces using polymer brushes is a relatively simple process and parallels the presence of glycocalyx filaments coating the luminal surface of our vasculature. In this paper, we perform atomistic-like simulations based on dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx filaments subject to shear flow, and we apply mean-field theory to extract useful scaling arguments on their response. For polymer brushes, a weak shear flow has no effect on the brush density profile or its height, while the slip length is independent of the shear rate and is of the order of the brush mesh size as a result of screening by hydrodynamic interactions. However, for strong shear flow, the polymer brush is penetrated deeper and is deformed, with a corresponding decrease of the brush height and an increase of the slip length. The transition from the weak to the strong shear regime can be described by a simple ‘blob’ argument, leading to the scaling γ̇0 ∝ σ3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density. Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of individual polymers, causing a reversal in the direction of surface flow. To study the glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly, we find that, at low Reynolds number, the slip length decreases with the mean flow velocity, unlike the behaviour of polymer brushes, for which the slip length remains constant under similar conditions. (The slip length and brush height are measured with respect to polymer mesh size and polymer contour length, respectively.) We also performed additional DPD simulations of blood flow in a tube with walls having a glycocalyx layer and with the deformable red blood cells modelled accurately at the spectrin level. In this case, a plasma cell-free layer is formed, with thickness more than three times the glycocalyx layer. We then find our scaling arguments based on the homogeneous flow assumption to be valid for this physiologically correct case as well. Taken together, our findings point to the opposing roles of conformational entropy and bending rigidity – dominant effects for the brush and glycocalyx, respectively – which, in turn, lead to different flow characteristics, despite the apparent similarity of the two systems. PMID:24353347

  14. Linear and nonlinear dynamics of current-driven waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.

    2012-09-01

    The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.

  15. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    USGS Publications Warehouse

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  16. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  17. Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface

    NASA Astrophysics Data System (ADS)

    Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta

    2015-12-01

    A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.

  18. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau

    NASA Astrophysics Data System (ADS)

    Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia

    2014-11-01

    We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In contrast, the subslab region (i.e. depths greater than 200 km) east of 68W shows a circular pattern of a-axes centred on a region with small strength of anisotropy (Cerro Galan and its eastern edge) which suggest the dominant mechanism is a combination of slab roll back and flow driven by an overlying abnormally heated slab or possibly a slab gap. There seems to be some evidence for vertical flow below the slab at depths of 200-400 km driven by the abnormally heated slab or slab gap. This cannot be resolved by the tomographic inversion due to the lack of ray crossings in the subslab mantle.

  19. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with canopy pointing downstream). However, the shear stress shows insignificant changes as the log is being moved close to the bank.

  20. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely distributed flow and shear zones with relatively small individual displacement that might represent an immature stage of the developing North American-Caribbean plate boundary. The documented transition from ductile to brittle deformation and the localization of shearing and volcanism in the Late Eocene may be related to the focusing of inter-plate deformation in a discrete left lateral transcurrent North America-Caribbean boundary. The opening of the Cayman Through at ~49 Ma may have accelerated this process.

  1. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    PubMed Central

    Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe

    2006-01-01

    Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051

  2. Deformation of the Batestown till of the Lake Michigan lobe, Laurentide ice sheet

    USGS Publications Warehouse

    Thomason, J.F.; Iverson, N.R.

    2009-01-01

    Deep, pervasive shear deformation of the bed to high strains (>100) may have been primarily responsible for flow and sediment transport of the Lake Michigan lobe of the Laurentide ice sheet. To test this hypothesis, we sampled at 0.2 m increments a basal till from one advance of the lobe (Batestown till) along vertical profiles and measured fabrics due to both anisotropy of magnetic susceptibility and sand-grain preferred orientation. Unlike past fabric studies, interpretations were guided by results of laboratory experiments in which this till was deformed in simple shear to high strains. Fabric strengths indicate that more than half of the till sampled has a <5% probability of having been sheared to moderate strains (7-30). Secular changes in fabric azimuth over the thickness of the till, probably due to changing ice-flow direction as the lobe receded, indicate that the bed accreted with time and that the depth of deformation of the bed did not exceed a few decimeters. Orientations of principal magnetic susceptibilities show that the state of strain was commonly complex, deviating from bed-parallel simple shear. Deformation is inferred to have been focused in shallow, temporally variable patches during till deposition from ice.

  3. Some aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1990-01-01

    An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. This and other forms of the dissipation function are used to identify simple flows, such as incompressible channel flow, the potential vortex with rotational core, and incompressible, irrotational flow as minimally dissipative distributions. A comparison of the hydrodynamic and thermodynamic stability characteristics of a parallel shear flow suggests that an association exists between flow stability and the variation of net dissipation with disturbance amplitude, and that nonlinear effects, such as bounded disturbance amplitude, may be examined from a thermodynamic basis.

  4. Synchrotron Study on Crystallization Kinetics of Milk Fat under Shear Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzanti, G.; Marangoni, A; Idziak, S

    A detailed synchrotron X-ray diffraction study on the kinetics of crystallization of anhydrous milk fat (AMF) and milk fat triacylglycerols (MFT) was done in a Couette cell at 17 C, 17.5 C and 20 C under shear rates between 0 and 2880 s-1. We observed shear-induced acceleration of the transition from phase ? to ?? and the presence of crystalline orientation, but no effect of shear on the onset time of phase ? was observed. A two stage regime was observed for the growth of phase ??. The first stage follows a series-parallel system of differential equations describing the conversionmore » between liquid and crystalline phases. The second stage follows a diffusion-controlled regime. These mechanisms are consistent with the crystalline orientation, the growth of the crystalline domains and the observed displacement of the diffraction peak positions. The absence of the polar lipids explains the faster kinetics of MFT.« less

  5. The experimental basis for interpreting particle and magnetic fabrics of sheared till

    USGS Publications Warehouse

    Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.

    2008-01-01

    Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 < S1 < 0??94 for three-dimensional data). These strong, steady-state fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a necessary but insufficient criterion for confirming the model. Copyright ?? 2008 John Wiley & Sons, Ltd.

  6. Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Flemings, Peter B.; Dugan, Brandon; Germaine, John T.

    2009-10-01

    Clay-rich mass transport deposits (MTDs) in the Ursa Basin, Gulf of Mexico, record failures that mobilized along extensional failure planes and transformed into long runout flows. Failure proceeded retrogressively: scarp formation unloaded adjacent sediment causing extensional failure that drove successive scarp formation updip. This model is developed from three-dimensional seismic reflection data, core and log data from Integrated Ocean Drilling Project (IODP) Expedition 308, and triaxial shear experiments. MTDs are imaged seismically as low-amplitude zones above continuous, grooved, high-amplitude basal reflections and are characterized by two seismic facies. A Chaotic facies typifies the downdip interior, and a Discontinuous Stratified facies typifies the headwalls/sidewalls. The Chaotic facies contains discontinuous, high-amplitude reflections that correspond to flow-like features in amplitude maps: it has higher bulk density, resistivity, and shear strength, than bounding sediment. In contrast, the Discontinuous Stratified facies contains relatively dim reflections that abut against intact pinnacles of parallel-stratified reflections: it has only slightly higher bulk density, resistivity, and shear strength than bounding sediment, and deformation is limited. In both facies, densification is greatest at the base, resulting in a strong basal reflection. Undrained shear tests document strain weakening (sensitivity = 3). We estimate that failure at 30 meters below seafloor will occur when overpressure = 70% of the hydrostatic effective stress: under these conditions soil will liquefy and result in long runout flows.

  7. Low-Frequency Microinstabilities in Rotating Tokamak Plasmas.

    NASA Astrophysics Data System (ADS)

    Artun, Mehmet

    1994-01-01

    Low-frequency drift-type microinstabilities have often been suggested as the leading candidates to account for the anomalously large transport; observed in tokamak plasmas. The effects of sheared equilibrium flows on this important class of instabilities is systematically investigated in the present thesis. In particular, the analysis is carried out in two parts. In order to gain some insight into the key elements of this problem, the first part deals with the stability properties of the kinetic ion temperature gradient mode under the influence of parallel and perpendicular shear flows in a simplified sheared magnetic slab geometry. The eigenmode analysis is performed using a shooting code for long-wavelength modes (k_|rho _{i} << 1), and an integral eigenmode code for short-wavelength modes (k_ |rho_{i} ~ 1). Numerical results are cross-checked with analytical estimates in the fluid regime. While the differential analysis is mostly limited to ground state modes of the system--due to the requirement that the average perpendicular wavenumber be small--the integral eigenmode code has been used to calculate higher radial eigenmodes with confidence. New features observed through the introduction of shear flows are discussed. In the second part we present the shear flow generalization of the nonlinear electromagnetic gyrokinetic equation for realistic toroidal geometry. In accordance with the most natural choice for such studies, the coordinate frame is chosen to be shifted in velocity space and unchanged in configuration space. The natural equilibrium constraints of the toroidal problem limits the choice of the flow profile to that in which the angular velocity is a function of the flux surface. The general form of the gyrokinetic equation obtained is then used to derive the two-dimensional linear electrostatic eigenmode equation in circular toroidal geometry including trapped particle effects. In addition to magnetic trapping, electrostatic and centrifugal trapping are also found to play an important role here. A modified version of a finite element code is utilized to analyze shear flow effects on the trapped ion mode (TIM) in the long wavelength limit. Numerical results for fully coupled as well as single poloidal harmonic cases are presented. Implications of the results obtained in the present investigation are discussed and suggestions are given for future studies.

  8. Normal stresses in shear thickening granular suspensions.

    PubMed

    Pan, Zhongcheng; de Cagny, Henri; Habibi, Mehdi; Bonn, Daniel

    2017-05-24

    When subjected to shear, granular suspensions exhibit normal stresses perpendicular to the shear plane but the magnitude and sign of the different components of the normal stresses are still under debate. By performing both oscillatory and rotational rheology measurements on shear thickening granular suspensions and systematically varying the particle diameters and the gap sizes between two parallel-plates, we show that a transition from a positive to a negative normal stress can be observed. We find that frictional interactions which determine the shear thickening behavior of suspensions contribute to the positive normal stresses. Increasing the particle diameters or decreasing the gap sizes leads to a growing importance of hydrodynamic interactions, which results in negative normal stresses. We determine a relaxation time for the system, set by both the pore and the gap sizes, that governs the fluid flow through the inter-particle space. Finally, using a two-fluid model we determine the relative contributions from the particle phase and the liquid phase.

  9. Mantle Flow Induced by Subduction Beneath Taurides Mountains

    NASA Astrophysics Data System (ADS)

    Hui, H.; Sandvol, E. A.; Rey, P. F.; Brocard, G. Y.

    2017-12-01

    GPS data of Anatolian Plateau shows westward plate motion with respect to the Eurasian plate at a rate of approximately 20 mm/yr, however, the fast direction of shear-wave splitting data in Anatolian Plateau is dominantly northeast-southwest, with significant variations around the central Taurides Mountains. To address the decoupling between the deformation in the crust and in the mantle, we explore the mantle strain pattern beneath Anatoian Plateau. Numerical models of the African plate subducting beneath the Taurides have been constructed with the open source code Underworld by Louis Moresi and the Lithospheric Modeling Recipe by EarthByte Group. We have constructed a 2-D model with dimension of 400km × 480km with 60km thick plate subducting into the mantle. In our numerical model, we observe a poloidal component of the mantle flow around the edge of the subducting plate, which could be explained by straight-forward corner flow. The horizontal component of mantle flow above the subducting plate may explain the shear-wave splitting pattern that is nearly perpendicular to the trench at Anatolia. We are also working on 3-D models with dimension of 400km×400km×480km with the subducting plate width 100km. The asthenospheric mantle below the subducting plate exhibits a flow parallel to the trench, then rotates around the edge of the plate and becomes perpendicular to the trench. This mantle flow pattern may explain the shear-wave splitting directions in central Anatolia.

  10. Anisotropy in subduction zones: Insights from new source side S wave splitting measurements from India

    NASA Astrophysics Data System (ADS)

    Roy, Sunil K.; Kumar, M. Ravi; Davuluri, Srinagesh

    2017-08-01

    This study presents 106 splitting and 40 null measurements of source side anisotropy in subduction zones, utilizing direct S waves registered at two stations sited on the Indian continent, which show null shear wave splitting measurements for SKS phases. Our results suggest that trench-parallel anisotropy is dominant beneath the Philippines, Mariana, Izu-Bonin, and edge of the Java slab, while plate motion-parallel anisotropy is observed beneath the Solomon, Aegean, Japan, and Java slabs. Results from Kuril and Aleutian regions reveal trench-oblique anisotropy. We chose to interpret these observations primarily in terms of mantle flow beneath a subduction zone. While the two-dimensional (2-D) slab entrained flow model offers a simple explanation for trench-normal fast polarization azimuths (FPA), the trench-parallel FPA can be reconciled by extension due to slab rollback. The model that invokes age of the subducting lithosphere can explain anisotropy in the subslab, derived from rays recorded at the updip stations. However, when downdip stations are used, contributions from the slab and supraslab need to be considered. In Japan, anisotropy in the subslab mantle shallower than 300 km might be associated with trench-parallel mantle flow resulting in the alignment of FPA in the same direction. Anisotropy in the deeper part, above the transition zone, is probably associated with 2-D flow resulting in trench-normal FPA. Anisotropy in the Mariana Trench might be associated with trench-parallel mantle flow in the supraslab region, with similar deformation in the upper mantle and the transition zone.

  11. Nanocrystalline mirror-slip surfaces in calcite gouge sheared at sub-seismic slip rates

    NASA Astrophysics Data System (ADS)

    Verberne, B. A.; Plümper, O.; de Winter, D.; Niemeijer, A. R.; Spiers, C. J.

    2013-12-01

    If seismic-aseismic transitions in fault rocks are to be recognized from microstructures preserved in natural fault rocks, an understanding of the microphysical mechanisms that produce such microstructures is needed. We report on microstructures recovered from dry direct shear experiments on (simulated) dry calcite gouge, performed at 50 MPa normal stress, 18-150°C and low sliding velocities (0.1-10 μm/s). The mechanical data show a transition from velocity strengthening below ~80°C to velocity weakening slip at higher temperatures. We investigated both loose gouge fragments and thin sections, characterizing the microstructures at the mm- to nm-scales. All deformed samples split along a shear band fabric defined by mainly R1- and boundary shears. Viewed normal to the shear plane, these bands commonly showed shiny, elongate patches aligned, and striated, parallel to the shear direction. These patches were especially common in samples tested below 80°C, though shear band splitting was less well-developed above 80°C so that even if the shiny patches formed at higher temperature they were less frequently exposed. Scanning Electron Microscopy (SEM) applied to shiny patches formed in samples sheared at room temperature showed the presence of elongate, streaked out sub-micron-sized particles oriented parallel to the shear direction. Transmitted light optical microscopy of thin sections cut normal to the shear plane and parallel to the shear direction, combined with Focused Ion Beam (FIB) - SEM on loose gouge fragments, showed that the shiny surfaces correspond with shear bands characterized by extreme grain size reduction and sintered sub-micron-particles. Transmission Electron Microscopy (TEM) further revealed that the cores of the shear bands consist of nanocrystallites some 20 nm in size, with a Crystallographic Preferred Orientation (CPO). Our results demonstrate that mirror-like nanocrystalline slip zones can form in calcite gouge sheared at shallow crustal conditions at sub-seismic sliding velocities, in velocity strengthening as well as velocity weakening samples. This means that their presence cannot be used as a single diagnostic indicator for seismic slip in natural fault rocks. Our SEM and TEM observations suggest that, at room temperature, the frictional behavior of the shear bands is dominated by crystal plastic plus nanogranular flow mechanisms, rather than by brittle deformation processes - as inferred for frictional slip in some metals. We further suggest that it is the thermally activated nature of crystal plasticity that is responsible for the transition from velocity strengthening to velocity weakening slip that we observed at ~80°C. The inferred mechanism has important implications for understanding both the depth range of seismicity and the seismic cycle in tectonically-active carbonate terrains.

  12. Microstructural Evolution during Mid-Crustal Shear Zone Thickening and Thinning, Mount Irene Detachment Zone, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Negrini, M.; Smith, S. A. F.; Scott, J.; Rooney, J. S.; Demurtas, M.

    2016-12-01

    Recent work has shown that ductile shear zones experience cyclic variations in stress and strain rate due to, for example, elastic loading from earthquake slip on brittle faults or the presence of rigid particles and asperities within the shear zone. Such non-steady state flow conditions can promote microstructural changes including a decrease in grain sizes followed by a switch in the main deformation mechanisms. Understanding the microstructural changes that occur during non steady-state deformation is therefore critical in evaluating shear zone rheology. The Mount Irene shear zone formed during Cretaceous extension in the middle crust and was active at temperatures of 600°C and pressures of 6 kbar. The shear zone localized in a basal calcite marble layer typically 3-5 m thick containing hundreds of thin (mm-cm) calc-silicate bands that are now parallel to the shear zone boundaries. The lower boundary of the shear zone preserves meter-scale undulations that cause the shear zone to be squeezed in to regions that are <1.5 m thick. The calc-silicate bands act as "flow markers" and allow individual shear zone layers to be traced continuously through thick and thin regions, implying that the mylonites experienced cyclic variations in stress and strain rate. Calc-mylonite samples collected from the same layer close to the base of the shear zone reveal that layer thinning was accompanied by progressive microstructural changes including intense twinning, stretching and flattening of large calcite porphyroclasts as well as the development of interconnected networks of recrystallized calcite aggregates. EBSD analysis shows that the recrystallized aggregates contain polygonal calcite grains with microstructures (e.g. grain quadruple junctions) similar to those reported for neighbor-switching processes associated with grain boundary sliding and superplasticity. Ongoing and future work will utilize samples from across the full thickness of the shear zone to determine key microstructural changes and deformation mechanisms that accommodated shear zone thinning and thickening during non-steady state deformation.

  13. Clustering and flow around a sphere moving into a grain cloud.

    PubMed

    Seguin, A; Lefebvre-Lepot, A; Faure, S; Gondret, P

    2016-06-01

    A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.

  14. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.

    1999-01-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.

  15. Evidence for Seismic and Aseismic Slip along a Foreland Thrust Fault, Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Newman, J.; Wells, R. K.; Holyoke, C. W.; Wojtal, S. F.

    2013-12-01

    Studies of deformation along ancient thrust faults form the basis for much of our fundamental understanding of fault and shear zone processes. These classic studies interpreted meso- and microstructures as formed during aseismic creep. Recent experimental studies, and studies of naturally deformed rocks in seismically active regions, reveal similar microstructures to those observed locally in a carbonate foreland thrust from the southern Appalachians, suggesting that this thrust fault preserves evidence of both seismic and aseismic deformation. The Copper Creek thrust, TN, accommodated 15-20 km displacement, at depths of 4-6 km, as estimated from balanced cross-sections. At the Diggs Gap exposure of the Copper Creek thrust, an approximately 2 cm thick, vein-like shear zone separates shale layers in the hanging wall and footwall. The shear zone is composed of anastomosing layers of ultrafine-grained calcite and/or shale as well as aggregate clasts of ultrafine-grained calcite or shale. The boundary between the shear zone and the hanging wall is sharp, with slickensides along the boundary, parallel to the shear zone movement direction. A 350 μm-thick layer of ultrafine-grained calcite separates the shear zone and the footwall. Fault parallel and perpendicular calcite veins are common in the footwall and increase in density towards the shear zone. Microstructures within the vein-like shear zone that are similar to those observed in experimental studies of unstable slip include: ultrafine-grained calcite (~0.34 μm), nano-aggregate clasts (100-300 nm), injection structures, and vein-wrapped and matrix-wrapped clasts. Not all structures within the shear zone and ultrafine-grained calcite layer suggest seismic slip. Within the footwall veins and calcite aggregate clasts within the shear zone, pores at twin-twin intersections suggest plasticity-induced fracturing as the main mechanism for grain size reduction. Interpenetrating grain boundaries in ultrafine-grained calcite and a lack of a lattice preferred orientation suggest ultrafine-grained calcite deformed by diffusion creep accommodated grain boundary sliding. These structures suggest a strain-rate between 10-15 - 10-11 s-1, using calcite flow laws at temperatures 150-250 °C. Microstructures suggest both seismic and aseismic slip along this ancient fault zone. During periods of aseismic slip, deformation is accommodated by plasticity-induced fracturing and diffusion creep. Calcite veins suggest an increase in pore-fluid pressure, contributing to fluidized and unstable flow, but also providing the calcite that deformed by diffusion creep during aseismic creep.

  16. Algorithm implementation on the Navier-Stokes computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krist, S.E.; Zang, T.A.

    1987-03-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  17. Algorithm implementation on the Navier-Stokes computer

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Zang, Thomas A.

    1987-01-01

    The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.

  18. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.

    PubMed

    Park, Seungman

    2017-09-01

    Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). The present computational models will provide new tools for predicting accurate functional properties and designing fibrous porous materials, thereby significantly advancing tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of colloidal nanosilica on the rheological properties of epoxy resins filled with organoclay.

    PubMed

    Nguyen, Dinh Huong; Song, Gwang Seok; Lee, Dai Soo

    2011-05-01

    The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.

  20. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow.

    PubMed Central

    Tempelman, L A; Hammer, D A

    1994-01-01

    The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 8 FIGURE 10 PMID:8038394

  1. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.

    PubMed

    Shojaaee, Zahra; Roux, Jean-Noël; Chevoir, François; Wolf, Dietrich E

    2012-07-01

    We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and strain localized near the walls, and finally (C) a state with broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall. Both transitions are independent of system size and occur for specific values of V. Transient times are discussed. We show that the first transition, between regimes A and B, can be deduced from constitutive laws identified for the bulk material and the boundary layer, while the second one could be associated with an instability in the behavior of the boundary layer. The boundary zone constitutive law, however, is observed to depend on the state of the bulk material nearby.

  2. Turbulence modeling of free shear layers for high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Sondak, Douglas L.

    1993-01-01

    The High Performance Aircraft (HPA) Grand Challenge of the High Performance Computing and Communications (HPCC) program involves the computation of the flow over a high performance aircraft. A variety of free shear layers, including mixing layers over cavities, impinging jets, blown flaps, and exhaust plumes, may be encountered in such flowfields. Since these free shear layers are usually turbulent, appropriate turbulence models must be utilized in computations in order to accurately simulate these flow features. The HPCC program is relying heavily on parallel computers. A Navier-Stokes solver (POVERFLOW) utilizing the Baldwin-Lomax algebraic turbulence model was developed and tested on a 128-node Intel iPSC/860. Algebraic turbulence models run very fast, and give good results for many flowfields. For complex flowfields such as those mentioned above, however, they are often inadequate. It was therefore deemed that a two-equation turbulence model will be required for the HPA computations. The k-epsilon two-equation turbulence model was implemented on the Intel iPSC/860. Both the Chien low-Reynolds-number model and a generalized wall-function formulation were included.

  3. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  4. Synchronized Molecular-Dynamics simulation for thermal lubrication of a polymeric liquid between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2015-11-01

    The Synchronized Molecular-Dynamics simulation which was recently proposed by authors is applied to the analysis of polymer lubrication between parallel plates. In the SMD method, the MD simulations are assigned to small fluid elements to calculate the local stresses and temperatures and are synchronized at certain time intervals to satisfy the macroscopic heat- and momentum-transport equations.The rheological properties and conformation of the polymer chains coupled with local viscous heating are investigated with a non-dimensional parameter, the Nahme-Griffith number, which is defined as the ratio of the viscous heating to the thermal conduction at the characteristic temperature required to sufficiently change the viscosity. The present simulation demonstrates that strong shear thinning and a transitional behavior of the conformation of the polymer chains are exhibited with a rapid temperature rise when the Nahme-Griffith number exceeds unity.The results also clarify that the reentrant transition of the linear stress-optical relation occurs for large shear stresses due to the coupling of the conformation of polymer chains with heat generation under shear flows. This study was financially supported by JSPS KAKENHI Grant Nos. 26790080 and 26247069.

  5. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  6. Sound radiated by the interaction of non-homogeneous turbulence on a transversely sheared flow with leading and trailing edges of semi-infinite flat plate

    NASA Astrophysics Data System (ADS)

    Afsar, Mohammed; Sassanis, Vasilis

    2017-11-01

    The small amplitude unsteady motion on a transversely sheared mean flow is determined by two arbitrary convected quantities with a particular choice of gauge in which the Fourier transform of the pressure is linearly-related to a scalar potential whose integral solution can be written in terms of one of these convected quantities. This formulation becomes very useful for studying Rapid-distortion theory problems involving solid surface interaction. Recent work by Goldstein et al. (JFM, 2017) has shown that the convected quantities are related to the turbulence by exact conservation laws, which allow the upstream boundary conditions for interaction of a turbulent shear flow with a solid-surface (for example) to be derived self-consistently with appropriate asymptotic separation of scales. This result requires the imposition of causality on an intermediate variable within the conservation laws that represents the local particle displacement. In this talk, we use the model derived in Goldstein et al. for trailing edge noise and compare it to leading edge noise on a semi-infinite flat plate positioned parallel to the level curves of the mean flow. Since the latter represents the leading order solution for the aerofoil interaction problem, these results are expected to be generic. M.Z.A. would also like to thank Strathclyde University for financial support from the Chancellor's Fellowship.

  7. Influence of vein fabric on strain distribution and fold kinematics

    NASA Astrophysics Data System (ADS)

    Torremans, Koen; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Abundant pre-folding, bedding-parallel fibrous dolomite veins in shale are found associated with the Nkana-Mindola stratiform Cu-Co deposit in the Central African Copperbelt, Zambia. These monomineralic veins extend for several meters along strike, with a fibrous infill orthogonal to low-tortuosity vein walls. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. Subsequently, these veins were folded. In this study, we aim to constrain the kinematic fold mechanism by which strain is accommodated in these veins, estimate paleorheology at time of deformation and investigate the influence of vein fabric on deformation during folding. Finally, the influence of the deformation on known metallogenetic stages is assessed. Various deformation styles are observed, ultimately related to vein attitude across tight to close lower-order, hectometre-scale folds. In fold hinges, at low to average dips, veins are (poly-)harmonically to disharmonically folded as parasitic folds in single or multilayer systems. With increasing distance from the fold hinge, parasitic fold amplitude decreases and asymmetry increases. At high dips in the limbs, low-displacement duplication thrusts of veins at low angles to bedding are abundant. Slickenfibres and slickenlines are sub-perpendicular to fold hinges and shallow-dipping slickenfibre-step lineations are parallel to local fold hinge lines. A dip isogon analysis of reconstructed fold geometries prior to homogeneous shortening reveals type 1B parallel folds for the veins and type 1C for the matrix. Two main deformation mechanisms are identified in folded veins. Firstly, undulatory extinction, subgrains and fluid inclusions planes parallel the fibre long axis, with deformation intensity increasing away from the fold hinges, indicate intracrystalline strain accumulation. Secondly, intergranular deformation through bookshelf rotation of fibres, via collective parallel rotation of fibres and shearing along fibre grain boundaries, is clearly observed under cathodoluminescence. We analysed the internal strain distribution by quantifying simple shear strain caused by deflection of the initially orthogonal fibres relative to layer inclination at a given position across the fold. Shear angle, and thus shear strain, steadily increases towards the limbs away from the fold hinge. Comparison of observed shear strain to theoretical distribution for kinematic mechanisms, amongst other lines of evidence, clearly points to pure flexural flow followed by homogeneous shortening. As flexural flow is not the expected kinematic folding mechanism for competent layers in an incompetent shale matrix, our analysis shows that the internal vein fabric in these dolomite veins can exhibit a first-order influence on folding mechanisms. In addition, quantitative analysis shows that these veins acted as rigid objects with high viscosity contrast relative to the incompetent carbonaceous shale, rather than as semi-passive markers. Later folding-related syn-orogenic veins, intensely mineralised with Cu-Co sulphides, are strongly related to deformation of these pre-folding veins. The high viscosity contrast created by the pre-folding fibrous dolomite veins was therefore essential in creating transient permeability for subsequent mineralising stages in the veining history.

  8. Equilibrium structure of the plasma sheet boundary layer-lobe interface

    NASA Technical Reports Server (NTRS)

    Romero, H.; Ganguli, G.; Palmadesso, P.; Dusenbery, P. B.

    1990-01-01

    Observations are presented which show that plasma parameters vary on a scale length smaller than the ion gyroradius at the interface between the plasma sheet boundary layer and the lobe. The Vlasov equation is used to investigate the properties of such a boundary layer. The existence, at the interface, of a density gradient whose scale length is smaller than the ion gyroradius implies that an electrostatic potential is established in order to maintain quasi-neutrality. Strongly sheared (scale lengths smaller than the ion gyroradius) perpendicular and parallel (to the ambient magnetic field) electron flows develop whose peak velocities are on the order of the electron thermal speed and which carry a net current. The free energy of the sheared flows can give rise to a broadband spectrum of electrostatic instabilities starting near the electron plasma frequency and extending below the lower hybrid frequency.

  9. Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.

    PubMed

    Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H

    2011-02-25

    Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society

  10. Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows

    NASA Technical Reports Server (NTRS)

    Schwab, John R.; Lakshminarayana, Budugur

    1994-01-01

    A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.

  11. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  12. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  13. Flow properties of liquid crystal phases of the Gay-Berne fluid

    NASA Astrophysics Data System (ADS)

    Sarman, Sten

    1998-05-01

    We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.

  14. Flow in the shallow mantle in the westernmost Mediterranean: insights from xenoliths in Plio-Pleistocene alkali basalts from the eastern Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Konc, Zoltán; Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Vauchez, Alain; Padrón Navarta, José Alberto; Marchesi, Claudio; Acosta-Vigil, Antonio; Szabó, Csaba; Varas-Reus, Maria Isabel

    2016-04-01

    Peridotite mantle xenoliths in Plio-Pleistocene alkali basalts of the eastern Betic Cordillera (Cartagena area, Murcia, SE Spain) provide a snapshot of the structure and composition of the lithospheric mantle at the northern limb of the Alpine Betic-Rif arched belt in the westernmost Mediterranean. The xenoliths are spinel and plagioclase lherzolite with minor harzburgite and wehrlite, displaying porphyroclastic to equigranular textures. Regardless of composition and texture, the Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation and a girdle distribution of [010]-axes with a maximum normal to the peridotite foliation. This CPO pattern is consistent with ductile deformation accommodated by dislocation creep with dominant activation of the high temperature {0kl}[100] olivine slip system, indicative of deformation by simple shear or combinations of simple shear and pure shear with a transtensional component. Calculated seismic properties are characterized by fast propagation of P-waves and polarization of fast S-waves parallel to olivine [100]-axis, indicating the flow direction. SKS and Pn anisotropy in the eastern Betics can be explained by a lithospheric mantle peridotite with similar fabric to the one displayed by the studied mantle xenoliths. Considering the limited thickness of the mantle lithosphere in the Betics (40-80 km), the measured azimuths and delays of SKS waves in the eastern Betics are consistent with a steeply dipping mantle foliation and a subhorizontal lineation with ENE strike. This geometry of the lithospheric fabrics implies active or frozen mantle flow with a dominantly strike-slip component subparallel to the paleo-Iberian margin. Synkinematic overprinting of mineral assemblages from the garnet-spinel to the plagioclase facies demonstrates 36-40 km uplift continuously accommodated by ductile shear thinning of the lithospheric mantle. Coeval deformation of orthopyroxene in veins of composite xenoliths, formed by reactive percolation of subduction-related Si-rich melts/fluids, suggests that this deformation occurred in the late Neogene.

  15. Time-dependent rheological behavior of natural polysaccharide xanthan gum solutions in interrupted shear and step-incremental/reductional shear flow fields

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Song, Ki-Won

    2015-11-01

    The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.

  16. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    PubMed Central

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  17. Shear-induced Long Range Order in Diblock Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Ding, Xuan; Russell, Thomas

    2007-03-01

    Shear is a well-established means of aligning block copolymer micro-domains in bulk; cylinder-forming block copolymers respond by orienting cylinder axes parallel to the flow direction, and macroscopic specimens with near-single-crystal texture can be obtained. A stepper motor is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. With the combination of a stepper motor and several gear boxes in our experiment, we can control the rotating resolution to be as small as 1 x10-4 degree/step. Also, with the help of a customized computer program we can control the motor speed in a very systematical way. By changing parameters such as the weight (or the uniform pressure) and the lateral force we can carry on experiment to examine the effect of lateral shear on different polymer systems such as PS-b-PEO (large χ) and PS-b-P2VP (small χ).

  18. Rheology of wet granular materials under continuous shear: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Badetti, Michel; Fall, Abdoulaye; Roux, Jean-Noël

    2017-06-01

    The behaviour of wet granular media in shear flow is characterized by the dependence of apparent friction μ* and solid fraction Φs on the reduced pressure P* and the inertia number I. Reduced pressure, P* = σ22a2/F0, compares the applied normal stress σ22 on grains of diameter a to the tensile strength of contact F0 (proportional to the surface tension D of the liquid and the beads diameter). A specifically modified rotational rheometer is used to characterize the response of model wet granular material to applied shear rate \\dot γ under controlled normal stress σ22. Discrete Element Method (DEM) simulations in 3D are carried out in parallel and numerical results are compared with experimental ones. Cohesive, inertia, saturation and viscous effects on macroscopic coefficient of friction μ* and solid fraction Φs are discussed.

  19. Emission of Sound from Turbulence Convected by a Parallel Mean Flow in the Presence of a Confining Duct

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Leib, Stewart J.

    1999-01-01

    An approximate method for calculating the noise generated by a turbulent flow within a semi-infinite duct of arbitrary cross section is developed. It is based on a previously derived high-frequency solution to Lilley's equation, which describes the sound propagation in a transversely-sheared mean flow. The source term is simplified by assuming the turbulence to be axisymmetric about the mean flow direction. Numerical results are presented for the special case of a ring source in a circular duct with an axisymmetric mean flow. They show that the internally generated noise is suppressed at sufficiently large upstream angles in a hard walled duct, and that acoustic liners can significantly reduce the sound radiated in both the upstream and downstream regions, depending upon the source location and Mach number of the flow.

  20. Emission of Sound From Turbulence Convected by a Parallel Mean Flow in the Presence of a Confining Duct

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Leib, Stewart J.

    1999-01-01

    An approximate method for calculating the noise generated by a turbulent flow within a semi-infinite duct of arbitrary cross section is developed. It is based on a previously derived high-frequency solution to Lilley's equation, which describes the sound propagation in transversely-sheared mean flow. The source term is simplified by assuming the turbulence to be axisymmetric about the mean flow direction. Numerical results are presented for the special case of a ring source in a circular duct with an axisymmetric mean flow. They show that the internally generated noise is suppressed at sufficiently large upstream angles in a hard walled duct, and that acoustic liners can significantly reduce the sound radiated in both the upstream and downstream regions, depending upon the source location and Mach number of the flow.

  1. Effects of Mean Flow Profiles on the Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, NandaKishore; Parthasarathy, Ramkumar N.

    2004-01-01

    The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.

  2. Basic experimental study of the coupling between flow instabilities and incident sound

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.

    1984-03-01

    Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.

  3. Basic experimental study of the coupling between flow instabilities and incident sound

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.

    1984-01-01

    Whether a solid trailing edge is required to produce efficient coupling between sound and instability waves in a shear layer was investigated. The differences found in the literature on the theoretical notions about receptivity, and a need to resolve them by way of well-planned experiments are discussed. Instability waves in the shear layer of a subsonic jet, excited by a point sound source located external to the jet, were first visualized using an ensemble averaging technique. Various means were adopted to shield the sound reaching the nozzle lip. It was found that the low frequency sound couples more efficiently at distances downstream of the nozzle. To substantiate the findings further, a supersonic screeching jet was tested such that it passed through a small opening in a baffle placed parallel to the exit plane. The measured feedback or screech frequencies and also the excited flow disturbances changed drastically on traversing the baffle axially thus providing a strong indication that a trailing edge is not necessary for efficient coupling between sound and flow.

  4. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.

    PubMed

    Nollert, M U; Diamond, S L; McIntire, L V

    1991-09-01

    Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.

  5. Modes of orogen-parallel stretching and extensional exhumation in response to microplate indentation and roll-back subduction (Tauern Window, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Scharf, A.; Handy, M. R.; Favaro, S.; Schmid, S. M.; Bertrand, A.

    2013-09-01

    The Tauern Window exposes a Paleogene nappe stack consisting of highly metamorphosed oceanic (Alpine Tethys) and continental (distal European margin) thrust sheets. In the eastern part of this window, this nappe stack (Eastern Tauern Subdome, ETD) is bounded by a Neogene system of shear (the Katschberg Shear Zone System, KSZS) that accommodated orogen-parallel stretching, orogen-normal shortening, and exhumation with respect to the structurally overlying Austroalpine units (Adriatic margin). The KSZS comprises a ≤5-km-thick belt of retrograde mylonite, the central segment of which is a southeast-dipping, low-angle extensional shear zone with a brittle overprint (Katschberg Normal Fault, KNF). At the northern and southern ends of this central segment, the KSZS loses its brittle overprint and swings around both corners of the ETD to become subvertical, dextral, and sinistral strike-slip faults. The latter represent stretching faults whose displacements decrease westward to near zero. The kinematic continuity of top-east to top-southeast ductile shearing along the central, low-angle extensional part of the KSZS with strike-slip shearing along its steep ends, combined with maximum tectonic omission of nappes of the ETD in the footwall of the KNF, indicates that north-south shortening, orogen-parallel stretching, and normal faulting were coeval. Stratigraphic and radiometric ages constrain exhumation of the folded nappe complex in the footwall of the KSZS to have begun at 23-21 Ma, leading to rapid cooling between 21 and 16 Ma. This exhumation involved a combination of tectonic unroofing by extensional shearing, upright folding, and erosional denudation. The contribution of tectonic unroofing is greatest along the central segment of the KSZS and decreases westward to the central part of the Tauern Window. The KSZS formed in response to the indentation of wedge-shaped blocks of semi-rigid Austroalpine basement located in front of the South-Alpine indenter that was part of the Adriatic microplate. Northward motion of this indenter along the sinistral Giudicarie Belt offsets the Periadriatic Fault and triggered rapid exhumation of orogenic crust within the entire Tauern Window. Exhumation involved strike-slip and normal faulting that accommodated about 100 km of orogen-parallel extension and was contemporaneous with about 30 km of orogen-perpendicular, north-south shortening of the ETD. Extension of the Pannonian Basin related to roll-back subduction in the Carpathians began at 20 Ma, but did not affect the Eastern Alps before about 17 Ma. The effect of this extension was to reduce the lateral resistance to eastward crustal flow away from the zone of greatest thickening in the Tauern Window area. Therefore, we propose that roll-back subduction temporarily enhanced rather than triggered exhumation and orogen-parallel motion in the Eastern Alps. Lateral extrusion and orogen-parallel extension in the Eastern Alps have continued from 12 to 10 Ma to the present and are driven by northward push of Adria.

  6. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  7. Seismic anisotropy in the Hellenic subduction zone: Effects of slab segmentation and subslab mantle flow

    NASA Astrophysics Data System (ADS)

    Evangelidis, C. P.

    2017-12-01

    The segmentation and differentiation of subducting slabs have considerable effects on mantle convection and tectonics. The Hellenic subduction zone is a complex convergent margin with strong curvature and fast slab rollback. The upper mantle seismic anisotropy in the region is studied focusing at its western and eastern edges in order to explore the effects of possible slab segmentation on mantle flow and fabrics. Complementary to new SKS shear-wave splitting measurements in regions not adequately sampled so far, the source-side splitting technique is applied to constrain the depth of anisotropy and to densify measurements. In the western Hellenic arc, a trench-normal subslab anisotropy is observed near the trench. In the forearc domain, source-side and SKS measurements reveal a trench-parallel pattern. This indicates subslab trench-parallel mantle flow, associated with return flow due to the fast slab rollback. The passage from continental to oceanic subduction in the western Hellenic zone is illustrated by a forearc transitional anisotropy pattern. This indicates subslab mantle flow parallel to a NE-SW smooth ramp that possibly connects the two subducted slabs. A young tear fault initiated at the Kefalonia Transform Fault is likely not entirely developed, as this trench-parallel anisotropy pattern is observed along the entire western Hellenic subduction system, even following this horizontal offset between the two slabs. At the eastern side of the Hellenic subduction zone, subslab source-side anisotropy measurements show a general trench-normal pattern. These are associated with mantle flow through a possible ongoing tearing of the oceanic lithosphere in the area. Although the exact geometry of this slab tear is relatively unknown, SKS trench-parallel measurements imply that the tear has not reached the surface yet. Further exploration of the Hellenic subduction system is necessary; denser seismic networks should be deployed at both its edges in order to achieve a more definite image of the structure and geodynamics of this area.

  8. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  9. Zonal PANS: evaluation of different treatments of the RANS-LES interface

    NASA Astrophysics Data System (ADS)

    Davidson, L.

    2016-03-01

    The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.

  10. Dynamic recrystallization during deformation of polycrystalline ice: insights from numerical simulations

    PubMed Central

    Griera, Albert; Steinbach, Florian; Bons, Paul D.; Jansen, Daniela; Roessiger, Jens; Lebensohn, Ricardo A.

    2017-01-01

    The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure shear flattening at the top to simple shear near the base of the sheets. We present a series of two-dimensional numerical simulations that couple ice deformation with DRX of various intensities, paying special attention to the effect of boundary conditions. The simulations show how similar orientations of c-axis maxima with respect to the finite deformation direction develop regardless of the amount of DRX and applied boundary conditions. In pure shear this direction is parallel to the maximum compressional stress, while it rotates towards the shear direction in simple shear. This leads to strain hardening and increased activity of non-basal slip systems in pure shear and to strain softening in simple shear. Therefore, it is expected that ice is effectively weaker in the lower parts of the ice sheets than in the upper parts. Strain-rate localization occurs in all simulations, especially in simple shear cases. Recrystallization suppresses localization, which necessitates the activation of hard, non-basal slip systems. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025295

  11. Dynamic recrystallization during deformation of polycrystalline ice: insights from numerical simulations.

    PubMed

    Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D; Gomez-Rivas, Enrique; Jansen, Daniela; Roessiger, Jens; Lebensohn, Ricardo A; Weikusat, Ilka

    2017-02-13

    The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure shear flattening at the top to simple shear near the base of the sheets. We present a series of two-dimensional numerical simulations that couple ice deformation with DRX of various intensities, paying special attention to the effect of boundary conditions. The simulations show how similar orientations of c-axis maxima with respect to the finite deformation direction develop regardless of the amount of DRX and applied boundary conditions. In pure shear this direction is parallel to the maximum compressional stress, while it rotates towards the shear direction in simple shear. This leads to strain hardening and increased activity of non-basal slip systems in pure shear and to strain softening in simple shear. Therefore, it is expected that ice is effectively weaker in the lower parts of the ice sheets than in the upper parts. Strain-rate localization occurs in all simulations, especially in simple shear cases. Recrystallization suppresses localization, which necessitates the activation of hard, non-basal slip systems.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  12. Deformation of Tibetan Crust and Mantle and the Uplift of the Plateau: Insights from Broadband Surface Waves

    NASA Astrophysics Data System (ADS)

    Agius, M. R.; Lebedev, S.

    2013-12-01

    Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet is still debated, with very different end-member models advocated to this day. Uncertainties over the anomalies in seismic tomography models contribute to the uncertainty of their interpretations, ranging from the subduction of India as far as northern Tibet to subduction of Asia there and to extreme viscous thickening of the entire Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted northern and eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface (which implies different uplift mechanisms). Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both isotropic-average shear-wave speeds (proxies for composition and temperature) and the radial and azimuthal shear-wave anisotropy (indicative of the patterns of deformation and flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements, made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by series of non-linear inversions, yielding depth-dependent ranges of shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity ones using accurate petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath large portions of Tibet. Estimated thermal anomalies within the high-velocity features match those expected for subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.

  13. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2016-09-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  14. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  15. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    PubMed Central

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps. PMID:19936926

  16. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  17. Vortex Shedding from a Vibrating Cable with Attached Spherical Bodies in a Linear Shear Flow.

    DTIC Science & Technology

    1982-10-27

    correlation and strengthened parallel vo:tex shedding. The test model used in the present study was a flexible cable. The vortex street wake behind a vibrating...pattern, different tha. the characteristic patterns associated with either the stationary or vibrating locked-on vortex street wakes was observed... vortex shedding to the vibration of a rigid or flexible cylinder has been explored by Griffin [17]. He presents a model for a universal wake Strouhal

  18. The Kelvin-Helmhotz instability and thin current sheets in the MHD and Hall MHD formalisms

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D.

    2005-12-01

    Sheared magnetic fields and sheared flows co-exist in many space, astrophysical, and laboratory plasmas. In such situations the evolution of the Kelvin-Helmhotz instability (KHI) can have a significant impact on the topology of the magnetic field. In particular, it can result in current sheet thinning [2,3], which may allow Hall scales to become relevant and result in fast reconnection rates [1]. There are a number of interesting applications of this phenomena in the magnetosphere. We will discuss some of our recent work in this area [1,2,3] with special focus on Hall MHD effects on the KHI [1]. As an example, we will discuss the parameter regime in which the 2-D parallel KHI can evolve for sub-Alfvenic flows [1]. This may have important implication for dayside reconnection in the magnetopause. [1] Chacon, Knoll, and Finn, Phys. Lett. A, vol. 308, 2003 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Brackbill and Knoll, PRL, vol. 86, 2001

  19. A New Parallel Boundary Condition for Turbulence Simulations in Stellarators

    NASA Astrophysics Data System (ADS)

    Martin, Mike F.; Landreman, Matt; Dorland, William; Xanthopoulos, Pavlos

    2017-10-01

    For gyrokinetic simulations of core turbulence, the ``twist-and-shift'' parallel boundary condition (Beer et al., PoP, 1995), which involves a shift in radial wavenumber proportional to the global shear and a quantization of the simulation domain's aspect ratio, is the standard choice. But as this condition was derived under the assumption of axisymmetry, ``twist-and-shift'' as it stands is formally incorrect for turbulence simulations in stellarators. Moreover, for low-shear stellarators like W7X and HSX, the use of a global shear in the traditional boundary condition places an inflexible constraint on the aspect ratio of the domain, requiring more grid points to fully resolve its extent. Here, we present a parallel boundary condition for ``stellarator-symmetric'' simulations that relies on the local shear along a field line. This boundary condition is similar to ``twist-and-shift'', but has an added flexibility in choosing the parallel length of the domain based on local shear consideration in order to optimize certain parameters such as the aspect ratio of the simulation domain.

  20. Effect of Blood Shear Forces on Platelet Mediated Thrombosis Inside Arterial Stenosis.

    NASA Astrophysics Data System (ADS)

    Maalej, Nabil

    Shear induced activation of platelets plays a major role in the onset of thrombosis in atherosclerotic arteries. Blood hemodynamics and its effect on platelet kinetics has been studied mainly in in vitro and in ex vivo experiments. We designed new in vivo methods to study blood hemodynamic effects on platelet kinetics in canine stenosed carotid arteries. A carotid artery-jugular vein anastomotic shunt was produced. Intimal damage and controlled variations in the degree of stenosis were produced on the artery. An inflatable cuff was placed around the jugular vein to control vascular resistance. An electromagnetic flowmeter was used to measure blood flow. Doppler ultrasound crystals were used to measure the velocity profiles inside and distal to the stenosis. Stenosis geometry was obtained using digital subtraction angiography and quantitative arteriography. Using these measurements we calculated the wall shear stress using the finite difference solution of the Navier-Stokes equations. To study platelet kinetics, autologous platelets were labeled with Indium Oxine and injected IV. A collimated Nal gamma counter was placed over the stenosis to detect radio-labeled platelet accumulation as platelet mediated thrombi formed in the stenosis. The radioactive count rate increased in an inverse parallel fashion to the decline in flow rate during thrombus formation. The platelet accumulation increased with the increase of percent stenosis and was maximal at the narrow portion of the stenosis. Acute thrombus formation leading to arterial occlusion was only observed for stenosis higher than 70 +/- 5%. Platelet accumulation rate was not significant until the pressure gradient across the stenosis exceeded 40 +/- 10 mmHg. Totally occlusive thrombus formation was only observed for shear stresses greater than a critical value of 100 +/- 10 Pa. Beyond this critical value acute platelet thrombus formation increased exponentially with shear. Increased shear stresses were found to overcome the antithrombotic effect of aspirin. Critical levels of shear might be produced clinically at sites of arterial lesions by a sudden change in blood hemodynamics or flow geometry. This may put a patient with arterial stenosis at greater risk of acute thrombus formation leading to stroke or myocardial infarction.

  1. A parallel Discrete Element Method to model collisions between non-convex particles

    NASA Astrophysics Data System (ADS)

    Rakotonirina, Andriarimina Daniel; Delenne, Jean-Yves; Wachs, Anthony

    2017-06-01

    In many dry granular and suspension flow configurations, particles can be highly non-spherical. It is now well established in the literature that particle shape affects the flow dynamics or the microstructure of the particles assembly in assorted ways as e.g. compacity of packed bed or heap, dilation under shear, resistance to shear, momentum transfer between translational and angular motions, ability to form arches and block the flow. In this talk, we suggest an accurate and efficient way to model collisions between particles of (almost) arbitrary shape. For that purpose, we develop a Discrete Element Method (DEM) combined with a soft particle contact model. The collision detection algorithm handles contacts between bodies of various shape and size. For nonconvex bodies, our strategy is based on decomposing a non-convex body into a set of convex ones. Therefore, our novel method can be called "glued-convex method" (in the sense clumping convex bodies together), as an extension of the popular "glued-spheres" method, and is implemented in our own granular dynamics code Grains3D. Since the whole problem is solved explicitly, our fully-MPI parallelized code Grains3D exhibits a very high scalability when dynamic load balancing is not required. In particular, simulations on up to a few thousands cores in configurations involving up to a few tens of millions of particles can readily be performed. We apply our enhanced numerical model to (i) the collapse of a granular column made of convex particles and (i) the microstructure of a heap of non-convex particles in a cylindrical reactor.

  2. Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team

    2018-05-01

    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.

  3. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric flow. This is consistent with an upward flow from below the thick lithosphere of the Siberian Craton to below the thinner lithosphere of central Mongolia, likely to give rise to decompression melting and the scattered, sporadic volcanism observed in the Baikal Rift area, as proposed previously. Inversion of phase-velocity data from west-central Italy for azimuthal anisotropy reveals a clear change in the shear-wave fast-propagation direction at 70-100 km depths, near the lithosphere-asthenosphere boundary. The orientation of the fabric in the lithosphere is roughly E-W, parallel to the direction of stretching over the last 10 m.y. The orientation of the fabric in the asthenosphere is NW-SE, matching the fast directions inferred from shear-wave splitting and probably indicating the direction of the asthenospheric flow.

  4. The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-dimensional Study of Nonlinear Evolution

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Jones, T. W.; Frank, Adam

    2000-12-01

    We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.

  5. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  6. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    NASA Astrophysics Data System (ADS)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  7. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  8. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  9. Compact forced simple-shear sample for studying shear localization in materials

    DOE PAGES

    Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica

    2015-11-06

    In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less

  10. Exsolution of Ca-clinopyroxene from orthopyroxene aided by deformation

    USGS Publications Warehouse

    Kirby, S.H.; Etheridge, M.A.

    1981-01-01

    Monoclinic calcium-poor shear-transformation lamellae and calcium-rich exsolution lamellae occur parallel to (100) in orthopyroxene. The formation of both structures from an orthopyroxene host involves a shear on (100) parallel to [001], with additional cation exchange in the exsolution case. The shear transformation involves a macroscopic simple shear angle of 13.3?? (shear strain of 0.236) and produces a specific a-axis orientation with respect to the sense of shear; we have found that this orientation dominates in exsolution lamellae in kinked orthopyroxene, where the sense of shear is known. In undeformed orthopyroxene, there is generally no preferred sense of orientation of the monoclinic a axes. We advance a specific model for exsolution involving nucleation and growth by shear transformation combined with cation exchange, thus circumventing the classical nucleation barrier and permitting exsolution at lower solute supersaturations. ?? 1981 Springer-Verlag.

  11. Interaction of monopoles, dipoles, and turbulence with a shear flow

    NASA Astrophysics Data System (ADS)

    Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2016-09-01

    Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.

  12. Fluid mechanics based classification of the respiratory efficiency of several nasal cavities.

    PubMed

    Lintermann, Andreas; Meinke, Matthias; Schröder, Wolfgang

    2013-11-01

    The flow in the human nasal cavity is of great importance to understand rhinologic pathologies like impaired respiration or heating capabilities, a diminished sense of taste and smell, and the presence of dry mucous membranes. To numerically analyze this flow problem a highly efficient and scalable Thermal Lattice-BGK (TLBGK) solver is used, which is very well suited for flows in intricate geometries. The generation of the computational mesh is completely automatic and highly parallelized such that it can be executed efficiently on High Performance Computers (HPCs). An evaluation of the functionality of nasal cavities is based on an analysis of pressure drop, secondary flow structures, wall-shear stress distributions, and temperature variations from the nostrils to the pharynx. The results of the flow fields of three completely different nasal cavities allow their classification into ability groups and support the a priori decision process on surgical interventions. © 2013 Elsevier Ltd. All rights reserved.

  13. ISCFD Nagoya 1989 - International Symposium on Computational Fluid Dynamics, 3rd, Nagoya, Japan, Aug. 28-31, 1989, Technical Papers

    NASA Astrophysics Data System (ADS)

    Recent advances in computational fluid dynamics are discussed in reviews and reports. Topics addressed include large-scale LESs for turbulent pipe and channel flows, numerical solutions of the Euler and Navier-Stokes equations on parallel computers, multigrid methods for steady high-Reynolds-number flow past sudden expansions, finite-volume methods on unstructured grids, supersonic wake flow on a blunt body, a grid-characteristic method for multidimensional gas dynamics, and CIC numerical simulation of a wave boundary layer. Consideration is given to vortex simulations of confined two-dimensional jets, supersonic viscous shear layers, spectral methods for compressible flows, shock-wave refraction at air/water interfaces, oscillatory flow in a two-dimensional collapsible channel, the growth of randomness in a spatially developing wake, and an efficient simplex algorithm for the finite-difference and dynamic linear-programming method in optimal potential control.

  14. Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2016-11-01

    Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaezi, P.; Holland, C.; Thakur, S. C.

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  16. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Brett Edward

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0more » $$\\vec{J}$$∙$$\\vec{B}$$/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP.« less

  17. Synergistic Impact of Nicotine and Shear Stress Induces Cytoskeleton Collapse and Apoptosis in Endothelial Cells.

    PubMed

    Lee, Yu-Hsiang; Chen, Ruei-Siang; Chang, Nen-Chung; Lee, Kueir-Rarn; Huang, Chien-Tsai; Huang, Yu-Ching; Ho, Feng-Ming

    2015-09-01

    Nicotine is the major component in cigarette smoke and has been recognized as a risk factor for various cardiovascular diseases such as atherosclerosis. However, the definite pathogenesis of nicotine-mediated endothelial dysfunction remains unclear because hemodynamic factor in most of prior in vitro studies was excluded. To understand how nicotine affects endothelium in the dynamic environment, human umbilical vein endothelial cells were treated by different laminar shear stresses (LSS; 0, 6, 8, and 12 dynes cm(-2)) with and without 10(-4) M nicotine for 12 h in a parallel plate flow system, following detections of cellular morphology and apoptotic level. Our results showed that cells sheared by 12 dynes cm(-2) LSS with nicotine excessively elongated and aligned with the flow direction, and exhibited significant apoptosis as compared to the groups with nicotine or LSS alone. We reasoned that the irregular morphological rearrangement and elevated apoptosis were resulted from the interruption of mechanostasis due to cytoskeletal collapse. Furthermore, all the impaired responses can be rescued by treatment with free radical scavenger ascorbic acid (10(-4) M), indicating oxidative stress was likely mediated with the impairments. In summary, our findings demonstrated an essential role of LSS in nicotine-mediated endothelial injury occurring in the physiological environment.

  18. On the self-organizing process of large scale shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li

    2013-09-15

    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less

  19. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  20. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    PubMed Central

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-01

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling. PMID:25637963

  1. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  2. Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.

    2012-10-01

    It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.

  3. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Poulipoulis, G.; Throumoulopoulos, G. N.; Konz, C.

    2016-07-01

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  4. International Symposium on Numerical Methods in Engineering, 5th, Ecole Polytechnique Federale de Lausanne, Switzerland, Sept. 11-15, 1989, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul

    Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.

  5. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  6. 3D Lagrangian VPM: simulations of the near-wake of an actuator disc and horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Berdowski, T.; Ferreira, C.; Walther, J.

    2016-09-01

    The application of a 3-dimensional Lagrangian vortex particle method has been assessed for modelling the near-wake of an axisymmetrical actuator disc and 3-bladed horizontal axis wind turbine with prescribed circulation from the MEXICO (Model EXperiments In COntrolled conditions) experiment. The method was developed in the framework of the open- source Parallel Particle-Mesh library for handling the efficient data-parallelism on a CPU (Central Processing Unit) cluster, and utilized a O(N log N)-type fast multipole method for computational acceleration. Simulations with the actuator disc resulted in a wake expansion, velocity deficit profile, and induction factor that showed a close agreement with theoretical, numerical, and experimental results from literature. Also the shear layer expansion was present; the Kelvin-Helmholtz instability in the shear layer was triggered due to the round-off limitations of a numerical method, but this instability was delayed to beyond 1 diameter downstream due to the particle smoothing. Simulations with the 3-bladed turbine demonstrated that a purely 3-dimensional flow representation is challenging to model with particles. The manifestation of local complex flow structures of highly stretched vortices made the simulation unstable, but this was successfully counteracted by the application of a particle strength exchange scheme. The axial and radial velocity profile over the near wake have been compared to that of the original MEXICO experiment, which showed close agreement between results.

  7. Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core

    NASA Astrophysics Data System (ADS)

    Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.

    2016-12-01

    A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.

  8. The temporal evolution of the resistive pressure-gradient-driven turbulence and anomalous transport in shear flow across the magnetic field

    NASA Astrophysics Data System (ADS)

    Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir

    2017-10-01

    The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.

  9. A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Moldenaers, Paula; Clasen, Christian

    2011-03-01

    A new generation of the "flexure-based microgap rheometer" (the N-FMR) has been developed which is also capable of measuring, in addition to the shear stress, the first normal stress difference of micrometer thin fluid films. This microgap rheometer with a translation system based on compound spring flexures measures the rheological properties of microliter samples of complex fluids confined in a plane couette configuration with gap distances of h = 1-400 μm up to shear rates of dot γ = 3000 s-1. Feed back loop controlled precise positioning of the shearing surfaces with response times <1 ms enables to control the parallelism within 1.5 μrad and to maintain the gap distance within 20 nm. This precise gap control minimizes squeeze flow effects and allows therefore to measure the first normal stress difference N1 of the thin film down to a micrometer gap distance, with a lower limit of {{N_1 }/{dot γ }} = 9.375 × 10^{ - 11} {η/{h^2 }} that depends on the shear viscosity η and the squared inverse gap. Structural development of complex fluids in the confinement can be visualized by using a beam splitter on the shearing surface and a long working distance microscope. In summary, this new instrument allows to investigate the confinement dependent rheological and morphological evolution of micrometer thin films.

  10. Seismic anisotropy and mantle flow below subducting slabs

    NASA Astrophysics Data System (ADS)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth < 50 km) - suggesting a separate region of anisotropy in the lithospheric slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  11. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.

    PubMed

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L

    2018-06-01

    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.

  12. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating.

    PubMed

    Zhao, Jisong

    2018-05-17

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.

  13. Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating

    PubMed Central

    Zhao, Jisong

    2018-01-01

    Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822

  14. Hydrodynamic Stability Analysis on Sheared Stratified Flow in a Convective Flow Environment

    NASA Astrophysics Data System (ADS)

    Xiao, Yuan; Lin, Wenxian; Armfiled, Steven; Kirkpatrick, Michael; He, Yinghe; Fluid Dynamics Research Group, James Cook University Team; Fluid Dynamics Research Group, University of Sydney Team

    2014-11-01

    A hydrodynamic stability analysis on the convective sheared boundary layer (SCBL) flow, where a sheared stratified flow and a thermally convective flow coexist, is carried out in this study. The linear unstable stratifications representing the convective flow are included in the TaylorGoldstein equations as an unstable factor Jb. A new unstable region corresponding to the convective instability, which is not present in pure sheared stratified flows, is found with the analysis. It is also found that the boundaries of the convective instability regions expand with increasing Jb and interact with the sheared stratified instability region. More results will be presented at the conference

  15. Transient shear banding in the nematic dumbbell model of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Corbett, D.

    2018-05-01

    In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.

  16. The emergence of asymmetric normal fault systems under symmetric boundary conditions

    NASA Astrophysics Data System (ADS)

    Schöpfer, Martin P. J.; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Nicol, Andrew; Grasemann, Bernhard

    2017-11-01

    Many normal fault systems and, on a smaller scale, fracture boudinage often exhibit asymmetry with one fault dip direction dominating. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing. Moreover, domains of parallel faults are frequently used to infer the presence of a décollement. Using Distinct Element Method (DEM) modelling we show, that asymmetric fault systems can emerge under symmetric boundary conditions. A statistical analysis of DEM models suggests that the fault dip directions and system polarities can be explained using a random process if the strength contrast between the brittle layer and the surrounding material is high. The models indicate that domino and shear band boudinage are unreliable shear-sense indicators. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults alone.

  17. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    DOE PAGES

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; ...

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s –1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less

  18. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  19. Ultrasound characteristics of wood fracture surfaces

    Treesearch

    W.A. Côté; R.B. Hanna

    1983-01-01

    This study concentrated on the ultrastructural characteristics of hardwood ftacture surfaces, but it included southern yellow pine as a representative softwood for comparison. Very small specimens were made, tested for impression parallel to the grain, tension parallel to the grain, shear in the radial plane and shear in the tangential plane, and were then prepared for...

  20. Turbulence modeling in simulation of gas-turbine flow and heat transfer.

    PubMed

    Brereton, G; Shih, T I

    2001-05-01

    The popular k-epsilon type two-equation turbulence models, which are calibrated by experimental data from simple shear flows, are analyzed for their ability to predict flows involving shear and an extra strain--flow with shear and rotation and flow with shear and streamline curvature. The analysis is based on comparisons between model predictions and those from measurements and large-eddy simulations of homogenous flows involving shear and an extra strain, either from rotation or from streamline curvature. Parameters are identified, which show the conditions under which performance of k-epsilon type models can be expected to be poor.

  1. Rheology of dilute cohesive granular gases

    NASA Astrophysics Data System (ADS)

    Takada, Satoshi; Hayakawa, Hisao

    2018-04-01

    Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter of clusters.

  2. Non-linear isotope and fast ions effects: routes for low turbulence in DT plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, Jeronimo

    2017-10-01

    The isotope effect, i.e. the fact that heat and particle fluxes do not follow the expected Gyro-Bohm estimate for turbulent transport when the plasma mass is changed, is one of the main challenges in plasma theory. Of particular interest is the isotope exchange between the fusion of deuterium (DD) and deuterium-tritium (DT) nuclei as there are no clear indications of what kind of transport difference can be expected in burning plasmas. The GENE code is therefore used for computing DD vs DT linear and nonlinear microturbulence characteristics in the core plasma region of a previously ITER hybrid scenario at high beta obtained in the framework of simplified integrated modelling. Scans on common turbulence related quantitates as external ExB flow shear, Parallel Velocity Gradient (PVG), plasma beta, colisionality or the number of ion species have been performed. Additionally, the role of energetic particles, known to reduce Ion Temperature Gradient (ITG) turbulence has been also addressed. It is obtained that the ITER operational point will be close to threshold and in these conditions turbulence is dominated by ITG modes. A purely weak non-linear isotope effect, absent in linear scans, can be found when separately adding moderate ExB flow shear or electromagnetic effects, whereas collisionality just modulates the intensity. The isotope effect, on the other hand, becomes very strong in conditions with simultaneously moderate ExB flow shear, beta and low q profile with significant reductions of ion heat transport from DD to DT. By analyzing the radial structure of the two point electrostatic potential correlation function it has been found that the inherent Gyro-Bohm scaling for plasma microturbulence, which increases the radial correlation length at short scales form DD to DT, is counteracted by the concomitant appearance of a complex nonlinear multiscale space interaction involving external ExB flow shear, zonal flow activity, magnetic geometry and electromagnetic effects. The number of ion species and the fast ion population is also found to play a role in this non-linear process whereas a symmetry breaking between D and T, with systematic reduced heat and particle transport for T, is always obtained.

  3. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.

    PubMed

    Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy

    2009-02-01

    In this paper, we present a framework based on the generalized lattice Boltzmann equation (GLBE) using multiple relaxation times with forcing term for eddy capturing simulation of wall-bounded turbulent flows. Due to its flexibility in using disparate relaxation times, the GLBE is well suited to maintaining numerical stability on coarser grids and in obtaining improved solution fidelity of near-wall turbulent fluctuations. The subgrid scale (SGS) turbulence effects are represented by the standard Smagorinsky eddy viscosity model, which is modified by using the van Driest wall-damping function to account for reduction of turbulent length scales near walls. In order to be able to simulate a wider class of problems, we introduce forcing terms, which can represent the effects of general nonuniform forms of forces, in the natural moment space of the GLBE. Expressions for the strain rate tensor used in the SGS model are derived in terms of the nonequilibrium moments of the GLBE to include such forcing terms, which comprise a generalization of those presented in a recent work [Yu, Comput. Fluids 35, 957 (2006)]. Variable resolutions are introduced into this extended GLBE framework through a conservative multiblock approach. The approach, whose optimized implementation is also discussed, is assessed for two canonical flow problems bounded by walls, viz., fully developed turbulent channel flow at a shear or friction Reynolds number (Re) of 183.6 based on the channel half-width and three-dimensional (3D) shear-driven flows in a cubical cavity at a Re of 12 000 based on the side length of the cavity. Comparisons of detailed computed near-wall turbulent flow structure, given in terms of various turbulence statistics, with available data, including those from direct numerical simulations (DNS) and experiments showed good agreement. The GLBE approach also exhibited markedly better stability characteristics and avoided spurious near-wall turbulent fluctuations on coarser grids when compared with the single-relaxation-time (SRT)-based approach. Moreover, its implementation showed excellent parallel scalability on a large parallel cluster with over a thousand processors.

  4. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  5. A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.

    PubMed

    Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D

    2014-08-28

    It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.

  6. Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment.

    PubMed

    Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C

    2012-10-12

    Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  8. Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps)

    NASA Astrophysics Data System (ADS)

    Rolland, Y.; Rossi, M.

    2016-11-01

    The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the precipitation of quartz, epidote and muscovite from a local fluid hosted in the Helvetic cover. These two fluids advocate for the presence of an upper-crustal scaled fluid convection cell, with up-going fluids through the lower crust and likely down-going fluids in the 15 km upper crust.

  9. Early stages of transition in viscosity-stratified channel flow

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Jose, Sharath; Brandt, Luca

    2013-11-01

    In parallel shear flows, it is well known that transition to turbulence usually occurs through a subcritical process. In this work we consider a flow through a channel across which there is a linear temperature variation. The temperature gradient leads to a viscosity variation across the channel. A large body of work has been done in the linear regime for this problem, and it has been seen that viscosity stratification can lead to considerable changes in stability and transient growth characteristics. Moreover contradictory effects of introducing a non uniform viscosity in the system have been reported. We conduct a linear stability analysis and direct numerical simulations (DNS) for this system. We show that the optimal initial structures in the viscosity-stratified case, unlike in unstratified flow, do not span the width of the channel, but are focussed near one wall. The nonlinear consequences of the localisation of the structures will be discussed.

  10. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  11. Experimental Study of the Vortex-Induced Vibration of Drilling Risers under the Shear Flow with the Same Shear Parameter at the Different Reynolds Numbers

    PubMed Central

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment. PMID:25118607

  12. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    PubMed

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  13. The Effect of a Shear Flow on the Uptake of LDL and Ac-LDL by Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Niwa, Koichi; Karino, Takeshi

    The effects of a shear flow on the uptake of fluorescence-labeled low-density lipoprotein (DiI-LDL), acetylated LDL (DiI-Ac-LDL), and lucifer yellow (LY; a tracer of fluid-phase endocytosis) by cultured bovine aortic ECs were studied using a rotating-disk shearing apparatus. It was found that 2hours’ exposure of ECs to a laminar shear flow that imposed ECs an area-mean shear stress of 10dynes/cm2 caused an increase in the uptake of DiI-LDL and LY. By contrast, the uptake of DiI-Ac-LDL was decreased by exposure of the ECs to a shear flow. Addition of dextran sulfate (DS), a competitive inhibitor of scavenger receptors, reversed the effect of a shear flow on the uptake of DiI-Ac-LDL, resulting in an increase by the imposition of a shear flow, while the uptake of DiI-LDL and LY remained unaffected. It was concluded that a shear flow promotes the endocytosis of DiI-LDL and LY by ECs, but suppresses the uptake of DiI-Ac-LDL by ECs by inhibiting scavenger receptor-mediated endocytosis.

  14. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  15. Molecular shear heating and vortex dynamics in thermostatted two dimensional Yukawa liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Akanksha; Ganesh, Rajaraman, E-mail: ganesh@ipr.res.in; Joy, Ashwin

    2016-07-15

    It is well known that two-dimensional macroscale shear flows are susceptible to instabilities leading to macroscale vortical structures. The linear and nonlinear fate of such a macroscale flow in a strongly coupled medium is a fundamental problem. A popular example of a strongly coupled medium is a dusty plasma, often modelled as a Yukawa liquid. Recently, laboratory experiments and molecular dynamics (MD) studies of shear flows in strongly coupled Yukawa liquids indicated the occurrence of strong molecular shear heating, which is found to reduce the coupling strength exponentially leading to the destruction of macroscale vorticity. To understand the vortex dynamicsmore » of strongly coupled molecular fluids undergoing macroscale shear flows and molecular shear heating, MD simulation has been performed, which allows the macroscopic vortex dynamics to evolve, while at the same time “removes” the microscopically generated heat without using the velocity degrees of freedom. We demonstrate that by using a configurational thermostat in a novel way, the microscale heat generated by shear flow can be thermostatted out efficiently without compromising the large scale vortex dynamics. In the present work, using MD simulations, a comparative study of shear flow evolution in Yukawa liquids in the presence and absence of molecular or microscopic heating is presented for a prototype shear flow, namely, Kolmogorov flow.« less

  16. Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.

    PubMed

    Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik

    2018-01-01

    to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.

  17. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  18. Evolution of allowable stresses in shear for lumber

    Treesearch

    Robert L. Ethington; William L. Galligan; Henry M. Montrey; Alan D. Freas

    1979-01-01

    This paper surveys research leading to allowable shear stress parallel to grain for lumber. In early flexure tests of lumber, some pieces failed in shear. The estimated shear stress at time of failure was generally lower than shear strength measured on small, clear, straight-grained specimens. This and other engineering observations gave rise to adjustments that...

  19. Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2018-04-01

    Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.

  20. Free turbulent shear flows. Volume 2: Summary of data

    NASA Technical Reports Server (NTRS)

    Birch, S. F.

    1973-01-01

    The proceedings of a conference on free turbulent shear flows are presented. Objectives of the conference are as follows: (1) collect and process data for a variety of free mixing problems, (2) assess present theoretical capability for predicting mean velocity, concentration, and temperature distributions in free turbulent flows, (3) identify and recommend experimental studies to advance knowledge of free shear flows, and (4) increase understanding of basic turbulent mixing process for application to free shear flows. Examples of specific cases of jet flow are included.

  1. Modeling and measuring non-Newtonian shear flows of soft interfaces

    NASA Astrophysics Data System (ADS)

    Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir

    2017-11-01

    Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.

  2. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  3. Is fault surface roughness indicative of fault mechanisms? Observations from experimental Limestone faults

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Tesei, T.; Collettini, C.

    2016-12-01

    Geometrical irregularity of contacting surfaces is a fundamental factor controlling friction and energy dissipation during sliding. We performed direct shear experiments on 20x20 cm limestone surfaces by applying constant normal load (40-200 kN) and sliding velocity 1-300 µm/s. Before shearing, the surfaces were polished with maximal measured amplitudes of less than 0.1 mm. After shear, elongated islands of shear zones are observed, characterized by grooves ploughed into the limestone surfaces and by layers of fine grain wear. These structures indicate that the contact areas during shear are scattered and occupy a limited portion of the entire surface area. The surfaces was scanned by a laser profilometer that measures topography using 640 parallel beams in a single run, offer up to 10 µm accuracy and working ranges of 200 mm. Two distinctive types of topographical end members are defined: rough wavy sections and smooth polished ones. The rough zones display ridges with typical amplitudes of 0.1-1 mm that cross the grooves perpendicular to the slip direction. These features are associated with penetrative brittle damage and with fragmentation. The smoother zones display reflective mirror-like surfaces bordered by topographical sharp steps at heights of 0.3-0.5 mm. These sections are localized inside the wear layer or between the wear layer and the host rock, and are not associated with observed penetrative damage. Preliminary statistical analysis suggests that the roughness of the ridges zones can be characterized using a power-low relationship between profile length and mean roughness, with relatively high values of Hurst exponents (e.g. H > 0.65) parallel to the slip direction. The polished zones, on the other hand, corresponded to lower values of Hurst exponents (e.g. H ≤ 0.6). Both structural and roughness measurements indicate that the distinctive topographic variations on the surfaces reflect competing mechanical processes which occur simultaneously during shear. The wavy ridged zone is the surface expression of penetrative cracking and fragmentation which widen the shear zone, while the smooth zones reflect localized flow and plastic deformation of the wear material. The similarity in topography of shear structures between experimental and natural faults suggests similar mechanical processes.

  4. Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marín-Santibáñez, Benjamín M.; Pérez-González, José, E-mail: jpg@esfm.ipn.mx; Rodríguez-González, Francisco

    2014-11-01

    The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shearmore » stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.« less

  5. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the eigenvalue problem for the physically relevant vanishing Neumann boundary conditions in linear-shear channel flow. We show that the life of the corresponding modes at large Pe for this case is shorter than the ones arising from shear free zones in the fluid's interior. A WKBJ study of the latter modes provides a longer intermediate time evolution. This part of the analysis is technical, as the corresponding spectrum is dominated by asymptotically coalescing turning points in the limit of large Pe numbers. When large scale initial data components are present, the transient regime of the WKBJ (anomalous) modes evolves into one governed by Taylor dispersion. This is studied by a regular perturbation expansion of the spectrum in the small wavenumber regimes.

  6. Viscous roots of active seismogenic faults revealed by geologic slip rate variations

    NASA Astrophysics Data System (ADS)

    Cowie, P. A.; Scholz, C. H.; Roberts, G.; Faure Walker, J.; Steer, P.

    2013-12-01

    Viscous flow at depth contributes to elastic strain accumulation along seismogenic faults during both post-seismic and inter-seismic phases of the earthquake cycle. Evaluating the importance of this contribution is hampered by uncertainties regarding (i) the extent to which viscous deformation occurs in shear zones or by distributed flow within the crust and/or upper mantle, and (ii) the value of the exponent, n, in the flow law that relates strain rate to applied stress. Geodetic data, rock deformation experiments, and field observations of exhumed (inactive) faults provide strong evidence for non-linear viscous flow but may not fully capture the long term, in situ behaviour of active fault zones. Here we demonstrate that strain rates derived from Holocene offsets on seismogenic normal faults in the actively uplifting and extending central and southern Italian Apennines may be used to address this issue. The measured strain rates, averaged over a time scale of 104 years, exhibit a well-defined power-law dependence on topographic elevation with a power-law exponent ≈ 3.0 (2.7 - 3.4 at 95% CI; 2.3 - 4.0 at 99% CI). Contemporary seismicity indicates that the upper crust in this area is at the threshold for frictional failure within an extensional stress field and therefore differential stress is directly proportional to elevation. Our data thus imply a relationship between strain rate and stress that is consistent with non-linear viscous flow, with n ≈ 3, but because the measurements are derived from slip along major crustal faults they do not represent deformation of a continuum. We know that, down-dip of the seismogenic part of active faults, cataclasis, hydrous alteration, and shear heating all contribute to grain size reduction and material weakening. These processes initiate localisation at the frictional-viscous transition and the development of mylonitic shear zones within the viscous regime. Furthermore, in quartzo-feldspathic crust, mylonites form a fabric of mineral segregated layers parallel to shear with their strength controlled by the weakest phase: quartz. Using a published flow law for wet quartz calibrated for mylonitic rocks to fit the strain rates across individual fault zones (~5 km wide), we estimate a lower bound on the temperature of the deforming material using our data. This temperature is reached at or just below the base of the seismogenic zone, as constrained by regional surface heat flow data and the depth distribution of crustal seismicity. We conclude that it is the rate of viscous flow in quartz-rich mylonitic shear zones, not distributed flow within the lower crust and/or upper mantle, which modulates the Holocene slip rates on the up-dip seismogenic part of the faults in this area. Our observations support the idea that the irregular, stick-slip movement of brittle faults, and hence earthquake recurrence, are ultimately modulated by down-dip viscous flow over multiple earthquake cycles.

  7. Towards a Better Understanding of the Hydrologic Setting of the Nubian Sandstone Aquifer System: Inferences from Groundwater Flow Models, CL-36 Ages, and GRACE Data

    NASA Astrophysics Data System (ADS)

    Sultan, M.; Mohamed, A.; Yan, E.; Ahmed, E.; Sturchio, N. C.

    2015-12-01

    The Nubian Sandstone Aquifer System (NSAS), one of the largest (area: ~2×106 km2) groundwater systems worldwide, is formed of three major sub-basins: Kufra (Libya, NE Chad and NW Sudan), Dakhla (Egypt), and N. Sudan Platform (Sudan). To determine the mean residence time of water in the aquifer, the connectivity of its sub-basins and the groundwater flow across these sub-basins have to be understood. An integrated approach was adopted to address these issues using: (1) a regional calibrated groundwater flow model that simulates early (>10,000 years) steady-state conditions under wet climatic periods, and later (<10,000 years) transient conditions under arid condition; (2) 36Cl ages, and (3) GRACE solutions. Our findings include: (1) the NSAS was recharged (recharge: plains: 2-7 mm/yr; highlands 10-27 mm/yr) in the previous wet climatic periods on a regional scale, yet its outcrops are still receiving in dry periods appreciable precipitation over the highlands and modest (3.04±1.10 km3/yr) local recharge; (2) a progressive increase in 36Cl groundwater ages were observed along groundwater flow directions and along structures that are sub-parallel to the groundwater flow direction; (3) the NE-SW Pelusium shear zone provides a preferred groundwater flow pathway from the Kufra to the Dakhla sub-basin as evidenced by the relatively high hydraulic conductivities and relatively younger ages of groundwater along the shear zone compared to the groundwater ages in areas surrounding the shear zone; (4) the E-W trending Uweinat-Aswan basement uplift impedes groundwater flow from the N-Sudan Platform sub-basin as evidenced by the difference in groundwater isotopic compositions across the uplift, the depletion in GRACE-derived total water storage north but not south, of the uplift, and groundwater ages that are indicative of autochthonous precipitation and recharge over the Dakhla sub-basin. Our findings provide valuable insights into optimum ways for the utilization of the NSAS.Keywords: NSAS, Groundwater flow model, Ages data, isotopic data

  8. Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap

    NASA Astrophysics Data System (ADS)

    Jadamec, M.; Fischer, K. M.

    2012-12-01

    In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.

  9. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  10. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    NASA Astrophysics Data System (ADS)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  11. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  12. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The results of the numerical model indicate that bands form when buoyancy forces are large and that these can significantly alter the direction of the flow of liquid away from vertical. The bands form at angles similar to the angle of maximum instantaneous growth rate. Consequently, for strongly strain-rate dependent rheology, there may be two sets of bands formed that are symmetric about the direction of maximum compressive stress in the background mantle flow. This second set of bands would reduce the efficiency with which melt bands would focus melts towards the ridge axis.

  13. Magnetohydrodynamic pressure drop and flow balancing of liquid metal flow in a prototypic fusion blanket manifold

    NASA Astrophysics Data System (ADS)

    Rhodes, Tyler J.; Smolentsev, Sergey; Abdou, Mohamed

    2018-05-01

    Understanding magnetohydrodynamic (MHD) phenomena associated with the flow of electrically conducting fluids in complex geometry ducts subject to a strong magnetic field is required to effectively design liquid metal (LM) blankets for fusion reactors. Particularly, accurately predicting the 3D MHD pressure drop and flow distribution is important. To investigate these topics, we simulate a LM MHD flow through an electrically non-conducting prototypic manifold for a wide range of flow and geometry parameters using a 3D MHD solver, HyPerComp incompressible MHD solver for arbitrary geometry. The reference manifold geometry consists of a rectangular feeding duct which suddenly expands such that the duct thickness in the magnetic field direction abruptly increases by a factor rexp. Downstream of the sudden expansion, the LM is distributed into several parallel channels. As a first step in qualifying the flow, a magnitude of the curl of the induced Lorentz force was used to distinguish between inviscid, irrotational core flows and boundary and internal shear layers where inertia and/or viscous forces are important. Scaling laws have been obtained which characterize the 3D MHD pressure drop and flow balancing as a function of the flow parameters and the manifold geometry. Associated Hartmann and Reynolds numbers in the computations were ˜103 and ˜101-103, respectively, while rexp was varied from 4 to 12. An accurate model for the pressure drop was developed for the first time for inertial-electromagnetic and viscous-electromagnetic regimes based on 96 computed cases. Analysis shows that flow balance can be improved by lengthening the distance between the manifold inlet and the entrances of the parallel channels by utilizing the effect of flow transitioning to a quasi-two-dimensional state in the expansion region of the manifold.

  14. Understanding the impact of insulating and conducting endplate boundary conditions on turbulence in CSDX through nonlocal simulations

    DOE PAGES

    Vaezi, P.; Holland, C.; Thakur, S. C.; ...

    2017-04-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  15. L-H transitions driven by ion heating in scrape-off layer turbulence (SOLT) model simulations

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; D'Ippolito, D. A.; Myra, J. R.

    2015-11-01

    The original SOLT model now includes the evolution of ion pressure consistent with drift-ordering. It is a two-dimensional, electrostatic reduced model wherein closure relations, obtained by integrating the equations along the B-field, model parallel physics that includes sheath-mediated current and heat flux in the scrape-off-layer and electron drift waves inside the separatrix. Low (L) and high (H) confinement regimes are observed in SOLT simulations, depending on the strength of an ion pressure (i.e., ion heating) source localized inside the separatrix: With increasing heating, particle and energy confinement times at first decrease in the L-mode then rise in the H-mode. The L-H transition is marked by distinct changes in sheared-flow profiles. The addition of ion pressure dynamics enables modeling the self-consistent interaction between the ion diamagnetic drift and the radial electric field (mean and zonal flows). The roles of these sheared flows in mediating the L-H transition are explored. A new diagnostic, based on the density correlation function, is applied to study blob velocities in different regimes. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-97ER54392.

  16. Microalga propels along vorticity direction in a shear flow

    NASA Astrophysics Data System (ADS)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  17. Numerical solution of supersonic three-dimensional free-mixing flows using the parabolic-elliptic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hirsh, R. S.

    1976-01-01

    A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.

  18. Effects of planar shear on the three-dimensional instability in flow past a circular cylinder

    NASA Astrophysics Data System (ADS)

    Park, Doohyun; Yang, Kyung-Soo

    2018-03-01

    A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.

  19. Shear Wave Wavefront Mapping Using Ultrasound Color Flow Imaging.

    PubMed

    Yamakoshi, Yoshiki; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-10-01

    A wavefront reconstruction method for a continuous shear wave is proposed. The method uses ultrasound color flow imaging (CFI) to detect the shear wave's wavefront. When the shear wave vibration frequency satisfies the required frequency condition and the displacement amplitude satisfies the displacement amplitude condition, zero and maximum flow velocities appear at the shear wave vibration phases of zero and π rad, respectively. These specific flow velocities produce the shear wave's wavefront map in CFI. An important feature of this method is that the shear wave propagation is observed in real time without addition of extra functions to the ultrasound imaging system. The experiments are performed using a 6.5 MHz CFI system. The shear wave is excited by a multilayer piezoelectric actuator. In a phantom experiment, the shear wave velocities estimated using the proposed method and those estimated using a system based on displacement measurement show good agreement. © The Author(s) 2015.

  20. Visualization and Analysis of Biomaterial-Centered Thrombus Formation within a Defined Crevice Under Flow

    PubMed Central

    Jamiolkowski, Megan A.; Pedersen, Drake D.; Wu, Wei-Tao; Antaki, James F.; Wagner, William R.

    2016-01-01

    The blood flow pathway within a device, together with the biomaterial surfaces and status of the patient’s blood, are well-recognized factors in the development of thrombotic deposition and subsequent embolization. Blood flow patterns are of particular concern for devices such as blood pumps (i.e. ventricular assist devices, VADs) where shearing forces can be high, volumes are relatively large, and the flow fields can be complex. However, few studies have examined the effect of geometric irregularities on thrombus formation on clinically relevant opaque materials under flow. The objective of this study was to quantify human platelet deposition onto Ti6Al4V alloys, as well as positive and negative control surfaces, in the region of defined crevices (~50–150 µm in width) that might be encountered in many VADs or other cardiovascular devices. To achieve this, reconstituted fresh human blood with hemoglobin-depleted red blood cells (to achieve optical clarity while maintaining relevant rheology), long working optics, and a custom designed parallel plate flow chamber were employed. The results showed that the least amount of platelet deposition occurred in the largest crevice size examined, which was counterintuitive. The greatest levels of deposition occurred in the 90 µm and 53 µm crevices at the lower wall shear rate. The results suggest that while crevices may be unavoidable in device manufacturing, the crevice size might be tailored, depending on the flow conditions, to reduce the risk of thromboembolic events. Further, these data might be used to improve the accuracy of predictive models of thrombotic deposition in cardiovascular devices to help optimize the blood flow path and reduce device thrombogenicity. PMID:27156141

  1. Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.

    2016-08-15

    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less

  2. Inverse design of centrifugal compressor vaned diffusers in inlet shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangeneh, M.

    1996-04-01

    A three-dimensional inverse design method in which the blade (or vane) geometry is designed for specified distributions of circulation and blade thickness is applied to the design of centrifugal compressor vaned diffusers. Two generic diffusers are designed, one with uniform inlet flow (equivalent to a conventional design) and the other with a sheared inlet flow. The inlet shear flow effects are modeled in the design method by using the so-called ``Secondary Flow Approximation`` in which the Bernoulli surfaces are convected by the tangentially mean inviscid flow field. The difference between the vane geometry of the uniform inlet flow and nonuniformmore » inlet flow diffusers is found to be most significant from 50 percent chord to the trailing edge region. The flows through both diffusers are computed by using Denton`s three-dimensional inviscid Euler solver and Dawes` three-dimensional Navier-Stokes solver under sheared in-flow conditions. The predictions indicate improved pressure recovery and internal flow field for the diffuser designed for shear inlet flow conditions.« less

  3. Production of Gas Bubbles in Reduced Gravity Environments

    NASA Technical Reports Server (NTRS)

    Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki

    1996-01-01

    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.

  4. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  5. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  6. Towards enhancing and delaying disturbances in free shear flows

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.

    1994-01-01

    The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work.

  7. Subduction of the Indian lithosphere beneath Tibet and deformation of the Tibetan crust and mantle, imaged with broad-band surface waves

    NASA Astrophysics Data System (ADS)

    Agius, Matthew R.; Lebedev, Sergei

    2013-04-01

    Seismic deployments over the last two decades have produced dense broadband data coverage across the Tibetan Plateau. Yet, the lithospheric dynamics of Tibet remains enigmatic, with even its basic features debated and with very different end-member models still advocated today. Most body-wave tomographic models do not resolve any high-velocity anomalies in the upper mantle beneath central and northern Tibet, which motivated the inference that the Indian lithosphere may sink into deep mantle beneath the Himalayas in the south, with parts of it possibly extruded laterally eastward. In contrast, surface-wave tomographic models all show pronounced high-velocity anomalies beneath much of Tibet at depths around 200 km. Uncertainties over the shapes and amplitudes of the anomalies, however, contribute to the uncertainty of their interpretations, ranging from the subduction of India or Asia to the extreme viscous thickening of the Tibetan lithosphere. Within the lithosphere itself, a low-viscosity layer in the mid-lower crust is evidenced by many observations. It is still unclear, however, whether this layer accommodates a large-scale channel flow (which may have uplifted eastern Tibet, according to one model) or if, instead, deformation within it is similar to that observed at the surface. Broad-band surface waves provide resolving power from the upper crust down to the asthenosphere, for both the isotropic-average shear-wave speeds (characterising the composition and thermal state of the lithosphere) and the radial and azimuthal shear-wave anisotropy (indicative, in an actively deforming region, of the current and recent flow). We measured highly accurate Love- and Rayleigh-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of inter-station measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of non-linear inversions, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy consistent with the data. Temperature anomalies in the upper mantle were estimated from shear-velocity using pre-computed petro-physical relationships. Azimuthal anisotropy in the crust and upper mantle was determined by surface-wave tomography and, also, by sub-array analysis targeting the anisotropy amplitude. Our results show that the prominent high-velocity anomalies in the upper mantle are most consistent with the presence of subducted Indian lithosphere beneath much of Tibet. The large estimated thermal anomalies within the high-velocity features match those to be expected within subducted India. The morphology of India's subduction beneath Tibet is complex and shows pronounced west-east variations. Beneath eastern and northeastern Tibet, in particular, the subducted Indian lithosphere appears to have subducted, at a shallow angle, hundreds of km NNE-wards. Azimuthal anisotropy beneath Tibet is distributed in multiple layers with different fast-propagations directions, which accounts for the complexity of published shear-wave splitting observations. The fast directions within the mid-lower crust are parallel to the extensional components of the current strain rate field at the surface, consistent with similar deformation through the entire ­crust, rather than channel flow. Anisotropy within the asthenosphere beneath northeastern Tibet (sandwiched between the Tibetan lithosphere above and the subducted Indian lithosphere below) indicates SSW-NNE flow, parallel to the direction of motion of the Indian Plate, including its subducted leading edge.

  8. Cholesteric-nematic transitions induced by a shear flow and a magnetic field

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Makarov, D. V.; Novikov, A. A.

    2017-10-01

    The untwisting of the helical structure of a cholesteric liquid crystal under the action of a magnetic field and a shear flow has been studied theoretically. Both factors can induce the cholesteric-nematic transition independently; however, the difference in the orienting actions of the magnetic field and the shear flow leads to competition between magnetic and hydrodynamic mechanisms of influence on the cholesteric liquid crystal. We have analyzed different orientations of the magnetic field relative to the direction of the flow in the shear plane. In a number of limiting cases, the analytic dependences are obtained for the pitch of the cholesteric helix deformed by the shear flow. The phase diagrams of the cholesteric-nematic transitions and the pitch of the cholesteric helix are calculated for different values of the magnetic field strength and the angle of orientation, the flow velocity gradient, and the reactive parameter. It is shown that the magnetic field stabilizes the orientation of the director in the shear flow and expands the boundaries of orientability of cholesterics. It has been established that the shear flow shifts the critical magnetic field strength of the transition. It is shown that a sequence of reentrant orientational cholesteric-nematic-cholesteric transitions can be induced by rotating the magnetic field in certain intervals of its strength and shear flow velocity gradients.

  9. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  10. Were the world's youngest eclogites (NW D'Entrecasteaux Islands, Papua New Guinea) exhumed in rising gneiss domes or by shear on a deep-seated fault?

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Hacker, B.; Seward, G.

    2008-12-01

    The up to ~2.5 km-high gneiss domes of the NW D'Entrecasteaux Islands of Papua New Guinea host the world's youngest terrane of HP (eclogite-facies, ~2-4 Ma) to UHP (coesite-bearing) gneissic rocks (~8 Ma). Previous models for their exhumation at >2 cm/yr have called upon: 1) buoyant rise of crustal diapers, or 2) normal-slip on deeply penetrating faults. A recent variant of the latter suggests that a paleo- subduction zone near the southern edge of the Solomon Sea has been inverted as a result of microplate tectonics. We present structural, microstructural, and electron back-scatter diffraction data of lattice preferred orientations (LPO's) from gneisses of Goodenough and Fergusson Islands to further explore mechanisms of exhumation. Relict eclogite-facies assemblages occur in mafic dikes and boudins, but most HP deformational fabrics are overprinted. The enclosing felsic gneisses are pervaded by amphibolite-facies ductile fabrics formed during their exhumation from the lower crust. These migmatitic rocks (metatexites) were partially molten during their deformation at temperatures of 570-730°C and pressures of 7-11 kb, but today are dominated by solid-state fabrics. The gneisses are capped by remnants of an ultramafic sheet that did not experience HP metamorphism. Below the ultramafics is a ~1 km-thick carapace zone. These high-strain gneisses generally have domal fabrics parallel to, and gradational to, those in the underlying core zone, which they locally rework. Active NE-dipping normal faults on the NE flank of the domes cut across the ultramafic contact and are underlain by a m-thick zone of pseudotachylite-bearing S/C fabrics. A sweeping pattern of stretching lineations reveals a 3-D pattern of ductile flow. In both the carapace and upper core zone, lineations are mostly EW: subparallel to the long dimension of the domes and perpendicular to plate motion in the Woodlark Rift. At greater structural depth, within the core zone, they deflect to become more nearly plate-motion parallel. Shear indicators diverge across the dome crests, suggesting of an inward flow of deeper rocks into the dome; or are locally variable, consistent with bulk irrotational deformation. In the gneisses (both core and carapace), conjugate shear-band microstructures and near-orthorhombic quartz LPOs, and back-rotation of mantled porphyroclasts indicate that ductile strain in domes was near plane, but that it was not simple shear (and included significant vertical shortening). The LPO's of the deepest rocks record activity of the high-T prism-[c] and prism- slip systems, whereas the outermost carapace rocks record basal- and rhomb- slip. The data reveal that deformational temperatures increased toward the dome centers, rather than outwardly into the carapace. Quartz LPO's in both dome and carapace are of uniformly modest intensity (~2-3 times random). Feldspar LPO's suggest slip on the (010)[001] or (010)[100] systems, and in some cases a shear sense opposite to quartz. While we cannot resolve how the eclogitic rocks ascended isothermally from the mantle into the lower crust, the simplest model invokes diapiric ascent (with decompression melting), ponding and lateral spreading along the Moho during early Woodlark Basin rifting. Subsequent exhumation of these rocks from the lower crust involved continued upward movement and vertical shortening of the gneisses combined with subhorizontal rift-parallel flow. Finally, normal faulting and minor erosion exhumed these rocks through the ultramafic cover to their present levels.

  11. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics

    PubMed Central

    Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954

  12. Quantitative kinematic analysis within the Khlong Marui shear zone, southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong; Grasemann, Bernhard; Edwards, Michael A.; Fritz, Harald

    2012-02-01

    The NNE trending Khlong Marui shear zone has a strong geomorphic signal with marked fault-strike parallel topographic ridges. The lithologies within the strike-slip zone mainly consist of vertical layers of mylonitic meta-sedimentary rocks associated with orthogneisses, mylonitic granites, and pegmatitic veins. The pegmatitic veins concordantly intrude the mylonitic foliation but were sheared at the rims indicating syn-kinematic emplacement. Microstructures and mineral assemblages suggest that the rocks in the area have been metamorphosed at amphibolite facies and low to medium greenschist facies by the first deformation. The Khlong Marui shear zone was deformed under dextral simple shear flow with a small finite strain. The ductile-to-brittle deformation involves a period of exhumation of lenses of higher grade rocks together with low grade fault rocks probably associated with positive flower structures. The final stage brittle deformation is reflected by normal faulting and formation of proto-cataclasites to cataclasites of the original mylonitic meta-sedimentary host rock. Although clear age-constraints are still missing, we use regional relationships to speculate that earlier dextral strike-slip displacement of the Khlong Marui shear zone was related to the West Burma and Shan-Thai collision and subduction along the Sunda Trench in the Late Cretaceous, while the major exhumation period of the ductile lens was tectonically influenced by the early India-Asia collision. The changing stress field has responded by switching from dextral strike-slip to normal faulting in the Khlong Marui shear zone, and is associated with "escape tectonics" arising from the overall India-Asia collision.

  13. A potential model for drug screening by simulating the effect of shear stress in vivo on endothelium.

    PubMed

    Xu, Yingqian; Wang, Bochu; Deng, Jia; Liu, Zerong; Zhu, Liancai

    2013-01-01

    The purpose of this paper was to research the potential of a dynamic cell model in drug screening by studying the influence of microvascular wall shear stress on the drug absorption of endothelial cells compared to that in the static state. The cells were grown and seeded on gelatin-coated glass slides and were pretreated with extracts of Salviae miltiorrhizae (200 μg/ml) for 1 h. Then oxidative stress damage was produced by H2O2 (300 μmol/l) for 0.5 h under the 1.5 dyn/cm2 shear stress incorporated in a parallel plate flow chamber. Morphological analysis was conducted with an inverted microscope and image analysis software, and high performance liquid chromatography-mass spectrometry was used for the detection of active compounds. We compared the drug absorption in the dynamic group with that in the static group. In the dynamic model, five compounds and two new metabolite peaks were detected. However, in the static model, four compounds were absorbed by cells, and one metabolite peak was found. This study indicated that there were some effects on the absorption and metabolism of drugs under the microvascular shear stress compared to that under stasis. We infer that shear stress in the microcirculation situation in vivo played a role in causing the differences between drug screening in vitro and in vivo.

  14. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  15. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1993-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  16. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1992-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  17. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.

    PubMed

    Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R

    2006-05-19

    An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.

  18. Instabilities in wormlike micelle systems. From shear-banding to elastic turbulence.

    PubMed

    Fardin, M-A; Lerouge, S

    2012-09-01

    Shear-banding is ubiquitous in complex fluids. It is related to the organization of the flow into macroscopic bands bearing different viscosities and local shear rates and stacked along the velocity gradient direction. This flow-induced transition towards a heterogeneous flow state has been reported in a variety of systems, including wormlike micellar solutions, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In wormlike micelle solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Different candidates have been identified, the main ones being wall slip, interfacial instability between bands or bulk instability of one of the bands. In this review, we present experimental evidence for a purely elastic instability of the high shear rate band as the main origin for fluctuating shear-banding flows.

  19. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust. Synkinematic granitoids localize most, if not all, deformation in the studied shear zone. The regional continuity and the pervasive character of the magmatic fabric in the various synkinematic granitic bodies, consistently displaying similar plane and direction of flow, argue for accommodation of large amounts of orogen-parallel movement by viscous deformation of these magmas. Moreover, activation of high-temperature deformation mechanisms probably allowed a much easier deformation of the hot synkinematic granites than of the colder country rock and, consequently, contributed significantly to the localization of deformation. Finally, the small extent of the low-temperature deformation suggests that the strike-slip deformation ended approximately synchronously with the final cooling of the peraluminous granites. The evolution of the deformation reflects the strong influence of synkinematic magma emplacement and subsequent cooling on the thermomechanical evolution of the shear zone. Magma intrusion in an orogen-scale transcurrent shear zone deeply modifies the rheological behavior of the continental crust. It triggers an efficient thermomechanical softening localized within the fault that may subsist long enough for large displacements to be accommodated. Therefore the close association of deformation and synkinematic magmatism probably represents an important factor controlling the mechanical response of continental plates in collisional environments.

  20. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    NASA Astrophysics Data System (ADS)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by the LR mode in the system. KEY WORDS: evolution, saline lake, salt finger convection, wind shear, growth competition, longitudinal rolls, transverse rolls, coupled-mode equations.

  1. Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.

    2015-06-15

    Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less

  2. The Northern Appalachian Anomaly: A modern asthenospheric upwelling

    NASA Astrophysics Data System (ADS)

    Menke, William; Skryzalin, Peter; Levin, Vadim; Harper, Thomas; Darbyshire, Fiona; Dong, Ted

    2016-10-01

    The Northern Appalachian Anomaly (NAA) is an intense, laterally localized (400 km diameter) low-velocity anomaly centered in the asthenosphere beneath southern New England. Its maximum shear velocity contrast, at 200 km depth, is about 10%, and its compressional-to-shear velocity perturbation ratio is about unity, values compatible with it being a modern thermal anomaly. Although centered close to the track of the Great Meteor hot spot, it is not elongated parallel to it and does not crosscut the cratonic margin. In contrast to previous explanations, we argue that the NAA's spatial association with the hot spot track is coincidental and that it is caused by small-scale upwelling associated with an eddy in the asthenospheric flow field at the continental margin. That the NAA is just one of several low-velocity features along the eastern margin of North America suggests that this process may be globally ubiquitous.

  3. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  4. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  5. Shear fabrics reveal orogen-parallel deformations, NW Lesser Garhwal Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Biswas, T.; Bose, N.; Mukherjee, S.

    2017-12-01

    Shear deformation along the Himalayan belt is poorly understood unlike that across the orogen. Field observations and structural analysis along Bhagirathi river section along the National Highway 34 reveals NW Lesser Himalaya (Garhwal region, India) suffered both compression and extension parallel to the orogenic belt and thus forms a unique venue of great structural and tectonic interest. Meso-scale ductile- and brittle shear fabrics, such as S-C, C-P, Y-P, Y-S; are emphasized describing such deformations. Extensional shear fabric strikes N43oE and compressional shear fabrics N39.5oE, which are at a low-angle with the orogenic trend. Our study reviews orogen parallel deformation, both extension as well as compression, taking examples from other part of the world (e.g., Central Andes, N Apennines and SW Alps) and from other terrains in the Himalaya. Proposed models are evaluated and compared with the study area. The results shows that the pre-existing remnant structures (e.g., the Delhi-Haridwar ridge) on the under-thrusting Indian shield/plate plays a vital role in modifying thin-skinned tectonics along with migration of the eastward extrusion of the Tibetian plateau (hinterland deformation) into the Himalayan foreland.

  6. Low-level shear stress promotes migration of liver cancer stem cells via the FAK-ERK1/2 signalling pathway.

    PubMed

    Sun, Jinghui; Luo, Qing; Liu, Lingling; Song, Guanbin

    2018-07-28

    Cancer stem cells (CSCs) are a small subpopulation of tumour cells that have been proposed to be responsible for cancer initiation, chemotherapy resistance and cancer recurrence. Shear stress activated cellular signalling is involved in cellular migration, proliferation and differentiation. However, little is known about the effects of shear stress on the migration of liver cancer stem cells (LCSCs). Here, we studied the effects of shear stress that are generated from a parallel plated flow chamber system, on LCSC migration and the activation of focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2), using transwell assay and western blot, respectively. We found that 2 dyne/cm 2 shear stress loading for 6 h promotes LCSC migration and activation of the FAK and ERK1/2 signalling pathways, whereas treatment with the FAK phosphorylation inhibitor PF573228 or the ERK1/2 phosphorylation inhibitor PD98059 suppressed the shear stress-promoted migration, indicating the involvement of FAK and ERK1/2 activation in shear stress-induced LCSC migration. Additionally, atomic force microscopy (AFM) analysis showed that shear stress lowers LCSC stiffness via the FAK and ERK1/2 pathways, suggesting that the mechanism by which shear stress promotes LCSC migration might partially be responsible for the decrease in cell stiffness. Further experiments focused on the role of the actin cytoskeleton, demonstrating that the F-actin filaments in LCSCs are less well-defined after shear stress treatment, providing an explanation for the reduction in cell stiffness and the promotion of cell migration. Overall, our study demonstrates that shear stress promotes LCSC migration through the activation of the FAK-ERK1/2 signalling pathways, which further results in a reduction of organized actin and softer cell bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  8. Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber

    PubMed Central

    Erbeldinger, Nadine; Rapp, Felicitas; Ktitareva, Svetlana; Wendel, Philipp; Bothe, Anna S.; Dettmering, Till; Durante, Marco; Friedrich, Thomas; Bertulat, Bianca; Meyer, Stephanie; Cardoso, M. C.; Hehlgans, Stephanie; Rödel, Franz; Fournier, Claudia

    2017-01-01

    The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions. PMID:28620384

  9. Pulsed Discharge Through Wetland Vegetation as a Control on Bed Shear Stress and Sediment Transport Affecting Everglades Restoration

    NASA Astrophysics Data System (ADS)

    Larsen, L. E.; Harvey, J. W.; Crimaldi, J. P.

    2007-12-01

    The ridge and slough landscape is a patterned peatland within the Florida Everglades in which elevated ridges of emergent vegetation are regularly interspersed among open-water sloughs with floating and submerged vegetation. Landscape features are aligned parallel to the historic flow direction. Degradation of patterning over the past 100 years coincides with diminished flow resulting from drainage and construction of levees and canals. A goal of restoration is to increase flow velocities and redistribution of particles and solutes in attempt to preserve remnant patterning and restore degraded portions of the ridge and slough landscape. To explore different management strategies that could induce sediment redistribution in the ridge and slough landscape, we simulated velocity profiles and bed shear stresses for different combinations of surface water stage, water surface slope, and vegetation community structure, based on field measurements and laboratory experiments. A mixing length approach, in which the minimum of stem spacing and distance from a solid boundary determined eddy scale, was used to simulate velocity profiles and bed shear stress in vegetated arrays. Simplified velocity profiles based only on vegetation frontal area above the bed and the Karman-Prandtl logarithmic law near the bed closely were used to approximate solutions of the one-dimensional Navier-Stokes equations for large-scale simulation. Estimates of bed shear stress were most sensitive to bed roughness, vegetation community structure, and energy slope. Importantly, our simulations illustrate that velocity and bed shear stress cannot be increased substantially in the Everglades simply by increasing surface-water stage. This result comes directly from the dependence of velocity and shear stress on vegetation frontal area and the fact that emergent vegetation stems protrude through the water column even during times of relatively deep water in the Everglades. Since merely increasing water depth is not likely to increase water velocity and entrainment, it is necessary instead that restoration focus on increasing energy slope as a means to entrain sediment within sloughs and redistribute it to ridges. Surface-water gravity waves caused by hurricanes or pulsed releases of water from impounded areas may be the most effective mechanism for achieving sediment redistribution in the Everglades and other wetland and riparian environments with abundant emergent vegetation.

  10. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  11. Plasma rotation and transport in MAST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Field, A. R.; Michael, C.; Akers, R. J.; Candy, J.; Colyer, G.; Guttenfelder, W.; Ghim, Y.-c.; Roach, C. M.; Saarelma, S.; MAST Team

    2011-06-01

    The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak plasmas. The relative importance of equilibrium flow shear and magnetic shear in their formation and evolution is investigated using data from high-resolution kinetic- and q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels form in the negative shear region just inside qmin. In the ITB region the anomalous ion thermal transport is suppressed, with ion thermal transport close to the neo-classical level, although the electron transport remains anomalous. Linear stability analysis with the gyro-kinetic code GS2 shows that all electrostatic micro-instabilities are stable in the negative magnetic shear region in the core, both with and without flow shear. Outside the ITB, in the region of positive magnetic shear and relatively weak flow shear, electrostatic micro-instabilities become unstable over a wide range of wave numbers. Flow shear reduces the linear growth rates of low-k modes but suppression of ITG modes is incomplete, which is consistent with the observed anomalous ion transport in this region; however, flow shear has little impact on growth rates of high-k, electron-scale modes. With counter-NBI ITBs of greater radial extent form outside qmin due to the broader profile of E × B flow shear produced by the greater prompt fast-ion loss torque.

  12. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for basal slip exhibits ductile tensile-type fracture. A two-fold increase in ductility is also observed for the LSEM sheet under uniaxial tensile testing without significant changes in the strength. Among texture and microstructure (grain size), texture is shown to be more critical for Mg sheet formability. However, in conjunction with a favorable texture, fine recrystallized microstructure provides for additional enhancement of strain-hardening capacity and formability. In-situ imaging of material flow during uniaxial tensile testing revealed new, interesting flow localization phenomena and fracture behavior. It is shown that the deformation behavior of Mg sheet is highly texture dependent, and also radically different from that of conventional ductile metals both in terms of necking and fracture. The implications of these observations for the LDH test results and formability of Mg sheet, in general, are briefly discussed.

  13. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  14. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow

    PubMed Central

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652

  15. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    PubMed

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  16. Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2010-05-01

    Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. International Journal of Earth Sciences. 2. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Zanskar Indian Himalaya: microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. International Journal of Earth Sciences.

  17. Non-Darcian flow of shear-thinning fluids through packed beads: Experiments and predictions using Forchheimer's law and Ergun's equation

    NASA Astrophysics Data System (ADS)

    Rodríguez de Castro, Antonio; Radilla, Giovanni

    2017-02-01

    The flow of shear-thinning fluids through unconsolidated porous media is present in a number of important industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liquids. Therefore, predicting the pressure drop-flow rate relationship in model porous media has been the scope of major research efforts during the last decades. Although the flow of Newtonian fluids through packs of spherical particles is well understood in most cases, much less is known regarding the flow of shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimental data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow rate-pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimental data are then compared with predictions coming from different methods based on the extension of widely used Ergun's equation and Forchheimer's law to the case of shear thinning fluids, determining the accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to represent the rheology of the injected fluids results in the porous media are shown to be key aspects to successfully predict pressure drop-flow rate relationships for the inertial shear-thinning flow in packed beads.

  18. Coronal Jet Collimation by Nonlinear Induced Flows

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  19. Subsonic and Supersonic shear flows in laser driven high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Kuranz, C. C.; Visco, A.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Hurricane, O. A.; Hansen, J. F.; Remington, B. A.; Robey, H. F.; Bono, M. J.; Plewa, T.

    2009-05-01

    Shear flows arise in many high-energy-density (HED) and astrophysical systems, yet few laboratory experiments have been carried out to study their evolution in these extreme environments. Fundamentally, shear flows can initiate mixing via the Kelvin-Helmholtz (KH) instability and may eventually drive a transition to turbulence. We present two dedicated shear flow experiments that created subsonic and supersonic shear layers in HED plasmas. In the subsonic case the Omega laser was used to drive a shock wave along a rippled plastic interface, which subsequently rolled-upped into large KH vortices. In the supersonic shear experiment the Nike laser was used to drive Al plasma across a low-density foam surface also seeded with a ripple. Unlike the subsonic case, detached shocks developed around the ripples in response to the supersonic Al flow.

  20. Strain localization in the lower crust: brittle precursors versus lithological heterogeneities (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2016-04-01

    The Davenport shear zone in Central Australia is a strike-slip ductile shear zone developed during the Petermann Orogeny (~ 550 Ma). The conditions of shearing are estimated to be amphibolite-eclogite facies (650 °C, 1.2 GPa). The up to seven kilometre thick mylonite zone encloses several large low strain domains with excellent exposure, thus allowing a thorough study of the initiation of shear zones. Quartzo-feldspathic gneisses and granitoids inherit a suite of lithological heterogeneities such as quartz-rich pegmatites, mafic layers and dykes. When in a favourable orientation to the shortening direction, these rheologically different pre-existing layers might be expected to localize deformation. However, with the singular exception of long, continuous and fine-grained dolerite dykes, this is not observed. Quartz-rich pegmatites are mostly unsheared, even if in a favourable orientation, and sometimes boudinaged or folded. There are instead many shear zones only a few mm to cm in width, extending up to tens of metres, which are in fact oriented at a very high angle to the shortening direction. Parallel to these, a network of little to moderately overprinted brittle fractures are observed, commonly marked by pseudotachylyte (pst) and sometimes new biotite. Shear reactivation of these precursor fractures is generally limited to the length of the initial fracture and typically re-uses and shears the pst. The recrystallized mineral assemblage in the sheared pst consists of Cpx+Grt+Fsp±Ky and is the same to that in the adjacent sheared gneiss, with the same PT estimates (650 °C, 1.2 GPa). In some cases, multiple generations of cross-cutting and sheared pst demonstrate alternating fracture and flow during progressive shear zone development and a clear tendency for subsequent pst formation to also localize in the existing shear zone. The latest pst may be both unsheared and unrecrystallized (no grt) and is probably related to a late stage, still localized within the same shear zone. The observation that pst is preferentially sheared indicates that it is weaker than the host rock, although their bulk compositions are about the same, suggesting that the governing factors for localization are the finer grain size and the elongate, nearly planar geometry of the original pst generation zone. The same may be true of the sheared dolerite dykes, which are long, narrow and generally finer grained than the surrounding gneiss or granite. Although quartz-rich pegmatites are not preferred sites of localization, quartzo-feldspathic mylonites are fully recrystallized with a relatively coarse grain size (typically > 50 microns) typical of rather low long-term flow stress. We therefore propose that localization in the lower crust only occurs on long planar layers with a finer grain size that can promote weakening by grain-size sensitive creep. Coarser-grained lithological layers and boundaries are not exploited during the initiation of a shear zone and, in particular, quartz-rich layers are not preferentially sheared.

  1. Scaled-Up Fabrication of Thin-Walled ZK60 Tubing using Shear Assisted Processing and Extrusion (ShAPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Scott A.; Joshi, Vineet V.; Overman, Nicole R.

    Shear Assisted Processing and Extrusion (ShAPE) has been scaled-up and applied to direct extrusion of thin-walled magnesium tubing. Using ShAPE, billets of ZK60A-T5 were directly extruded into round tubes having an outer diameter of 50.8 mm and wall thickness of 1.52 mm. The severe shearing conditions inherent to ShAPE resulted in microstructural refinement with an average grain size of 3.8μm measured at the midpoint of the tube wall. Tensile testing per ATSM E-8 on specimens oriented parallel to the extrusion direction gave an ultimate tensile strength of 254.4 MPa and elongation of 20.1%. Specimens tested perpendicular to the extrusion directionmore » had an ultimate tensile strength of 297.2 MPa and elongation of 25.0%. Due to material flow effects resulting from the simultaneous linear and rotational shear intrinsic to ShAPE, ram force and electrical power consumption during extrusion were just 40 kN and 11.5 kW respectively. This represents a significant reduction in ram force and power consumption compared to conventional extrusion. As such, there is potential for ShAPE to offer a scalable, lower cost extrusion option with potentially improved bulk mechanical properties.« less

  2. Seismic evidence for rotating mantle flow around subducting slab edge associated with oceanic microplate capture

    NASA Astrophysics Data System (ADS)

    Mosher, Stephen G.; Audet, Pascal; L'Heureux, Ivan

    2014-07-01

    Tectonic plate reorganization at a subduction zone edge is a fundamental process that controls oceanic plate fragmentation and capture. However, the various factors responsible for these processes remain elusive. We characterize seismic anisotropy of the upper mantle in the Explorer region at the northern limit of the Cascadia subduction zone from teleseismic shear wave splitting measurements. Our results show that the mantle flow field beneath the Explorer slab is rotating anticlockwise from the convergence-parallel motion between the Juan de Fuca and the North America plates, re-aligning itself with the transcurrent motion between the Pacific and North America plates. We propose that oceanic microplate fragmentation is driven by slab stretching, thus reorganizing the mantle flow around the slab edge and further contributing to slab weakening and increase in buoyancy, eventually leading to cessation of subduction and microplate capture.

  3. Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.

    2017-12-01

    Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.

  4. Radiative instabilities in sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Sparks, L.; Van Hoven, G.

    1988-01-01

    The structure and growth rate of the radiative instability in a sheared magnetic field B have been calculated analytically using the Braginskii fluid equations. In a shear layer, temperature and density perturbations are linked by the propagation of sound waves parallel to the local magnetic field. As a consequence, density clumping or condensation plays an important role in driving the instability. Parallel thermal conduction localizes the mode to a narrow layer where K(parallel) is small and stabilizes short wavelengths k larger-than(c) where k(c) depends on the local radiation and conduction rates. Thermal coupling to ions also limits the width of the unstable spectrum. It is shown that a broad spectrum of modes is typically unstable in tokamak edge plasmas and it is argued that this instability is sufficiently robust to drive the large-amplitude density fluctuations often measured there.

  5. Multifractal spectra in shear flows

    NASA Technical Reports Server (NTRS)

    Keefe, L. R.; Deane, Anil E.

    1989-01-01

    Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.

  6. Stability of surface plastic flow in large strain deformation of metals

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  7. Turbulent Flow Enhancement by Polyelectrolyte Additives: Mechanistic Implications for Drag Reduction.

    NASA Astrophysics Data System (ADS)

    Wagger, David Leonard

    1992-01-01

    The drag reduction phenomenon was experimentally studied in two pipes, of diameters 1.46 and 1.02 cm, using seven polyelectrolytic HPAM additives, with molecular weights from 1 to 20 times 10^6 g/mole and degree of backbone hydrolysis from 8 to 60%, at concentrations from 1 to 1000 wppm, in saline solutions containing from 0.3 to 0.00001 N NaCl. Both laminar and turbulent flow behavior were greatly influenced by salinity-induced changes in the initial conformation of the HPAM additives. Initially collapsed, random-coiling conformations exhibited Newtonian laminar flow and Type-A turbulent drag reduction, while initially extended conformations exhibited shear-thinning in laminar flow and Type-B turbulent drag reduction. The gross-flow physics of Type-B drag reduction were delineated. A characteristic "ladder" structure prevailed, with polymeric regime segments that were roughly parallel to, but shifted upward from, the Prandtl-Karman line. In the polymeric regime, both Type-A fan and Type -B ladder structures were essentially independent of pipe diameter, and were scaled by the wall shear stress. The wall shear stress also scaled degradation during drag reduction. New onset and slope increment correlations were presented for Type-A drag reduction by HPAM additives. In Type-B drag reduction, flow enhancement was found proportional to additive concentration, and the intrinsic slip, Sigma = S^'/(c/M _{rm w}), varied roughly as the third power of backbone chain links N_ {rm bb}. New intrinsic slip and retro-onset correlations were presented for Type-B drag reduction by HPAM additives. Analysis of Type-B literature revealed a wide range of additive efficacies, with specific slips S^'/c from 0.0001 to 4. For the most effective additives, HPAM and asbestos fibers, the additive-pervaded volume fraction per unit flow enhancement, X_{rm v} /S^' ~ 3000, implied that these additives align during drag reduction. The slip ratio R_{rm sc}, which is the relative flow enhancement induced in Type-A and Type-B drag reduction at constant additive concentration, was found to be a universal function of the normalized turbulent flow strength (Re_ {rm s}sqrtf/Re_ {rm s}sqrtf*). The extension of initially collapsed, random-coiling, HPAM macromolecules by the turbulent flow field thus seems independent of additive parameters and absolute wall shear stress levels. Gross flow additive equivalence was detected at iso-slip points, where different polymer solutions induced equal flow enhancements. At numerous such points, the collapsed to extended slip ratio at constant concentration, R_{rm sc}, was essentially equal to the extended to collapsed concentration ratio at constant slip, R _{rm cs}. Thus, for fixed total additive concentration, the R_{ rm sc} observed at any Re_ {rm s}sqrtf simply represents the fraction of originally collapsed macromolecules that have become extended in the flow, and thence effective in drag reduction. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  8. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaresan, Sankaran

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a generalmore » purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.« less

  9. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in bothmore » domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less

  10. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  11. Microfluidic rheology of active particle suspensions: Kinetic theory.

    PubMed

    Alonso-Matilla, Roberto; Ezhilan, Barath; Saintillan, David

    2016-07-01

    We analyze the effective rheology of a dilute suspension of self-propelled slender particles confined between two infinite parallel plates and subject to a pressure-driven flow. We use a continuum kinetic model to describe the configuration of the particles in the system, in which the disturbance flows induced by the swimmers are taken into account, and use it to calculate estimates of the suspension viscosity for a range of channel widths and flow strengths typical of microfluidic experiments. Our results are in agreement with previous bulk models, and in particular, demonstrate that the effect of activity is strongest at low flow rates, where pushers tend to decrease the suspension viscosity whereas pullers enhance it. In stronger flows, dissipative stresses overcome the effects of activity leading to increased viscosities followed by shear-thinning. The effects of confinement and number density are also analyzed, and our results confirm the apparent transition to superfluidity reported in recent experiments on pusher suspensions at intermediate densities. We also derive an approximate analytical expression for the effective viscosity in the limit of weak flows and wide channels, and demonstrate good agreement between theory and numerical calculations.

  12. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These values for the shear lift are then compared with the theoretical predictions from various published works on shear lift in the open literature, which include asymptotic solutions at low bubble Reynolds number, potential flow predictions and numerical studies that deal with intermediate bubble Reynolds numbers.

  13. Fluctuation-induced shear flow and energy transfer in plasma interchange turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Sun, C. K.

    2015-11-15

    Fluctuation-induced E × B shear flow and energy transfer for plasma interchange turbulence are examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear evolution of interchange turbulence shows the presence of two confinement regimes characterized by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is dominant and the mean E × B shear flow is at a relatively low level. By increasing the heat flux above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from fluctuations to mean E ×more » B flows. As a result, a transition to the second regime occurs, in which a strong mean E × B shear flow is generated.« less

  14. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian

    2017-09-01

    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  15. Development and utilization of new diagnostics for dense-phase pneumatic transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Dense-phase pneumatic transport is an attractive means of conveying solids. Unfortunately, because of the high solid concentrations, this transport method is a difficult regime in which to carry out detailed measurements. Hence most details of the flow are unknown. In this context, the main objective of this work is to develop probes for local measurements of solid velocity and holdup in dense gas-solid flows. Because we anticipate the recent theories of rapid granular flows will bring insight to the dense pneumatic transport of particles, we have sought to substantiate these theories through computer simulations. There we have verified the theorymore » of Hanes, Jenkins Richman (1988) for the rapid, steady shear flow of identical, smooth, nearly elastics disks driven by identical, parallel, bumpy boundaries. Because granular flows depend strongly on the nature of their interaction with a boundary, we have verified the boundary conditions calculated by Jenkins (1991) for spheres interacting with a flat, frictional surface. During the previous reporting period, we began a study of the time relaxation of the second moment of velocity fluctuations for a collection of disks undergoing simple shear. In the present reporting period, we have completed this study of relaxation by comparing results of simulations with the theoretical predictions of Jenkins and Richman (1988). In addition, we have concluded a series of experiments with flour plugs in the dense-phase pneumatic setup. Finally, we have established several industrial contacts to transfer the diagnostic techniques developed under this contract. 7 refs., 11 figs.« less

  16. The importance of flow history in mixed shear and extensional flows

    NASA Astrophysics Data System (ADS)

    Wagner, Caroline; McKinley, Gareth

    2015-11-01

    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  17. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart

    PubMed Central

    2017-01-01

    Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943

  18. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  19. Effects of Fetch on Turbulent Flow and Pollutant Dispersion Within a Cubical Canopy

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Takimoto, Hiroshi; Ono, Hiroki; Sato, Ayumu

    2018-03-01

    The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.

  20. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation.

    PubMed

    López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J

    2014-04-01

    We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.

  1. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. The aim of this research as it relates to cardiovascular fluid dynamics is to predict the spatial and temporal evolution of vortical structures generated by secondary flows, as well as to assess the correlation between multiple vortex pairs and wall shear stress. We use a physiologically (pulsatile) relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter being motivated by the fact that flow upstream of a curved artery may not have sufficient straight entrance length to become fully developed. Under the two pulsatile inflow conditions, we characterize the morphology and evolution of various vortex pairs and their subsequent effect on relevant haemodynamic wall shear stress metrics.

  2. Coronal Jet Collimation by Nonlinear Induced Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasheghani Farahani, S.; Hejazi, S. M.

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale ofmore » influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.« less

  3. Challenges in Rheological Characterization of Highly Concentrated Suspensions — A Case Study for Screen-printing Silver Pastes

    PubMed Central

    Yüce, Ceren; Willenbacher, Norbert

    2017-01-01

    A comprehensive rheological characterization of highly concentrated suspensions or pastes is mandatory for a targeted product development meeting the manifold requirements during processing and application of such complex fluids. In this investigation, measuring protocols for a conclusive assessment of different process relevant rheological parameters have been evaluated. This includes the determination of yield stress, viscosity, wall slip velocity, structural recovery after large deformation and elongation at break as well as tensile force during filament stretching. The importance of concomitant video recordings during parallel-plate rotational rheometry for a significant determination of rheological quantities is demonstrated. The deformation profile and flow field at the sample edge can be determined using appropriate markers. Thus, measurement parameter settings and plate roughness values can be identified for which yield stress and viscosity measurements are possible. Slip velocity can be measured directly and measuring conditions at which plug flow, shear banding or sample spillover occur can be identified clearly. Video recordings further confirm that the change in shear moduli observed during three stage oscillatory shear tests with small deformation amplitude in stage I and III but large oscillation amplitude in stage II can be directly attributed to structural break down and recovery. For the pastes investigated here, the degree of irreversible, shear-induced structural change increases with increasing deformation amplitude in stage II until a saturation is reached at deformations corresponding to the crossover of G' and G'', but the irreversible damage is independent of the duration of large amplitude shear. A capillary breakup elongational rheometer and a tensile tester have been used to characterize deformation and breakup behavior of highly filled pastes in uniaxial elongation. Significant differences were observed in all experiments described above for two commercial screen-printing silver pastes used for front side metallization of Si-solar cells. PMID:28448043

  4. Challenges in Rheological Characterization of Highly Concentrated Suspensions - A Case Study for Screen-printing Silver Pastes.

    PubMed

    Yüce, Ceren; Willenbacher, Norbert

    2017-04-10

    A comprehensive rheological characterization of highly concentrated suspensions or pastes is mandatory for a targeted product development meeting the manifold requirements during processing and application of such complex fluids. In this investigation, measuring protocols for a conclusive assessment of different process relevant rheological parameters have been evaluated. This includes the determination of yield stress, viscosity, wall slip velocity, structural recovery after large deformation and elongation at break as well as tensile force during filament stretching. The importance of concomitant video recordings during parallel-plate rotational rheometry for a significant determination of rheological quantities is demonstrated. The deformation profile and flow field at the sample edge can be determined using appropriate markers. Thus, measurement parameter settings and plate roughness values can be identified for which yield stress and viscosity measurements are possible. Slip velocity can be measured directly and measuring conditions at which plug flow, shear banding or sample spillover occur can be identified clearly. Video recordings further confirm that the change in shear moduli observed during three stage oscillatory shear tests with small deformation amplitude in stage I and III but large oscillation amplitude in stage II can be directly attributed to structural break down and recovery. For the pastes investigated here, the degree of irreversible, shear-induced structural change increases with increasing deformation amplitude in stage II until a saturation is reached at deformations corresponding to the crossover of G' and G'', but the irreversible damage is independent of the duration of large amplitude shear. A capillary breakup elongational rheometer and a tensile tester have been used to characterize deformation and breakup behavior of highly filled pastes in uniaxial elongation. Significant differences were observed in all experiments described above for two commercial screen-printing silver pastes used for front side metallization of Si-solar cells.

  5. Experimental Reacting Hydrogen Shear Layer Data at High Subsonic Mach Number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Wey, C. C.

    1996-01-01

    The flow in a planar shear layer of hydrogen reacting with hot air was measured with a two-component laser Doppler velocimeter (LDV) system, a schlieren system, and OH fluorescence imaging. It was compared with a similar air-to-air case without combustion. The high-speed stream's flow speed was about 390 m/s, or Mach 0.71, and the flow speed ratio was 0.34. The results showed that a shear layer with reaction grows faster than one without; both cases are within the range of data scatter presented by the established data base. The coupling between the streamwise and the cross-stream turbulence components inside the shear layers was low, and reaction only increased it slightly. However, the shear layer shifted laterally into the lower speed fuel stream, and a more organized pattern of Reynolds stress was present in the reaction shear layer, likely as a result of the formation of a larger scale structure associated with shear layer corrugation from heat release. Dynamic pressure measurements suggest that coherent flow perturbations existed inside the shear layer and that this flow became more chaotic as the flow advected downstream. Velocity and thermal variable values are listed in this report for a computational fluid dynamics (CFD) benchmark.

  6. Electric-field-induced flow-aligning state in a nematic liquid crystal.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2015-04-01

    The response of shear stress to a weak ac electric field as a probe is measured in a nematic liquid crystal under shear flow and dc electric fields. Two states with different responses are clearly observed when the dc electric field is changed at a constant shear rate: the flow aligning and non-flow aligning states. The director lies in the shear plane in the flow aligning state and out of the plane in the non-flow aligning state. Through application of dc electric field, the non-flow aligning state can be changed to the flow aligning state. In the transition from the flow aligning state to the non-flow aligning state, it is found that the response increases and the relaxation time becomes longer. Here, the experimental results in the flow aligning state are discussed on the basis of the Ericksen-Leslie theory.

  7. Human endothelial cell responses to cardiovascular inspired pulsatile shear stress

    NASA Astrophysics Data System (ADS)

    Watson, Matthew; Baugh, Lauren; Black, Lauren, III; Kemmerling, Erica

    2016-11-01

    It is well established that hemodynamic shear stress regulates blood vessel structure and the development of vascular pathology. This process can be studied via in vitro models of endothelial cell responses to pulsatile shear stress. In this study, a macro-scale cone and plate viscometer was designed to mimic various shear stress waveforms found in the body and apply these stresses to human endothelial cells. The device was actuated by a PID-controlled DC gear-motor. Cells were exposed to 24 hours of pulsatile shear and then imaged and stained to track their morphology and secretions. These measurements were compared with control groups of cells exposed to constant shear and no shear. The results showed that flow pulsatility influenced levels of secreted proteins such as VE-cadherin and neuroregulin IHC. Cell morphology was also influenced by flow pulsatility; in general cells exposed to pulsatile shear stress developed a higher aspect ratio than cells exposed to no flow but a lower aspect ratio than cells exposed to steady flow.

  8. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  9. Experimental investigations of the time and flow-direction responses of shear-stress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, Joseph J., Jr.; Heineck, James T.

    1993-01-01

    Time and flow-direction responses of shearstress-sensitive liquid crystal coatings were explored experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing Schlieren system and recorded with a 1000 frame/sec color video camera. Liquid crystal responses to these changing-shear environments were then recorded with the same video system, documenting color-play response times equal to, or faster than, the time interval between sequential frames (i.e., 1 millisecond). For the flow-direction experiments, a planar test surface was exposed to equal-magnitude and known-direction surface shear stresses generated by both normal and tangential subsonic jet-impingement flows. Under shear, the sense of the angular displacement of the liquid crystal dispersed (reflected) spectrum was found to be a function of the instantaneous direction of the applied shear. This technique thus renders dynamic flow reversals or flow divergences visible over entire test surfaces at image recording rates up to 1 KHz. Extensions of the technique to visualize relatively small changes in surface shear stress direction appear feasible.

  10. Etude hydromecanique d'une fracture en cisaillement sous contrainte normale constante

    NASA Astrophysics Data System (ADS)

    Lamontagne, Eric

    This research study deals with the effects of shear direction and injection flow rate on the flow directional anisotropy for a given normal stress. It presents experimental works on hydromechanical shear behaviour of a fracture under constant normal stress conditions that permits the characterisation of the intrinsic hydraulic transmissivity in relation with the directional anisotropy of the roughness morphology on the fracture surfaces. Tests were performed on mortar replicas of a natural fracture so that the fracture roughness and void space geometry were kept the same for each test. The experimental work program was performed through direct shear tests on the fracture replicas in four shear directions under four constant normal stress levels. The application of the normal stress was followed by several injections of fluid under constant flow rate. Then, for each defined shear displacement, several injections of fluid were done at different flow rate but under constant flow rate. The test results show that: (1) for the whole shear tests, the global intrinsic transmissivity is included within an enveloping zone of about one order of size. The transmissivity curves within the enveloping zone has a particularity to increase about two orders of size in the first millimetre of shear displacement and subsequently stabilised rapidly; (2) the highest dilatancy do not correspond necessarily with the highest intrinsic transmissivity so that, the behaviour of the global intrinsic transmissivity is not directly proportional to the fracture dilatancy during shear; (3) after the peak shear stress, the divergence is more marked between the global intrinsic transmissivity curves at various flow rate; (4) after peak shear strength and the beginning of asperity degradation, the gradual passage to residual friction shear behaviour causes a directional flow anisotropy and a reorientation of the flow chenalisation direction sub perpendicularly to the shear direction; (5) the anisotropy is not to develop equally between the two sense in the perpendicular direction to shear direction. In order to characterise the dynamics of the flow pattern in the fracture, a statistical analysis of the surfaces morphology of the fracture and the casting of void space geometry were performed before and after shear. A statistical analysis of asperity heights, on the global scale of the fracture surfaces, permits to characterise the fracture morphology and put in evidence a large morphological structure on which are superposed smaller asperities of variable dimensions. This large dimension structure generate a higher level landing occupying more than half of the fracture area. The study of the surfaces morphology of the fracture, performed with the geostatistical mean asperity heights variogram by direction before shearing, show the presence of two entangled morphologic structure families (28 and 15 mm). This same study done after shearing shows that the asperity degradation seems associated with the reduction of the global intrinsic transmissivity of the fracture. Finally, the void spaces morphology evaluated by casting techniques, during the shear tests, has permitted to verify the contacts evolution with the increasing shear displacement and visualised flow chenalisation during fracture shearing.

  11. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  12. Flow-induced adhesion of shear-activated polymers to a substrate

    NASA Astrophysics Data System (ADS)

    Hoore, Masoud; Rack, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2018-02-01

    Adhesion of polymers and proteins to substrates plays a crucial role in many technological applications and biological processes. A prominent example is the von Willebrand factor (VWF) protein, which is essential in blood clotting as it mediates adhesion of blood platelets to the site of injury at high shear rates. VWF is activated by flow and is able to bind efficiently to damaged vessel walls even under extreme flow-stress conditions; however, its adhesion is reversible when the flow strength is significantly reduced or the flow is ceased. Motivated by the properties and behavior of VWF in flow, we investigate adhesion of shear-activated polymers to a planar wall in flow and whether the adhesion is reversible under flow stasis. The main ingredients of the polymer model are cohesive inter-monomer interactions, a catch bond with the adhesive surface, and the shear activation/deactivation of polymer adhesion correlated with its stretching in flow. The cohesive interactions within the polymer maintain a globular conformation under low shear stresses and allow polymer stretching if a critical shear rate is exceeded, which is directly associated with its activation for adhesion. Our results show that polymer adhesion at high shear rates is significantly stabilized by catch bonds, while at the same time they also permit polymer dissociation from a surface at low or no flow stresses. In addition, the activation/deactivation mechanism for adhesion plays a crucial role in the reversibility of its adhesion. These observations help us better understand the adhesive behavior of VWF in flow and interpret its adhesion malfunctioning in VWF-related diseases.

  13. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  14. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  15. Stability analysis applied to the early stages of viscous drop breakup by a high-speed gas stream

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Longmire, Ellen K.

    2013-11-01

    The instability of a liquid drop suddenly exposed to a high-speed gas stream behind a shock wave is studied by considering the gas-liquid motion at the drop interface. The discontinuous velocity profile given by the uniform, parallel flow of an inviscid, compressible gas over a viscous liquid is considered, and drop acceleration is included. Our analysis considers compressibility effects not only in the base flow, but also in the equations of motion for the perturbations. Recently published high-resolution images of the process of drop breakup by a passing shock have provided experimental evidence supporting the idea that a critical gas dynamic pressure can be found above which drop piercing by the growth of acceleration-driven instabilities gives way to drop breakup by liquid entrainment resulting from the gas shearing action. For a set of experimental runs from the literature, results show that, for shock Mach numbers >= 2, a band of rapidly growing waves forms in the region well upstream of the drop's equator at the location where the base flow passes from subsonic to supersonic, in agreement with experimental images. Also, the maximum growth rate can be used to predict the transition of the breakup mode from Rayleigh-Taylor piercing to shear-induced entrainment. The authors acknowledge support of the NSF (DMS-0908561).

  16. The Effects of Specimen Geometry on the Plastic Deformation of AA 2219-T8 Aluminum Alloy Under Dynamic Impact Loading

    NASA Astrophysics Data System (ADS)

    Owolabi, G. M.; Bolling, D. T.; Odeshi, A. G.; Whitworth, H. A.; Yilmaz, N.; Zeytinci, A.

    2017-12-01

    The effects of specimen geometry on shear strain localization in AA 2219-T8 aluminum alloy under dynamic impact loading were investigated. The alloy was machined into cylindrical, cuboidal and conical (frustum) test specimens. Both deformed and transformed adiabatic shear bands developed in the alloy during the impact loading. The critical strain rate for formation of the deformed band was determined to be 2500 s-1 irrespective of the specimen geometry. The critical strain rate required for formation of transformed band is higher than 3000 s-1 depending on the specimen geometry. The critical strain rate for formation of transformed bands is lowest (3000 s-1) in the Ø5 mm × 5 mm cylindrical specimens and highest (> 6000 s-1) in the conical specimens. The cylindrical specimens showed the greatest tendency to form transformed bands, whereas the conical specimen showed the least tendency. The shape of the shear bands on the impacted plane was also observed to be dependent on the specimen geometry. Whereas the shear bands on the compression plane of the conical specimens formed elongated cycles, two elliptical shaped shear bands facing each other were observed on the cylindrical specimens. Two parallel shear bands were observed on the compression planes of the cuboidal specimens. The dynamic stress-strain curves vary slightly with the specimen geometry. The cuboidal specimens exhibit higher tendency for strain hardening and higher maximum flow stress than the other specimens. The microstructure evolution leading to the formation of transformed bands is also discussed in this paper.

  17. Numerical study on tilting salt finger in a laminar shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng

    2018-02-01

    Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.

  18. Shear-modulated electroosmotic flow on a patterned charged surface.

    PubMed

    Wei, Hsien-Hung

    2005-04-15

    The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow structures exhibit either saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electric field. The formation of closed streamlines could be advantageous for trapping nondiffusive particles at desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined to assess strategies for creating efficient mixing.

  19. Circulating Tumor Cells from Prostate Cancer Patients Interact with E-Selectin under Physiologic Blood Flow

    PubMed Central

    Gakhar, Gunjan; Navarro, Vicente N.; Jurish, Madelyn; Lee, Guang Yu.; Tagawa, Scott T.; Akhtar, Naveed H.; Seandel, Marco; Geng, Yue; Liu, He; Bander, Neil H.; Giannakakou, Paraskevi; Christos, Paul J.; King, Michael R.; Nanus, David M.

    2013-01-01

    Hematogenous metastasis accounts for the majority of cancer-related deaths, yet the mechanism remains unclear. Circulating tumor cells (CTCs) in blood may employ different pathways to cross blood endothelial barrier and establish a metastatic niche. Several studies provide evidence that prostate cancer (PCa) cell tethering and rolling on microvascular endothelium via E-selectin/E-selectin ligand interactions under shear flow theoretically promote extravasation and contribute to the development of metastases. However, it is unknown if CTCs from PCa patients interact with E-selectin expressed on endothelium, initiating a route for tumor metastases. Here we report that CTCs derived from PCa patients showed interactions with E-selectin and E-selectin expressing endothelial cells. To examine E-selectin-mediated interactions of PCa cell lines and CTCs derived from metastatic PCa patients, we used fluorescently-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody J591-488 which is internalized following cell-surface binding. We employed a microscale flow device consisting of E-selectin-coated microtubes and human umbilical vein endothelial cells (HUVECs) on parallel-plate flow chamber simulating vascular endothelium. We observed that J591-488 did not significantly alter the rolling behavior in PCa cells at shear stresses below 3 dyn/cm2. CTCs obtained from 31 PCa patient samples showed that CTCs tether and stably interact with E-selectin and E-selectin expressing HUVECs at physiological shear stress. Interestingly, samples collected during disease progression demonstrated significantly more CTC/E-selectin interactions than samples during times of therapeutic response (p=0.016). Analysis of the expression of sialyl Lewis X (sLex) in patient samples showed that a small subset comprising 1.9-18.8% of CTCs possess high sLex expression. Furthermore, E-selectin-mediated interactions between prostate CTCs and HUVECs were diminished in the presence of anti-E-selectin neutralizing antibody. CTC-Endothelial interactions provide a novel insight into potential adhesive mechanisms of prostate CTCs as a means to initiate metastasis. PMID:24386459

  20. An experimental investigation of a turbulent shear flow with separation, reverse flow, and reattachment

    NASA Astrophysics Data System (ADS)

    Ruderich, R.; Fernholz, H. H.

    1986-02-01

    Attention is given to the turbulent and disturbed flow over a bluff plate having a long splitter plate in its plane-of-symmetry, so that the flow separates at the sharp bevelled edge of the bluff plate, forms a free shear layer above the reverse flow region, and reattaches on the splitter plate over a narrow region that is curved in spanwise direction. Hot wire and pulsed wire anemometry were used to measure mean velocity, Reynolds shear stress and Reynolds normal stress distributions, and spectra and integral length-scales were measured to investigate the state and structure of the flow. Mean and fluctuating qualities showed a self-similar behavior in a short region upstream of the reattachment, as well as 'profile-similarity' in the separated shear layer and along the splitter plate downstream from reattachment. No flapping or reattaching shear layer was observed.

  1. The production of premixed flame surface area in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Trouve, A.

    1993-01-01

    In the present work, we use three-dimensional Direct Numerical Simulation (DNS) of premixed flames in turbulent shear flow to characterize the effect of a mean shear motion on flame surface production. The shear is uniform in the unburnt gas, and simulations are performed for different values of the mean shear rate, S. The data base is then used to estimate and compare the different terms appearing in the Sigma-equation as a function of S. The analysis gives in particular the relative weights f the turbulent flow and mean flow components, a(sub T) and A(sub T), of the flame surface production term. This comparison indicates whether the dominant effects of a mean flow velocity gradient on flame surface area are implicit and scale with the modified turbulent flow parameters, kappa and epsilon, or explicit and scale directly with the rate of deformation.

  2. An analysis of laminar free-convection flow and heat transfer about a flat plate paralled to the direction of the generating body force

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1953-01-01

    The free-convection flow and heat transfer (generated by a body force) about a flat plate parallel to the direction of the body force are formally analyzed and the type of flow is found to be dependent on the Grashof number alone. For large Grashof numbers (which are of interest in aeronautics), the flow is of the boundary-layer type and the problem is reduced in a formal manner, which is analogous to Prandtl's forced-flow boundary-layer theory, to the simultaneous solution of two ordinary differential equations subject to the proper boundary conditions. Velocity and temperature distributions for Prandtl numbers of 0.01, 0.72, 0.733, 1, 1, 10, 100, and 1000 are computed, and it is shown that velocities and Nusselt numbers of the order of magnitude of those encountered in forced-convection flows may be obtained in free-convection flows. The theoretical and experimental velocity and temperature distributions are in good agreement. A flow and a heat-transfer parameter, from which the important physical quantities such as shear stress and heat-transfer rate can be computed, are derived as functions of Prandtl number alone.

  3. Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton

    PubMed Central

    Barry, Michael T.; Rusconi, Roberto; Guasto, Jeffrey S.; Stocker, Roman

    2015-01-01

    Fluid flow, ubiquitous in natural and man-made environments, has the potential to profoundly impact the transport of microorganisms, including phytoplankton in aquatic habitats and bioreactors. Yet, the effect of ambient flow on the swimming behaviour of phytoplankton has remained poorly understood, largely owing to the difficulty of observing cell–flow interactions at the microscale. Here, we present microfluidic experiments where we tracked individual cells for four species of motile phytoplankton exposed to a spatially non-uniform fluid shear rate, characteristic of many flows in natural and artificial environments. We observed that medium-to-high mean shear rates (1–25 s−1) produce heterogeneous cell concentrations in the form of regions of accumulation and regions of depletion. The location of these regions relative to the flow depends on the cells' propulsion mechanism, body shape and flagellar arrangement, as captured by an effective aspect ratio. Species having a large effective aspect ratio accumulated in the high-shear regions, owing to shear-induced alignment of the swimming orientation with the fluid streamlines. Species having an effective aspect ratio close to unity exhibited little preferential accumulation at low-to-moderate flow rates, but strongly accumulated in the low-shear regions under high flow conditions, potentially owing to an active, behavioural response of cells to shear. These observations demonstrate that ambient fluid flow can strongly affect the motility and spatial distribution of phytoplankton and highlight the rich dynamics emerging from the interaction between motility, morphology and flow. PMID:26538558

  4. The ecology of flows and drift wave turbulence in CSDX: A model

    NASA Astrophysics Data System (ADS)

    Hajjar, R. J.; Diamond, P. H.; Tynan, G. R.

    2018-02-01

    This paper describes the ecology of drift wave turbulence and mean flows in the coupled drift-ion acoustic wave plasma of a CSDX linear device. A 1D reduced model that studies the spatiotemporal evolution of plasma mean density n ¯ , and mean flows v¯ y and v¯ z , in addition to fluctuation intensity ε, is presented. Here, ε= is the conserved energy field. The model uses a mixing length lmix inversely proportional to both axial and azimuthal flow shear. This form of lmix closes the loop on total energy. The model self-consistently describes variations in plasma profiles, including mean flows and turbulent stresses. It investigates the energy exchange between the fluctuation intensity and mean profiles via particle flux and Reynolds stresses and . Acoustic coupling breaks parallel symmetry and generates a parallel residual stress Πxzr e s . The model uses a set of equations to explain the acceleration of v¯ y and v¯ z via Πxyr e s∝∇n ¯ and Πxyr e s∝∇n ¯ . Flow dynamics in the parallel direction are related to those in the perpendicular direction through an empirical coupling constant σVT. This constant measures the degree of symmetry breaking in the correlator and determines the efficiency of ∇n ¯ in driving v¯ z . The model also establishes a relation between ∇v¯ y and ∇v¯ z , via the ratio of the stresses Πxyr e s and Πxzr e s . When parallel to perpendicular flow coupling is weak, axial Reynolds power Pxz R e=-∇v¯ z is less than the azimuthal Reynolds power Pxy R e=-∇v¯ y . The model is then reduced to a 2-field predator/prey model where v¯ z is parasitic to the system and fluctuations evolve self-consistently. Finally, turbulent diffusion in CSDX follows the scaling: DCSDX=DBρ⋆0.6 , where DB is the Bohm diffusion coefficient and ρ⋆ is the ion gyroradius normalized to the density gradient |∇n ¯ /n ¯ |-1 .

  5. Viscoelastic flow past mono- and bidisperse random arrays of cylinders: flow resistance, topology and normal stress distribution.

    PubMed

    De, S; Kuipers, J A M; Peters, E A J F; Padding, J T

    2017-12-13

    We investigate creeping viscoelastic fluid flow through two-dimensional porous media consisting of random arrangements of monodisperse and bidisperse cylinders, using our finite volume-immersed boundary method introduced in S. De, et al., J. Non-Newtonian Fluid Mech., 2016, 232, 67-76. The viscoelastic fluid is modeled with a FENE-P model. The simulations show an increased flow resistance with increase in flow rate, even though the bulk response of the fluid to shear flow is shear thinning. We show that if the square root of the permeability is chosen as the characteristic length scale in the determination of the dimensionless Deborah number (De), then all flow resistance curves collapse to a single master curve, irrespective of the pore geometry. Our study reveals how viscoelastic stresses and flow topologies (rotation, shear and extension) are distributed through the porous media, and how they evolve with increasing De. We correlate the local viscoelastic first normal stress differences with the local flow topology and show that the largest normal stress differences are located in shear flow dominated regions and not in extensional flow dominated regions at higher viscoelasticity. The study shows that normal stress differences in shear flow regions may play a crucial role in the increase of flow resistance for viscoelastic flow through such porous media.

  6. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  7. Experimental study on the signs of particulate structures formation in annular geometry of rapid granular shear flows

    NASA Astrophysics Data System (ADS)

    Ritvanen, J.; Jalali, P.

    2009-06-01

    Rapid granular shear flow is a classical example in granular materials which exhibits both fluid-like and solid-like behaviors. Another interesting feature of rapid granular shear flows is the formation of ordered structures upon shearing. Certain amount of granular material, with uniform size distribution, is required to be loaded in the container in order to shear it under stable conditions. This work concerns the experimental study of rapid granular shear flows in annular Couette geometry. The flow is induced by continuous rotation of the plate over the top of the granular bed in an annulus. The compressive pressure, driving torque, instantaneous bed height from three symmetric locations and rotational speed of the shearing plate are measured. The annulus has a capacity of up to 15 kg of spherical steel balls of 3 mm in diameter. Rapid shear flow experiments are performed in one compressive force and rotation rate. The sensitivity of fluctuations is then investigated by different means through monodisperse packing. In this work, we present the results of the experiments showing how the flow properties depend on the amount of loaded granular material which is varied by small amounts between different experiments. The flow can exist in stable (fixed behavior) and unstable (time-dependent behavior) regimes as a function of the loaded material. We present the characteristics of flow to detect the formation of any additional structured layer in the annulus. As a result, an evolution graph for the bed height has been obtained as material is gradually added. This graph shows how the bed height grows when material increases. Using these results, the structure inside the medium can be estimated at extreme stable and unstable conditions.

  8. Folding and fracturing of rock adjacent to salt diapirs

    NASA Astrophysics Data System (ADS)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides of diapirs, have very little internal deformation. Instead, what faults are present around diapirs are related to drape folding (radial and diapir-parallel faults) or regional tectonics (extensional, contractional, strike-slip, and salt-evacuation faults).

  9. Shear-Modulated Electroosmotic Flow on a Patterned Charged Surface

    NASA Astrophysics Data System (ADS)

    Wei, Hsien-Hung

    2004-11-01

    The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow pattern can contain saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electrical field. The formation of closed streamlines could be advantageous for trapping non-diffusive particles in desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined for assessing strategies for creating efficient mixing.

  10. Intrinsic Flow Behavior During Improved Confinement in MST Reversed-field Pinch

    NASA Astrophysics Data System (ADS)

    Tan, E.; Craig, D.; Schott, B.; Boguski, J.; Xing, Z. A.; Nornberg, M. D.; Anderson, J. K.

    2017-10-01

    We used active charge exchange recombination spectroscopy to measure impurity ion flow velocity in high-current plasmas during periods of improved confinement. Velocity measurements througout the core reveal that ion flow parallel to the magnetic field is dominant compared to the perpendicular flow. The poloidal flow profile reverses at r/a = 0.6, and the flow near the core is larger on outboard positions compared to the inboard positions. A strong shear in the toroidal flow develops near the axis as PPCD proceeds. In the past, the mode velocity has been used to infer the toroidal flow based on the `no-slip' assumption that the mode and local plasma co-rotate. We tested this assumption with direct measurements near the m = 1, n = 6 resonant surface. Inboard flow measurements are consistent with the no-slip condition and exhibit a time dependence where the flow decreases together with the n = 6 mode velocity. The outboard flow is consistent in magnitude with the no-slip condition but the variations in time and across shots do not correlate well with the n = 6 mode velocity. Possible reasons why the inboard and outboard flow exhibit different behavior are discussed. This work has been supported by the US DOE and the Wheaton College summer research program.

  11. Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.

    PubMed

    Bardin, David; Kendall, Michael R; Dayton, Paul A; Lee, Abraham P

    2013-01-01

    Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 10(5) droplets per second, or 1.33 × 10(9) droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets.

  12. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  13. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob

    2017-02-01

    An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.

  14. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky model. The chemical reaction is simulated with a global single-step, second-order equilibrium reaction with an Arrhenius reaction rate. The two benchmark cases of constant density reacting and variable density non-reacting shear layers used to determine ODT parameters yield perfect agreement with regards to first and second-order flow statistics as well as shear layer growth rate. The variable density non-reacting shear layer also serves as a testing case for the LES-ODT model to simulate passive scalar mixing. The variable density, reacting shear layer cases only agree reasonably well and indicate that more work is necessary to improve variable density coupling of ODT and LES. The disagreement is attributed to the fact that the ODT filtered density is kept constant across the Runge-Kutta steps. Furthermore, a more in-depth knowledge of large scale and subgrid turbulent kinetic energy (TKE) spectra at several downstream locations as well as TKE budgets need to be studied to obtain a better understanding about the model as well as about the flow under investigation. The local Reynolds number based on the one-percent thickness at the exit is Redelta ≈ 5300, for the constant density reacting and for the variable density non-reacting case. For the variable density reacting shear layer, the Reynolds number based on the 1% thickness is Redelta ≈ 2370. The variable density reacting shear layers show suppressed growth rates due to density variations caused by heat release. This has also been reported in literature. A Lewis number parameter study is performed to extract non-unity Lewis number effects. An increase in the Lewis number leads to a further suppression of the growth rate, however to an increase spread of second-order flow statistics. Major focus and challenge of this work is to improve and advance the three-dimensional coupling of the one-dimensional ODT domains while keeping the solution correct. This entails major restructuring of the model. The turbulent reacting shear layer poses a physical challenge to the model because of its nature being a statistically stationary, non-decaying inhomogeneous and anisotropic turbulent flow. This challenge also requires additions to the eddy sampling procedure. Besides physical advancements, the LES-ODT code is also improved regarding its ability to use general cuboid geometries, an array structure that allows to apply boundary conditions based on ghost-cells and non-uniform structured meshes. The use of transverse grid-stretching requires the implementation of the ODT triplet map on a stretched grid. Further, advancing subroutine structure handling with global variables that enable serial code speed-up and parallelization with OpenMP are undertaken. Porting the code to a higher-level language, object oriented, finite-volume based CFD platform, like OpenFoam for example that allows more advanced array and parallelization features with graphics processing units (GPUs) as well as parallelization with the message passing interface (MPI) to simulate complex geometries is recommended for future work.

  15. Hydrodynamic mobility of a sphere moving on the centerline of an elastic tube

    NASA Astrophysics Data System (ADS)

    Daddi-Moussa-Ider, Abdallah; Lisicki, Maciej; Gekle, Stephan

    2017-11-01

    Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green's functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green's functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.

  16. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  17. Non-hotspot volcano chains produced by migration of shear-driven upwelling toward the East Pacific Rise (Invited)

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Conrad, C. P.; Smith, E. I.; Harmon, N.

    2013-12-01

    While most oceanic volcanism is associated with the passive rise of hot mantle beneath the spreading axes of mid-ocean ridges (MOR), volcanism occurring off-axis reflects intraplate upper-mantle dynamics and composition, yet is poorly understood. Close to the East Pacific Rise (EPR), active magmatism propagated towards the spreading center to create a series of parallel volcanic ridges on the Pacific Plate ( ~3500 km in length for the Pukapuka, and ~500 km for the Sojourn, and Hotu-Matua ridges). Propagation of this volcanism by ~20 cm/a, as well as asymmetry in a variety of geophysical observables across the EPR, indicates strong lateral eastward pressure-driven flow in the asthenosphere; likely driven by upwelling beneath the South Pacific Superswell [1]. Although this pattern of large-scale mantle flow can account for the propagation of intraplate magmatism towards the EPR, it does not explain decompression melting itself. We hypothesize that shear-driven upwelling sustains off-axis volcanism. Unlike e.g. mantle plumes, shear-driven upwelling is a mechanism for mantle decompression that does not require lateral density heterogeneity to drive upwelling. For example, in the presence of shear across the asthenosphere, vertical flow emerges at the edges of viscosity heterogeneity [2]. These ingredients are present in the SE Pacific, where (1) shear across the asthenosphere is inferred to be greatest worldwide [2], and (2) lateral heterogeneity in mantle viscosity is indicated by geoid lineations that are associated with anomalies in seismic tomography [3]. Eastward pressure-driven flow from the South Pacific Superswell may separate into low-viscosity fingers thus providing viscosity heterogeneity [3]. Our three-dimensional numerical models [4] show that asthenospheric shear can excite upwelling and decompression melting at the tip of low-viscosity fingers that are propelled eastward by vigorous asthenospheric flow. This shear-driven upwelling is able to sustain intraplate volcanism that progresses towards the MOR, spreads laterally close to the axis, and weakly continues on the opposite plate. These predictions can explain the anomalously-fast eastward progression of volcanism, and its spatial distribution near the EPR. Moreover, for a heterogeneous mantle source involving a fertile mantle component embedded in a matrix of peridotite, the systematics of volcanism predicted by the models can account for the geochemical trend observed along the Pukapuka ridge (from C/FOZO [5] in the west toward MOR-basalt in the east), as well as the anomaly of MOR volcanism at the EPR-Pukapuka intersection (documenting C/FOZO influence). Our study highlights the role of horizontal asthenospheric flow and mantle heterogeneity in producing linear chains of intraplate volcanism independent of a (deep-rooted) buoyancy source. [1] Conder, J. A., D. W. Forsyth, E. M. Parmentier (2002): J. Geophys. Res., 107(B12), 2344. [2] Conrad, C. P., T. A. Bianco, E. I. Smith, P. Wessel (2011): Nature Geosci., 4, 317-321. [3] Harmon, N., D. W. Forsyth, D. S. Weeraratne, Y. Yang, S. C. Webb (2011): Earth Planet. Sci. Lett., 311, 306-315. [4] Ballmer, M. D., C. P. Conrad, E. I. Smith, N. Harmon (2013): Geology, 41, 479-482. [5] Zindler, A., Hart, S., 1986. Earth Planet. Sci. Lett., 14, 493-571.

  18. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-10-01

    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  19. Shear stress induced stimulation of mammalian cell metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Eskin, S. G.

    1988-01-01

    A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under well controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/sq cm, and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. It is demonstrated that shear stresses in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.

  20. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  1. Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model

    NASA Astrophysics Data System (ADS)

    Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.

    2017-11-01

    Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.

  2. Observation of improved and degraded confinement with driven flow on the LAPD

    NASA Astrophysics Data System (ADS)

    Schaffner, David

    2012-10-01

    External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.

  3. Shear alters motility of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  4. A master dynamic flow diagram for the shear thickening transition in micellar solutions.

    PubMed

    Bautista, F; Tepale, N; Fernández, V V A; Landázuri, G; Hernández, E; Macías, E R; Soltero, J F A; Escalante, J I; Manero, O; Puig, J E

    2016-01-07

    The shear thickening behavior of dilute micellar solutions of hexadecyltrimethylammonium-type surfactants with different counterions (tosylate, 3- and 4-fluorobenzoate, vinylbenzoate and salicylate) and of n-alkyltetradecylammonium bromide (CnTAB), with n = 14, 16 and 18, is examined here. These solutions undergo a shear thickening transition due to the formation of shear-induced structures (SISs) in the shear range studied. Here we report a relationship between the shear thickening intensity and the differences in the hydrophobicity of counterions according to the Hofmeister-like anion series, which leads to a master flow diagram. This master flow diagram is produced by plotting a normalized shear thickening intensity (Iη - 1)/(Imax - 1) versus CD/CD,max, where Iη is the shear-thickening intensity, defined as the largest viscosity obtained in the shear-thickening transition (STT) at a given surfactant concentration CD divided by the Newtonian viscosity η0, and Imax is the largest intensity value obtained in the STT at a surfactant concentration CD,max. The master flow diagram is built using several cetyltrimethylammonium-type surfactants with different counterions, according to a Hofmeister-like series, and by n-alkyltetradecylammonium bromide surfactants with different alkyl chain lengths.

  5. ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi

    This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.

  6. New concepts for Reynolds stress transport equation modeling of inhomogeneous flows

    NASA Technical Reports Server (NTRS)

    Perot, J. Blair; Moin, Parviz

    1993-01-01

    The ability to model turbulence near solid walls and other types of boundaries is important in predicting complex engineering flows. Most turbulence modeling has concentrated either on flows which are nearly homogeneous or isotropic, or on turbulent boundary layers. Boundary layer models usually rely very heavily on the presence of mean shear and the production of turbulence due to that mean shear. Most other turbulence models are based on the assumption of quasi-homogeneity. However, there are many situations of engineering interest which do not involve large shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent boundary layers are the prototypical example of such flows, with practical situations being separation and reattachment, bluff body flow, high free-stream turbulence, and free surface flows. Although these situations are not as common as the variants of the flat plate turbulent boundary layer, they tend to be critical factors in complex engineering situations. The models developed are intended to extend classical quasi-homogeneous models into regions of large inhomogeneity. These models do not rely on the presence of mean shear or production, but are still applicable when those additional effects are included. Although the focus is on shear-free boundary layers as tests for these models, results for standard shearing boundary layers are also shown.

  7. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  8. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    NASA Astrophysics Data System (ADS)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  9. Sedimentological processes in a scarp-controlled rocky shoreline to upper continental slope environment, as revealed by unusual sedimentary features in the Neogene Coquimbo Formation, north-central Chile

    NASA Astrophysics Data System (ADS)

    Le Roux, J. P.; Gómez, Carolina; Fenner, Juliane; Middleton, Heather

    2004-03-01

    Exceptionally good outcrops of Miocene to Pliocene deposits in the vicinity of submarine Paleozoic basement scarps at Carrizalillo, north of La Serena, reveal a wealth of sedimentary features not commonly observed. The most proximal facies consist of rock fall and coarse-grained debris flow deposits directly abutting the basement wall from which they originated. Angular basement clasts are mixed with well-rounded cobbles, which probably formed as a basal gravel on a wave-cut platform at the beginning of marine flooding, subsequently accumulated at the scarp edge and were incorporated into the debris when the latter collapsed. The poor sorting, inverse grading, and protruding cobbles and boulders are classical debris flow features, with good clast imbrication indicating a laminar shearing action. A medial facies is represented by secondary channels running parallel to the major scarp about 1 km downslope of the first locality. In the largest channel, megaflutes at the base indicate the passage of highly turbulent, nondepositing flows eroding the soft, silty substrate. In the deepest, central part of the channel, a pebbly coquina shows horizontal and trough cross-stratification, with most of the bivalves oriented convex side up. Meter-scale rip-up clasts of the underlying siltstone are also present, indicating turbulent flow with a density sufficiently high to retard settling. The coquina is interpreted as a detachment deposit resulting from a hydroplaning debris flow along the central part of the channel, where the velocity and rate of pore pressure decay were highest. This deposit is overlain by fining upward, massive to horizontally stratified sandstone very similar in texture and composition to the matrix of the debris flow, suggesting its formation by surface transformation and elutriation of the latter. Along the channel margin, a basal centimeter-scale sandstone layer is virtually unaffected by the megaflute topography and clearly represents a subsequent event. It is interpreted as a basal shear carpet driven by the overlying debris flow. Within the shear carpet, a basal friction zone and an overlying collision zone containing a higher concentration of shell hash can be distinguished. The overlying debris flow deposit is represented by massive coquina with scattered, angular to rounded basement clasts. It contains disarticulated bivalves oriented with their concave side up, indicating large-scale upward fluid escape during deposition. A smaller secondary channel shows large rip-up rafts of the underlying substrate. Some rafts appear to have been plucked from the substrate by a process of sand injection from an overriding high-density sandy debris flow, which probably originated during a tsunami. Such clasts can climb upward into a laminar flow by down-current tilting and tumbling. The most distal facies occurs below a second scarp oriented more or less parallel to the present coastline, where finer-grained turbidites onlap and backlap onto the stoss and lee sides of an obstacle formed by eroded boulder conglomerates. The onlap deposits resemble inclined sandy macroforms recently described in submarine canyon settings. They are interbedded with diatom-containing, volcanic ash beds with cross-stratification dipping eastwards and containing deepwater microflora typical of continental upwelling zones.

  10. An analysis of the characteristics of rough bed turbulent shear stresses in an open channel

    NASA Astrophysics Data System (ADS)

    Keshavarzy, A.; Ball, J. E.

    1997-06-01

    Entrainment of sediment particles from channel beds into the channel flow is influenced by the characteristics of the flow turbulence which produces stochastic shear stress fluctuations at the bed. Recent studies of the structure of turbulent flow has recognized the importance of bursting processes as important mechanisms for the transfer of momentum into the laminar boundary layer. Of these processes, the sweep event has been recognized as the most important bursting event for entrainment of sediment particles as it imposes forces in the direction of the flow resulting in movement of particles by rolling, sliding and occasionally saltating. Similarly, the ejection event has been recognized as important for sediment transport since these events maintain the sediment particles in suspension. In this study, the characteristics of bursting processes and, in particular, the sweep event were investigated in a flume with a rough bed. The instantaneous velocity fluctuations of the flow were measured in two-dimensions using a small electromagnetic velocity meter and the turbulent shear stresses were determined from these velocity fluctuations. It was found that the shear stress applied to the sediment particles on the bed resulting from sweep events depends on the magnitude of the turbulent shear stress and its probability distribution. A statistical analysis of the experimental data was undertaken and it was found necessary to apply a Box-Cox transformation to transform the data into a normally distributed sample. This enabled determination of the mean shear stress, angle of action and standard error of estimate for sweep and ejection events. These instantaneous shear stresses were found to be greater than the mean flow shear stress and for the sweep event to be approximately 40 percent greater near the channel bed. Results from this analysis suggest that the critical shear stress determined from Shield's diagram is not sufficient to predict the initiation of motion due to its use of the temporal mean shear stress. It is suggested that initiation of particle motion, but not continuous motion, can occur earlier than suggested by Shield's diagram due to the higher shear stresses imposed on the particles by the stochastic shear stresses resulting from turbulence within the flow.

  11. Modifications to intermittent turbulent structures by sheared flow in LAPD

    NASA Astrophysics Data System (ADS)

    Rossi, Giovanni; Schaffner, David; Carter, Troy; Guice, Danny; Bengtson, Roger

    2012-10-01

    Turbulence in the edge of the Large Plasma Device is generally observed to be intermittent with the production of filamentary structures. Density-enhancement events (called ``blobs'') are localized to the region radially outside the edge of the cathode source while density-depletion events (called ``holes'') are localized to the region radially inward. A flow-shear layer is also observed to be localized to this same spatial region. Control over the edge flow and shear in LAPD is now possible using a biasable limiter. Edge intermittency is observed to be strongly affected by variations in the edge flow, with intermittency (as measured by skewness of the fluctuation amplitude PDF) increasing with edge flow (in either direction) and reaching a minimum when spontaneous edge flow is zeroed-out using biasing. This trend is counter to the observed changes in turbulent particle flux, which peaks at low flow/shear. Two-dimensional cross-conditional averaging confirms the blobs to be detached filamentary structures with a clear dipolar potential structure and a geometry also dependent on the magnitude of sheared flow. More detailed measurements are made to connect the occurrence of these blobs to observed flow-driven coherent modes and their contribution to radial particle flux.

  12. Velocity shear Kelvin-Helmholtz instability with inhomogeneous DC electric field in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Kaur, Rajbir; Pandey, R. S.

    2018-01-01

    In this paper parallel flow velocity shear Kelvin-Helmholtz instability has been studied in two different extended regions of the inner magnetosphere of Saturn. The method of the characteristic solution and kinetic approach has been used in the mathematical calculation of dispersion relation and growth rate of K-H waves. Effect of magnetic field (B), inhomogeneity (P/a), velocity shear scale length (Ai), temperature anisotropy (T⊥ /T||), electric field (E), ratio of electron to ion temperature (Te /Ti), density gradient (εnρi) and angle of propagation (θ) on the dimensionless growth rate of K-H waves in the inner magnetosphere of Saturn has been observed with respect to k⊥ρi . Calculations of this theoretical analysis have been done taking the data from the Cassini in the inner magnetosphere of Saturn in the two extended regions of Rs ∼4.60-4.01 and Rs ∼4.82-5.0. In our study velocity shear, temperature anisotropy and magnitude of the electric field are observed to be the major sources of free energy for the K-H instability in both the regions considered. The inhomogeneity of electric field, electron-ion temperature ratio, and density gradient have been observed playing stabilizing effect on K-H instability. This study also indicates the effect of the vicinity of icy moon Enceladus on the growth of K-H instability.

  13. Influence of vibration on structure rheological properties of a highly concentrated suspension

    NASA Astrophysics Data System (ADS)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  14. The role of zonal flows and predator–prey oscillations in triggering the formation of edge and core transport barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.

    2014-04-24

    Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less

  15. The role of zonal flows and predator-prey oscillations in triggering the formation of edge and core transport barriers

    NASA Astrophysics Data System (ADS)

    Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.

    2014-07-01

    We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.

  16. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  17. Rapid welding and rheomorphism in unconfined (sheet-like) ignimbrites in Idaho, England and Pantelleria

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Branney, M. J.; Andrews, G.

    2003-04-01

    Sheet-like rheomorphic ignimbrites of diverse chemistry and geological setting preserve evidence of very rapid welding and rheomorphism, with time-scales of the same order-of-magnitude as the duration of the pyroclastic density current (mins-hrs). This is in contrast to rheomorphism that occurs primarily after emplacement; for example, in the Crinkles Tuffs of Scafell caldera in England individual rheomorphic folds affect more than one ignimbrite. In this case two or more ignimbrites were emplaced and then underwent rheomorphism together, prior to cooling. In contrast to valley-filling rheomorphic ignimbrites, in which the orientation of sheathfold axes and elongation lineations remain parallel to the valley (1) (i.e. the valley served to maintain the flow direction by chanelling), sheathfolds axes and elongation lineations in sheet-like ignimbrites emplaced onto low-angle slopes vary at each individual geographic location. At individual heights in the ignimbrite sheet, the orientation trends cluster, and the azimuth orientation of the clusters change systematically with height. We interpret this as indicating that the flow-direction of the pyroclastic density current changed with time during progressive aggradation of the ignimbrite. During deposition, agglutination and rheomorphism occurred in a relatively narrow, rising ductile shear zone. The transport direction at a particular moment was preserved as rheomorphic fabrics became frozen into the deposit when this shear zone migrated away upwards. Each level in the ignimbrite thus provides a snap-shot of the flow direction at a particular time. Changes in flow-direction in sustained pyroclastic density currents occur due to depositional and erosional modification of topography (2). Chilled basal vitrophyres of rheomorphic ignimbrites are particularly instructive, as rapid chilling uniquely preserves early stages of welding and deformation. Oblique fabrics are typical, and record agglutination and initial rheomorphism that elsewhere is transposed and overprinted by more protracted shear and attenuation. In contrast, upper vitrophyres of some rheomorphic ignimbrites show well-developed sheath and flow-perturbation folds(3). (1) Branney MJ and Barry TL (2003) Abstract in this volume. (2) Branney MJ and Kokelaar P (2003) Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. London Mem. 27. 150 pp. (3) Alsop GI and Holdsworth RE (2002) Tectonophysics 6605.

  18. Duct flow nonuniformities: Effect of struts in SSME HGM II(+)

    NASA Technical Reports Server (NTRS)

    Burke, Roger

    1988-01-01

    A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.

  19. Geometric flow control of shear bands by suppression of viscous sliding

    PubMed Central

    Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-01-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920

  20. Effect of shear stress on platelet adhesion to expanded polytetrafluoroethylene, a silicone sheet, and an endothelial cell monolayer.

    PubMed

    Furukawa, K S; Ushida, T; Sugano, H; Tamaki, T; Ohshima, N; Tateishi, T

    2000-01-01

    We visualized in real-time platelets adhering to the surface of three representative biomaterials, by using an apparatus consisting of a modified cone and plate rheometer combined with an upright epifluorescence microscope under two shear flows (0.1 and 5.0 dyne/cm2). The materials were expanded polytetrafluoroethylene (ePTFE), silicone sheet, and a monolayer of bovine endothelial cells (ECs) formed on glass, all of which are opaque materials used for artificial blood vessels and medical devices. According to quantitative analysis, the monolayer of ECs formed on glass had better blood compatibility than did either the ePTFE or the silicone sheet under shear flow conditions. Under a shear flow condition of 0.1 dyne/cm2, platelet adhesion was silicone sheet > ePTFE. In contrast, under a shear flow condition of 5.0 dyne/cm2, ePTFE > silicone sheet. These results indicate that the intensity of shear stress could modify the order of hemocompatibility of the materials. Therefore, direct observation of platelet adhesion under shear flow conditions is indispensable for testing and screening biomaterials and for providing a precise quantitative evaluation of platelet adhesion.

  1. Geometric flow control of shear bands by suppression of viscous sliding

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-08-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.

  2. CT scanning and flow measurements of shale fractures after multiple shearing events

    DOE PAGES

    Crandall, Dustin; Moore, Johnathan; Gill, Magdalena; ...

    2017-11-05

    A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less

  3. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.

    PubMed

    Chaharlang, Mahmood; Samavati, Vahid

    2015-08-01

    The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. CT scanning and flow measurements of shale fractures after multiple shearing events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin; Moore, Johnathan; Gill, Magdalena

    A shearing apparatus was used in conjunction with a Hassler-style core holder to incrementally shear fractured shale cores while maintaining various confining pressures. Computed tomography scans were performed after each shearing event, and were used to obtain information on evolving fracture geometry. Fracture transmissivity was measured after each shearing event to understand the hydrodynamic response to the evolving fracture structure. The digital fracture volumes were used to perform laminar single phase flow simulations (local cubic law with a tapered plate correction model) to qualitatively examine small scale flow path variations within the altered fractures. Fractures were found to generally increasemore » in aperture after several shear slip events, with corresponding transmissivity increases. Lower confining pressure resulted in a fracture more prone to episodic mechanical failure and sudden changes in transmissivity. Conversely, higher confining pressures resulted in a system where, after an initial setting of the fracture surfaces, changes to the fracture geometry and transmissivity occurred gradually. Flow paths within the fractures are largely controlled by the location and evolution of zero aperture locations. Lastly, a reduction in the number of primary flow pathways through the fracture, and an increase in their width, was observed during all shearing tests.« less

  5. Anisotropic heat transport in reversed shear configurations: shearless Cantori barriers and nonlocal transport

    NASA Astrophysics Data System (ADS)

    Blasevski, D.; Del-Castillo-Negrete, D.

    2012-10-01

    Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.

  6. Shear thinning and shear thickening of a confined suspension of vesicles

    NASA Astrophysics Data System (ADS)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  7. Characterizing a middle to upper crustal shear zone: Microstructures, quartz c-axis fabrics, deformation temperatures and flow vorticity analysis of the northern Ailao Shan-Red River shear zone, China

    NASA Astrophysics Data System (ADS)

    Wu, Wenbin; Liu, Junlai; Zhang, Lisheng; Qi, Yinchuan; Ling, Chengyang

    2017-05-01

    Structural and microstructural characteristics, deformation temperatures and flow vorticities of the northern Ailao Shan (ALS) high-grade metamorphic belt provide significant information regarding the nature and tectonic evolution of the Ailao Shan-Red River (ASRR) shear zone. Mineral deformation mechanisms, quartz lattice-preferred orientation (LPO) patterns and the opening angles of quartz c-axis fabrics of samples from the Gasa section indicate that the northern ALS high-grade metamorphic belt has experienced progressive shear deformation. The early stage shearing is characterized by a gradual decrease of deformation temperatures from >650 °C at the northeastern unit to ca. 300 °C at the southwestern unit, that results in the formation of migmatites, mylonitic gneisses, thin bedded mylonites, mylonitic schists and phyllonites from the NE to SW across the strike of the shear zone. The late stage low-temperature (300-400 °C) shearing is superimposed on the early deformation throughout the belt with the formation of discrete, small-scale shear zones, especially in the thin-banded mylonitic rocks along both margins. The kinematic vorticity values estimated by rotated rigid porphyroclast method and oblique grain-shaped/quartz c-axis-fabric method imply that the general shear-dominated flow (0.49-0.77) progressively changed to a simple shear-dominated flow (0.77-1) toward the late stage of ductile deformation. The two stages of shearing are consistent with early shortening-dominated and late extrusion-controlled regional tectonic processes. The transition between them occurred at ca. 27 Ma in the ALS high-grade metamorphic belt along the ASRR shear zone. The large amount of strike-slip displacement along the ASRR shear zone is predominantly attributed to accelerated flow along the shear zone during the late extrusion-controlled tectonic process.

  8. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Shen, Zhijian; Yan, Haixue; Reece, Michael J.; Kan, Yanmei; Wang, Peiling

    2007-11-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi3.25La0.75Ti3O12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 °C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d33 above the permittivity peak, Tm, show that the BLT ceramic has relaxor-like behavior.

  9. F-actin and microtubule suspensions as indeterminate fluids.

    PubMed

    Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R

    1987-03-20

    The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.

  10. Contribution of peculiar shear motions to large-scale structure

    NASA Technical Reports Server (NTRS)

    Mueler, Hans-Reinhard; Treumann, Rudolf A.

    1994-01-01

    Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.

  11. Uprooting of flexible riparian vegetation: field and laboratory observations

    NASA Astrophysics Data System (ADS)

    Solari, L.; Calvani, G.; Francalanci, S.

    2017-12-01

    Vegetation is a key element in fluvial systems, controlling river corridor form and dynamics. Plants actively interact with fluvial processes; their aboveground biomass can affect the flow field and sediment transport and therefore river morphological evolution, whereas their belowground biomass modifies the hydraulic and mechanical properties of the substrate, and consequently the moisture regime and erodibility of the soil (Gurnell, 2014; Solari et al., 2015). Vegetation biomass can either increase over time or can die through the mechanism of uprooting. Despite its important implications in river morphodynamics, vegetation uprooting due to sediment transport during flood events have been poorly investigated (Edmaier et al., 2011). Most of previous research focused on the mechanism of root breakage and on measuring the vegetation resistance to uprooting in the vertical direction (Bywater-Reyes et al., 2015, among others). In this work, we focus on the uprooting of flexible juvenile seedlings vegetation due to flow and to bed erosion. First, we derive a physics-based model for the prediction of vegetation uprooting for given root geometry, soil strength characteristics, flow bed shear stress and bed erosion. The model is then tested in a laboratory flume using two different species of vegetation: Avena sativa and Salix purpurea. Various experiments were run considering increasing flow discharges and a quasi- parallel bed erosion. The vegetation model is then applied to a sediment bar in the Ombrone Pistoiese river where we observed the removal of Salix Purpurea during the flood of November 2016. We implemented a 2D hydraulic model to reconstruct the pattern of bed shear stresses on the bar and we compared the prediction of the vegetation model with the field surveys of Salix purpurea before and after the flood. Results suggest that juvenile seedlings can be easily removed by the flow provided sediment transport takes place.

  12. The possible role of Reynolds stress in the creation of a transport barrier in tokamak edge plasmas

    NASA Astrophysics Data System (ADS)

    Vergote, M.; van Schoor, M.; Xu, Y.; Jachmich, S.; Weynants, R.; Hron, M.; Stöckel, J.

    2005-03-01

    To obtain a good confinement, mandatory in a fusion reactor, the understanding of the formation of transport barriers in the edge plasma of a tokamak is essential. Turbulence, the major candidate to explain anomalous transport, can be quenched by sheared flows in the edge which rip the convective cells apart, thus forming a barrier. Experimental evidence from the Chinese HT-6M tokamak [Y.H. Xu et al.: Phys. Rev. Lett. 84 (2000) 3867], points to the fact that momentum transfer from the turbulence can create these sheared flows via the Reynolds stresses. A new 1-D fluid model for the generation of the poloidal flow, has been developed taking into account the driving force of the Reynolds stress and the friction forces due to neutrals and parallel viscosity. Special attention has been dedicated to the computation of the flux-surface-averaging for the various terms. This model has been confronted with the experimental results obtained in the HT-6M tokamak, where Reynolds stresses were generated by application of a turbulent heating pulse. If the model is applied in cylindrical geometry, the calculated Reynolds stress-induced flow agrees well with the measured poloidal velocity in the plasma edge. However, when the full toroidal geometry is taken into account, it seems that the Reynolds stresses are too small to explain the observed rotation. This indicates that the role of the Reynolds stresses in inducing macroscopic flow in the torus is weakened. A combined system of probes allowing to measure the Reynolds stress and the rotation velocity simultaneously, has been developed and installed on the CASTOR tokamak (Prague). We report here on the first results obtained.

  13. Effects of shear flow on phase nucleation and crystallization.

    PubMed

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  14. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  15. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems <100>{010} and < 1 bar 10>{110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system <100>{001} and rotation axis [010]. The slip system < 1 bar 10>{110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of deformation, if the isotopic systems of deformed zircon were reset.

  16. Single molecule studies of flexible polymers under shear and mixed flows

    NASA Astrophysics Data System (ADS)

    Teixeira, Rodrigo Esquivel

    We combine manipulation and single molecule visualization of flexible DNA polymers with the generation of controlled simple shear and planar mixed flows for the investigation of polymer flow physics. With the ability to observe polymer conformation directly and follow its evolution in both dilute and entangled regimes we provide a direct test for molecular models. The coil-stretch transition of polymer extension was investigated in planar mixed flows approaching simple shear. Visualization of individual molecules revealed a sharp coil-stretch transition in the steady-state length of the polymer with increasing strain rate in flows slightly more straining than rotational. In slightly more rotational flows significant transient polymer deformation was observed. Next, dilute polymers were visualized in the flow-gradient plane of a steady shear flow. By exploiting the linear proportionality between polymer mass and image intensity, the radius of gyration tensor elements ( Gij) were measured over time. Then, the Giesekus stress tensor was used to obtain the bulk shear viscosity and first normal stress coefficient, thus performing rheology measurements from single molecule conformations. End-over-end tumbling was discovered for the first time, confirming a long-standing prediction and numerous single-chain computer simulation studies. The tumbling frequency followed Wi0.62, and an equation derived from simple advection and diffusion arguments was able to reproduce these observations. Power spectral densities of chain orientation trajectories were found to be single-peaked around the tumbling frequency, thus suggesting a periodic character for polymer dynamics. Finally, we investigated well-entangled polymer solutions. Identical preparations were used in both rheological characterizations and single molecule observations under a variety of shear flow histories. Polymer extension relaxations after the cessation of a fast shear flow revealed two intrinsic characteristic times. The fast one was insensitive to concentration and at least an order of magnitude larger than the Rouse time presupposed by theoretical treatments. The slow timescale grew steeply with concentration, in qualitative agreement with theory. Transient and steady shear flows showed vastly different conformations even among identical molecules subjected to identical flow histories. This "molecular individualism" of well-entangled solutions and its broad conformational distributions calls into question the validity of preaveraging approximations made in molecular-level theories.

  17. Rheology behaviour of modified silicone-dammar as a natural resin coating

    NASA Astrophysics Data System (ADS)

    Zakaria, Rosnah; Ahmad, Azizah Hanom

    2015-08-01

    Modified silicone-dammar (SD) was prepared by various weight percent from 5 - 45 wt% of dammar added. The n-value (viscosity index) of silicone with 5 and 10 % were turn to be 1.6 and 1.3 of viscosity index. While 15, 20, 25 and 30 wt% of dammar added gave 0.7, 0.3, 0.2 and 0.1 of viscosity index. On the other hand, 35, 40 and 45 wt% of dammar gave a fixed value of viscosity index of 0.03. This n-value shows the dispersion quality of paint mixture indicates that the modified silicone-dammar was followed the Bingham's Model. The rheology measurement of SD mixture was analysed by plotting ln shear stress vs shear rate value. Analysis of the graph showed a Bingham plastic model with regression R2 equivalent to 0.99. The linear viscoelastic behaviour of SD samples increased in parallel with increasing dammar content indicate that the suspension of dammar in silicone resin could flow steadily with time giving a pseudoplastic behaviour.

  18. Sheathfolds in rheomorphic ignimbrites

    USGS Publications Warehouse

    Branney, M.J.; Barry, T.L.; Godchaux, Martha

    2004-01-01

    Structural reappraisal of several classic rheomorphic ignimbrites in Colorado, Idaho, the Canary Islands and Italy has, for the first time, revealed abundant oblique folds, curvilinear folds and sheathfolds which formed during emplacement. Like their equivalents in tectonic shear-zones, the sheathfold axes lie sub-parallel to a pervasive elongation lineation, and appear as eye structures on rock surfaces normal to the transport direction. With the recognition of sheathfolds, ignimbrites previously inferred to have undergone complex rheomorphic deformation histories are re-interpreted as recording a single, progressive deformation event. In some examples, the trends of sheathfolds and related lineations change with height through a single ignimbrite suggesting that rheomorphism did not affect the entire thickness of ignimbrite synchronously. Instead, we infer that in these ignimbrites a thin ductile shear-zone rose gradually through the aggrading agglutinating mass whilst the flow direction varied with time. This suggests that, in some cases, both welding and rheomorphism can be extremely rapid, with ductile strain rates significantly exceeding rates of ignimbrite aggradation. ?? Springer-Verlag 2004.

  19. Local phase transitions in driven colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Scacchi, A.; Brader, J. M.

    2018-02-01

    Using dynamical density functional theory and Brownian dynamics simulations, we investigate the influence of a driven tracer particle on the density distribution of a colloidal suspension at a thermodynamic state point close to the liquid side of the binodal. In bulk systems, we find that a localised region of the colloid-poor phase, a 'cavitation bubble', forms behind the moving tracer. The extent of the cavitation bubble is investigated as a function of both the size and velocity of the tracer. The addition of a confining boundary enables us to investigate the interaction between the local phase instability at the substrate and that at the particle surface. When both the substrate and tracer interact repulsively with the colloids we observe the formation of a colloid-poor bridge between the substrate and the tracer. When a shear flow is applied parallel to the substrate the bridge becomes distorted and, at sufficiently high shear-rates, disconnects from the substrate to form a cavitation bubble.

  20. Seismic anisotropy in the vicinity of the Alpine fault, New Zealand, estimated by seismic interferometry

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Okada, T.; Yoshida, K.; Townend, J.; Boese, C. M.; Baratin, L. M.; Chamberlain, C. J.; Savage, M. K.

    2016-12-01

    We estimate shear wave velocity anisotropy in shallow crust near the Alpine fault using seismic interferometry of borehole vertical arrays. We utilized four borehole observations: two sensors are deployed in two boreholes of the Deep Fault Drilling Project in the hanging wall side, and the other two sites are located in the footwall side. Surface sensors deployed just above each borehole are used to make vertical arrays. Crosscorrelating rotated horizontal seismograms observed by the borehole and surface sensors, we extracted polarized shear waves propagating from the bottom to the surface of each borehole. The extracted shear waves show polarization angle dependence of travel time, indicating shear wave anisotropy between the two sensors. In the hanging wall side, the estimated fast shear wave directions are parallel to the Alpine fault. Strong anisotropy of 20% is observed at the site within 100 m from the Alpine fault. The hanging wall consists of mylonite and schist characterized by fault parallel foliation. In addition, an acoustic borehole imaging reveals fractures parallel to the Alpine fault. The fault parallel anisotropy suggest structural anisotropy is predominant in the hanging wall, demonstrating consistency of geological and seismological observations. In the footwall side, on the other hand, the angle between the fast direction and the strike of the Alpine fault is 33-40 degrees. Since the footwall is composed of granitoid that may not have planar structure, stress induced anisotropy is possibly predominant. The direction of maximum horizontal stress (SHmax) estimated by focal mechanisms of regional earthquakes is 55 degrees of the Alpine fault. Possible interpretation of the difference between the fast direction and SHmax direction is depth rotation of stress field near the Alpine fault. Similar depth rotation of stress field is also observed in the SAFOD borehole at the San Andreas fault.

  1. Turbulence in Internal Flows. Turbomachinery and Other Applications

    DTIC Science & Technology

    1977-05-01

    are things we shall look for in our sheared cellular flow. One of the things that is fairly typical for nearly homogeneous turbulent shear flow, and... One of the things that we hoped to learn from our sheared cellular flow computations was information about this particular attribute. Slide No. 5...typical temperature difference was on the order of a couple of degrees Centigrade, the lower side being the hotter. We did in fact do some checks: things

  2. Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi

    Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.

  3. Rapid expulsion of microswimmers by a vortical flow

    DOE PAGES

    Sokolov, Andrey; Aranson, Igor S.

    2016-03-23

    Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuationsmore » of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria-flow interactions.« less

  4. Impact of finite rate chemistry on the hydrodynamic stability of shear flows in turbulent lean premixed combustion

    NASA Astrophysics Data System (ADS)

    Dagan, Yuval; Ghoniem, Ahmed

    2017-11-01

    Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.

  5. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

    NASA Astrophysics Data System (ADS)

    Leahy, Brian; Koch, Donald; Cohen, Itai

    2014-11-01

    Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

  6. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions

    NASA Astrophysics Data System (ADS)

    Cox, Christopher; Plesniak, Michael W.

    2017-11-01

    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  7. The Role of Environmental Shear and Thermodynamic Conditions in Determining the Structure and Evolution of Mesoscale Convective Systems during TOGA COARE.

    NASA Astrophysics Data System (ADS)

    Lemone, Margaret A.; Zipser, Edward J.; Trier, Stanley B.

    1998-12-01

    A collection of case studies is used to elucidate the influence of environmental soundings on the structure and evolution of the convection in the mesoscale convective systems sampled by the turboprop aircraft in the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE). The soundings were constructed primarily from aircraft data below 5-6 km and primarily from radiosonde data at higher altitudes.The well-documented role of the vertical shear of the horizontal wind in determining the mesoscale structure of tropical convection is confirmed and extended. As noted by earlier investigators, nearly all convective bands occurring in environments with appreciable shear below a low-level wind maximum are oriented nearly normal to the shear beneath the wind maximum and propagate in the direction of the low-level shear at a speed close to the wind maximum; when there is appreciable shear at middle levels (800-400 mb), convective bands form parallel to the shear. With appreciable shear at both levels, the lower-level shear determines the orientation of the primary convective bands. If the midlevel shear is opposite the low-level shear, secondary bands parallel to the midlevel shear will extend rearward from the primary band in later stages of its evolution; if the midlevel shear is 90 degrees to the low-level shear, the primary band will retain its two-dimensional mesoscale structure. Convection has no obvious mesoscale organization on days with little shear or days with widespread convection.Environmental temperatures and humidities have no obvious effect on the mesoscale convective pattern, but they affect COARE convection in other ways. The high tops of COARE convection are related to high parcel equilibrium levels, which approach 100 mb in some cases. Convective available potential energies are larger than those in the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) mainly because of the higher equilibrium levels. The buoyancy integrated over the lowest 500 mb is similar for the two experiments. Convective inihibitions are small, enabling convection to propagate with only weak forcing. Comparison of slow-moving shear-parallel bands in COARE and GATE suggests that lower relative humidities between the top of the mixed layer and 500 mb can shorten their lifetimes significantly.COARE mesoscale organization and evolution differs from what was observed in GATE. Less-organized convection is more common in COARE. Of the convective bands observed, a greater fraction in COARE are faster-moving, shear-perpendicular squall lines. GATE slow-moving lines tend to be longer lived than those for COARE. The differences are probably traceable to differences in environmental shear and relative humidity, respectively.

  8. Shear flow and carbon nanotubes synergistically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding.

    PubMed

    Tang, Hu; Chen, Jing-Bin; Wang, Yan; Xu, Jia-Zhuang; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming

    2012-11-12

    The effect of shear flow and carbon nanotubes (CNTs), separately and together, on nonisothermal crystallization of poly(lactic acid) (PLA) at a relatively large cooling rate was investigated by time-resolved synchrotron wide-angle X-ray diffraction (WAXD) and polarized optical microscope (POM). Unlike flexible-chain polymers such as polyethylene, and so on, whose crystallization kinetics are significantly accelerated by shear flow, neat PLA only exhibits an increase in onset crystallization temperature after experiencing a shear rate of 30 s(-1), whereas both the nucleation density and ultimate crystallinity are not changed too much because PLA chains are intrinsically semirigid and have relatively short length. The breaking down of shear-induced nuclei into point-like precursors (or random coil) probably becomes increasingly active after shear stops. Very interestingly, a marked synergistic effect of shear flow and CNTs exists in enhancing crystallization of PLA, leading to a remarkable increase of nucleation density in PLA/CNT nanocomposite. This synergistic effect is ascribed to extra nuclei, which are formed by the anchoring effect of CNTs' surfaces on the shear-induced nuclei and suppressing effect of CNTs on the relaxation of the shear-induced nuclei. Further, this interesting finding was deliberately applied to injection molding, aiming to improve the crystallinity of PLA products. As expected, a remarkable high crystallinity in the injection-molded PLA part has been achieved successfully by the combination of shear flow and CNTs, which offers a new method to fabricate PLA products with high crystallinity for specific applications.

  9. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.

    2016-05-15

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability.more » Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.« less

  10. Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Wang, Qiang

    The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.

  11. Mean and Turbulent Flow Statistics in a Trellised Agricultural Canopy

    NASA Astrophysics Data System (ADS)

    Miller, Nathan E.; Stoll, Rob; Mahaffee, Walter F.; Pardyjak, Eric R.

    2017-10-01

    Flow physics is investigated in a two-dimensional trellised agricultural canopy to examine that architecture's unique signature on turbulent transport. Analysis of meteorological data from an Oregon vineyard demonstrates that the canopy strongly influences the flow by channelling the mean flow into the vine-row direction regardless of the above-canopy wind direction. Additionally, other flow statistics in the canopy sub-layer show a dependance on the difference between the above-canopy wind direction and the vine-row direction. This includes an increase in the canopy displacement height and a decrease in the canopy-top shear length scale as the above-canopy flow rotates from row-parallel towards row-orthogonal. Distinct wind-direction-based variations are also observed in the components of the stress tensor, turbulent kinetic energy budget, and the energy spectra. Although spectral results suggest that sonic anemometry is insufficient for resolving all of the important scales of motion within the canopy, the energy spectra peaks still exhibit dependencies on the canopy and the wind direction. These variations demonstrate that the trellised-canopy's effect on the flow during periods when the flow is row-aligned is similar to that seen by sparse canopies, and during periods when the flow is row-orthogonal, the effect is similar to that seen by dense canopies.

  12. The nonlinear evolution of modes on unstable stratified shear layers

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-01-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  13. Phase behavior of a simple dipolar fluid under shear flow in an electric field.

    PubMed

    McWhirter, J Liam

    2008-01-21

    Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.

  14. Comparison of Accuracy and Performance for Lattice Boltzmann and Finite Difference Simulations of Steady Viscous Flow

    NASA Astrophysics Data System (ADS)

    Noble, David R.; Georgiadis, John G.; Buckius, Richard O.

    1996-07-01

    The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and transverse velocity predictions agree to within 05% of the average streamwise velocity. The local shear on the surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the corners of the cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. Overall, a speed of 139 GFLOPS is obtained using 512 processors for a domain size of 2176×2176.

  15. Direct measurements of local bed shear stress in the presence of pressure gradients

    NASA Astrophysics Data System (ADS)

    Pujara, Nimish; Liu, Philip L.-F.

    2014-07-01

    This paper describes the development of a shear plate sensor capable of directly measuring the local mean bed shear stress in small-scale and large-scale laboratory flumes. The sensor is capable of measuring bed shear stress in the range 200 Pa with an accuracy up to 1 %. Its size, 43 mm in the flow direction, is designed to be small enough to give spatially local measurements, and its bandwidth, 75 Hz, is high enough to resolve time-varying forcing. Typically, shear plate sensors are restricted to use in zero pressure gradient flows because secondary forces on the edge of the shear plate caused by pressure gradients can introduce large errors. However, by analysis of the pressure distribution at the edges of the shear plate in mild pressure gradients, we introduce a new methodology for correcting for the pressure gradient force. The developed sensor includes pressure tappings to measure the pressure gradient in the flow, and the methodology for correction is applied to obtain accurate measurements of bed shear stress under solitary waves in a small-scale wave flume. The sensor is also validated by measurements in a turbulent flat plate boundary layer in open channel flow.

  16. Finite-beta and equilibrium sheared flow effects on core plasma turbulence and transport

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott E.

    2004-11-01

    Recent GEM (Y. Chen and S. E. Parker, J. Comp. Phys. 189 (2003)463) simulations have revealed the following features of ITG turbulence and transport: (1) For η_e ˜η_i, as β increases the turbulence level and transport increase, leading to fast streamer transport for β ˜ β_crit/2, β_ crit the ideal ballooning limit; (2) Sheared E_r× B flow with shearing rate γ_E=(r/q)partial(qv_ E× B/r)/partial r ˜ γ readily stabilizes the linear eigenmode. However, starting with a nonlinear state obtained without sheared flow, and continue the simulation with a shearing rate γE ≤ 3γ, the turbulence and transport are reduced but not completely quenched, indicating that turbulence is nonlinearly self-sustained.(J. F. Drake, A. Zeiler and D. Biskamp, Phys. Rev. Lett 75 (1995) 4222) At β=0.4β_crit, turbulence is completely quenched only when the shearing rate far exceeds the linear growth rate; (3) As β increases, the shearing rate threshold at which the turbulence can self-sustain increases. Electromagnetic turbulence is more robust in the presence of sheared flow than electrostatic turbulence.

  17. The interaction of two spheres in a simple-shear flow of complex fluids

    NASA Astrophysics Data System (ADS)

    Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).

  18. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    NASA Astrophysics Data System (ADS)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.

  19. Using the developed cross-flow filtration chip for collecting blood plasma under high flow rate condition and applying the immunoglobulin E detection

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hsien; Hung, Chia-Wei; Wu, Chun-Han; Lin, Yu-Cheng

    2014-09-01

    This paper presents a cross-flow filtration chip for separating blood cells (white blood cells, red blood cells, and platelets) and obtaining blood plasma from human blood. Our strategy is to flow the sample solution in parallel to the membrane, which can generate a parallel shear stress to remove the clogging microparticles on the membrane, so the pure sample solution is obtained in the reservoir. The cross-flow filtration chip includes a cross-flow layer, a Ni-Pd alloy micro-porous membrane, and a reservoir layer. The three layers are packaged in a polymethylmethacrylate (PMMA) frame to create the cross-flow filtration chip. Various dilutions of the blood sample (original, 2 × , 3 × , 5 × , and 10×), pore sizes with different diameters (1 µm, 2 µm, 4 µm, 7 µm, and 10 µm), and different flow rates (1 mL/min, 3 mL/min, 5 mL/min, 7 mL/min, and 10 mL/min) are tested to determine their effects on filtration percentage. The best filtration percentage is 96.2% when the dilution of the blood sample is 10 × , the diameter of pore size of a Ni-Pd alloy micro-porous membrane is 2 µm, and the flow rate is 10 mL/min. Finally, for the clinical tests of the immunoglobulin E (IgE) concentration, the cross-flow filtration chip is used to filter the blood of the allergy patients to obtain the blood plasma. This filtered blood plasma is compared with that obtained using the conventional centrifugation based on the enzyme-linked immunosorbent assay. The results reveal that these two blood separation methods have similar detection trends. The proposed filtration chip has the advantages of low cost, short filtration time, and easy operation and thus can be applied to the separation of microparticles, cells, bacteria, and blood.

  20. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  1. Bed Erosion Process in Geophysical Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.

    2017-12-01

    The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.

  2. Computational modeling of magnetic particle margination within blood flow through LAMMPS

    NASA Astrophysics Data System (ADS)

    Ye, Huilin; Shen, Zhiqiang; Li, Ying

    2017-11-01

    We develop a multiscale and multiphysics computational method to investigate the transport of magnetic particles as drug carriers in blood flow under influence of hydrodynamic interaction and external magnetic field. A hybrid coupling method is proposed to handle red blood cell (RBC)-fluid interface (CFI) and magnetic particle-fluid interface (PFI), respectively. Immersed boundary method (IBM)-based velocity coupling is used to account for CFI, which is validated by tank-treading and tumbling behaviors of a single RBC in simple shear flow. While PFI is captured by IBM-based force coupling, which is verified through movement of a single magnetic particle under non-uniform external magnetic field and breakup of a magnetic chain in rotating magnetic field. These two components are seamlessly integrated within the LAMMPS framework, which is a highly parallelized molecular dynamics solver. In addition, we also implement a parallelized lattice Boltzmann simulator within LAMMPS to handle the fluid flow simulation. Based on the proposed method, we explore the margination behaviors of magnetic particles and magnetic chains within blood flow. We find that the external magnetic field can be used to guide the motion of these magnetic materials and promote their margination to the vascular wall region. Moreover, the scaling performance and speedup test further confirm the high efficiency and robustness of proposed computational method. Therefore, it provides an efficient way to simulate the transport of nanoparticle-based drug carriers within blood flow in a large scale. The simulation results can be applied in the design of efficient drug delivery vehicles that optimally accumulate within diseased tissue, thus providing better imaging sensitivity, therapeutic efficacy and lower toxicity.

  3. Shear-induced intracellular loading of cells with molecules by controlled microfluidics.

    PubMed

    Hallow, Daniel M; Seeger, Richard A; Kamaev, Pavel P; Prado, Gustavo R; LaPlaca, Michelle C; Prausnitz, Mark R

    2008-03-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50-300 microm diameter drilled through Mylar sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one-third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150-2,000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. Copyright 2007 Wiley Periodicals, Inc.

  4. Shear-induced intracellular loading of cells with molecules by controlled microfluidics

    PubMed Central

    Hallow, Daniel M.; Seeger, Richard A.; Kamaev, Pavel P.; Prado, Gustavo R.; LaPlaca, Michelle C.; Prausnitz, Mark R.

    2010-01-01

    This study tested the hypothesis that controlled flow through microchannels can cause shear-induced intracellular loading of cells with molecules. The overall goal was to design a simple device to expose cells to fluid shear stress and thereby increase plasma membrane permeability. DU145 prostate cancer cells were exposed to fluid shear stress in the presence of fluorescent cell-impermeant molecules by using a cone-and-plate shearing device or high-velocity flow through microchannels. Using a syringe pump, cell suspensions were flowed through microchannels of 50 – 300 μm diameter drilled through Mylar® sheets using an excimer laser. As quantified by flow cytometry, intracellular uptake and loss of viability correlated with the average shear stress. Optimal results were observed when exposing the cells to high shear stress for short durations in conical channels, which yielded uptake to over one third of cells while maintaining viability at approximately 80%. This method was capable of loading cells with molecules including calcein (0.62 kDa), large molecule weight dextrans (150 - 2000 kDa), and bovine serum albumin (66 kDa). These results supported the hypothesis that shear-induced intracellular uptake could be generated by flow of cell suspensions through microchannels and further led to the design of a simple, inexpensive, and effective device to deliver molecules into cells. Such a device could benefit biological research and the biotechnology industry. PMID:17879304

  5. Coherent synchrotron radiation for laminar flows

    NASA Astrophysics Data System (ADS)

    Schmekel, Bjoern S.; Lovelace, Richard V. E.

    2006-11-01

    We investigate the effect of shear in the flow of charged particle equilibria that are unstable to the coherent synchrotron radiation (CSR) instability. Shear may act to quench this instability because it acts to limit the size of the region with a fixed phase relation between emitters. The results are important for the understanding of astrophysical sources of coherent radiation where shear in the flow is likely.

  6. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    PubMed

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Microstructural Rearrangements and their Rheological Implications in a Model Thixotropic Elastoviscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.

    2017-01-01

    We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.

  8. Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Margheriti, L.; Ferulano, M. F.; Di Bona, M.

    2006-11-01

    Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.

  9. Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number

    NASA Astrophysics Data System (ADS)

    Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel

    2007-11-01

    We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.

  10. Fluid dynamics during Random Positioning Machine micro-gravity experiments

    NASA Astrophysics Data System (ADS)

    Leguy, Carole A. D.; Delfos, René; Pourquie, Mathieu J. B. M.; Poelma, Christian; Westerweel, Jerry; van Loon, Jack J. W. A.

    2017-06-01

    A Random Positioning Machine (RPM) is a device used to study the role of gravity on biological systems. This is accomplished through continuous reorientation of the sample such that the net influence of gravity is randomized over time. The aim of this study is to predict fluid flow behavior during such RPM simulated microgravity studies, which may explain differences found between RPM and space flight experiments. An analytical solution is given for a cylinder as a model for an experimental container. Then, a dual-axis rotating frame is used to mimic the motion characteristics of an RPM with sinusoidal rotation frequencies of 0.2 Hz and 0.1 Hz while Particle Image Velocimetry is used to measure the velocity field inside a flask. To reproduce the same experiment numerically, a Direct Numerical Simulation model is used. The analytical model predicts that an increase in the Womersley number leads to higher shear stresses at the cylinder wall and decrease in fluid angular velocity inside the cylinder. The experimental results show that periodic single-axis rotation induces a fluid motion parallel to the wall and that a complex flow is observed for two-axis rotation with a maximum wall shear stress of 8.0 mPa (80 mdyne /cm2). The experimental and numerical results show that oscillatory motion inside an RPM induces flow motion that can, depending on the experimental samples, reduce the quality of the simulated microgravity. Thus, it is crucial to determine the appropriate oscillatory frequency of the axes to design biological experiments.

  11. The utilization of satellite data and dynamics in understanding and predicting global weather phenomena

    NASA Technical Reports Server (NTRS)

    Shirer, H. N. (Editor); Dutton, J. A. (Editor)

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.

  12. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  13. Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear.

    PubMed

    Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H

    2009-06-05

    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.

  14. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    PubMed

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  15. Fault geometries and deformation mechanisms in the evolution of low-angle normal faults (Kea, Greece)

    NASA Astrophysics Data System (ADS)

    Iglseder, C.; Grasemann, B.; Schneider, D.; Rice, A. H. N.; Stöckli, D.; Rockenschaub, M.

    2009-04-01

    The overall tectonic regime in the Cyclades since the Oligocene has been characterized by crustal extension, accommodated by movements on low-angle normal faults (LANFs). On Kea, structural investigations have demonstrated the existence of an island-wide LANF within a large-scale ductile-brittle shear-zone traceable over a distance of 19.5 km parallel to the stretching lineation. The tectonostratigraphy comprises Attic-Cycladic Crystalline lithologies with a shallowly-dipping schist-calcite marble unit overlain by calcitic and dolomitic fault rocks. Notably, the calcitic marbles have been mylonitized, with a mean NNE/NE-SSW/SW trending, pervasive stretching lineation and intense isoclinal folding with fold axes parallel to the stretching lineation. Numerous SC-SCĆ-fabrics and monoclinic clast-geometries show a consistent top-to-SSW shear-sense. Recorded within all lithologies is a consistent WNW/NW-ESE/SE and NNE/NE-SSW/SW striking network of conjugated brittle, brittle-ductile high-angle faults perpendicular and (sub)parallel to the main stretching direction. Field evidence and microstructural investigations indicate high-angle normal faults formed synchronously with movement on LANFs. This interplay of LANFs with high-angle structures, initiated and evolved from brittle-ductile to brittle conditions, indicates initial stages of movement below the calcite brittle-ductile transition but above the dolomite transition. Weakening processes related to syntectonic fluid-rock interactions highlight these observations. In particular, grain-size reduction and strain localisation in fine-grained (ultra)-cataclasites and fine-grained aggregates of phyllosilicate-rich fault-rocks promoted fluid-flow and pressure-solution-accommodated ‘frictional-viscous' creep. These mechanisms show the importance for LANF slip and movement in the progressive development and interaction between contemporaneous active normal faults in the Andersonian-Byerlee frictional mechanics.

  16. Breakdown of the Frozen-in Condition and Plasma Acceleration: Dynamical Theory

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2007-12-01

    The magnetic reconnection hypothesis emphasizes the importance of the breakdown of the frozen-in condition, explains the strong dependence of the geomagnetic activity on the IMF, and approximates an average qualitative description for many IMF controlled effects in magnetospheric physics. However, some important theoretical aspects of reconnection, including its definition, have not been carefully examined. The crucial components of such models, such as the largely-accepted X-line reconnection picture and the broadly-used explanations of the breakdown of the frozen-in condition, lack complete theoretical support. The important irreversible reactive interaction is intrinsically excluded and overlooked in most reconnection models. The generation of parallel electric fields must be the result of a reactive plasma interaction, which is associated with the temporal changes and spatial gradients of magnetic and velocity shears (Song and Lysak, 2006). Unlike previous descriptions of the magnetic reconnection process, which depend on dissipative-type coefficients or some passive terms in the generalized Ohm's law, the reactive interaction is a dynamical process, which favors localized high magnetic and/or mechanical stresses and a low plasma density. The reactive interaction is often closely associated with the radiation of shear Alfvén waves and is independent of any assumed dissipation coefficients. The generated parallel electric field makes an irreversible conversion between magnetic energy and the kinetic energy of the accelerated plasma and the bulk flow. We demonstrate how the reactive interaction, e.g., the nonlinear interaction of MHD mesoscale wave packets at current sheets and in the auroral acceleration region, can create and support parallel electric fields, causing the breakdown of the frozen-in condition and plasma acceleration.

  17. Effect of wall pattern configurations on Stokes flow through a microchannel with superhydrophobic slip

    NASA Astrophysics Data System (ADS)

    Mak, H. M.; Ng, C. O.

    2010-11-01

    The present work aims to study low-Reynolds-number flow through a microchannel with superhydrophobic surfaces, which contain a periodic array of parallel ribs on the upper and lower walls. Mimicking impregnation, the liquid is allowed to penetrate the grooves between the ribs which are filled with an inviscid gas. The array of ribs and grooves gives a heterogeneous wall boundary condition to the channel flow, with partial-slip boundary condition on the solid surface and no-shear boundary condition on the liquid-gas interface. Using the method of eigenfunction expansions and domain decomposition, semi-analytical models are developed for four configurations. Two of them are for longitudinal flow and the others are for transverse flow. For each flow orientation, in-phase and out-phase alignments of ribs between the upper and lower walls are analyzed. The effect of the phase alignments of ribs is appreciable when the channel height is sufficiently small. In-phase alignment gives rise to a larger effective slip length in longitudinal flow. On the contrary, out-phase alignment will yield a larger effective slip length in transverse flow. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through Project HKU 7156/09E.

  18. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Shear dispersion in dense granular flows

    DOE PAGES

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  20. Mantle Flow in the Western United States Constrained by Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Niday, W.; Humphreys, E.

    2017-12-01

    Shear wave splitting, caused by the lattice preferred orientation (LPO) of olivine crystals under shear deformation, provide a useful constraint on numerical models of mantle flow. Although it is sometimes assumed that shear wave splitting fast directions correspond with mantle flow directions, this is only true in simple shear flows that do not vary strongly with space or time. Observed shear wave splitting in the western United States is complex and inconsistent with simple shear driven by North American and Pacific plate motion, suggesting that the effects of time-dependent subduction history and spatial heterogeneity are important. Liu and Stegman (2011) reproduce the pattern of fast seismic anomalies below the western US from Farallon subduction history, and Chaparro and Stegman (2017) reproduce the circular anisotropy field below the Great Basin. We extend this to consider anisotropic structure outside the Great Basin and evaluate the density and viscosity of seismic anomalies such as slabs and Yellowstone. We use the mantle convection code ASPECT to simulate 3D buoyancy-driven flow in the mantle below the western US, and predict LPO using the modeled flow fields. We present results from a suite of models varying the sub-lithospheric structures of the western US and constraints on density and viscosity variations in the upper mantle.

  1. Rheological Characterisation of the Flow Behaviour of Wood Plastic Composites in Consideration of Different Volume Fractions of Wood

    NASA Astrophysics Data System (ADS)

    Laufer, N.; Hansmann, H.; Koch, M.

    2017-01-01

    In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.

  2. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  3. Precessing rotating flows with additional shear: stability analysis.

    PubMed

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.

  4. The Role of Fine Sediment Content on Soil Consolidation and Debris Flows Development after Earthquake

    NASA Astrophysics Data System (ADS)

    Lyu, L.; Xu, M., III; Wang, Z.

    2017-12-01

    Fine sediment has been identified as an important factor determining the critical runoff that initiates debris flows because its contribution to shear strength through consolidation. Especially, owing to the 2008 Wenchuan earthquake in China enormous of loose sediment with different fractions of fine particles was eroded and supplied as materials for debris flows. The loose materials are gradually consolidated along with time, and therefore stronger rainfall is required to overcome the shear strength and to initiate debris flows. In this study, flume experiments were performed to explore soil consolidation and shear strength on mass failure and debris flow initiation under the conditions that different fractions of fine sediment were contained in the materials. Under the low content of fine sediment conditions (mass percentages: 0-10%), the debris flows formed with large pores and low shear strength and thus fine particles were too few to fill up the pores among the coarse particles. The consolidation rate was mostly influenced by the content of the fine particles. Consolidation of fine particles caused an increase of the shear strength and decrease of the rainfall infiltration, and therefore, debris flow initiation required stronger rainfall as the consolidation of the fine particles developed.

  5. Jetting of a shear banding fluid in rectangular ducts

    PubMed Central

    Salipante, Paul F.; Little, Charles A. E.; Hudson, Steven D.

    2017-01-01

    Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry. PMID:28691108

  6. Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch

    NASA Astrophysics Data System (ADS)

    Shumlak, Uri

    2016-10-01

    Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.

  7. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  8. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.

    PubMed

    Boersen, Johannes T; Groot Jebbink, Erik; Versluis, Michel; Slump, Cornelis H; Ku, David N; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-12-01

    Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow of the stents. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  9. Origin of leucite-rich and sanidine-rich flow layers in the Leucite Hills Volcanic Field, Wyoming

    NASA Astrophysics Data System (ADS)

    Gunter, W. D.; Hoinkes, Georg; Ogden, Palmer; Pajari, G. E.

    1990-09-01

    Two types of orendite (sanidine-phlogopite lamproite) and wyomingite (leucite-phlogopite lamproite) intraflow layering are present in the ultrapotassic Leucite Hills Volcanic Field, Wyoming. In large-scale layering, wyomingites are confined to the base of the flow, while in centimeter-scale layering, orendite and wyomingite alternate throughout the flow. The mineralogy of the orendites and wyomingites are the same; only the relative amount of each mineral vary substantially. The chemical compositions of adjacent layers of wyomingite and orendite are almost identical except for water. The centimeter-scale flow layering probably represents fossil streamlines of the lava and therefore defines the path of circulation of the viscous melt. Toward the front of the flow, the layers are commonly folded. Structures present which are indicative that the flows may have possessed a yield strength are limb shears, boudinage, and slumping. Phlogopite phenocrysts are poorly aligned in the orendite layers, while they are often in subparallel alignment in the wyomingite layers; and they are used as a measure of shearing intensity during emplacement of the flow. Vesicle volumes are concentrated in the orendite layers. In the large-scale layering, a discontinuous base rubble zone of autobreccia is overlain by a thin platy zone followed by a massive zone which composes more than the upper 75% of the flow. Consequently, we feel that the origin of the layering may be related to shearing. Two extremes in the geometry of shearing are proposed: closely spaced, thin, densely sheared layers separated by discrete intervals throughout a lava flow as in the centimeter-scale layering and classical plug flow where all the shearing is confined to the base as in the large-scale layering. A mechanism is proposed which causes thixotropic behavior and localizes shearing: the driving force is the breakdown of molecular water to form T-OH bonds which establishes a chemical potential gradient for water in the melt. The higher activity of water in the nonsheared regions allows sandine to crystallize, whereas the lower activity of water in the areas of active shearing causes leucite to crystallize.

  10. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    NASA Astrophysics Data System (ADS)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In zones where initial levees are just beginning to form, these subtle features are the only marker that delimits the moving lava from the stagnant marginal lava. Rafts generally form as the system changes from a stable to a transitional channel regime. Over this 170-m-long zone, the channel broadens from 8 to 70 m and rafts are characterized by topographically higher and poorly cracked areas, surrounded by lower, heavily cracked areas. We interpret the rafts as forming due to breakup of crust zones, previously moving in a coherent manner in the narrow proximal channel reach. Folded zones involve arcuate, cross-flow ridges with their apexes pointing down-flow, where ridges have relatively small clasts and depressions are of coarser-grained breccia. Our folds have wavelengths of 10 m and amplitudes of 1 m; are found towards the flow front, down-flow of the raft zones; and are associated with piling up of lava behind a static or slowly moving flow front. The very high spatial resolution topographic data available from UAV-SfM allow us to resolve surfaces where roughness has a vertical and horizontal scale of variation that is less than 1 m. This is the case over pāhoehoe and ´áā flow surfaces, and thus allows us to explore those new structures that are only apparent in the sub-metric data. Moreover, during future eruptions, the possibility to acquire such information in near-real time will allow a prompt analysis of developing lava flow fields and structures therein, such as developing lava channel systems, so as to contribute to timely hazard assessment, modeling, and projections.

  11. The high-energy-density counterpropagating shear experiment and turbulent self-heating

    DOE PAGES

    Doss, F. W.; Fincke, J. R.; Loomis, E. N.; ...

    2013-12-06

    The counterpropagating shear experiment has previously demonstrated the ability to create regions of shockdriven shear, balanced symmetrically in pressure and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.

  12. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE PAGES

    Bertsch, Rebecca L.; Girimaji, Sharath S.

    2015-12-30

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. As a result, the underlying mechanisms are explained.« less

  13. Rapid distortion analysis of high speed homogeneous turbulence subject to periodic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsch, Rebecca L., E-mail: rlb@lanl.gov; Girimaji, Sharath S., E-mail: girimaji@aero.tamu.edu

    2015-12-15

    The effect of unsteady shear forcing on small perturbation growth in compressible flow is investigated. In particular, flow-thermodynamic field interaction and the resulting effect on the phase-lag between applied shear and Reynolds stress are examined. Simplified linear analysis of the perturbation pressure equation reveals crucial differences between steady and unsteady shear effects. The analytical findings are validated with numerical simulations of inviscid rapid distortion theory (RDT) equations. In contrast to steadily sheared compressible flows, perturbations in the unsteady (periodic) forcing case do not experience an asymptotic growth phase. Further, the resonance growth phenomenon found in incompressible unsteady shear turbulence ismore » absent in the compressible case. Overall, the stabilizing influence of both unsteadiness and compressibility is compounded leading to suppression of all small perturbations. The underlying mechanisms are explained.« less

  14. Consequences of viscous anisotropy for melt localization in a deforming, two-phase aggregate

    NASA Astrophysics Data System (ADS)

    Takei, Y.; Katz, R. F.

    2012-12-01

    Melt localization in the deforming, partially molten mantle has been of interest because it affects the melt extraction rate, mantle deformability, and chemical interaction between the melt and host rock. Experimental studies have reported the spontaneous segregation of melt into melt-rich bands in samples deformed under simple shear and torsion (Holtzman et al, 2003, King et al, 2010). Efforts to clarify the instability mechanism have so far revealed that rheological properties of partially molten rocks control the occurrence of instability. Porosity-weakening viscosity, empirically written as exp(- λ × f) with porosity f and constant λ(= 25-45), plays an essential role in the destabilization of porosity perturbation in the shear flow of a two-phase aggregate (eg., pure shear flow, simple shear flow): the perturbation growth rate is proportional to the product of shear strain rate and the factor λ (Stevenson, 1989). The stress exponent n of the viscosity affects the angle of the perturbation plane with maximum growthrate, where n=3-6 (power-law creep) explains the experimentally observed low angle to the shear plane (Katz et al, 2006). However, in-situ experimental measurements of n indicate that it takes values as low as unity without affecting the observed orientation of melt bands. Viscous anisotropy provides an alternative explanation for the observed band angles. It is produced by the stress-induced microstructural anisotropy (Daines and Kohlstedt, 1997; Zimmermann et al., 1999; Takei, 2010), and it enhances the coupling between melt migration and matrix shear deformation (Takei and Holtzman, 2009). Even without any porosity perturbation, viscous anisotropy destabilizes simple patterns of two-phase flow with a stress/strain gradient (eg., Poiseuille flow, torsional flow) and gives rise to shear-induced melt localization: the growth rate of this mechanism depends on the shear strain rate and the compaction length relative to the spatial scale of the gradient. When a porosity perturbation is added to the anisotropic system, both localization mechanisms work simultaneously, where the dominant angle of perturbation is decreased by the viscous anisotropy, similarly to the effect of n. Although viscous anisotropy plays an important role in melt localization, previous studies were limited to some simple or linearized cases (Takei and Holtzman, 2009, Butler 2012). Using linearised stability analysis and numerical simulation, we perform a systematic study of viscous anisotropy for behavior of partially molten rocks under forced deformation. Fully nonlinear solutions are obtained for melt localization under simple shear flow, 2D Poiseuille flow, and torsional flow. We show that Poiseuille flow causes melt-lubrication instability, but torsional flow does not. Results for simple shear and torsional flow are compared to the experimental results. Through the comparison between model predictions and experiments, we can test the validity of current theory, ascertain its deficiencies, and refine it to better describe the natural system.

  15. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.

    2016-10-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.

  16. Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions.

    PubMed

    Kartamyshev, Sergey P; Balashov, Sergey A; Melkumyants, Arthur M

    2007-01-01

    The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress. Copyright (c) 2007 S. Karger AG, Basel.

  17. CosApps: Simulate gravitational lensing through ray tracing and shear calculation

    NASA Astrophysics Data System (ADS)

    Coss, David

    2017-12-01

    Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.

  18. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow

    NASA Astrophysics Data System (ADS)

    Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard

    2015-12-01

    The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.

  19. Rate Dependence of Elementary Rearrangements and Spatiotemporal Correlations in the 3D Flow of Soft Solids

    NASA Astrophysics Data System (ADS)

    Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.

    2018-01-01

    We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.

  20. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    PubMed

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  1. Validation of Shear Wave Elastography in Skeletal Muscle

    PubMed Central

    Eby, Sarah F.; Song, Pengfei; Chen, Shigao; Chen, Qingshan; Greenleaf, James F.; An, Kai-Nan

    2013-01-01

    Skeletal muscle is a very dynamic tissue, thus accurate quantification of skeletal muscle stiffness throughout its functional range is crucial to improve the physical functioning and independence following pathology. Shear wave elastography (SWE) is an ultrasound-based technique that characterizes tissue mechanical properties based on the propagation of remotely induced shear waves. The objective of this study is to validate SWE throughout the functional range of motion of skeletal muscle for three ultrasound transducer orientations. We hypothesized that combining traditional materials testing (MTS) techniques with SWE measurements will show increased stiffness measures with increasing tensile load, and will correlate well with each other for trials in which the transducer is parallel to underlying muscle fibers. To evaluate this hypothesis, we monitored the deformation throughout tensile loading of four porcine brachialis whole-muscle tissue specimens, while simultaneously making SWE measurements of the same specimen. We used regression to examine the correlation between Young's modulus from MTS and shear modulus from SWE for each of the transducer orientations. We applied a generalized linear model to account for repeated testing. Model parameters were estimated via generalized estimating equations. The regression coefficient was 0.1944, with a 95% confidence interval of (0.1463 – 0.2425) for parallel transducer trials. Shear waves did not propagate well for both the 45° and perpendicular transducer orientations. Both parallel SWE and MTS showed increased stiffness with increasing tensile load. This study provides the necessary first step for additional studies that can evaluate the distribution of stiffness throughout muscle. PMID:23953670

  2. Unsteady behavior of a reattaching shear layer

    NASA Technical Reports Server (NTRS)

    Driver, D. M.; Seegmiller, H. L.; Marvin, J.

    1983-01-01

    A detailed investigation of the unsteadiness in a reattaching, turbulent shear layer is reported. Laser-Doppler velocimeter measurements were conditionally sampled on the basis of instantaneous flow direction near reattachment. Conditions of abnormally short reattachment and abnormally long reattachment were considered. Ensemble-averaging of measurements made during these conditions was used to obtain mean velocities and Rreynolds stresses. In the mean flow, conditional streamlines show a global change in flow pattern which correlates with wall-flow direction. This motion can loosely be described as a 'flapping' of the shear layer. Tuft probes show that the flow direction reversals occur quite randomly and are shortlived. Streses shown also vary with the change in flow pattern. Yet, the global'flapping' motion does not appear to contribute significantly to the stress in the flow. A second type of unsteady motion was identified. Spectral analysis of both wall static pressure and streamwise velocity shows that most of the energy in the flow resides in frequencies that are significantly lower than that of the turbulence. The dominant frequency is at a Strouhal number equal to 0.2, which is the characteristic frequency of roll-up and pairing of vortical structure seen in free shear layers. It is conjectured that the 'flapping' is a disorder of the roll-up and pairing process occurring in the shear layer.

  3. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  4. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  5. Hydrodynamic stability

    NASA Astrophysics Data System (ADS)

    Drazin, P. G.; Reid, W. H.

    The book is written from the point of view intrinsic to fluid mechanics and applied mathematics. The analytical aspects of the theory are emphasized. However, it has also been tried, wherever possible, to relate the theory to experimental and numerical results. Mechanisms of instability are considered along with fundamental concepts of hydrodynamic stability, the Kelvin-Helmholtz instability, and the break-up of a liquid jet in air. Aspects of thermal instability are investigated, taking into account the equations of motion, the stability problem, general stability characteristics, particular stability characteristics, the cells, and experimental results. The inviscid theory and the viscous theory are examined in connection with a study of parallel shear flows. Centrifugal instability is discussed along with uniform asymptotic approximations, and problems of nonlinear stability. Attention is also given to baroclinic instability, the instability of the pinch, the development of linear instability in time and space, and the instability of unsteady flows.

  6. Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.

    PubMed

    Rogachevskii, Igor; Kleeorin, Nathan

    2003-09-01

    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.

  7. Experimental study of the free surface velocity field in an asymmetrical confluence

    NASA Astrophysics Data System (ADS)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows disappears quite quickly, because of the severe flow contraction that aids the flow uniformization. This is also accelerated because of a flow redistribution process that starts already upstream of the confluence, resulting in a lower than expected velocity difference over the shear layer between the bulk of the incoming flows. In contrast, the shear layer between the contracted section and the separation zone proves to be of a significantly higher order of magnitude, with large turbulent structures appearing that get transported far downstream. In conclusion, the resulting understanding of this analysis of velocity fields with a larger field of view shows that when analyzing confluence hydrodynamics, one should pay ample attention to analyze data far enough up and downstream to assess all the relevant processes.

  8. Shear wave mapping of skeletal muscle using shear wave wavefront reconstruction based on ultrasound color flow imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Kasahara, Toshihiro; Iijima, Tomohiro; Yuminaka, Yasushi

    2015-07-01

    We have proposed a quantitative shear wave imaging technique for continuous shear wave excitation. Shear wave wavefront is observed directly by color flow imaging using a general-purpose ultrasonic imaging system. In this study, the proposed method is applied to experiments in vivo, and shear wave maps, namely, the shear wave phase map, which shows the shear wave propagation inside the medium, and the shear wave velocity map, are observed for the skeletal muscle in the shoulder. To excite the shear wave inside the skeletal muscle of the shoulder, a hybrid ultrasonic wave transducer, which combines a small vibrator with an ultrasonic wave probe, is adopted. The shear wave velocity of supraspinatus muscle, which is measured by the proposed method, is 4.11 ± 0.06 m/s (N = 4). This value is consistent with those obtained by the acoustic radiation force impulse method.

  9. An easy to assemble microfluidic perfusion device with a magnetic clamp

    PubMed Central

    Tkachenko, Eugene; Gutierrez, Edgar; Ginsberg, Mark H.; Groisman, Alex

    2009-01-01

    We have built and characterized a magnetic clamp for reversible sealing of PDMS microfluidic chips against cover glasses with cell cultures and a microfluidic chip for experiments on shear stress response of endothelial cells. The magnetic clamp exerts a reproducible uniform pressure on the microfluidic chip, achieving fast and reliable sealing for liquid pressures up to 40 kPa inside the chip with <10% deformations of microchannels and minimal variations of the substrate shear stress in perfusion flow. The microfluidic chip has 8 test regions with the substrate shear stress varying by a factor of 2 between each region, thus covering a 128-fold range from low venous to arterial. The perfusion is driven by differential pressure, which makes it possible to create pulsatile flows mimicking pulsing in the vasculature. The setup is tested by 15 – 40 hours perfusions over endothelial monolayers with shear stress in the range of 0.07 - 9 dyn/cm2. Excellent cell viability at all shear stresses and alignment of cells along the flow at high shear stresses are repeatedly observed. A scratch wound healing assay under a shear flow is demonstrated and cell migration velocities are measured. Transfection of cells with a fluorescent protein is performed, and migrating fluorescent cells are imaged at a high resolution under shear flow in real time. The magnetic clamp can be closed with minimal mechanical perturbation to cells on the substrate and used with a variety of microfluidic chips for experiments with adherent and non-adherent cells. PMID:19350090

  10. Expulsion of swimming bacteria by a circular flow

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  11. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  12. Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Aohua; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Yasuaki

    2016-03-15

    The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantlymore » due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.« less

  13. Sudden Relaminarization and Lifetimes in Forced Isotropic Turbulence.

    PubMed

    Linkmann, Moritz F; Morozov, Alexander

    2015-09-25

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from a chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase superexponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  14. Shear wave splitting hints at dynamical features of mantle convection: a global study of homogeneously processed source and receiver side upper mantle anisotropy

    NASA Astrophysics Data System (ADS)

    Walpole, J.; Wookey, J. M.; Masters, G.; Kendall, J. M.

    2013-12-01

    The asthenosphere is embroiled in the process of mantle convection. Its viscous properties allow it to flow around sinking slabs and deep cratonic roots as it is displaced by intruding material and dragged around by the moving layer above. As the asthenosphere flows it develops a crystalline fabric with anisotropic crystals preferentially aligned in the direction of flow. Meanwhile, the lithosphere above deforms as it is squeezed and stretched by underlying tectonic processes, enabling anisotropic fabrics to develop and become fossilised in the rigid rock and to persist over vast spans of geological time. As a shear wave passes through an anisotropic medium it splits into two orthogonally polarised quasi shear waves that propagate at different velocities (this phenomenon is known as shear wave splitting). By analysing the polarisation and the delay time of many split waves that have passed through a region it is possible to constrain the anisotropy of the medium in that region. This anisotropy is the key to revealing the deformation history of the deep Earth. In this study we present measurements of shear wave splitting recorded on S, SKS, and SKKS waves from earthquakes recorded at stations from the IRIS DMC catalogue (1976-2010). We have used a cluster analysis phase picking technique [1] to pick hundreds of thousands of high signal to noise waveforms on long period data. These picks are used to feed the broadband data into an automated processing workflow that recovers shear wave splitting parameters [2,3]. The workflow includes a new method for making source and receiver corrections, whereby the stacked error surfaces are used as input to correction rather than a single set of parameters, this propagates uncertainty information into the final measurement. Using SKS, SKKS, and source corrected S, we recover good measurements of anisotropy beneath 1,569 stations. Using receiver corrected S we recover good measurements of anisotropy beneath 470 events. We compare our results to a large compilation of previous regional studies and find good agreement. Our results are compared with upper mantle anisotropy recovered from surface waves, and other seismic observables such as wave speed tomography. The comparison with tomography beneath the USA is particularly interesting; here we observe the vivid toroidal swirl beneath Nevada branching off along the Snake River Plateau in excellent agreement with tomographic images at 150 km depth. We compare our results to absolute plate motion vectors to see how well drag from the plate can explain the development of anisotropic fabric; and to a more sophisticated asthenospheric flow model which takes into account the effect of mantle density heterogeneities [4]. Finally, we investigate patterns in the source side anisotropy, globally we detect a fabric with a fast shear wave polarisation parallel to the strike of subducting slabs, however, in several regions interesting deviations are found. [1] Houser et al. (2008) Geophys. J. Int. (2008) 174, 195-212. [2] Teanby et al. (2004). Bulletin Of The Seismological Society Of America, 94(2), 453-463. [3] Wuestefeld et al. (2010). Geophysical Prospecting, 58(5), 753-771. [4] Conrad & Behn (2010). Geochemistry Geophysics Geosystems, 11.

  15. Study on shearing force and impact force of a volcanic mud flow on Mt. Sakurajima

    Treesearch

    Yoshinobu Taniguchi

    1991-01-01

    Two kinds of shearing stress meters (type A and type B) were set on the channel bottom in the Arimura River and the Mochiki River on Mt. Sakurajima. Volcanic mud flows take place there about 100 times a year. The results of the surveys demonstrated that the actual shearing force of a volcanic mud flow on Mt. Sakurajima was from 0.46 to 2.50 kgf/cm2...

  16. Computational Fluid Dynamic simulations of pipe elbow flow.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homicz, Gregory Francis

    2004-08-01

    One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and meshmore » were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation; secondary maxima in both quantities still occur near the elbow entrance on the inner radius. Which set of results better reflects reality must await experimental corroboration. Additional calculations demonstrate that whether or not FLUENT's radial equilibrium pressure distribution option is used in the PRESSURE OUTLET boundary condition has no significant impact on the flowfield near the elbow. Simulations performed with and without the chemical sensor and associated support bracket that were present in the experiments demonstrate that the latter have a negligible influence on the flow in the vicinity of the elbow. The fact that the maxima in wall shear stress and turbulent kinetic energy occur on the inner radius is therefore not an artifact of having introduced the sensor into the flow.« less

  17. Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn

    2015-02-15

    A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less

  18. Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation

    PubMed Central

    Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.

    2012-01-01

    The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501

  19. Effect of exercise on hemodynamic conditions in the abdominal aorta.

    PubMed

    Taylor, C A; Hughes, T J; Zarins, C K

    1999-06-01

    The beneficial effect of exercise in the retardation of the progression of cardiovascular disease is hypothesized to be caused, at least in part, by the elimination of adverse hemodynamic conditions, including flow recirculation and low wall shear stress. In vitro and in vivo investigations have provided qualitative and limited quantitative information on flow patterns in the abdominal aorta and on the effect of exercise on the elimination of adverse hemodynamic conditions. We used computational fluid mechanics methods to examine the effects of simulated exercise on hemodynamic conditions in an idealized model of the human abdominal aorta. A three-dimensional computer model of a healthy human abdominal aorta was created to simulate pulsatile aortic blood flow under conditions of rest and graded exercise. Flow velocity patterns and wall shear stress were computed in the lesion-prone infrarenal aorta, and the effects of exercise were determined. A recirculation zone was observed to form along the posterior wall of the aorta immediately distal to the renal vessels under resting conditions. Low time-averaged wall shear stress was present in this location, along the posterior wall opposite the superior mesenteric artery and along the anterior wall between the superior and inferior mesenteric arteries. Shear stress temporal oscillations, as measured with an oscillatory shear index, were elevated in these regions. Under simulated light exercise conditions, a region of low wall shear stress and high oscillatory shear index remained along the posterior wall immediately distal to the renal arteries. Under simulated moderate exercise conditions, all the regions of low wall shear stress and high oscillatory shear index were eliminated. This numeric investigation provided detailed quantitative data on the effect of exercise on hemodynamic conditions in the abdominal aorta. Our results indicated that moderate levels of lower limb exercise are necessary to eliminate the flow reversal and regions of low wall shear stress in the abdominal aorta that exist under resting conditions. The lack of flow reversal and increased wall shear stress during exercise suggest a mechanism by which exercise may promote arterial health, namely with the elimination of adverse hemodynamic conditions.

  20. Asymptotic solutions for flow in microchannels with ridged walls and arbitrary meniscus protrusion

    NASA Astrophysics Data System (ADS)

    Kirk, Toby

    2017-11-01

    Flow over structured surfaces exhibiting apparent slip, such as parallel ridges, have received much attention experimentally and numerically, but analytical and asymptotic solutions that account for the microstructure have so far been limited to unbounded geometries such as shear-driven flows. Analysis for channel flows has been limited to (close to) flat interfaces spanning the grooves between ridges, but in applications the interfaces (menisci) can highly protrude and have a significant impact on the apparent slip. In this presentation, we consider pressure-driven flow through a microchannel with longitudinal ridges patterning one or both walls. With no restriction on the meniscus protrusion, we develop explicit formulae for the slip length using a formal matched asymptotic expansion. Assuming the ratio of channel height to ridge period is large, the periodicity is confined to an inner layer close to the ridges, and the expansion is found to all algebraic orders. As a result, the error is exponentially small and, under a further ``diluteness'' assumption, the explicit formulae are compared to finite element solutions. They are found to have a very wide range of validity in channel height (even when the menisci can touch the opposing wall) and so are useful for practitioners.

Top