Sample records for parallel spectral transform

  1. Trace gas detection in hyperspectral imagery using the wavelet packet subspace

    NASA Astrophysics Data System (ADS)

    Salvador, Mark A. Z.

    This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.

  2. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE PAGES

    Zhang, Hong; Zapol, Peter; Dixon, David A.; ...

    2015-11-17

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  3. Shift-and-invert parallel spectral transformation eigensolver: Massively parallel performance for density-functional based tight-binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Zapol, Peter; Dixon, David A.

    The Shift-and-invert parallel spectral transformations (SIPs), a computational approach to solve sparse eigenvalue problems, is developed for massively parallel architectures with exceptional parallel scalability and robustness. The capabilities of SIPs are demonstrated by diagonalization of density-functional based tight-binding (DFTB) Hamiltonian and overlap matrices for single-wall metallic carbon nanotubes, diamond nanowires, and bulk diamond crystals. The largest (smallest) example studied is a 128,000 (2000) atom nanotube for which ~330,000 (~5600) eigenvalues and eigenfunctions are obtained in ~190 (~5) seconds when parallelized over 266,144 (16,384) Blue Gene/Q cores. Weak scaling and strong scaling of SIPs are analyzed and the performance of SIPsmore » is compared with other novel methods. Different matrix ordering methods are investigated to reduce the cost of the factorization step, which dominates the time-to-solution at the strong scaling limit. As a result, a parallel implementation of assembling the density matrix from the distributed eigenvectors is demonstrated.« less

  4. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  5. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  6. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, Jean-Luc, E-mail: jlvay@lbl.gov; Haber, Irving; Godfrey, Brendan B.

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of themore » wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods.« less

  8. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    PubMed Central

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  9. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  10. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  11. Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.

    PubMed

    Belyaeva, O B; Litvin, F F

    2015-12-01

    This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.

  12. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs

    NASA Astrophysics Data System (ADS)

    Muraviev, A. V.; Smolski, V. O.; Loparo, Z. E.; Vodopyanov, K. L.

    2018-04-01

    Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1-5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as 13C, 18O, 17O, 15N, 34S, 33S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.

  13. On the wall-normal velocity of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1991-01-01

    Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.

  14. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  15. A new approach for measuring power spectra and reconstructing time series in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min

    2018-05-01

    We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.

  16. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  17. Characterization of cancer and normal tissue fluorescence through wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.

    2008-02-01

    The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.

  18. Dimension Reduction of Hyperspectral Data on Beowulf Clusters

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek

    2000-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operation. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold a great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, which is used widely in remote sensing, is the Principal Components Analysis (PCA). In light of the growing number of spectral channels of modern instruments, the paper reports on the development of a parallel PCA and its implementation on two Beowulf cluster configurations, on with fast Ethernet switch and the other is with a Myrinet interconnection.

  19. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  20. ORBS: A reduction software for SITELLE and SpiOMM data

    NASA Astrophysics Data System (ADS)

    Martin, Thomas

    2014-09-01

    ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

  1. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  2. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed. ?? 2008, Earthquake Engineering Research Institute.

  3. Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences

    NASA Astrophysics Data System (ADS)

    Kuptsov, Albert N.

    2000-02-01

    First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.

  4. Post-earthquake relaxation using a spectral element method: 2.5-D case

    USGS Publications Warehouse

    Pollitz, Fred

    2014-01-01

    The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.

  5. N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191

    2012-08-15

    Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less

  6. Mode Transitions in Hall Effect Thrusters

    DTIC Science & Technology

    2013-07-01

    bM = number of pixels per bin m = spoke order 0m = spoke order m = 0 em = electron mass, 9.1110 -31 kg im = Xe ion mass, 2.18×10 -25...periodogram spectral estimate, Arb Hz -1 eT = electron temperature eT = electron temperature parallel to magnetic field, eV eT  = electron ...Fourier transform of x(t)  = inverse angle from 2D DFT, deg-1  = mean electron energy, eV * = material dependent cross-over energy, eV xy

  7. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images.

    PubMed

    Hesford, Andrew J; Tillett, Jason C; Astheimer, Jeffrey P; Waag, Robert C

    2014-08-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast.

  8. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  9. Examination of Spectral Transformations on Spectral Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  10. Parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.

  11. A note on parallel and pipeline computation of fast unitary transforms

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1974-01-01

    The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.

  12. Low-Power Analog Processing for Sensing Applications: Low-Frequency Harmonic Signal Classification

    PubMed Central

    White, Daniel J.; William, Peter E.; Hoffman, Michael W.; Balkir, Sina

    2013-01-01

    A low-power analog sensor front-end is described that reduces the energy required to extract environmental sensing spectral features without using Fast Fouriér Transform (FFT) or wavelet transforms. An Analog Harmonic Transform (AHT) allows selection of only the features needed by the back-end, in contrast to the FFT, where all coefficients must be calculated simultaneously. We also show that the FFT coefficients can be easily calculated from the AHT results by a simple back-substitution. The scheme is tailored for low-power, parallel analog implementation in an integrated circuit (IC). Two different applications are tested with an ideal front-end model and compared to existing studies with the same data sets. Results from the military vehicle classification and identification of machine-bearing fault applications shows that the front-end suits a wide range of harmonic signal sources. Analog-related errors are modeled to evaluate the feasibility of and to set design parameters for an IC implementation to maintain good system-level performance. Design of a preliminary transistor-level integrator circuit in a 0.13 μm complementary metal-oxide-silicon (CMOS) integrated circuit process showed the ability to use online self-calibration to reduce fabrication errors to a sufficiently low level. Estimated power dissipation is about three orders of magnitude less than similar vehicle classification systems that use commercially available FFT spectral extraction. PMID:23892765

  13. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units.

    PubMed

    Watanabe, Yuuki; Maeno, Seiya; Aoshima, Kenji; Hasegawa, Haruyuki; Koseki, Hitoshi

    2010-09-01

    The real-time display of full-range, 2048?axial pixelx1024?lateral pixel, Fourier-domain optical-coherence tomography (FD-OCT) images is demonstrated. The required speed was achieved by using dual graphic processing units (GPUs) with many stream processors to realize highly parallel processing. We used a zero-filling technique, including a forward Fourier transform, a zero padding to increase the axial data-array size to 8192, an inverse-Fourier transform back to the spectral domain, a linear interpolation from wavelength to wavenumber, a lateral Hilbert transform to obtain the complex spectrum, a Fourier transform to obtain the axial profiles, and a log scaling. The data-transfer time of the frame grabber was 15.73?ms, and the processing time, which includes the data transfer between the GPU memory and the host computer, was 14.75?ms, for a total time shorter than the 36.70?ms frame-interval time using a line-scan CCD camera operated at 27.9?kHz. That is, our OCT system achieved a processed-image display rate of 27.23 frames/s.

  14. Generation and evolution of anisotropic turbulence and related energy transfer in a multi-species solar wind

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Poedts, Stefaan

    2017-04-01

    The electromagnetic fluctuations in the solar wind represent a zoo of plasma waves with different properties, whose wavelengths range from largest fluid scales to the smallest dissipation scales. By nature the power spectrum of the magnetic fluctuations is anisotropic with different spectral slopes in parallel and perpendicular directions with respect to the background magnetic field. Furthermore, the magnetic field power spectra steepen as one moves from the inertial to the dissipation range and we observe multiple spectral breaks with different slopes in parallel and perpendicular direction at the ion scales and beyond. The turbulent dissipation of magnetic field fluctuations at the sub-ion scales is believed to go into local ion heating and acceleration, so that the spectral breaks are typically associated with particle energization. The gained energy can be in the form of anisotropic heating, formation of non-thermal features in the particle velocity distributions functions, and redistribution of the differential acceleration between the different ion populations. To study the relation between the evolution of the anisotropic turbulent spectra and the particle heating at the ion and sub-ion scales we perform a series of 2.5D hybrid simulations in a collisionless drifting proton-alpha plasma. We neglect the fast electron dynamics and treat the electrons as an isothermal fluid electrons, whereas the protons and a minor population of alpha particles are evolved in a fully kinetic manner. We start with a given wave spectrum and study the evolution of the magnetic field spectral slopes as a function of the parallel and perpendicular wave¬numbers. Simultaneously, we track the particle response and the energy exchange between the parallel and perpendicular scales. We observe anisotropic behavior of the turbulent power spectra with steeper slopes along the dominant energy-containing direction. This means that for parallel and quasi-parallel waves we have steeper spectral slope in parallel direction, whereas for highly oblique waves the dissipation occurs predominantly in perpendicular direction and the spectral slopes are steeper across the background magnetic field. The value of the spectral slopes depends on the angle of propagation, the spectral range, as well as the plasma properties. In general the dissipation is stronger at small scales and the corresponding spectral slopes there are steeper. For parallel and quasi-parallel propagation the prevailing energy cascade remains along the magnetic field, whereas for initially isotropic oblique turbulence the cascade develops mainly in perpendicular direction.

  15. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  16. A complex guided spectral transform Lanczos method for studying quantum resonance states

    DOE PAGES

    Yu, Hua-Gen

    2014-12-28

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less

  17. Cucheb: A GPU implementation of the filtered Lanczos procedure

    NASA Astrophysics Data System (ADS)

    Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef

    2017-11-01

    This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.

  18. P-HARP: A parallel dynamic spectral partitioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, A.; Biswas, R.; Simon, H.D.

    1997-05-01

    Partitioning unstructured graphs is central to the parallel solution of problems in computational science and engineering. The authors have introduced earlier the sequential version of an inertial spectral partitioner called HARP which maintains the quality of recursive spectral bisection (RSB) while forming the partitions an order of magnitude faster than RSB. The serial HARP is known to be the fastest spectral partitioner to date, three to four times faster than similar partitioners on a variety of meshes. This paper presents a parallel version of HARP, called P-HARP. Two types of parallelism have been exploited: loop level parallelism and recursive parallelism.more » P-HARP has been implemented in MPI on the SGI/Cray T3E and the IBM SP2. Experimental results demonstrate that P-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.25 seconds on a 64-processor T3E. Experimental results further show that P-HARP can give nearly a 20-fold speedup on 64 processors. These results indicate that graph partitioning is no longer a major bottleneck that hinders the advancement of computational science and engineering for dynamically-changing real-world applications.« less

  19. A Parallel Implementation of Multilevel Recursive Spectral Bisection for Application to Adaptive Unstructured Meshes. Chapter 1

    NASA Technical Reports Server (NTRS)

    Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.

  20. High speed parallel spectral-domain OCT using spectrally encoded line-field illumination

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hur, Hwan; Bae, Ji Yong; Kim, I. Jong; Kim, Dong Uk; Nam, Ki-Hwan; Kim, Geon-Hee; Chang, Ki Soo

    2018-01-01

    We report parallel spectral-domain optical coherence tomography (OCT) at 500 000 A-scan/s. This is the highest-speed spectral-domain (SD) OCT system using a single line camera. Spectrally encoded line-field scanning is proposed to increase the imaging speed in SD-OCT effectively, and the tradeoff between speed, depth range, and sensitivity is demonstrated. We show that three imaging modes of 125k, 250k, and 500k A-scan/s can be simply switched according to the sample to be imaged considering the depth range and sensitivity. To demonstrate the biological imaging performance of the high-speed imaging modes of the spectrally encoded line-field OCT system, human skin and a whole leaf were imaged at the speed of 250k and 500k A-scan/s, respectively. In addition, there is no sensitivity dependence in the B-scan direction, which is implicit in line-field parallel OCT using line focusing of a Gaussian beam with a cylindrical lens.

  1. Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2009-12-01

    Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.

  2. A general spectral transformation simultaneously including a Fourier transformation and a Laplace transformation

    NASA Technical Reports Server (NTRS)

    Marko, H.

    1978-01-01

    A general spectral transformation is proposed and described. Its spectrum can be interpreted as a Fourier spectrum or a Laplace spectrum. The laws and functions of the method are discussed in comparison with the known transformations, and a sample application is shown.

  3. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    DTIC Science & Technology

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  4. Spectral transform and orthogonality relations for the Kadomtsev-Petviashvili I equation

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Leon, J. J.-P.; Pempinelli, F.

    1989-10-01

    We define a new spectral transform r(k, l) of the potential u in the time dependent Schrödinger equation (associated to the KPI equation). Orthogonality relations for the sectionally holomorphic eigenfunctions of the Schrödinger equation are used to express the spectral transform f( k, l) previously introduced by Manakov and Fokas and Ablowitz in terms of r( k, l). The main advantage of the new spectral transform r( k, l) is that its definition does not require to introduce an additional nonanalytic eigenfunction N. Characterization equations for r( k, l) are also obtained.

  5. Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Fuselier, Stephen A.; Gary, S. Peter; Denton, Richard E.

    1994-01-01

    Correlations between plasma properties and magnetic fluctuations in the sub-solar magnetosheath downstream of a quasi-perpendicular shock have been found and indicate that mirror and ion cyclotronlike fluctuations correlate with the magnetosheath proper and plasma depletion layer, respectively (Anderson and Fueselier, 1993). We explore the entire range of magnetic spectral signatures observed from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE)spacecraft in the magnetosheath downstream of a quasi-perpendicular shock. The magnetic spectral signatures typically progress from predominantly compressional fluctuations,delta B(sub parallel)/delta B perpendicular to approximately 3, with F/F (sub p) less than 0.2 (F and F (sub p) are the wave frequency and proton gyrofrequency, respectively) to predominantly transverse fluctuations, delta B(sub parallel)/delta B perpendicular to approximately 0.3, extending up to F(sub p). The compressional fluctuations are characterized by anticorrelation between the field magnitude and electron density, n(sub e), and by a small compressibility, C(sub e) identically equal to (delta n(sub e)/n(sub e)) (exp 2) (B/delta B(sub parallel)) (exp 2) approximately 0.13, indicative of mirror waves. The spectral characteristics of the transverse fluctuations are in agreement with predictions of linear Vlasov theory for the H(+) and He(2+) cyclotron modes. The power spectra and local plasma parameters are found to vary in concert: mirror waves occur for beta(s ub parallel p) (beta (sub parallel p) identically = 2 mu(sub zero) n(sub p) kT (sub parallel p) / B(exp 2) approximately = 2, A(sub p) indentically = T(sub perpendicular to p)/T(sub parallel p) - 1 approximately = 0.4, whereas cyclotron waves occur for beta (sub parallel p) approximately = 0.2 and A(sub p) approximately = 2. The transition from mirror to cyclotron modes is predicted by linear theory. The spectral characteristics overlap for intermediate plasma parameters. The plasma observations are described by A(sub p) = 0.85 beta(sub parallel P) (exp - 0.48) with a log regression coefficient of -0.74. This inverse A(sub p) - beta(sub parallel p) correlation corresponds closely to the isocontours of maximum ion anisotropy instability growth, gamma (sub m)/omega(sub p) = 0.01, for the mirror and cyclotron modes. The agreement of observed properties and predictions of local theory suggests that the spectral signatures reflect the local plasma environment and that the anisotropy instabilities regulate A(sub p). We suggest that the spectral characteristics may provide a useful basis for ordering observations in the magnetosheath and that the A(sub p) - beta(sub parallel p) inverse correlation may be used as a beta-dependent upper limit on the proton anisotropy to represent kinetic effects.

  6. Parallel ICA and its hardware implementation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Peterson, Gregory D.

    2004-04-01

    Advances in hyperspectral images have dramatically boosted remote sensing applications by providing abundant information using hundreds of contiguous spectral bands. However, the high volume of information also results in excessive computation burden. Since most materials have specific characteristics only at certain bands, a lot of these information is redundant. This property of hyperspectral images has motivated many researchers to study various dimensionality reduction algorithms, including Projection Pursuit (PP), Principal Component Analysis (PCA), wavelet transform, and Independent Component Analysis (ICA), where ICA is one of the most popular techniques. It searches for a linear or nonlinear transformation which minimizes the statistical dependence between spectral bands. Through this process, ICA can eliminate superfluous but retain practical information given only the observations of hyperspectral images. One hurdle of applying ICA in hyperspectral image (HSI) analysis, however, is its long computation time, especially for high volume hyperspectral data sets. Even the most efficient method, FastICA, is a very time-consuming process. In this paper, we present a parallel ICA (pICA) algorithm derived from FastICA. During the unmixing process, pICA divides the estimation of weight matrix into sub-processes which can be conducted in parallel on multiple processors. The decorrelation process is decomposed into the internal decorrelation and the external decorrelation, which perform weight vector decorrelations within individual processors and between cooperative processors, respectively. In order to further improve the performance of pICA, we seek hardware solutions in the implementation of pICA. Until now, there are very few hardware designs for ICA-related processes due to the complicated and iterant computation. This paper discusses capacity limitation of FPGA implementations for pICA in HSI analysis. A synthesis of Application-Specific Integrated Circuit (ASIC) is designed for pICA-based dimensionality reduction in HSI analysis. The pICA design is implemented using standard-height cells and aimed at TSMC 0.18 micron process. During the synthesis procedure, three ICA-related reconfigurable components are developed for the reuse and retargeting purpose. Preliminary results show that the standard-height cell based ASIC synthesis provide an effective solution for pICA and ICA-related processes in HSI analysis.

  7. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    NASA Astrophysics Data System (ADS)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  8. High throughput operando studies using Fourier transform infrared imaging and Raman spectroscopy.

    PubMed

    Li, Guosheng; Hu, Dehong; Xia, Guanguang; White, J M; Zhang, Conrad

    2008-07-01

    A prototype high throughput operando (HTO) reactor designed and built for catalyst screening and characterization combines Fourier transform infrared (FT-IR) imaging and Raman spectroscopy in operando conditions. Using a focal plane array detector (HgCdTe focal plane array, 128x128 pixels, and 1610 Hz frame rate) for the FT-IR imaging system, the catalyst activity and selectivity of all parallel reaction channels can be simultaneously followed. Each image data set possesses 16 384 IR spectra with a spectral range of 800-4000 cm(-1) and with an 8 cm(-1) resolution. Depending on the signal-to-noise ratio, 2-20 s are needed to generate a full image of all reaction channels for a data set. Results on reactant conversion and product selectivity are obtained from FT-IR spectral analysis. Six novel Raman probes, one for each reaction channel, were specially designed and house built at Pacific Northwest National Laboratory, to simultaneously collect Raman spectra of the catalysts and possible reaction intermediates on the catalyst surface under operando conditions. As a model system, methanol partial oxidation reaction on silica-supported molybdenum oxide (MoO3SiO2) catalysts has been studied under different reaction conditions to demonstrate the performance of the HTO reactor.

  9. Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.

    PubMed

    Tao, Liang; Kwan, Hon Keung

    2012-07-01

    Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.

  10. Petascale turbulence simulation using a highly parallel fast multipole method on GPUs

    NASA Astrophysics Data System (ADS)

    Yokota, Rio; Barba, L. A.; Narumi, Tetsu; Yasuoka, Kenji

    2013-03-01

    This paper reports large-scale direct numerical simulations of homogeneous-isotropic fluid turbulence, achieving sustained performance of 1.08 petaflop/s on GPU hardware using single precision. The simulations use a vortex particle method to solve the Navier-Stokes equations, with a highly parallel fast multipole method (FMM) as numerical engine, and match the current record in mesh size for this application, a cube of 40963 computational points solved with a spectral method. The standard numerical approach used in this field is the pseudo-spectral method, relying on the FFT algorithm as the numerical engine. The particle-based simulations presented in this paper quantitatively match the kinetic energy spectrum obtained with a pseudo-spectral method, using a trusted code. In terms of parallel performance, weak scaling results show the FMM-based vortex method achieving 74% parallel efficiency on 4096 processes (one GPU per MPI process, 3 GPUs per node of the TSUBAME-2.0 system). The FFT-based spectral method is able to achieve just 14% parallel efficiency on the same number of MPI processes (using only CPU cores), due to the all-to-all communication pattern of the FFT algorithm. The calculation time for one time step was 108 s for the vortex method and 154 s for the spectral method, under these conditions. Computing with 69 billion particles, this work exceeds by an order of magnitude the largest vortex-method calculations to date.

  11. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    PubMed

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  12. Topics In Chemical Instrumentation: Fourier Transformations for Chemists Part I. Introduction to the Fourier Transform.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    This paper explores how Fourier Transform (FT) mimics spectral transformation, how this property can be exploited to advantage in spectroscopy, and how the FT can be used in data treatment. A table displays a number of important FT serial/spectral pairs related by Fourier Transformations. A bibliography and listing of computer software related to…

  13. A three-dimensional spectral algorithm for simulations of transition and turbulence

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1985-01-01

    A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.

  14. [Research on improving spectrum resolution of optimized Wollaston prism array].

    PubMed

    Zhang, Peng; Wang, Jian-Rong; Zhang, Guo-Chen; Hou, Wen

    2011-11-01

    In order to not affect the image quality of interference fringes on the basis of the structure by increasing the structure angle of Wollaston prism to improve spectrum resolution, the authors optimized the structure of Wollaston prism. Calculating the function of the splitting angle and the structure angle, analysis indicated that taking the isosceles triangle prism with the same nature of the second wedge-shaped prism after the Wollaston prism, which makes the o and e light parallel to the optical axis, and alpha=0 degrees, the imaging interference fringes are no longer affected by changes in the splitting angle. Several optimized Wollaston prisms were made as an array to improve the spectral resolution. Experiments used traditional and optimized Wollaston prism array to detect the spectrum of the 980 nm laser. Experimental data showed that using optimized Wollaston prism array gets a clearer contrast of interference fringes, and the spectral data with Fourier transform are more accurate with DSP.

  15. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a manner similar to that of a baseline hyperspectral- image-compression method. The mean values are encoded in the compressed bit stream and added back to the data at the appropriate decompression step. The overhead incurred by encoding the mean values only a few bits per spectral band is negligible with respect to the huge size of a typical hyperspectral data set. The other method is denoted modified decomposition. This method is so named because it involves a modified version of a commonly used multiresolution wavelet decomposition, known in the art as the 3D Mallat decomposition, in which (a) the first of multiple stages of a 3D wavelet transform is applied to the entire dataset and (b) subsequent stages are applied only to the horizontally-, vertically-, and spectrally-low-pass subband from the preceding stage. In the modified decomposition, in stages after the first, not only is the spatially-low-pass, spectrally-low-pass subband further decomposed, but also spatially-low-pass, spectrally-high-pass subbands are further decomposed spatially. Either method can be used alone to improve the quality of a reconstructed image (see figure). Alternatively, the two methods can be combined by first performing modified decomposition, then subtracting the mean values from spatial planes of spatially-low-pass subbands.

  16. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  17. Fast parallel tandem mass spectral library searching using GPU hardware acceleration

    PubMed Central

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.

    2011-01-01

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112

  18. Cloud parallel processing of tandem mass spectrometry based proteomics data.

    PubMed

    Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus

    2012-10-05

    Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.

  19. A statistical evaluation of spectral fingerprinting methods using analysis of variance and principal component analysis

    USDA-ARS?s Scientific Manuscript database

    Six methods were compared with respect to spectral fingerprinting of a well-characterized series of broccoli samples. Spectral fingerprints were acquired for finely-powdered solid samples using Fourier transform-infrared (IR) and Fourier transform-near infrared (NIR) spectrometry and for aqueous met...

  20. Multispectral Image Compression for Improvement of Colorimetric and Spectral Reproducibility by Nonlinear Spectral Transform

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2006-09-01

    The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.

  1. Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntingtons Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonda M.; Miller L.; Perrin V.

    Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons usingmore » synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of {beta}-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's {beta}-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.« less

  2. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  3. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  4. Noncoherent parallel optical processor for discrete two-dimensional linear transformations.

    PubMed

    Glaser, I

    1980-10-01

    We describe a parallel optical processor, based on a lenslet array, that provides general linear two-dimensional transformations using noncoherent light. Such a processor could become useful in image- and signal-processing applications in which the throughput requirements cannot be adequately satisfied by state-of-the-art digital processors. Experimental results that illustrate the feasibility of the processor by demonstrating its use in parallel optical computation of the two-dimensional Walsh-Hadamard transformation are presented.

  5. Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Chen, Wen; Magin, Richard L.

    2016-07-01

    Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.

  6. High performance Python for direct numerical simulations of turbulent flows

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Langtangen, Hans Petter

    2016-06-01

    Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.

  7. Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.

    PubMed

    Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung

    2018-02-01

    Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.

  8. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  9. Parallel-multiplexed excitation light-sheet microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live. We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together. We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.

  10. Support for Debugging Automatically Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Hood, Robert; Jost, Gabriele

    2001-01-01

    This viewgraph presentation provides information on support sources available for the automatic parallelization of computer program. CAPTools, a support tool developed at the University of Greenwich, transforms, with user guidance, existing sequential Fortran code into parallel message passing code. Comparison routines are then run for debugging purposes, in essence, ensuring that the code transformation was accurate.

  11. Parallel Computing for the Computed-Tomography Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    This software computes the tomographic reconstruction of spatial-spectral data from raw detector images of the Computed-Tomography Imaging Spectrometer (CTIS), which enables transient-level, multi-spectral imaging by capturing spatial and spectral information in a single snapshot.

  12. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  13. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  14. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  15. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  16. Ordered fast fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1989-01-01

    Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.

  17. Use of airborne hyperspectral data to estimate residual heavy metal contamination and acidification potential in the Guadiamar floodplain Andalusia, Spain after the Aznacollar mining accident

    NASA Astrophysics Data System (ADS)

    Kemper, Thomas; Sommer, Stefan

    2004-10-01

    Field and airborne hyperspectral data was used to map residual contamination after a mining accident, by applying spectral mixture modelling. Test case was the Aznalcollar Mine (Southern Spain) accident, where heavy metal bearing sludge from a tailings pond was distributed over large areas of the Guadiamar flood plain. Although the sludge and the contaminated topsoils have been removed mechanically in the whole affected area, still high abundance of pyritic material remained on the ground. During dedicated field campaigns in two subsequent years soil samples were collected for geochemical and spectral laboratory analysis and spectral field measurements were carried out in parallel to data acquisition with the HyMap sensor. A Variable Multiple Endmember Spectral Mixture Analysis (VMESMA) tool was used providing possibilities of multiple endmember unmixing, aiming to estimate the quantities and distribution of the remaining tailings material. A spectrally based zonal partition of the area was introduced to allow the application of different submodels to the selected areas. Based on an iterative feedback process, the unmixing performance could be improved in each stage until an optimum level was reached. The sludge abundances obtained by unmixing the hyperspectral spectral data were confirmed by the field observations and chemical measurements of samples taken in the area. The semi-quantitative sludge abundances of residual pyritic material could be transformed into quantitative information for an assessment of acidification risk and distribution of residual heavy metal contamination based on an artificial mixture experiment. The unmixing of the second year images allowed identification of secondary minerals of pyrite as indicators of pyrite oxidation and associated acidification.

  18. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  19. Wavelet compression techniques for hyperspectral data

    NASA Technical Reports Server (NTRS)

    Evans, Bruce; Ringer, Brian; Yeates, Mathew

    1994-01-01

    Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet transform coder was used for the two-dimensional compression. The third case used a three dimensional extension of this same algorithm.

  20. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  1. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  2. Spectral analysis for GNSS coordinate time series using chirp Fourier transform

    NASA Astrophysics Data System (ADS)

    Feng, Shengtao; Bo, Wanju; Ma, Qingzun; Wang, Zifan

    2017-12-01

    Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb-Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.

  3. Estimation of spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to visualize the pattern of each fault. Keywords: frequency domain Fourier transform, spectral kurtosis, bearing fault

  4. Chrestenson transform FPGA embedded factorizations.

    PubMed

    Corinthios, Michael J

    2016-01-01

    Chrestenson generalized Walsh transform factorizations for parallel processing imbedded implementations on field programmable gate arrays are presented. This general base transform, sometimes referred to as the Discrete Chrestenson transform, has received special attention in recent years. In fact, the Discrete Fourier transform and Walsh-Hadamard transform are but special cases of the Chrestenson generalized Walsh transform. Rotations of a base-p hypercube, where p is an arbitrary integer, are shown to produce dynamic contention-free memory allocation, in processor architecture. The approach is illustrated by factorizations involving the processing of matrices of the transform which are function of four variables. Parallel operations are implemented matrix multiplications. Each matrix, of dimension N × N, where N = p (n) , n integer, has a structure that depends on a variable parameter k that denotes the iteration number in the factorization process. The level of parallelism, in the form of M = p (m) processors can be chosen arbitrarily by varying m between zero to its maximum value of n - 1. The result is an equation describing the generalised parallelism factorization as a function of the four variables n, p, k and m. Applications of the approach are shown in relation to configuring field programmable gate arrays for digital signal processing applications.

  5. Numerical Modeling of Geomorphic Change on Sandy Coasts as a Function of Changing Wave Climate

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; McNamara, D.; Murray, A. B.; Lovering, J.

    2009-12-01

    Climate change is expected to affect sandy coast geomorphology through two principal mechanisms: (1) sea level rise, which affects cross-shore sediment transport tending to drive shoreline retreat, and (2) alteration of statistical distributions in ocean storm wave climate (deep water wave height, period, and direction), which affects longshore sediment transport gradients that result in shoreline erosion and accretion. To address potential climate change-driven effects on longshore sediment transport gradients, we are developing techniques to link various numerical models of wave transformation with several different longshore sediment transport formulae in accordance with the Community Surface Dynamics Modeling System (CSDMS) project. Results of the various wave transformation models are compared to field observations of cross-shelf wave transformation along the North Florida Atlantic coast for purposes of model verification and calibration. Initial comparisons between wave-transformation methods (assumption of shore-parallel contours, simple wave ray tracing, and the SWAN spectral wave model) on artificially constructed continental shelves reveal an increasing discrepancy of results for increasing complexity of shelf bathymetry. When the more advanced SWAN spectral wave model is coupled with a simple CERC-type formulation of longshore sediment transport and applied to a real coast with complex offshore shoals (Cape Canaveral region of the North Florida Atlantic Coast), the patterns of erosion and accretion agree with results of the simplest wave-propagation models for some wave conditions, but disagree in others. Model simulations in which wave height and period are held constant show that locations of divergence and convergence of sediment flux shift with deep water wave-approach angle in ways that would not always be predicted using less sophisticated wave propagation models. Thus, predicting long-term local shoreline change on actual coastlines featuring complex bathymetry requires the extra computational effort to run the more advanced model over a wide range of wave conditions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less

  7. Fizeau Fourier transform imaging spectroscopy: missing data reconstruction.

    PubMed

    Thurman, Samuel T; Fienup, James R

    2008-04-28

    Fizeau Fourier transform imaging spectroscopy yields both spatial and spectral information about an object. Spectral information, however, is not obtained for a finite area of low spatial frequencies. A nonlinear reconstruction algorithm based on a gray-world approximation is presented. Reconstruction results from simulated data agree well with ideal Michelson interferometer-based spectral imagery. This result implies that segmented-aperture telescopes and multiple telescope arrays designed for conventional imaging can be used to gather useful spectral data through Fizeau FTIS without the need for additional hardware.

  8. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular magnetic spectra. This indicates that the spectral anisotropy in parallel and perpendicular direction is governed by intrinsic properties of SWT.

  9. The magnifying glass - A feature space local expansion for visual analysis. [and image enhancement

    NASA Technical Reports Server (NTRS)

    Juday, R. D.

    1981-01-01

    The Magnifying Glass Transformation (MGT) technique is proposed, as a multichannel spectral operation yielding visual imagery which is enhanced in a specified spectral vicinity, guided by the statistics of training samples. An application example is that in which the discrimination among spectral neighbors within an interactive display may be increased without altering distant object appearances or overall interpretation. A direct histogram specification technique is applied to the channels within the multispectral image so that a subset of the spectral domain occupies an increased fraction of the domain. The transformation is carried out by obtaining the training information, establishing the condition of the covariance matrix, determining the influenced solid, and initializing the lookup table. Finally, the image is transformed.

  10. Spectral analysis using CCDs

    NASA Technical Reports Server (NTRS)

    Hewes, C. R.; Brodersen, R. W.; De Wit, M.; Buss, D. D.

    1976-01-01

    Charge-coupled devices (CCDs) are ideally suited for performing sampled-data transversal filtering operations in the analog domain. Two algorithms have been identified for performing spectral analysis in which the bulk of the computation can be performed in a CCD transversal filter; the chirp z-transform and the prime transform. CCD implementation of both these transform algorithms is presented together with performance data and applications.

  11. Signal processing in an acousto-optical spectral colorimeter

    NASA Astrophysics Data System (ADS)

    Emeljanov, Sergey P.; Kludzin, Victor V.; Kochin, Leonid B.; Medvedev, Sergey V.; Polosin, Lev L.; Sokolov, Vladimir K.

    2002-02-01

    The algorithms of spectrometer signals processing in the acousto-optical spectral colorimeter, proposed earlier are discussed. This processing is directional on distortion elimination of an optical system spectral characteristics and photoelectric transformations, and also for calculation of tristimulus coefficients X,Y,Z in an international colorimetric system of a CIE - 31 and transformation them in coordinates of recommended CIE uniform contrast systems LUV and LAB.

  12. (2+1)-dimensional spacetimes containing closed timelike curves

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew P.; Gott, J. Richard, III

    1994-12-01

    We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.

  13. Digital techniques for ULF wave polarization analysis

    NASA Technical Reports Server (NTRS)

    Arthur, C. W.

    1979-01-01

    Digital power spectral and wave polarization analysis are powerful techniques for studying ULF waves in the earth's magnetosphere. Four different techniques for using the spectral matrix to perform such an analysis have been presented in the literature. Three of these techniques are similar in that they require transformation of the spectral matrix to the principal axis system prior to performing the polarization analysis. The differences in the three techniques lie in the manner in which determine this transformation. A comparative study of these three techniques using both simulated and real data has shown them to be approximately equal in quality of performance. The fourth technique does not require transformation of the spectral matrix. Rather, it uses the measured spectral matrix and state vectors for a desired wave type to design a polarization detector function in the frequency domain. The design of various detector functions and their application to both simulated and real data will be presented.

  14. Gauge transformations for twisted spectral triples

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2018-05-01

    It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.

  15. The demodulated band transform

    PubMed Central

    Kovach, Christopher K.; Gander, Phillip E.

    2016-01-01

    Background Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, band-pass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. New Methods A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. Results DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. Comparison with existing methods A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. Conclusion DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings. PMID:26711370

  16. Fast Fourier Transform Spectral Analysis Program

    NASA Technical Reports Server (NTRS)

    Daniel, J. A., Jr.; Graves, M. L.; Hovey, N. M.

    1969-01-01

    Fast Fourier Transform Spectral Analysis Program is used in frequency spectrum analysis of postflight, space vehicle telemetered trajectory data. This computer program with a digital algorithm can calculate power spectrum rms amplitudes and cross spectrum of sampled parameters at even time increments.

  17. Statistical study of ULF wave occurrence in the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Cao, M.; Mcpherron, R. L.; Russell, C. T.

    1994-01-01

    Ultralow-frequency (ULF) waves are observed almost everywhere in the dayside magnetosphere. The mechanism by which these waves are generated and transformed in the dayside magnetosphere is still not understood. Here we report a statistical study of these waves based on magnetic field data from the International Sun-Earth Explorer 1 (ISEE 1) spacecraft. Data from the first traversal of the spacecraft through the entire dayside magnetosphere have been examined to determine the spatial distribution of wave occurrence. Successive 20-min segments of data were transformed to a field-aligned coordinate system. The parallel component was detrended and all three components of the field spectrally analyzed. Wave occurrence was defined by the presence of significant peaks in the power spectra. Wave events were categorized by three wave frequency bands: Pc 3 with T approximately 10-45 s; Pc 4 with T approximately 45-150 s; the short-period part of the Pc 5 wave band with T approximately 150-324 s. Properties of the spectral peaks were then entered into a data base. The data base was next sorted to determine the spatial occurrence pattern for the waves. Our results show that Pc 3 waves most frequently occur just outside synchronous orbit and are approximately centered on local noon. Pc 4 waves have a similar distribution with its peak further out. Pc 5 waves have high occurrence rate at the two flanks of the magnetosphere. Peaks in spectra obtained near the magnetopause are less clearly defined than those deeper in the magnetosphere.

  18. Jet formation and equatorial superrotation in Jupiter's atmosphere: Numerical modelling using a new efficient parallel code

    NASA Astrophysics Data System (ADS)

    Rivier, Leonard Gilles

    Using an efficient parallel code solving the primitive equations of atmospheric dynamics, the jet structure of a Jupiter like atmosphere is modeled. In the first part of this thesis, a parallel spectral code solving both the shallow water equations and the multi-level primitive equations of atmospheric dynamics is built. The implementation of this code called BOB is done so that it runs effectively on an inexpensive cluster of workstations. A one dimensional decomposition and transposition method insuring load balancing among processes is used. The Legendre transform is cache-blocked. A "compute on the fly" of the Legendre polynomials used in the spectral method produces a lower memory footprint and enables high resolution runs on relatively small memory machines. Performance studies are done using a cluster of workstations located at the National Center for Atmospheric Research (NCAR). BOB performances are compared to the parallel benchmark code PSTSWM and the dynamical core of NCAR's CCM3.6.6. In both cases, the comparison favors BOB. In the second part of this thesis, the primitive equation version of the code described in part I is used to study the formation of organized zonal jets and equatorial superrotation in a planetary atmosphere where the parameters are chosen to best model the upper atmosphere of Jupiter. Two levels are used in the vertical and only large scale forcing is present. The model is forced towards a baroclinically unstable flow, so that eddies are generated by baroclinic instability. We consider several types of forcing, acting on either the temperature or the momentum field. We show that only under very specific parametric conditions, zonally elongated structures form and persist resembling the jet structure observed near the cloud level top (1 bar) on Jupiter. We also study the effect of an equatorial heat source, meant to be a crude representation of the effect of the deep convective planetary interior onto the outer atmospheric layer. We show that such heat forcing is able to produce strong equatorial superrotating winds, one of the most striking feature of the Jovian circulation.

  19. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  20. Growth and characterization of organic material 4-dimethylaminobenzaldehyde single crystal.

    PubMed

    Jebin, R P; Suthan, T; Rajesh, N P; Vinitha, G; Madhusoodhanan, U

    2015-01-25

    The organic material 4-dimethylaminobenzaldehyde single crystals were grown by slow evaporation technique. The grown crystal was confirmed by the single crystal and powder X-ray diffraction analyses. The functional groups of the crystal have been identified from the Fourier Transform Infrared (FTIR) and FT-Raman studies. The optical property of the grown crystal was analyzed by UV-Vis-NIR and photoluminescence (PL) spectral measurements. The thermal behavior of the grown crystal was analyzed by thermogravimetric (TG) and differential thermal analyses (DTA). Dielectric measurements were carried out with different frequencies by using parallel plate capacitor method. The third order nonlinear optical properties of 4-dimethylaminobenzaldehyde was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  2. Michael Sprague | NREL

    Science.gov Websites

    student, he developed a parallel spectral finite element method for treating the interaction of large mechanics of fluids, structures, and their interaction|Spectral finite-element methods for time-dependent

  3. Detection and classification of salmonella serotypes using spectral signatures collected by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Spectral signatures of Salmonella serotypes namely Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky were collected using Fourier transform infrared spectroscopy (FT-IR). About 5-10 µL of Salmonella suspensions with concentrations of 1...

  4. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  5. Modeling Cooperative Threads to Project GPU Performance for Adaptive Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jiayuan; Uram, Thomas; Morozov, Vitali A.

    Most accelerators, such as graphics processing units (GPUs) and vector processors, are particularly suitable for accelerating massively parallel workloads. On the other hand, conventional workloads are developed for multi-core parallelism, which often scale to only a few dozen OpenMP threads. When hardware threads significantly outnumber the degree of parallelism in the outer loop, programmers are challenged with efficient hardware utilization. A common solution is to further exploit the parallelism hidden deep in the code structure. Such parallelism is less structured: parallel and sequential loops may be imperfectly nested within each other, neigh boring inner loops may exhibit different concurrency patternsmore » (e.g. Reduction vs. Forall), yet have to be parallelized in the same parallel section. Many input-dependent transformations have to be explored. A programmer often employs a larger group of hardware threads to cooperatively walk through a smaller outer loop partition and adaptively exploit any encountered parallelism. This process is time-consuming and error-prone, yet the risk of gaining little or no performance remains high for such workloads. To reduce risk and guide implementation, we propose a technique to model workloads with limited parallelism that can automatically explore and evaluate transformations involving cooperative threads. Eventually, our framework projects the best achievable performance and the most promising transformations without implementing GPU code or using physical hardware. We envision our technique to be integrated into future compilers or optimization frameworks for autotuning.« less

  6. The generalized accessibility and spectral gap of lower hybrid waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hironori

    1994-03-01

    The generalized accessibility of lower hybrid waves, primarily in the current drive regime of tokamak plasmas, which may include shifting, either upward or downward, of the parallel refractive index (n{sub {parallel}}), is investigated, based upon a cold plasma dispersion relation and various geometrical constraint (G.C.) relations imposed on the behavior of n{sub {parallel}}. It is shown that n{sub {parallel}} upshifting can be bounded and insufficient to bridge a large spectral gap to cause wave damping, depending upon whether the G.C. relation allows the oblique resonance to occur. The traditional n{sub {parallel}} upshifting mechanism caused by the pitch angle of magneticmore » field lines is shown to lead to contradictions with experimental observations. An upshifting mechanism brought about by the density gradient along field lines is proposed, which is not inconsistent with experimental observations, and provides plausible explanations to some unresolved issues of lower hybrid wave theory, including generation of {open_quote}seed electrons.{close_quote}« less

  7. The effect of input data transformations on object-based image analysis

    PubMed Central

    LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.

    2011-01-01

    The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829

  8. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    NASA Astrophysics Data System (ADS)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  9. Classification of hyperspectral imagery using MapReduce on a NVIDIA graphics processing unit (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ramirez, Andres; Rahnemoonfar, Maryam

    2017-04-01

    A hyperspectral image provides multidimensional figure rich in data consisting of hundreds of spectral dimensions. Analyzing the spectral and spatial information of such image with linear and non-linear algorithms will result in high computational time. In order to overcome this problem, this research presents a system using a MapReduce-Graphics Processing Unit (GPU) model that can help analyzing a hyperspectral image through the usage of parallel hardware and a parallel programming model, which will be simpler to handle compared to other low-level parallel programming models. Additionally, Hadoop was used as an open-source version of the MapReduce parallel programming model. This research compared classification accuracy results and timing results between the Hadoop and GPU system and tested it against the following test cases: the CPU and GPU test case, a CPU test case and a test case where no dimensional reduction was applied.

  10. Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.

    2018-04-01

    Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.

  11. A fluctuation-induced plasma transport diagnostic based upon fast-Fourier transform spectral analysis

    NASA Technical Reports Server (NTRS)

    Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.

    1978-01-01

    A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.

  12. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  13. Logarithmic compression methods for spectral data

    DOEpatents

    Dunham, Mark E.

    2003-01-01

    A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.

  14. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M [Albuquerque, NM; Wehlburg, Christine M [Albuquerque, NM; Wehlburg, Joseph C [Albuquerque, NM; Smith, Mark W [Albuquerque, NM; Smith, Jody L [Albuquerque, NM

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  15. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  16. Hemorheology and heart rate variability in patients with diabetes mellitus type 2.

    PubMed

    Velcheva, Irena; Damianov, Petar; Mantarova, Stefka; Antonova, Nadia

    2011-01-01

    Our study aimed to investigate the relationship between hemorheological parameters and heart rate variability (HRV) in patients with diabetes mellitus type 2. Hemorheological variables, including hematocrit (Ht), fibrinogen (Fib), whole blood (WBV) and plasma viscosity (PV) at shear rates of 0.0237 s(-1) to 128.5 s(-1) were examined in 20 patients with diabetes mellitus type 2 and in 10 control subjects. They all underwent non-invasive short-term monitoring of heart rate at rest and after passive head-up tilt. Measurement of the R-R intervals and calculation of the time domain parameters and the power spectral data were performed by our softwear, using fast Fourier transformation. Significant increase of Fib and WBV in the patients in comparison to controls was found within the range of shear rates 0.0237 s(-1) to 128.5 s(-1). In the diabetic patients parallel decrease of the total power (TP), the low frequency spectral power (LF) and of the mean RR and mild increase of the low frequency-high frequency ratio (LF/HF) at rest were established. This tendency was kept after the passive tilt. In patients with diabetes mellitus type 2 the increased blood viscosity was associated with reduced HRV.

  17. A technique for phase correction in Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Artsang, P.; Pongchalee, P.; Palawong, K.; Buisset, C.; Meemon, P.

    2018-03-01

    Fourier transform spectroscopy (FTS) is a type of spectroscopy that can be used to analyze components in the sample. The basic setup that is commonly used in this technique is "Michelson interferometer". The interference signal obtained from interferometer can be Fourier transformed into the spectral pattern of the illuminating light source. To experimentally study the concept of the Fourier transform spectroscopy, the project started by setup the Michelson interferometer in the laboratory. The implemented system used a broadband light source in near infrared region (0.81-0.89 μm) and controlled the movable mirror by using computer controlled motorized translation stage. In the early study, there is no sample the interference path. Therefore, the theoretical spectral results after the Fourier transformation of the captured interferogram must be the spectral shape of the light source. One main challenge of the FTS is to retrieve the correct phase information of the inferferogram that relates with the correct spectral shape of the light source. One main source of the phase distortion in FTS that we observed from our system is the non-linear movement of the movable reference mirror of the Michelson interferometer. Therefore, to improve the result, we coupled a monochromatic light source to the implemented interferometer. We simultaneously measured the interferograms of the monochromatic and broadband light sources. The interferogram of the monochromatic light source was used to correct the phase of the interferogram of the broadband light source. The result shows significant improvement in the computed spectral shape.

  18. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    PubMed

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  19. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  20. Dynamics of modulated beams in spectral domain

    DOE PAGES

    Yampolsky, Nikolai A.

    2017-07-16

    General formalism for describing dynamics of modulated beams along linear beamlines is developed. We describe modulated beams with spectral distribution function which represents Fourier transform of the conventional beam distribution function in the 6-dimensional phase space. The introduced spectral distribution function is localized in some region of the spectral domain for nearly monochromatic modulations. It can be characterized with a small number of typical parameters such as the lowest order moments of the spectral distribution. We study evolution of the modulated beams in linear beamlines and find that characteristic spectral parameters transform linearly. The developed approach significantly simplifies analysis ofmore » various schemes proposed for seeding X-ray free electron lasers. We use this approach to study several recently proposed schemes and find the bandwidth of the output bunching in each case.« less

  1. The extended Fourier transform for 2D spectral estimation.

    PubMed

    Armstrong, G S; Mandelshtam, V A

    2001-11-01

    We present a linear algebraic method, named the eXtended Fourier Transform (XFT), for spectral estimation from truncated time signals. The method is a hybrid of the discrete Fourier transform (DFT) and the regularized resolvent transform (RRT) (J. Chen et al., J. Magn. Reson. 147, 129-137 (2000)). Namely, it estimates the remainder of a finite DFT by RRT. The RRT estimation corresponds to solution of an ill-conditioned problem, which requires regularization. The regularization depends on a parameter, q, that essentially controls the resolution. By varying q from 0 to infinity one can "tune" the spectrum between a high-resolution spectral estimate and the finite DFT. The optimal value of q is chosen according to how well the data fits the form of a sum of complex sinusoids and, in particular, the signal-to-noise ratio. Both 1D and 2D XFT are presented with applications to experimental NMR signals. Copyright 2001 Academic Press.

  2. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  3. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  4. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals.

    PubMed

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  5. HARP: A Dynamic Inertial Spectral Partitioner

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Sohn, Andrew; Biswas, Rupak

    1997-01-01

    Partitioning unstructured graphs is central to the parallel solution of computational science and engineering problems. Spectral partitioners, such recursive spectral bisection (RSB), have proven effecfive in generating high-quality partitions of realistically-sized meshes. The major problem which hindered their wide-spread use was their long execution times. This paper presents a new inertial spectral partitioner, called HARP. The main objective of the proposed approach is to quickly partition the meshes at runtime in a manner that works efficiently for real applications in the context of distributed-memory machines. The underlying principle of HARP is to find the eigenvectors of the unpartitioned vertices and then project them onto the eigerivectors of the original mesh. Results for various meshes ranging in size from 1000 to 100,000 vertices indicate that HARP can indeed partition meshes rapidly at runtime. Experimental results show that our largest mesh can be partitioned sequentially in only a few seconds on an SP2 which is several times faster than other spectral partitioners while maintaining the solution quality of the proven RSB method. A parallel WI version of HARP has also been implemented on IBM SP2 and Cray T3E. Parallel HARP, running on 64 processors SP2 and T3E, can partition a mesh containing more than 100,000 vertices into 64 subgrids in about half a second. These results indicate that graph partitioning can now be truly embedded in dynamically-changing real-world applications.

  6. The parallel algorithm for the 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  7. Spectral Calculation of ICRF Wave Propagation and Heating in 2-D Using Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; D'Azevedo, E.; Berry, L. A.; Carter, M. D.; Batchelor, D. B.

    2000-10-01

    Spectral calculations of ICRF wave propagation in plasmas have the natural advantage that they require no assumption regarding the smallness of the ion Larmor radius ρ relative to wavelength λ. Results are therefore applicable to all orders in k_bot ρ where k_bot = 2π/λ. But because all modes in the spectral representation are coupled, the solution requires inversion of a large dense matrix. In contrast, finite difference algorithms involve only matrices that are sparse and banded. Thus, spectral calculations of wave propagation and heating in tokamak plasmas have so far been limited to 1-D. In this paper, we extend the spectral method to 2-D by taking advantage of new matrix inversion techniques that utilize massively parallel computers. By spreading the dense matrix over 576 processors on the ORNL IBM RS/6000 SP supercomputer, we are able to solve up to 120,000 coupled complex equations requiring 230 GBytes of memory and achieving over 500 Gflops/sec. Initial results for ASDEX and NSTX will be presented using up to 200 modes in both the radial and vertical dimensions.

  8. S-HARP: A parallel dynamic spectral partitioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohn, A.; Simon, H.

    1998-01-01

    Computational science problems with adaptive meshes involve dynamic load balancing when implemented on parallel machines. This dynamic load balancing requires fast partitioning of computational meshes at run time. The authors present in this report a fast parallel dynamic partitioner, called S-HARP. The underlying principles of S-HARP are the fast feature of inertial partitioning and the quality feature of spectral partitioning. S-HARP partitions a graph from scratch, requiring no partition information from previous iterations. Two types of parallelism have been exploited in S-HARP, fine grain loop level parallelism and coarse grain recursive parallelism. The parallel partitioner has been implemented in Messagemore » Passing Interface on Cray T3E and IBM SP2 for portability. Experimental results indicate that S-HARP can partition a mesh of over 100,000 vertices into 256 partitions in 0.2 seconds on a 64 processor Cray T3E. S-HARP is much more scalable than other dynamic partitioners, giving over 15 fold speedup on 64 processors while ParaMeTiS1.0 gives a few fold speedup. Experimental results demonstrate that S-HARP is three to 10 times faster than the dynamic partitioners ParaMeTiS and Jostle on six computational meshes of size over 100,000 vertices.« less

  9. Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, V N; Kochetkov, A A; Yakovlev, I V

    2016-02-28

    Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)

  10. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  11. Discrimination of portraits using a hybrid parallel joint transform correlator system

    NASA Astrophysics Data System (ADS)

    Inaba, Rieko; Hashimoto, Asako; Kodate, Kashiko

    1999-05-01

    A hybrid parallel joint transform correlation system is demonstrated through the introduction of a five-channel binary zone plate array and is applied to the discrimination of portraits for a presumed criminal investigation. In order to improve performance, we adopt pe-processing of images with white area of 20%. Furthermore, we discuss the robustness.

  12. Wavelet Transforms in Parallel Image Processing

    DTIC Science & Technology

    1994-01-27

    NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by

  13. Master-slave interferometry for parallel spectral domain interferometry sensing and versatile 3D optical coherence tomography.

    PubMed

    Podoleanu, Adrian Gh; Bradu, Adrian

    2013-08-12

    Conventional spectral domain interferometry (SDI) methods suffer from the need of data linearization. When applied to optical coherence tomography (OCT), conventional SDI methods are limited in their 3D capability, as they cannot deliver direct en-face cuts. Here we introduce a novel SDI method, which eliminates these disadvantages. We denote this method as Master - Slave Interferometry (MSI), because a signal is acquired by a slave interferometer for an optical path difference (OPD) value determined by a master interferometer. The MSI method radically changes the main building block of an SDI sensor and of a spectral domain OCT set-up. The serially provided signal in conventional technology is replaced by multiple signals, a signal for each OPD point in the object investigated. This opens novel avenues in parallel sensing and in parallelization of signal processing in 3D-OCT, with applications in high- resolution medical imaging and microscopy investigation of biosamples. Eliminating the need of linearization leads to lower cost OCT systems and opens potential avenues in increasing the speed of production of en-face OCT images in comparison with conventional SDI.

  14. GIFTS SM EDU Radiometric and Spectral Calibrations

    NASA Technical Reports Server (NTRS)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  15. A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model

    NASA Astrophysics Data System (ADS)

    Chang, E.-C.; Yoshimura, K.

    2015-06-01

    In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.

  16. A proposed mechanism for rapid adaptation to spectrally distorted speech.

    PubMed

    Azadpour, Mahan; Balaban, Evan

    2015-07-01

    The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual "inverse-transform" that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of "perceptual filling-in" mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.

  17. Domain decomposition preconditioners for the spectral collocation method

    NASA Technical Reports Server (NTRS)

    Quarteroni, Alfio; Sacchilandriani, Giovanni

    1988-01-01

    Several block iteration preconditioners are proposed and analyzed for the solution of elliptic problems by spectral collocation methods in a region partitioned into several rectangles. It is shown that convergence is achieved with a rate which does not depend on the polynomial degree of the spectral solution. The iterative methods here presented can be effectively implemented on multiprocessor systems due to their high degree of parallelism.

  18. Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea?

    PubMed

    Wedi, Nils P

    2014-06-28

    The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography

    PubMed Central

    Bradu, Adrian; Podoleanu, Adrian Gh.

    2014-01-01

    Real-time display of processed en-face spectral domain optical coherence tomography (SD-OCT) images is important for diagnosis. However, due to many steps of data processing requirements, such as Fast Fourier transformation (FFT), data re-sampling, spectral shaping, apodization, zero padding, followed by software cut of the 3D volume acquired to produce an en-face slice, conventional high-speed SD-OCT cannot render an en-face OCT image in real time. Recently we demonstrated a Master/Slave (MS)-OCT method that is highly parallelizable, as it provides reflectivity values of points at depth within an A-scan in parallel. This allows direct production of en-face images. In addition, the MS-OCT method does not require data linearization, which further simplifies the processing. The computation in our previous paper was however time consuming. In this paper we present an optimized algorithm that can be used to provide en-face MS-OCT images much quicker. Using such an algorithm we demonstrate around 10 times faster production of sets of en-face OCT images than previously obtained as well as simultaneous real-time display of up to 4 en-face OCT images of 200 × 200 pixels2 from the fovea and the optic nerve of a volunteer. We also demonstrate 3D and B-scan OCT images obtained from sets of MS-OCT C-scans, i.e. with no FFT and no intermediate step of generation of A-scans. PMID:24761303

  20. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  1. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  2. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  3. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  4. Parallel Monte Carlo Search for Hough Transform

    NASA Astrophysics Data System (ADS)

    Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.

    2017-10-01

    We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.

  5. Spectral Anisotropy of Magnetic Field Fluctuations around Ion Scales in the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C.; He, J.; Marsch, E.; Wang, L.

    2016-12-01

    The power spectra of magnetic field at ion scales are significantly influenced by waves and structures. In this work, we study the ΘRB angle dependence of the contribution of waves on the spectral index of the magnetic field. Wavelet technique is applied to the high time-resolution magnetic field data from WIND spacecraft measurements in the fast solar wind. It is found that around ion scales, the parallel spectrum has a slope of -4.6±0.1 originally. When we remove the waves, which correspond to the data points with relatively larger value of magnetic helicity, the parallel spectrum gets shallower gradually to -3.2±0.2. However, the perpendicular spectrum does not change significantly during the wave-removal process, and its slope remains -3.1±0.1. It means that when the waves are removed from the original data, the spectral anisotropy gets weaker. This result may help us understand the physical nature of the spectral anisotropy around the ion scales.

  6. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  7. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  8. 28-Channel rotary transformer

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1981-01-01

    Transformer transmits power and digital data across rotating interface. Array has many parallel data channels, each with potential l megabaud data rate. Ferrite-cored transformers are spaced along rotor; airgap between them reduces crosstalk.

  9. Exploiting Symmetry on Parallel Architectures.

    NASA Astrophysics Data System (ADS)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  10. A tunable, solid, Fabry-Perot etalon for solar seismology

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Burton, Clive H.; Leistner, Achim J.

    1986-01-01

    A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.

  11. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  12. Rational Chebyshev spectral transform for the dynamics of broad-area laser diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javaloyes, J., E-mail: julien.javaloyes@uib.es; Balle, S.

    2015-10-01

    This manuscript details the use of the rational Chebyshev transform for describing the transverse dynamics of broad-area laser diodes and amplifiers. This spectral method can be used in combination with the delay algebraic equations approach developed in [1], which substantially reduces the computation time. The theory is presented in such a way that it encompasses the case of the Fourier spectral transform presented in [2] as a particular case. It is also extended to the consideration of index guiding with an arbitrary transverse profile. Because their domain of definition is infinite, the convergence properties of the Chebyshev rational functions allowmore » handling the boundary conditions with higher accuracy than with the previously studied Fourier transform method. As practical examples, we solve the beam propagation problem with and without index guiding: we obtain excellent results and an improvement of the integration time between one and two orders of magnitude as compared with a fully distributed two dimensional model.« less

  13. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1991-01-01

    Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.

  14. Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods

    DOE PAGES

    Jalas, S.; Dornmair, I.; Lehe, R.; ...

    2017-03-20

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  15. Contextual classification on the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1987-01-01

    Classifiers are often used to produce land cover maps from multispectral Earth observation imagery. Conventionally, these classifiers have been designed to exploit the spectral information contained in the imagery. Very few classifiers exploit the spatial information content of the imagery, and the few that do rarely exploit spatial information content in conjunction with spectral and/or temporal information. A contextual classifier that exploits spatial and spectral information in combination through a general statistical approach was studied. Early test results obtained from an implementation of the classifier on a VAX-11/780 minicomputer were encouraging, but they are of limited meaning because they were produced from small data sets. An implementation of the contextual classifier is presented on the Massively Parallel Processor (MPP) at Goddard that for the first time makes feasible the testing of the classifier on large data sets.

  16. Retrieval of the thickness and refractive index dispersion of parallel plate from a single interferogram recorded in both spectral and angular domains

    NASA Astrophysics Data System (ADS)

    Dong, Jingtao; Lu, Rongsheng

    2018-04-01

    The principle of retrieving the thickness and refractive index dispersion of a parallel glass plate is reported based on single interferogram recording and phase analysis. With the parallel plate illuminated by a convergent light sheet, the transmitted light interfering in both spectral and angular domains is recorded. The phase recovered from the single interferogram by Fourier analysis is used to retrieve the thickness and refractive index dispersion without periodic ambiguity. Experimental results of an optical substrate standard show that the accuracy of refractive index dispersion is less than 2.5 × 10-5 and the relative uncertainty of thickness is 6 × 10-5 (3σ). This method is confirmed to be robust against the intensity noises, indicating the capability of stable and accurate measurement.

  17. Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.

    2013-12-01

    This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs typically achieve very high wavelength resolution, the intended application of our instrument (spectroscopic investigation of Europa's surface) places higher emphasis on the greater wavelength band sensitivity in the 2-12 μm range provided by a rotating refractor design. The instrument's embedded microcontroller is implemented on a flight-qualified VIRTEX-5 FPGA with the aim of sampling the instrument's detector and optical rotary encoder in order to construct an interferogram. Subsequent signal processing, including a Fast Fourier Transform (FFT), noise reduction/averaging, and spectral calibration techniques are applied in real-time to compose the sample spectrum. Deployment of an FPGA eliminates the instrument's need to share computing resources with the main spacecraft computer and takes advantage of the low power consumption and high-throughput hardware parallelism intrinsic to FPGA applications. This parallelism facilitates the high speed, low latency sampling/signal processing critical to instrument precision with minimal power consumption to achieve highly sensitive spectra within the constraints of available spacecraft resources. The instrument is characterized in simulated space-flight conditions and we demonstrate that this technology is capable of meeting the strict volume, sensitivity, and power consumption requirements for implementation in scientific space systems.

  18. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  19. Programmable Remapper with Single Flow Architecture

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E. (Inventor)

    1993-01-01

    An apparatus for image processing comprising a camera for receiving an original visual image and transforming the original visual image into an analog image, a first converter for transforming the analog image of the camera to a digital image, a processor having a single flow architecture for receiving the digital image and producing, with a single algorithm, an output image, a second converter for transforming the digital image of the processor to an analog image, and a viewer for receiving the analog image, transforming the analog image into a transformed visual image for observing the transformations applied to the original visual image. The processor comprises one or more subprocessors for the parallel reception of a digital image for producing an output matrix of the transformed visual image. More particularly, the processor comprises a plurality of subprocessors for receiving in parallel and transforming the digital image for producing a matrix of the transformed visual image, and an output interface means for receiving the respective portions of the transformed visual image from the respective subprocessor for producing an output matrix of the transformed visual image.

  20. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    NASA Astrophysics Data System (ADS)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  1. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  2. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  3. Implementation of a Message Passing Interface into a Cloud-Resolving Model for Massively Parallel Computing

    NASA Technical Reports Server (NTRS)

    Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve

    2004-01-01

    The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.

  4. Challenges and Opportunities in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Relaxing the hydrostatic approximation requieres careful reformulation of the model dynamics and more computations and communications. The unified Non-hydrostatic Multi-scale Model (NMMB) will be briefly discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable without modifying their amplitudes. The model has been successfully tested on various scales. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models, and its computational efficiency on parallel computers is good.

  5. Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2006-01-20

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

  6. A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)

    NASA Astrophysics Data System (ADS)

    Chang, E.-C.; Yoshimura, K.

    2015-10-01

    In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.

  7. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  8. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  9. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    PubMed

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  10. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  11. Nitrogen-broadened lines of ethane at 150 K

    NASA Technical Reports Server (NTRS)

    Chudamani, S.; Varanasi, P.; Giver, L. P.; Valero, F. P. J.

    1985-01-01

    Spectral transmittance has been measured in the nu9 fundamental band of C2H6 at 150 K using a Fourier transform spectrometer with apodized spectral resolution of 0.06/cm. Comparison of observed spectral transmittance with a line-by-line computation using the spectral catalog of Atakan et al. (1983) has yielded N2-broadened half-widths at 150 K.

  12. Combining points and lines in rectifying satellite images

    NASA Astrophysics Data System (ADS)

    Elaksher, Ahmed F.

    2017-09-01

    The quick advance in remote sensing technologies established the potential to gather accurate and reliable information about the Earth surface using high resolution satellite images. Remote sensing satellite images of less than one-meter pixel size are currently used in large-scale mapping. Rigorous photogrammetric equations are usually used to describe the relationship between the image coordinates and ground coordinates. These equations require the knowledge of the exterior and interior orientation parameters of the image that might not be available. On the other hand, the parallel projection transformation could be used to represent the mathematical relationship between the image-space and objectspace coordinate systems and provides the required accuracy for large-scale mapping using fewer ground control features. This article investigates the differences between point-based and line-based parallel projection transformation models in rectifying satellite images with different resolutions. The point-based parallel projection transformation model and its extended form are presented and the corresponding line-based forms are developed. Results showed that the RMS computed using the point- or line-based transformation models are equivalent and satisfy the requirement for large-scale mapping. The differences between the transformation parameters computed using the point- and line-based transformation models are insignificant. The results showed high correlation between the differences in the ground elevation and the RMS.

  13. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  14. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  15. Use of the TM tasseled cap transform for interpretation of spectral contrasts in an urban scene

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Wharton, S. W.

    1984-01-01

    Investigations are being conducted with the objective to develop automated numerical image analysis procedures. In this context, an examination is performed of physically-based multispectral data transforms as a means to incorporate a priori knowledge of land radiance properties in the analysis process. A physically-based transform of TM observations was developed. This transform extends the Landsat MSS Tasseled Cap transform reported by Kauth and Thomas (1976) to TM data observations. The present study has the aim to examine the utility of the TM Tasseled Cap transform as applied to TM data from an urban landscape. The analysis conducted is based on 512 x 512 subset of the Washington, DC November 2, 1982 TM scene, centered on Springfield, VA. It appears that the TM tasseled cap transformation provides a good means to explain land physical attributes of the Washington scene. This result provides a suggestion regarding a direction by which a priori knowledge of landscape spectral patterns may be incorporated into numerical image analysis.

  16. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  17. Radiant Heat Transfer Between Nongray Parallel Plates of Tungsten

    NASA Technical Reports Server (NTRS)

    Branstetter, J. Robert

    1961-01-01

    Net radiant heat flow between two infinite, parallel, tungsten plates was computed by summing the monochromatic energy exchange; the results are graphically presented as a function of the temperatures of the two surfaces. In general these fluxes range from approximately a to 25 percent greater than the results of gray-body computations based on the same emissivity data. The selection of spectral emissivity data and the computational procedure are discussed. The present analytical procedure is so arranged that, as spectral emissivity data for a material become available, these data can be readily introduced into the NASA data-reduction equipment, which has been programmed to compute the net heat flux for the particular geometry and basic assumptions cited in the text. Nongray-body computational techniques for determining radiant heat flux appear practical provided the combination of select spectral emissivity data and the proper mechanized data-reduction equipment are brought to bear on the problem.

  18. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  19. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform

    PubMed Central

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T.

    2014-01-01

    We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra. PMID:19412273

  20. Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox

    NASA Astrophysics Data System (ADS)

    Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas

    In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  2. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  3. Parallel adaptive wavelet collocation method for PDEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejadmalayeri, Alireza, E-mail: Alireza.Nejadmalayeri@gmail.com; Vezolainen, Alexei, E-mail: Alexei.Vezolainen@Colorado.edu; Brown-Dymkoski, Eric, E-mail: Eric.Browndymkoski@Colorado.edu

    2015-10-01

    A parallel adaptive wavelet collocation method for solving a large class of Partial Differential Equations is presented. The parallelization is achieved by developing an asynchronous parallel wavelet transform, which allows one to perform parallel wavelet transform and derivative calculations with only one data synchronization at the highest level of resolution. The data are stored using tree-like structure with tree roots starting at a priori defined level of resolution. Both static and dynamic domain partitioning approaches are developed. For the dynamic domain partitioning, trees are considered to be the minimum quanta of data to be migrated between the processes. This allowsmore » fully automated and efficient handling of non-simply connected partitioning of a computational domain. Dynamic load balancing is achieved via domain repartitioning during the grid adaptation step and reassigning trees to the appropriate processes to ensure approximately the same number of grid points on each process. The parallel efficiency of the approach is discussed based on parallel adaptive wavelet-based Coherent Vortex Simulations of homogeneous turbulence with linear forcing at effective non-adaptive resolutions up to 2048{sup 3} using as many as 2048 CPU cores.« less

  4. Development and evaluation of a Hadamard transform imaging spectrometer and a Hadamard transform thermal imager

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Swift, R.; Wattson, R.; Decker, J.; Paganetti, R.

    1976-01-01

    A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed.

  5. Spectral Target Detection using Schroedinger Eigenmaps

    NASA Astrophysics Data System (ADS)

    Dorado-Munoz, Leidy P.

    Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.

  6. Discovery of Peculiar Periodic Spectral Modulations in a Small Fraction of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Borra, Ermanno F.; Trottier, Eric

    2016-11-01

    A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal-to-noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines, and signals generated by extraterrestrial intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally, we consider the possibility, predicted in a previous published paper, that the signals are caused by light pulses generated by ETI to makes us aware of their existence. We find that the detected signals have exactly the shape of an ETI signal predicted in the previous publication and are therefore in agreement with this hypothesis. The fact that they are only found in a very small fraction of stars within a narrow spectral range centered near the spectral type of the Sun is also in agreement with the ETI hypothesis. However, at this stage, this hypothesis needs to be confirmed with further work. Although unlikely, there is also a possibility that the signals are due to highly peculiar chemical compositions in a small fraction of galactic halo stars.

  7. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui

    2017-05-01

    In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.

  8. Power Spectral Density and Hilbert Transform

    DTIC Science & Technology

    2016-12-01

    Fourier transform, Hilbert transform, digital filter , SDR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER...terms. A very good approximation to the ideal Hilbert transform is a low-pass finite impulse response (FIR) filter . In Fig. 7, we show a real signal...220), converted to an analytic signal using a 255-tap Hilbert transform low-pass filter . For an ideal Hilbert

  9. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC.

    PubMed

    Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen

    2017-03-15

    The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  11. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David

    2006-05-01

    The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.

  12. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1990-01-01

    Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.

  13. A restricted signature normal form for Hermitian matrices, quasi-spectral decompositions, and applications

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Huckle, Thomas

    1989-01-01

    In recent years, a number of results on the relationships between the inertias of Hermitian matrices and the inertias of their principal submatrices appeared in the literature. We study restricted congruence transformation of Hermitian matrices M which, at the same time, induce a congruence transformation of a given principal submatrix A of M. Such transformations lead to concept of the restricted signature normal form of M. In particular, by means of this normal form, we obtain short proofs of most of the known inertia theorems and also derive some new results of this type. For some applications, a special class of almost unitary restricted congruence transformations turns out to be useful. We show that, with such transformations, M can be reduced to a quasi-diagonal form which, in particular, displays the eigenvalues of A. Finally, applications of this quasi-spectral decomposition to generalize inverses and Hermitian matrix pencils are discussed.

  14. Adaptation to spectrally-rotated speech.

    PubMed

    Green, Tim; Rosen, Stuart; Faulkner, Andrew; Paterson, Ruth

    2013-08-01

    Much recent interest surrounds listeners' abilities to adapt to various transformations that distort speech. An extreme example is spectral rotation, in which the spectrum of low-pass filtered speech is inverted around a center frequency (2 kHz here). Spectral shape and its dynamics are completely altered, rendering speech virtually unintelligible initially. However, intonation, rhythm, and contrasts in periodicity and aperiodicity are largely unaffected. Four normal hearing adults underwent 6 h of training with spectrally-rotated speech using Continuous Discourse Tracking. They and an untrained control group completed pre- and post-training speech perception tests, for which talkers differed from the training talker. Significantly improved recognition of spectrally-rotated sentences was observed for trained, but not untrained, participants. However, there were no significant improvements in the identification of medial vowels in /bVd/ syllables or intervocalic consonants. Additional tests were performed with speech materials manipulated so as to isolate the contribution of various speech features. These showed that preserving intonational contrasts did not contribute to the comprehension of spectrally-rotated speech after training, and suggested that improvements involved adaptation to altered spectral shape and dynamics, rather than just learning to focus on speech features relatively unaffected by the transformation.

  15. Power transformation for enhancing responsiveness of quality of life questionnaire.

    PubMed

    Zhou, YanYan Ange

    2015-01-01

    We investigate the effect of power transformation of raw scores on the responsiveness of quality of life survey. The procedure maximizes the paired t-test value on the power transformed data to obtain an optimal power range. The parallel between the Box-Cox transformation is also investigated for the quality of life data.

  16. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  17. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

    NASA Astrophysics Data System (ADS)

    Gu, Z.; Chen, W.; Du, L.; Shi, H.; Wan, F.

    2018-05-01

    The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm-1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I 780/ I 893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

  18. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  19. Optimizing the Four-Index Integral Transform Using Data Movement Lower Bounds Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Rastello, Fabrice; Kowalski, Karol

    The four-index integral transform is a fundamental and computationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from an atomic basis to a molecular basis. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four-dimensional tensor with a two-dimensional transformation matrix. Differing degrees of permutation symmetry in the intermediate and final tensors in the sequence of contractions cause intermediate tensors to be much larger than the final tensor and limit the number of electronic states in the modeled systems. Loop fusion, in conjunction withmore » tiling, can be very effective in reducing the total space requirement, as well as data movement. However, the large number of possible choices for loop fusion and tiling, and data/computation distribution across a parallel system, make it challenging to develop an optimized parallel implementation for the four-index integral transform. We develop a novel approach to address this problem, using lower bounds modeling of data movement complexity. We establish relationships between available aggregate physical memory in a parallel computer system and ineffective fusion configurations, enabling their pruning and consequent identification of effective choices and a characterization of optimality criteria. This work has resulted in the development of a significantly improved implementation of the four-index transform that enables higher performance and the ability to model larger electronic systems than the current implementation in the NWChem quantum chemistry software suite.« less

  20. Custom instruction set NIOS-based OFDM processor for FPGAs

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Sunkara, Divya; Castillo, Encarnacion; Garcia, Antonio

    2006-05-01

    Orthogonal Frequency division multiplexing (OFDM) spread spectrum technique, sometimes also called multi-carrier or discrete multi-tone modulation, are used in bandwidth-efficient communication systems in the presence of channel distortion. The benefits of OFDM are high spectral efficiency, resiliency to RF interference, and lower multi-path distortion. OFDM is the basis for the European digital audio broadcasting (DAB) standard, the global asymmetric digital subscriber line (ADSL) standard, in the IEEE 802.11 5.8 GHz band standard, and ongoing development in wireless local area networks. The modulator and demodulator in an OFDM system can be implemented by use of a parallel bank of filters based on the discrete Fourier transform (DFT), in case the number of subchannels is large (e.g. K > 25), the OFDM system are efficiently implemented by use of the fast Fourier transform (FFT) to compute the DFT. We have developed a custom FPGA-based Altera NIOS system to increase the performance, programmability, and low power in mobil wireless systems. The overall gain observed for a 1024-point FFT ranges depending on the multiplier used by the NIOS processor between a factor of 3 and 16. A careful optimization described in the appendix yield a performance gain of up to 77% when compared with our preliminary results.

  1. Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.

    2001-01-01

    A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.

  2. Biophysical and spectral modeling for crop identification and assessment

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1984-01-01

    The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.

  3. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er, A.; Güzelçimen, F.; Başar, Gö.

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the firstmore » time.« less

  4. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  5. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance

    USGS Publications Warehouse

    Huang, Chengquan; Wylie, Bruce K.; Yang, Limin; Homer, Collin G.; Zylstra, G.

    2002-01-01

    A new tasselled cap transformation based on Landsat 7 at-satellite reflectance was developed. This transformation is most appropriate for regional applications where atmospheric correction is not feasible. The brightness, greenness and wetness of the derived transformation collectively explained over 97% of the spectral variance of the individual scenes used in this study.

  6. Mapping implicit spectral methods to distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Overman, Andrea L.; Vanrosendale, John

    1991-01-01

    Spectral methods were proven invaluable in numerical simulation of PDEs (Partial Differential Equations), but the frequent global communication required raises a fundamental barrier to their use on highly parallel architectures. To explore this issue, a 3-D implicit spectral method was implemented on an Intel hypercube. Utilization of about 50 percent was achieved on a 32 node iPSC/860 hypercube, for a 64 x 64 x 64 Fourier-spectral grid; finer grids yield higher utilizations. Chebyshev-spectral grids are more problematic, since plane-relaxation based multigrid is required. However, by using a semicoarsening multigrid algorithm, and by relaxing all multigrid levels concurrently, relatively high utilizations were also achieved in this harder case.

  7. An efficient parallel algorithm for the calculation of canonical MP2 energies.

    PubMed

    Baker, Jon; Pulay, Peter

    2002-09-01

    We present the parallel version of a previous serial algorithm for the efficient calculation of canonical MP2 energies (Pulay, P.; Saebo, S.; Wolinski, K. Chem Phys Lett 2001, 344, 543). It is based on the Saebo-Almlöf direct-integral transformation, coupled with an efficient prescreening of the AO integrals. The parallel algorithm avoids synchronization delays by spawning a second set of slaves during the bin-sort prior to the second half-transformation. Results are presented for systems with up to 2000 basis functions. MP2 energies for molecules with 400-500 basis functions can be routinely calculated to microhartree accuracy on a small number of processors (6-8) in a matter of minutes with modern PC-based parallel computers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1150-1156, 2002

  8. Beam profile for the Herschel-SPIRE Fourier transform spectrometer.

    PubMed

    Makiwa, Gibion; Naylor, David A; Ferlet, Marc; Salji, Carl; Swinyard, Bruce; Polehampton, Edward; van der Wiel, Matthijs H D

    2013-06-01

    One of the instruments on board the Herschel Space Observatory is the Spectral and Photometric Imaging Receiver (SPIRE). SPIRE employs a Fourier transform spectrometer with feed-horn-coupled bolometers to provide imaging spectroscopy. To interpret the resultant spectral images requires knowledge of the wavelength-dependent beam, which in the case of SPIRE is complicated by the use of multimoded feed horns. In this paper we describe a series of observations and the analysis conducted to determine the wavelength dependence of the SPIRE spectrometer beam profile.

  9. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    PubMed

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  10. Novel approach for image skeleton and distance transformation parallel algorithms

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Means, Robert W.

    1994-05-01

    Image Understanding is more important in medical imaging than ever, particularly where real-time automatic inspection, screening and classification systems are installed. Skeleton and distance transformations are among the common operations that extract useful information from binary images and aid in Image Understanding. The distance transformation describes the objects in an image by labeling every pixel in each object with the distance to its nearest boundary. The skeleton algorithm starts from the distance transformation and finds the set of pixels that have a locally maximum label. The distance algorithm has to scan the entire image several times depending on the object width. For each pixel, the algorithm must access the neighboring pixels and find the maximum distance from the nearest boundary. It is a computational and memory access intensive procedure. In this paper, we propose a novel parallel approach to the distance transform and skeleton algorithms using the latest VLSI high- speed convolutional chips such as HNC's ViP. The algorithm speed is dependent on the object's width and takes (k + [(k-1)/3]) * 7 milliseconds for a 512 X 512 image with k being the maximum distance of the largest object. All objects in the image will be skeletonized at the same time in parallel.

  11. Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Tong, Charles; Swarztrauber, Paul N.

    1991-01-01

    The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.

  12. Q estimation of seismic data using the generalized S-transform

    NASA Astrophysics Data System (ADS)

    Hao, Yaju; Wen, Xiaotao; Zhang, Bo; He, Zhenhua; Zhang, Rui; Zhang, Jinming

    2016-12-01

    Quality factor, Q, is a parameter that characterizes the energy dissipation during seismic wave propagation. The reservoir pore is one of the main factors that affect the value of Q. Especially, when pore space is filled with oil or gas, the rock usually exhibits a relative low Q value. Such a low Q value has been used as a direct hydrocarbon indicator by many researchers. The conventional Q estimation method based on spectral ratio suffers from the problem of waveform tuning; hence, many researchers have introduced time-frequency analysis techniques to tackle this problem. Unfortunately, the window functions adopted in time-frequency analysis algorithms such as continuous wavelet transform (CWT) and S-transform (ST) contaminate the amplitude spectra because the seismic signal is multiplied by the window functions during time-frequency decomposition. The basic assumption of the spectral ratio method is that there is a linear relationship between natural logarithmic spectral ratio and frequency. However, this assumption does not hold if we take the influence of window functions into consideration. In this paper, we first employ a recently developed two-parameter generalized S-transform (GST) to obtain the time-frequency spectra of seismic traces. We then deduce the non-linear relationship between natural logarithmic spectral ratio and frequency. Finally, we obtain a linear relationship between natural logarithmic spectral ratio and a newly defined parameter γ by ignoring the negligible second order term. The gradient of this linear relationship is 1/Q. Here, the parameter γ is a function of frequency and source wavelet. Numerical examples for VSP and post-stack reflection data confirm that our algorithm is capable of yielding accurate results. The Q-value results estimated from field data acquired in western China show reasonable comparison with oil-producing well location.

  13. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  14. The Micro Fourier Transform Interferometer (muFTIR) - A New Field Spectrometer for Acquisition of Infrared Data of Natural Surfaces

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    1995-01-01

    A lightweight, rugged, high-spectral-resolution interferometer has been built by Designs and Prototypes based on a set of specifications provided by the Jet Propulsion Laboratory and Dr. J. W. Salisbury (Johns Hopkins University). The instrument, the micro Fourier Transform Interferometer (mFTIR), permits the acquisition of infrared spectra of natural surfaces. Such data can be used to validate low and high spectral resolution data acquired remotely from aircraft and spacecraft in the 3-5 mm and 8-14 mm atmospheric window. The instrument has a spectral resolutions of 6 wavenumbers, weighs 16 kg including batteries and computer, and can be operated easily by two people in the field. Laboratory analysis indicates the instrument is spectrally calibrated to better than 1 wavenumber and the radiometric accuracy is <0.5 K if the radiances from the blackbodies used for calibration bracket the radiance from the sample.

  15. Fusion of multi-spectral and panchromatic images based on 2D-PWVD and SSIM

    NASA Astrophysics Data System (ADS)

    Tan, Dongjie; Liu, Yi; Hou, Ruonan; Xue, Bindang

    2016-03-01

    A combined method using 2D pseudo Wigner-Ville distribution (2D-PWVD) and structural similarity(SSIM) index is proposed for fusion of low resolution multi-spectral (MS) image and high resolution panchromatic (PAN) image. First, the intensity component of multi-spectral image is extracted with generalized IHS transform. Then, the spectrum diagrams of the intensity components of multi-spectral image and panchromatic image are obtained with 2D-PWVD. Different fusion rules are designed for different frequency information of the spectrum diagrams. SSIM index is used to evaluate the high frequency information of the spectrum diagrams for assigning the weights in the fusion processing adaptively. After the new spectrum diagram is achieved according to the fusion rule, the final fusion image can be obtained by inverse 2D-PWVD and inverse GIHS transform. Experimental results show that, the proposed method can obtain high quality fusion images.

  16. Fourier Transforms for Chemists Part III. Fourier Transforms in Data Treatment.

    ERIC Educational Resources Information Center

    Glasser, L.

    1987-01-01

    Discusses the factors affecting the behavior of a spectral function. Lists some important properties of Fourier transform (FT) pairs that are helpful when using the FT. Notes that these properties of the mathematical formulation have identical counterparts in the physical behavior of FT systems. (TW)

  17. Multi-frequency data analysis in AFM by wavelet transform

    NASA Astrophysics Data System (ADS)

    Pukhova, V.; Ferrini, G.

    2017-10-01

    Interacting cantilevers in AFM experiments generate non-stationary, multi-frequency signals consisting of numerous excited flexural and torsional modes and their harmonics. The analysis of such signals is challenging, requiring special methodological approaches and a powerful mathematical apparatus. The most common approach to the signal analysis is to apply Fourier transform analysis. However, FT gives accurate spectra for stationary signals, and for signals changing their spectral content over time, FT provides only an averaged spectrum. Hence, for non-stationary and rapidly varying signals, such as those from interacting cantilevers, a method that shows the spectral evolution in time is needed. One of the most powerful techniques, allowing detailed time-frequency representation of signals, is the wavelet transform. It is a method of analysis that allows representation of energy associated to the signal at a particular frequency and time, providing correlation between the spectral and temporal features of the signal, unlike FT. This is particularly important in AFM experiments because signals nonlinearities contains valuable information about tip-sample interactions and consequently surfaces properties. The present work is aimed to show the advantages of wavelet transform in comparison with FT using as an example the force curve analysis in dynamic force spectroscopy.

  18. New algorithm for lossless hyper-spectral image compression with mixing transform to eliminate redundancy

    NASA Astrophysics Data System (ADS)

    Xie, ChengJun; Xu, Lin

    2008-03-01

    This paper presents a new algorithm based on mixing transform to eliminate redundancy, SHIRCT and subtraction mixing transform is used to eliminate spectral redundancy, 2D-CDF(2,2)DWT to eliminate spatial redundancy, This transform has priority in hardware realization convenience, since it can be fully implemented by add and shift operation. Its redundancy elimination effect is better than (1D+2D)CDF(2,2)DWT. Here improved SPIHT+CABAC mixing compression coding algorithm is used to implement compression coding. The experiment results show that in lossless image compression applications the effect of this method is a little better than the result acquired using (1D+2D)CDF(2,2)DWT+improved SPIHT+CABAC, still it is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, NMST and MST. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, on the average the compression ratio of this algorithm exceeds the above algorithms by 42%,37%,35%,30%,16%,13%,11% respectively.

  19. Spectral estimation—What is new? What is next?

    NASA Astrophysics Data System (ADS)

    Tary, Jean Baptiste; Herrera, Roberto Henry; Han, Jiajun; van der Baan, Mirko

    2014-12-01

    Spectral estimation, and corresponding time-frequency representation for nonstationary signals, is a cornerstone in geophysical signal processing and interpretation. The last 10-15 years have seen the development of many new high-resolution decompositions that are often fundamentally different from Fourier and wavelet transforms. These conventional techniques, like the short-time Fourier transform and the continuous wavelet transform, show some limitations in terms of resolution (localization) due to the trade-off between time and frequency localizations and smearing due to the finite size of the time series of their template. Well-known techniques, like autoregressive methods and basis pursuit, and recently developed techniques, such as empirical mode decomposition and the synchrosqueezing transform, can achieve higher time-frequency localization due to reduced spectral smearing and leakage. We first review the theory of various established and novel techniques, pointing out their assumptions, adaptability, and expected time-frequency localization. We illustrate their performances on a provided collection of benchmark signals, including a laughing voice, a volcano tremor, a microseismic event, and a global earthquake, with the intention to provide a fair comparison of the pros and cons of each method. Finally, their outcomes are discussed and possible avenues for improvements are proposed.

  20. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  1. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE PAGES

    Lukens, Joseph M.; Lougovski, Pavel

    2016-12-21

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  2. Frequency-encoded photonic qubits for scalable quantum information processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Lougovski, Pavel

    Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency—a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary Ν-qubit quantum gate may be performed in parallel onmore » multiple Ν-qubit sets in the same linear optical device. Here, not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach.« less

  3. Euclidean commute time distance embedding and its application to spectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Albano, James A.; Messinger, David W.

    2012-06-01

    Spectral image analysis problems often begin by performing a preprocessing step composed of applying a transformation that generates an alternative representation of the spectral data. In this paper, a transformation based on a Markov-chain model of a random walk on a graph is introduced. More precisely, we quantify the random walk using a quantity known as the average commute time distance and find a nonlinear transformation that embeds the nodes of a graph in a Euclidean space where the separation between them is equal to the square root of this quantity. This has been referred to as the Commute Time Distance (CTD) transformation and it has the important characteristic of increasing when the number of paths between two nodes decreases and/or the lengths of those paths increase. Remarkably, a closed form solution exists for computing the average commute time distance that avoids running an iterative process and is found by simply performing an eigendecomposition on the graph Laplacian matrix. Contained in this paper is a discussion of the particular graph constructed on the spectral data for which the commute time distance is then calculated from, an introduction of some important properties of the graph Laplacian matrix, and a subspace projection that approximately preserves the maximal variance of the square root commute time distance. Finally, RX anomaly detection and Topological Anomaly Detection (TAD) algorithms will be applied to the CTD subspace followed by a discussion of their results.

  4. FAST TRACK COMMUNICATION: SUSY transformations with complex factorization constants: application to spectral singularities

    NASA Astrophysics Data System (ADS)

    Samsonov, Boris F.

    2010-10-01

    Supersymmetric (SUSY) transformation operators with complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. The obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of self-adjoint operators. A new regularization procedure for the resolution of the identity operator in terms of a continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also argued that if the binorm of continuous spectrum eigenfunctions is interpreted in the same way as the norm of similar functions in the usual Hermitian case, then one can state that the function corresponding to a spectral singularity has zero binorm.

  5. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  6. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  7. Antiparallel spin does not always contain more information

    NASA Astrophysics Data System (ADS)

    Ghosh, Sibasish; Roy, Anirban; Sen, Ujjwal

    2001-01-01

    We show that the Bloch vectors lying on any great circle comprise the largest set SL for which the parallel states \\|n-->,n-->> can always be exactly transformed into the antiparallel states \\|n-->,-n-->>. Thus more information about n--> is not extractable from \\|n-->,-n-->> than from \\|n-->,n-->> by any measuring strategy, for n-->∈SL. Surprisingly this most general transformation reduces to just a flip operation on the second particle. We also show here that a probabilistic exact parallel to antiparallel transformation is not possible if the corresponding antiparallel states span the whole Hilbert space of the two qubits. These considerations allow us to generalize a conjecture of Gisin and Popescu [Phys. Rev. Lett. 83, 432 (1999)].

  8. On Certain Theoretical Developments Underlying the Hilbert-Huang Transform

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Blank, Karin; Flatley, Thomas; Huang, Norden E.; Petrick, David; Hestness, Phyllis

    2006-01-01

    One of the main traditional tools used in scientific and engineering data spectral analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as being linear and stationary, and of satisfying the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectral analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposed data, the HHT allows spectral analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real-value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a nearly orthogonal derived from the data (adaptive) basis. The IMFs can be further analyzed for spectrum content by using the classical Hilbert Transform. A new engineering spectral analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications pose additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the IMFs nearly orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the development of new HHT processing options, such as real-time and 2-D processing using Field Programmable Gate Array (FPGA) computational resources,

  9. Transforming Play: An Analysis of First-, Third-, and Fifth-Graders' Play.

    ERIC Educational Resources Information Center

    Bagley, Donna M.; Chaille, Christine

    1996-01-01

    Compared children's play with transformational objects (vehicles that change to robots) to play with representational objects (cars and figures). Found that those playing with transformers engaged in more parallel play and manipulative activity, while those with representational objects displayed more social play and more symbolic play. Found no…

  10. A distributed code for color in natural scenes derived from center-surround filtered cone signals

    PubMed Central

    Kellner, Christian J.; Wachtler, Thomas

    2013-01-01

    In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289

  11. Parallelization and checkpointing of GPU applications through program transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano-Quinde, Lizandro Damian

    2012-01-01

    GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating general purpose applications. Among the areas that have benefited from GPU acceleration are: signal and image processing, computational fluid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solvemore » the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural differences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. To achieve our goal, this work designs and implements a framework for enhancing a single-GPU OpenCL application through application transformation.« less

  12. Complete description of the optical path difference of a novel spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Wu, Haiying; Qi, Chun

    2018-03-01

    A complete description of the optical path difference of a novel spectral zooming imaging spectrometer (SZIS) is presented. SZIS is designed based on two identical Wollaston prisms with an adjustable air gap. Thus, interferogram with arbitrary spectral resolution and great reduction of spectral image size can be conveniently formed to adapt to different application requirements. Ray tracing modeling in arbitrary incidence with a quasi-parallel-plate approximation scheme is proposed to analyze the optical path difference of SZIS. In order to know the characteristics of the apparatus, exact calculations of the corresponding spectral resolution and field of view are both derived and analyzed in detail. We also present a comparison of calculation and experiment to prove the validity of the theory.

  13. A Tutorial on Parallel and Concurrent Programming in Haskell

    NASA Astrophysics Data System (ADS)

    Peyton Jones, Simon; Singh, Satnam

    This practical tutorial introduces the features available in Haskell for writing parallel and concurrent programs. We first describe how to write semi-explicit parallel programs by using annotations to express opportunities for parallelism and to help control the granularity of parallelism for effective execution on modern operating systems and processors. We then describe the mechanisms provided by Haskell for writing explicitly parallel programs with a focus on the use of software transactional memory to help share information between threads. Finally, we show how nested data parallelism can be used to write deterministically parallel programs which allows programmers to use rich data types in data parallel programs which are automatically transformed into flat data parallel versions for efficient execution on multi-core processors.

  14. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  15. Dependence of astigmatism, far-field pattern, and spectral envelope width on active layer thickness of gain guided lasers with narrow stripe geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamine, T.

    1984-06-15

    The effects of active layer thickness on the astigmatism, the angle of far-field pattern width parallel to the junction, and the spectral envelope width of a gain guided laser with a narrow stripe geometry have been investigated analytically and experimentally. It is concluded that a large level of astigmatism, a narrow far-field pattern width, and a rapid convergence of the spectral envelope width are inherent to the gain guided lasers with thin active layers.

  16. Physically motivated correlation formalism in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Roy, Ankita; Rafert, J. Bruce

    2004-05-01

    Most remote sensing data-sets contain a limiting number of independent spatial and spectral measurements, beyond which no effective increase in information is achieved. This paper presents a Physically Motivated Correlation Formalism (PMCF) ,which places both Spatial and Spectral data on an equivalent mathematical footing in the context of a specific Kernel, such that, optimal combinations of independent data can be selected from the entire Hypercube via the method of "Correlation Moments". We present an experimental and computational analysis of Hyperspectral data sets using the Michigan Tech VFTHSI [Visible Fourier Transform Hyperspectral Imager] based on a Sagnac Interferometer, adjusted to obtain high SNR levels. The captured Signal Interferograms of different targets - aerial snaps of Houghton and lab-based data (white light , He-Ne laser , discharge tube sources) with the provision of customized scan of targets with the same exposures are processed using inverse imaging transformations and filtering techniques to obtain the Spectral profiles and generate Hypercubes to compute Spectral/Spatial/Cross Moments. PMCF answers the question of how optimally the entire hypercube should be sampled and finds how many spatial-spectral pixels are required for a particular target recognition.

  17. An evaluation of random analysis methods for the determination of panel damping

    NASA Technical Reports Server (NTRS)

    Bhat, W. V.; Wilby, J. F.

    1972-01-01

    An analysis is made of steady-state and non-steady-state methods for the measurement of panel damping. Particular emphasis is placed on the use of random process techniques in conjunction with digital data reduction methods. The steady-state methods considered use the response power spectral density, response autocorrelation, excitation-response crosspower spectral density, or single-sided Fourier transform (SSFT) of the response autocorrelation function. Non-steady-state methods are associated mainly with the use of rapid frequency sweep excitation. Problems associated with the practical application of each method are evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and two methods, the power spectral density and the single-sided Fourier transform methods, are selected as being the most suitable. These two methods are demonstrated experimentally, and it is shown that the power spectral density method is satisfactory under most conditions, provided that appropriate corrections are applied to account for filter bandwidth and background noise errors. Thus, the response power spectral density method is recommended for the measurement of the damping of panels exposed to a moving airflow.

  18. Walsh transforms and signal detection

    NASA Technical Reports Server (NTRS)

    Welch, L. R.

    1977-01-01

    The detection of signals using Walsh power spectral estimates is analyzed. In addition, a generalization of this method of estimation is evaluated. The conclusion is that Walsh transforms are not suitable tools for the detection of weak signals in noise.

  19. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, Charles L.

    1996-01-01

    An imaging Fourier transform spectrometer (10, 210) having a Fourier transform infrared spectrometer (12) providing a series of images (40) to a focal plane array camera (38). The focal plane array camera (38) is clocked to a multiple of zero crossing occurrences as caused by a moving mirror (18) of the Fourier transform infrared spectrometer (12) and as detected by a laser detector (50) such that the frame capture rate of the focal plane array camera (38) corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer (12). The images (40) are transmitted to a computer (45) for processing such that representations of the images (40) as viewed in the light of an arbitrary spectral "fingerprint" pattern can be displayed on a monitor (60) or otherwise stored and manipulated by the computer (45).

  20. Direct Numerical Simulation of Turbulent Flow Over Complex Bathymetry

    NASA Astrophysics Data System (ADS)

    Yue, L.; Hsu, T. J.

    2017-12-01

    Direct numerical simulation (DNS) is regarded as a powerful tool in the investigation of turbulent flow featured with a wide range of time and spatial scales. With the application of coordinate transformation in a pseudo-spectral scheme, a parallelized numerical modeling system was created aiming at simulating flow over complex bathymetry with high numerical accuracy and efficiency. The transformed governing equations were integrated in time using a third-order low-storage Runge-Kutta method. For spatial discretization, the discrete Fourier expansion was adopted in the streamwise and spanwise direction, enforcing the periodic boundary condition in both directions. The Chebyshev expansion on Chebyshev-Gauss-Lobatto points was used in the wall-normal direction, assuming there is no-slip on top and bottom walls. The diffusion terms were discretized with a Crank-Nicolson scheme, while the advection terms dealiased with the 2/3 rule were discretized with an Adams-Bashforth scheme. In the prediction step, the velocity was calculated in physical domain by solving the resulting linear equation directly. However, the extra terms introduced by coordinate transformation impose a strict limitation to time step and an iteration method was applied to overcome this restriction in the correction step for pressure by solving the Helmholtz equation. The numerical solver is written in object-oriented C++ programing language utilizing Armadillo linear algebra library for matrix computation. Several benchmarking cases in laminar and turbulent flow were carried out to verify/validate the numerical model and very good agreements are achieved. Ongoing work focuses on implementing sediment transport capability for multiple sediment classes and parameterizations for flocculation processes.

  1. Spectral Topography Generation for Arbitrary Grids

    NASA Astrophysics Data System (ADS)

    Oh, T. J.

    2015-12-01

    A new topography generation tool utilizing spectral transformation technique for both structured and unstructured grids is presented. For the source global digital elevation data, the NASA Shuttle Radar Topography Mission (SRTM) 15 arc-second dataset (gap-filling by Jonathan de Ferranti) is used and for land/water mask source, the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) 30 arc-second land water mask dataset v5 is used. The original source data is coarsened to a intermediate global 2 minute lat-lon mesh. Then, spectral transformation to the wave space and inverse transformation with wavenumber truncation is performed for isotropic topography smoothness control. Target grid topography mapping is done by bivariate cubic spline interpolation from the truncated 2 minute lat-lon topography. Gibbs phenomenon in the water region can be removed by overwriting ocean masked target coordinate grids with interpolated values from the intermediate 2 minute grid. Finally, a weak smoothing operator is applied on the target grid to minimize the land/water surface height discontinuity that might have been introduced by the Gibbs oscillation removal procedure. Overall, the new topography generation approach provides spectrally-derived, smooth topography with isotropic resolution and minimum damping, enabling realistic topography forcing in the numerical model. Topography is generated for the cubed-sphere grid and tested on the KIAPS Integrated Model (KIM).

  2. Optimizing transformations of stencil operations for parallel cache-based architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassetti, F.; Davis, K.

    This paper describes a new technique for optimizing serial and parallel stencil- and stencil-like operations for cache-based architectures. This technique takes advantage of the semantic knowledge implicity in stencil-like computations. The technique is implemented as a source-to-source program transformation; because of its specificity it could not be expected of a conventional compiler. Empirical results demonstrate a uniform factor of two speedup. The experiments clearly show the benefits of this technique to be a consequence, as intended, of the reduction in cache misses. The test codes are based on a 5-point stencil obtained by the discretization of the Poisson equation andmore » applied to a two-dimensional uniform grid using the Jacobi method as an iterative solver. Results are presented for a 1-D tiling for a single processor, and in parallel using 1-D data partition. For the parallel case both blocking and non-blocking communication are tested. The same scheme of experiments has bee n performed for the 2-D tiling case. However, for the parallel case the 2-D partitioning is not discussed here, so the parallel case handled for 2-D is 2-D tiling with 1-D data partitioning.« less

  3. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  4. Real-time Full-spectral Imaging and Affinity Measurements from 50 Microfluidic Channels using Nanohole Surface Plasmon Resonance†

    PubMed Central

    Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun

    2012-01-01

    With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607

  5. Bit-parallel arithmetic in a massively-parallel associative processor

    NASA Technical Reports Server (NTRS)

    Scherson, Isaac D.; Kramer, David A.; Alleyne, Brian D.

    1992-01-01

    A simple but powerful new architecture based on a classical associative processor model is presented. Algorithms for performing the four basic arithmetic operations both for integer and floating point operands are described. For m-bit operands, the proposed architecture makes it possible to execute complex operations in O(m) cycles as opposed to O(m exp 2) for bit-serial machines. A word-parallel, bit-parallel, massively-parallel computing system can be constructed using this architecture with VLSI technology. The operation of this system is demonstrated for the fast Fourier transform and matrix multiplication.

  6. Automated road network extraction from high spatial resolution multi-spectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.

  7. 30W, 10μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier

    NASA Astrophysics Data System (ADS)

    Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.

    2007-02-01

    The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.

  8. Biogenic iron oxide transformation by hyperthermophiles: spectral and physiological potentials

    NASA Astrophysics Data System (ADS)

    Kashyap, S.; Sklute, E.; Dyar, M. D.; Holden, J. F.

    2017-12-01

    It is likely that any putative life in our Solar System beyond Earth, extinct or extant, is microbial. However, to detect such life, distinct organic or mineral biosignatures need to be established. Microbe-mineral interactions and mineral transformations deserve further examination in this regard. This study focused on hyperthermophilic iron oxide-reducing archaea and addressed the types of iron-oxide minerals that are favored for growth, the kinetics of such reactions, and the mineral transformations that occur depending upon the electron acceptor. Two hyperthermophilic archaea (Pyrodictium delaneyi and Pyrobaculum islandicum) and six laboratory-synthesized nanophase iron oxide minerals (2-line ferrihydrite, lepidocrocite, akaganéite, goethite, hematite and maghemite) were tested for cell growth and Fe(II) production. The mineral end-products were further characterized by examining the spectral signatures associated with these transformations using reflectance, Raman, and Mössbauer spectroscopies and electron diffraction patterns. Additionally, we critically examined how sample preparation techniques influence the end products of these transformations by comparing freeze-dried samples against those still in solution. Results showed that both organisms utilize all six nanophase iron oxides, although with varying success. The best candidates for microbial reduction were ferrihydrite, akaganéite, and lepidocrocite. The mineral transformation products and the extent of reduction varied and showed subtle differences based on organism and the type of iron oxide used. The subtle spectral differences were best characterized using combined spectroscopy techniques. This research provides new insights into microbe-mineral interactions and the discrimination of potential biosignatures in the search for life beyond Earth.

  9. Spectral images browsing using principal component analysis and set partitioning in hierarchical tree

    NASA Astrophysics Data System (ADS)

    Ma, Long; Zhao, Deping

    2011-12-01

    Spectral imaging technology have been used mostly in remote sensing, but have recently been extended to new area requiring high fidelity color reproductions like telemedicine, e-commerce, etc. These spectral imaging systems are important because they offer improved color reproduction quality not only for a standard observer under a particular illuminantion, but for any other individual exhibiting normal color vision capability under another illuminantion. A possibility for browsing of the archives is needed. In this paper, the authors present a new spectral image browsing architecture. The architecture for browsing is expressed as follow: (1) The spectral domain of the spectral image is reduced with the PCA transform. As a result of the PCA transform the eigenvectors and the eigenimages are obtained. (2) We quantize the eigenimages with the original bit depth of spectral image (e.g. if spectral image is originally 8bit, then quantize eigenimage to 8bit), and use 32bit floating numbers for the eigenvectors. (3) The first eigenimage is lossless compressed by JPEG-LS, the other eigenimages were lossy compressed by wavelet based SPIHT algorithm. For experimental evalution, the following measures were used. We used PSNR as the measurement for spectral accuracy. And for the evaluation of color reproducibility, ΔE was used.here standard D65 was used as a light source. To test the proposed method, we used FOREST and CORAL spectral image databases contrain 12 and 10 spectral images, respectively. The images were acquired in the range of 403-696nm. The size of the images were 128*128, the number of bands was 40 and the resolution was 8 bits per sample. Our experiments show the proposed compression method is suitable for browsing, i.e., for visual purpose.

  10. a Preliminary Investigation on Comparison and Transformation of SENTINEL-2 MSI and Landsat 8 Oli

    NASA Astrophysics Data System (ADS)

    Chen, F.; Lou, S.; Fan, Q.; Li, J.; Wang, C.; Claverie, M.

    2018-05-01

    A PRELIMINARY INVESTIGATION ON COMPARISON AND TRANSFORMATION OF SENTINEL-2 MSI AND LANDSAT 8 OLI Timely and accurate earth observation with short revisit interval is usually necessary, especially for emergency response. Currently, several new generation sensors provided with similar channel characteristics have been operated onboard different satellite platforms, including Sentinel-2 and Landsat 8. Joint use of the observations by different sensors offers an opportunity to meet the demands for emergency requirements. For example, through the combination of Landsat and Sentinel-2 data, the land can be observed every 2-3 days at medium spatial resolution. However, differences are expected in radiometric values (e.g., channel reflectance) of the corresponding channels between two sensors. Spectral response function (SRF) is taken as an important aspect of sensor settings. Accordingly, between-sensor differences due to SRFs variation need to be quantified and compensated. The comparison of SRFs shows difference (more or less) in channel settings between Sentinel-2 Multi-Spectral Instrument (MSI) and Landsat 8 Operational Land Imager (OLI). Effect of the difference in SRF on corresponding values between MSI and OLI was investigated, mainly in terms of channel reflectance and several derived spectral indices. Spectra samples from ASTER Spectral Library Version 2.0 and Hyperion data archives were used in obtaining channel reflectance simulation of MSI and OLI. Preliminary results show that MSI and OLI are well comparable in several channels with small relative discrepancy (< 5 %), including the Costal Aerosol channel, a NIR (855-875 nm) channel, the SWIR channels, and the Cirrus channel. Meanwhile, for channels covering Blue, Green, Red, and NIR (785-900 nm), the between-sensor differences are significantly presented. Compared with the difference in reflectance of each individual channel, the difference in derived spectral index is more significant. In addition, effectiveness of linear transformation model is not ensured when the target belongs to another spectra collection. If an improper transformation model is selected, the between-sensor discrepancy will even largely increase. In conclusion, improvement in between-sensor consistency is possibly a challenge, through linear transformation based on model(s) generated from other spectra collections.

  11. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalas, S.; Dornmair, I.; Lehe, R.

    Particle in Cell (PIC) simulations are a widely used tool for the investigation of both laser- and beam-driven plasma acceleration. It is a known issue that the beam quality can be artificially degraded by numerical Cherenkov radiation (NCR) resulting primarily from an incorrectly modeled dispersion relation. Pseudo-spectral solvers featuring infinite order stencils can strongly reduce NCR - or even suppress it - and are therefore well suited to correctly model the beam properties. For efficient parallelization of the PIC algorithm, however, localized solvers are inevitable. Arbitrary order pseudo-spectral methods provide this needed locality. Yet, these methods can again be pronemore » to NCR. Here in this paper, we show that acceptably low solver orders are sufficient to correctly model the physics of interest, while allowing for parallel computation by domain decomposition.« less

  13. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    PubMed

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  14. Parallel Hough Transform-Based Straight Line Detection and Its FPGA Implementation in Embedded Vision

    PubMed Central

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-01-01

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness. PMID:23867746

  15. Parallel Hough Transform-based straight line detection and its FPGA implementation in embedded vision.

    PubMed

    Lu, Xiaofeng; Song, Li; Shen, Sumin; He, Kang; Yu, Songyu; Ling, Nam

    2013-07-17

    Hough Transform has been widely used for straight line detection in low-definition and still images, but it suffers from execution time and resource requirements. Field Programmable Gate Arrays (FPGA) provide a competitive alternative for hardware acceleration to reap tremendous computing performance. In this paper, we propose a novel parallel Hough Transform (PHT) and FPGA architecture-associated framework for real-time straight line detection in high-definition videos. A resource-optimized Canny edge detection method with enhanced non-maximum suppression conditions is presented to suppress most possible false edges and obtain more accurate candidate edge pixels for subsequent accelerated computation. Then, a novel PHT algorithm exploiting spatial angle-level parallelism is proposed to upgrade computational accuracy by improving the minimum computational step. Moreover, the FPGA based multi-level pipelined PHT architecture optimized by spatial parallelism ensures real-time computation for 1,024 × 768 resolution videos without any off-chip memory consumption. This framework is evaluated on ALTERA DE2-115 FPGA evaluation platform at a maximum frequency of 200 MHz, and it can calculate straight line parameters in 15.59 ms on the average for one frame. Qualitative and quantitative evaluation results have validated the system performance regarding data throughput, memory bandwidth, resource, speed and robustness.

  16. High-power picosecond pulses by SPM-induced spectral compression in a fiber amplifier

    NASA Astrophysics Data System (ADS)

    Schreiber, T.; Liem, A.; Roeser, F.; Zellmer, H.; Tuennermann, A.; Limpert, J.; Deguil-Robin, N.; Manek-Honninger, I.; Salin, F.; Courjaud, A.; Honninger, C.; Mottay, E.

    2005-04-01

    The fiber based generation of nearly transform-limited 10-ps pulses with 200 kW peak power (97 W average power) based on SPM-induced spectral compression is reported. Efficient second harmonic generation applying this source is also discussed.

  17. Vertical shear-wave velocity profiles generated from spectral analysis of surface waves : field examples

    DOT National Transportation Integrated Search

    2003-04-01

    Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...

  18. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    PubMed

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  19. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel

    2017-02-28

    Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.

  20. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  1. Go Long! Identifying Distant Brown Dwarfs in HST/WFC3 Parallel Field

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Malkan, Matthew Arnold; Masters, Daniel C.; Mercado, Gretel; Suarez, Adrian; Tamiya, Tomoki

    2016-01-01

    The spatial distribution of brown dwarfs beyond the local Solar Neighborhood is crucial for understanding their Galactic formation, dynamical and evolutionary history. Wide-field red optical and infrared surveys (e.g., 2MASS, SDSS, WISE) have enabled measures of the local density of brown dwarfs, but probe a relatively shallow (˜100 parsecs) volume; few constraints exist for the scale height or radial distributions of these low mass and low luminosity objects. We have searched ~1400 square arcminutes of WFC3 Infrared Spectroscopic Parallel Survey (WISPS) data to identify distant brown dwarfs (d > 300 pc) with near-infrared grism spectra from the the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Using spectral indices to identify candidates, measure spectral types and estimate distances, and comparing the WFC3 spectra to spectral templates in the SpeX Prism Library, we report our first results from this work, the discovery of ~50 late-M, L and T dwarfs with distances of 30 - 1000+ pc. We compare the distance and spectral type distribution to population simulations, and discuss current selection biases.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G

  2. Comparison and evaluation on image fusion methods for GaoFen-1 imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Zhao, Junqing; Zhang, Ling

    2016-10-01

    Currently, there are many research works focusing on the best fusion method suitable for satellite images of SPOT, QuickBird, Landsat and so on, but only a few of them discuss the application of GaoFen-1 satellite images. This paper proposes a novel idea by using four fusion methods, such as principal component analysis transform, Brovey transform, hue-saturation-value transform, and Gram-Schmidt transform, from the perspective of keeping the original image spectral information. The experimental results showed that the transformed images by the four fusion methods not only retain high spatial resolution on panchromatic band but also have the abundant spectral information. Through comparison and evaluation, the integration of Brovey transform is better, but the color fidelity is not the premium. The brightness and color distortion in hue saturation-value transformed image is the largest. Principal component analysis transform did a good job in color fidelity, but its clarity still need improvement. Gram-Schmidt transform works best in color fidelity, and the edge of the vegetation is the most obvious, the fused image sharpness is higher than that of principal component analysis. Brovey transform, is suitable for distinguishing the Gram-Schmidt transform, and the most appropriate for GaoFen-1 satellite image in vegetation and non-vegetation area. In brief, different fusion methods have different advantages in image quality and class extraction, and should be used according to the actual application information and image fusion algorithm.

  3. Parallel processing approach to transform-based image coding

    NASA Astrophysics Data System (ADS)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  4. Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.

    2016-01-01

    This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.

  5. ORBS, ORCS, OACS, a Software Suite for Data Reduction and Analysis of the Hyperspectral Imagers SITELLE and SpIOMM

    NASA Astrophysics Data System (ADS)

    Martin, T.; Drissen, L.; Joncas, G.

    2015-09-01

    SITELLE (installed in 2015 at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont-Mégantic) are the first Imaging Fourier Transform Spectrometers (IFTS) capable of obtaining a hyperspectral data cube which samples a 12 arc minutes field of view into four millions of visible spectra. The result of each observation is made up of two interferometric data cubes which need to be merged, corrected, transformed and calibrated in order to get a spectral cube of the observed region ready to be analysed. ORBS is a fully automatic data reduction software that has been entirely designed for this purpose. The data size (up to 68 Gb for larger science cases) and the computational needs have been challenging and the highly parallelized object-oriented architecture of ORBS reflects the solutions adopted which made possible to process 68 Gb of raw data in less than 11 hours using 8 cores and 22.6 Gb of RAM. It is based on a core framework (ORB) that has been designed to support the whole software suite for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS). They all aim to provide a strong basis for the creation and development of specialized analysis modules that could benefit the scientific community working with SITELLE and SpIOMM.

  6. Contributions of gross spectral properties and duration of spectral change to perception of stop consonants

    NASA Astrophysics Data System (ADS)

    Alexander, Joshua; Keith, Kluender

    2005-09-01

    All speech contrasts are multiply specified. For example, in addition to onsets and trajectories of formant transitions, gross spectral properties such as tilt, and duration of spectral change (both local and global) contribute to perception of contrasts between stops such as /b,d,g/. It is likely that listeners resort to different acoustic characteristics under different listening conditions. Hearing-impaired listeners, for whom spectral details are compromised, may be more likely to use short-term gross spectral characteristics as well as durational information. Here, contributions of broad spectral onset properties as well as duration of spectral change are investigated in perception experiments with normal-hearing listeners. Two series of synthesized CVs, each varying perceptually from /b/ to /d/, were synthesized. Onset frequency of F2, duration of formant transitions, and gross spectral tilts were manipulated parametrically. Perception of /b/ was encouraged by shorter formant transition durations and by more negative spectral tilt at onset independent of the rate of change in spectral tilt. Effects of spectral tilt at onset were contextual and depended on the tilt of the following vowel. Parallel studies with listeners with hearing impairment are ongoing. [Work supported by NIDCD.

  7. Two Long-Wave Infrared Spectral Polarimeters for Use in Understanding Polarization Phenomenology

    DTIC Science & Technology

    2002-05-01

    3550 Aberdeen SE Kirtland Air Force Base, New Mexico 87117 Abstract. Spectrally varying long-wave infrared ( LWIR ) polarization measurements can be used...to identify materials and to discriminate samples from a cluttered background. Two LWIR instruments have been built and fielded by the Air Force...Research Laboratory: a multispectral LWIR imaging polarimeter (LIP) and a full-Stokes Fourier transform in- frared (FTIR) spectral polarimeter (FSP

  8. MEMS based digital transform spectrometers

    NASA Astrophysics Data System (ADS)

    Geller, Yariv; Ramani, Mouli

    2005-09-01

    Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.

  9. Using a source-to-source transformation to introduce multi-threading into the AliRoot framework for a parallel event reconstruction

    NASA Astrophysics Data System (ADS)

    Lohn, Stefan B.; Dong, Xin; Carminati, Federico

    2012-12-01

    Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.

  10. [Identification of Dendrobium varieties by Fourier transform infrared spectroscopy combined with spectral retrieval].

    PubMed

    Liu, Fei; Wang, Yuan-zhong; Deng, Xing-yan; Jin, Hang; Yang, Chun-yan

    2014-06-01

    The infrared spectral of stems of 165 trees of 23 Dendrobium varieties were obtained by means of Fourier transform infrared spectroscopy technique. The spectra show that the spectra of all the samples were similar, and the main components of stem of Dendrobium is cellulose. By the spectral professional software Omnic8.0, three spectral databases were constructed. Lib01 includes of the average spectral of the first four trees of every variety, while Lib02 and Lib03 are constructed from the first-derivative spectra and the second-derivative spectra of average spectra, separately. The correlation search, the square difference retrieval and the square differential difference retrieval of the spectra are performed with the spectral database Lib01 in the specified range of 1 800-500 cm(-1), and the yield correct rate of 92.7%, 74.5% and 92.7%, respectively. The square differential difference retrieval of the first-derivative spectra and the second-derivative spectra is carried out with Lib02 and Lib03 in the same specified range 1 800-500 cm(-1), and shows correct rate of 93.9% for the former and 90.3% for the later. The results show that the first-derivative spectral retrieval of square differential difference algorithm is more suitabe for discerning Dendrobium varieties, and FTIR combining with the spectral retrieval method can identify different varieties of Dendrobium, and the correlation retrieval, the square differential retrieval, the first-derivative spectra and second-derivative spectra retrieval in the specified spectral range are effective and simple way of distinguishing different varieties of Dendrobium.

  11. Improvements to an earth observing statistical performance model with applications to LWIR spectral variability

    NASA Astrophysics Data System (ADS)

    Zhao, Runchen; Ientilucci, Emmett J.

    2017-05-01

    Hyperspectral remote sensing systems provide spectral data composed of hundreds of narrow spectral bands. Spectral remote sensing systems can be used to identify targets, for example, without physical interaction. Often it is of interested to characterize the spectral variability of targets or objects. The purpose of this paper is to identify and characterize the LWIR spectral variability of targets based on an improved earth observing statistical performance model, known as the Forecasting and Analysis of Spectroradiometric System Performance (FASSP) model. FASSP contains three basic modules including a scene model, sensor model and a processing model. Instead of using mean surface reflectance only as input to the model, FASSP transfers user defined statistical characteristics of a scene through the image chain (i.e., from source to sensor). The radiative transfer model, MODTRAN, is used to simulate the radiative transfer based on user defined atmospheric parameters. To retrieve class emissivity and temperature statistics, or temperature / emissivity separation (TES), a LWIR atmospheric compensation method is necessary. The FASSP model has a method to transform statistics in the visible (ie., ELM) but currently does not have LWIR TES algorithm in place. This paper addresses the implementation of such a TES algorithm and its associated transformation of statistics.

  12. 135. VIEW OF MOTOR CONTROL CENTER 1 (MCC1) IN TRANSFORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    135. VIEW OF MOTOR CONTROL CENTER 1 (MCC1) IN TRANSFORMER ROOM (212), LSB (BLDG. 751), FACING NORTH. MCC1 MAKES UP A ROW OF CABINETS EAST OF AND PARALLEL TO THE TRANSFORMER CABINETS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Multiple DC, single AC converter with a switched DC transformer

    DOEpatents

    Donnelly, M.K.; Hammerstrom, D.J.

    1997-05-20

    The invention is an improvement of the PASC inverter, wherein the improvements include the reduction from two shorting gates per transformer to one shorting gate per transformer and replacement of active control of the shorting gate with passive control of the shorting gate. Further advantages are obtained through the use of anti-parallel gate sets. 14 figs.

  14. Multiple DC, single AC converter with a switched DC transformer

    DOEpatents

    Donnelly, Matthew K.; Hammerstrom, Donald J.

    1997-01-01

    The invention is an improvement of the PASC inverter, wherein the improvements include the reduction from two shorting gates per transformer to one shorting gate per transformer and replacement of active control of the shorting gate with passive control of the shorting gate. Further advantages are obtained through the use of anti-parallel gate sets.

  15. Multichannel Dynamic Fourier-Transform IR Spectrometer

    NASA Astrophysics Data System (ADS)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  16. Performance Verification of GOSAT-2 FTS-2 Simulator and Sensitivity Analysis for Greenhouse Gases Retrieval

    NASA Astrophysics Data System (ADS)

    Kamei, A.; Yoshida, Y.; Dupuy, E.; Hiraki, K.; Matsunaga, T.

    2015-12-01

    The GOSAT-2, which is scheduled for launch in early 2018, is the successor mission to the Greenhouse gases Observing Satellite (GOSAT). The FTS-2 onboard the GOSAT-2 is a Fourier transform spectrometer, which has three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region to observe infrared light reflected and emitted from the Earth's surface and atmosphere with high-resolution spectra. Column amounts and vertical profiles of major greenhouse gases such as carbon dioxide (CO2) and methane (CH4) are retrieved from acquired radiance spectra. In addition, the FTS-2 has several improvements from the FTS onboard the GOSAT: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a software tool, which is called the GOSAT-2 FTS-2 simulator, to simulate spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The objective of it is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of Level 2 retrieval algorithms. It consists of six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. More realistic and faster simulations have been made possible by the improvement of details about sensor characteristics, the sophistication of data processing and algorithms, the addition of various observation modes, the use of surface and atmospheric ancillary data, and the speed-up and parallelization of radiative transfer code. This simulator is confirmed to be working properly from the reproduction of GOSAT FTS L1B data depends on the ancillary data. We will summarize the performance verification of the GOSAT-2 FTS-2 simulator and describe the future prospects for Level 2 retrieval. Besides, we will present the various sensitivity analyses relating to the engineering parameters and the atmospheric conditions on Level 1 processing for greenhouse gases retrieval.

  17. SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature

    NASA Astrophysics Data System (ADS)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.

    2018-03-01

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.

  18. SPLAT: Using Spectral Indices to Identify and Characterize Ultracool Stars, Brown Dwarfs and Exoplanets in Deep Surveys and as Companions to Nearby Stars

    NASA Astrophysics Data System (ADS)

    Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.

    2016-06-01

    The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.

  19. Techniques for the estimation of leaf area index using spectral data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Shen, S. S.

    1984-01-01

    Based on the radiative transport theory of a homogeneous canopy, a new approach for obtaining transformations of spectral data used to estimate leaf area index (LAI), is developed. The transformations which are obtained without any ground knowledge of LAI show low sensitivity to soil variability, and are linearly related to LAI with relationships which are predictable from leaf reflectance, transmittance properties, and canopy reflectance models. Evaluation of the SAIL (scattering by arbitrarily inclined leaves) model is considered. Using only nadir view data, results obtained on winter and spring wheat and corn crops are presented.

  20. High resolution 10 mu spectrometry at different planetary latitudes. A practical Hadamard transform spectrometer for astronomical application. Final Report, 1 Sep. 1973 - 28 Apr. 1977. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Tai, M. H.; Harwit, M.; Melnick, G.; Dain, F. W.; Stasavage, G.; Briotta, D. A., Jr.; King, L. W.; Kameth, M.

    1977-01-01

    Infrared observations at different latitudes were studied in order to obtain spectra in the 10 micrometers region to understand differences in chemical composition or physical structure of the optical features. In order to receive such spectra of a rotating planet, simultaneous observations at different latitudes were made. A Hadamard transform spectrometer with 15 entrance slits was used to obtain 15 simultaneous spectra, at a resolution of 0.01 micrometers. The spectral band covered contained 255 spectral elements.

  1. Characterisation Of Polysacharides And Lipids From Selected Green Algae Species By FTIR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Gerulová, Kristína

    2015-06-01

    Fourier transform infrared (FTIR) spectroscopy was used in this study to identify and determine spectral features of Chromochloris zofingiensis (Dönz) Fucíková et L.A. Lewis (SAG 211-14, Gottingen, Germany), Acutodesmus obliguus (Turpin) Hegewald (SAG 276-1, Gottingen, Germany) and Chlorella sorokiniana (K. Brandt) Pröschold et Darienko (SAG 211-40c, Gottingen, Germany). Polysaccharides and lipids from these three algae species were determined using Fourier Transformed Infrared Spectroscopy (FTIR) with ATR accessory with diamante crystal in spectral range from 400 - 4000 cm-1 and resolution 4.

  2. Analysis of the thermal balance characteristics for multiple-connected piezoelectric transformers.

    PubMed

    Park, Joung-Hu; Cho, Bo-Hyung; Choi, Sung-Jin; Lee, Sang-Min

    2009-08-01

    Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.

  3. Parallel Fortran-MPI software for numerical inversion of the Laplace transform and its application to oscillatory water levels in groundwater environments

    USGS Publications Warehouse

    Zhan, X.

    2005-01-01

    A parallel Fortran-MPI (Message Passing Interface) software for numerical inversion of the Laplace transform based on a Fourier series method is developed to meet the need of solving intensive computational problems involving oscillatory water level's response to hydraulic tests in a groundwater environment. The software is a parallel version of ACM (The Association for Computing Machinery) Transactions on Mathematical Software (TOMS) Algorithm 796. Running 38 test examples indicated that implementation of MPI techniques with distributed memory architecture speedups the processing and improves the efficiency. Applications to oscillatory water levels in a well during aquifer tests are presented to illustrate how this package can be applied to solve complicated environmental problems involved in differential and integral equations. The package is free and is easy to use for people with little or no previous experience in using MPI but who wish to get off to a quick start in parallel computing. ?? 2004 Elsevier Ltd. All rights reserved.

  4. Optical Logarithmic Transformation of Speckle Images with Bacteriorhodopsin Films

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The application of logarithmic transformations to speckle images is sometimes desirable in converting the speckle noise distribution into an additive, constant-variance noise distribution. The optical transmission properties of some bacteriorhodopsin films are well suited to implement such a transformation optically in a parallel fashion. I present experimental results of the optical conversion of a speckle image into a transformed image with signal-independent noise statistics, using the real-time photochromic properties of bacteriorhodopsin. The original and transformed noise statistics are confirmed by histogram analysis.

  5. Piezoelectric transformer and modular connections for high power and high voltage power supplies

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A modular design for combining piezoelectric transformers is provided for high voltage and high power conversion applications. The input portions of individual piezoelectric transformers are driven for a single power supply. This created the vibration and the conversion of electrical to electrical energy from the input to the output of the transformers. The output portions of the single piezoelectric transformers are combining in series and/or parallel to provide multiple outputs having different rating of voltage and current.

  6. Spectral reconstruction of dental X-ray tubes using laplace inverse transform of the attenuation curve

    NASA Astrophysics Data System (ADS)

    Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.

    2015-11-01

    In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.

  7. Narrow linewidth operation of a spectral beam combined diode laser bar.

    PubMed

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  8. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  9. Cinematic camera emulation using two-dimensional color transforms

    NASA Astrophysics Data System (ADS)

    McElvain, Jon S.; Gish, Walter

    2015-02-01

    For cinematic and episodic productions, on-set look management is an important component of the creative process, and involves iterative adjustments of the set, actors, lighting and camera configuration. Instead of using the professional motion capture device to establish a particular look, the use of a smaller form factor DSLR is considered for this purpose due to its increased agility. Because the spectral response characteristics will be different between the two camera systems, a camera emulation transform is needed to approximate the behavior of the destination camera. Recently, twodimensional transforms have been shown to provide high-accuracy conversion of raw camera signals to a defined colorimetric state. In this study, the same formalism is used for camera emulation, whereby a Canon 5D Mark III DSLR is used to approximate the behavior a Red Epic cinematic camera. The spectral response characteristics for both cameras were measured and used to build 2D as well as 3x3 matrix emulation transforms. When tested on multispectral image databases, the 2D emulation transforms outperform their matrix counterparts, particularly for images containing highly chromatic content.

  10. Diagnosis of Breast Cancer Based on FT-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Venkatachalam, P.; Rao, L. Lakshmana; Kumar, N. Krishna; Jose, Anupama; Nazeer, Shaiju S.

    2008-11-01

    Breast cancer is one of the most important malignant forms of cancer and a great threat to life for women. In the present study, the spectral characteristics of human breast tissues in normal and cancerous state have been investigated by Fourier transform infrared (FT-IR) absorption spectroscopy in the spectral region from 4000 to 400 cm-1. Several spectral differences were detected in the frequency regions N-H stretching, C-H vibrations, amide bands and 900-1300 cm-1. The ratio of intensities of the bands of A3300/A3015 & A1650/A1550, A2924/A2853, A1080/A1236, A1204/A1650, A1055/A1467 and A1045/A1467 provide conformational changes of protein, lipids, nucleic acids, collagen, carbohydrates and glycogen respectively in the human breast tissues. There are obvious differences in the spectral features between normal and cancerous tissues because of changes in molecular compositions and structures that accompany the transformation from a normal to a cancerous state. The differences suggest that the spectral information are useful for the diagnosis of breast cancer and may serve as a basis for conformational changes in tissue components during carcinogenesis.

  11. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.

    PubMed

    Han, Fang; Liu, Han

    2017-02-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.

  12. Multi-threading: A new dimension to massively parallel scientific computation

    NASA Astrophysics Data System (ADS)

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2000-06-01

    Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.

  13. Digital simulation of an arbitrary stationary stochastic process by spectral representation.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2011-04-01

    In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America

  14. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  15. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    PubMed

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  16. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  17. An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies

    NASA Astrophysics Data System (ADS)

    Bolis, A.; Cantwell, C. D.; Moxey, D.; Serson, D.; Sherwin, S. J.

    2016-09-01

    A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more directions. The performance of the approach is mathematically modelled in terms of operation count and communication costs for identifying the most efficient parameter choices. The model is calibrated to target a specific hardware platform after which it is shown to accurately predict the performance in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible Navier-Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends the practical limitations of the discretisation, allowing greater parallelism and reduced wall times. Performance is shown to continue to scale when both parallelisation strategies are used.

  18. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  19. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  20. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Baines, A. Graham; Cheadle, Michael J.; Dick, Henry J. B.; Hosford Scheirer, Allegra; John, Barbara E.; Kusznir, Nick J.; Matsumoto, Takeshi

    2003-12-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ˜1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10° change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  1. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge

    USGS Publications Warehouse

    Baines, A.G.; Cheadle, Michael J.; Dick, H.J.B.; Scheirer, A.H.; John, Barbara E.; Kusznir, N.J.; Matsumoto, T.

    2003-01-01

    Atlantis Bank is an anomalously uplifted oceanic core complex adjacent to the Atlantis II transform, on the southwest Indian Ridge, that rises >3 km above normal seafloor of the same age. Models of flexural uplift due to detachment faulting can account for ???1 km of this uplift. Postdetachment normal faults have been observed during submersible dives and on swath bathymetry. Two transform-parallel, large-offset (hundreds of meters) normal faults are identified on the eastern flank of Atlantis Bank, with numerous smaller faults (tens of meters) on the western flank. Flexural uplift associated with this transform-parallel normal faulting is consistent with gravity data and can account for the remaining anomalous uplift of Atlantis Bank. Extension normal to the Atlantis II transform may have occurred during a 12 m.y. period of transtension initiated by a 10?? change in spreading direction ca. 19.5 Ma. This extension may have produced the 120-km-long transverse ridge of which Atlantis Bank is a part, and is consistent with stress reorientation about a weak transform fault.

  2. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  3. Mellin Transform-Based Correction Method for Linear Scale Inconsistency of Intrusion Events Identification in OFPS

    NASA Astrophysics Data System (ADS)

    Wang, Baocheng; Qu, Dandan; Tian, Qing; Pang, Liping

    2018-05-01

    For the problem that the linear scale of intrusion signals in the optical fiber pre-warning system (OFPS) is inconsistent, this paper presents a method to correct the scale. Firstly, the intrusion signals are intercepted, and an aggregate of the segments with equal length is obtained. Then, the Mellin transform (MT) is applied to convert them into the same scale. The spectral characteristics are obtained by the Fourier transform. Finally, we adopt back-propagation (BP) neural network to identify intrusion types, which takes the spectral characteristics as input. We carried out the field experiments and collected the optical fiber intrusion signals which contain the picking signal, shoveling signal, and running signal. The experimental results show that the proposed algorithm can effectively improve the recognition accuracy of the intrusion signals.

  4. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    NASA Technical Reports Server (NTRS)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  5. Spectral response of fiber-coupled Fabry-Perot etalons.

    PubMed

    Ionov, Pavel

    2014-03-01

    In many remote sensing applications one or multiple Fabry-Perot etalons are used as high-spectral-resolution filter elements. These etalons are often coupled to a receiving telescope with a multimode fiber, leading to subtle effects of the fiber mode order on the overall spectral response of the system. A theoretical model is developed to treat the spectral response of the combined system: fiber, collimator, and etalon. The method is based on a closed-form expression of the diffracted mode in terms of a Hankel transform. In this representation, it is shown how the spectral effect of the fiber and collimator can be separated from the details of the etalon and can be viewed as a mode-dependent spectral broadening and shift.

  6. [Estimation of organic matter content of north fluvo-aquic soil based on the coupling model of wavelet transform and partial least squares].

    PubMed

    Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong

    2014-07-01

    For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.

  7. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  8. Identification and characterization of salmonella serotypes using DNA spectral characteristics by fourier transform infrared (FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA samples of Salmonella serotypes (Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Infantis, Salmonella Heidelberg and Salmonella Kentucky) were performed using Fourier transform infrared spectroscopy (FT-IR) spectrometer by placing directly in contact with a diamond attenua...

  9. Spectral correlations in Anderson insulating wires

    NASA Astrophysics Data System (ADS)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  10. Parallel consensual neural networks.

    PubMed

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  11. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  12. Interpretation of aeromagnetic data over Abeokuta and its environs, Southwest Nigeria, using spectral analysis (Fourier transform technique)

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun T.; Ganiyu, Saheed A.; Hammed, Olaide S.; Aluko, Taiwo J.

    2016-10-01

    This study presents the results of spectral analysis of magnetic data over Abeokuta area, Southwestern Nigeria, using fast Fourier transform (FFT) in Microsoft Excel. The study deals with the quantitative interpretation of airborne magnetic data (Sheet No. 260), which was conducted by the Nigerian Geological Survey Agency in 2009. In order to minimise aliasing error, the aeromagnetic data was gridded at spacing of 1 km. Spectral analysis technique was used to estimate the magnetic basement depth distributed at two levels. The result of the interpretation shows that the magnetic sources are mainly distributed at two levels. The shallow sources (minimum depth) range in depth from 0.103 to 0.278 km below ground level and are inferred to be due to intrusions within the region. The deeper sources (maximum depth) range in depth from 2.739 to 3.325 km below ground and are attributed to the underlying basement.

  13. Constrained signal reconstruction from wavelet transform coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brislawn, C.M.

    1991-12-31

    A new method is introduced for reconstructing a signal from an incomplete sampling of its Discrete Wavelet Transform (DWT). The algorithm yields a minimum-norm estimate satisfying a priori upper and lower bounds on the signal. The method is based on a finite-dimensional representation theory for minimum-norm estimates of bounded signals developed by R.E. Cole. Cole`s work has its origins in earlier techniques of maximum-entropy spectral estimation due to Lang and McClellan, which were adapted by Steinhardt, Goodrich and Roberts for minimum-norm spectral estimation. Cole`s extension of their work provides a representation for minimum-norm estimates of a class of generalized transformsmore » in terms of general correlation data (not just DFT`s of autocorrelation lags, as in spectral estimation). One virtue of this great generality is that it includes the inverse DWT. 20 refs.« less

  14. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  15. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror.

    PubMed

    Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai

    2016-10-03

    A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.

  16. [Spectral characteristics of decomposition of incorporated straw in compound polluted arid loess].

    PubMed

    Fan, Chun-Hui; Zhang, Ying-Chao; Xu, Ji-Ting; Wang, Jia-Hong

    2014-04-01

    The original loess from western China was used as soil sample, the spectral methods of scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), elemental analysis, Fourier transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (13C NMR) were used to investigate the characteristics of decomposed straw and formed humic acids in compound polluted arid loess. The SEM micrographs show the variation from dense to decomposed surface, and finally to damaged structure, and the EDS data reveal the phenomenon of element transfer. The newly-formed humic acids are of low aromaticity, helpful for increasing the activity of organic matters in loess. The FTIR spectra in the whole process are similar, indicating the complexity of transformation dynamics of humic acids. The molecular structure of humic acids becomes simpler, shown from 13C NMR spectra. The spectral methods are useful for humic acids identification in loess region in straw incorporation process.

  17. Relativistic elliptic matrix tops and finite Fourier transformations

    NASA Astrophysics Data System (ADS)

    Zotov, A.

    2017-10-01

    We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.

  18. A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting

    PubMed Central

    LUTHRIA, DEVANAND L.; MUKHOPADHYAY, SUDARSAN; LIN, LONG-ZE; HARNLY, JAMES M.

    2013-01-01

    Spectral fingerprinting, as a method of discriminating between plant cultivars and growing treatments for a common set of broccoli samples, was compared for six analytical instruments. Spectra were acquired for finely powdered solid samples using Fourier transform infrared (FT-IR) and Fourier transform near-infrared (NIR) spectrometry. Spectra were also acquired for unfractionated aqueous methanol extracts of the powders using molecular absorption in the ultraviolet (UV) and visible (VIS) regions and mass spectrometry with negative (MS−) and positive (MS+) ionization. The spectra were analyzed using nested one-way analysis of variance (ANOVA) and principal component analysis (PCA) to statistically evaluate the quality of discrimination. All six methods showed statistically significant differences between the cultivars and treatments. The significance of the statistical tests was improved by the judicious selection of spectral regions (IR and NIR), masses (MS+ and MS−), and derivatives (IR, NIR, UV, and VIS). PMID:21352644

  19. Definition of a metrology servo-system for a solar imaging fourier transform spectrometer working in the far UV (IFTSUV)

    NASA Astrophysics Data System (ADS)

    Ruiz de Galarreta Fanju, C.; Philippon, A.; Bouzit, M.; Appourchaux, T.; Vial, J.-C.; Maillard, J.-P.; Lemaire, P.

    2017-11-01

    The understanding of the solar outer atmosphere requires a simultaneous combination of imaging and spectral observations concerning the far UV lines that arise from the high chromospheres up to the corona. These observations must be performed with enough spectral, spatial and temporal resolution to reveal the small atmospheric structures and to resolve the solar dynamics. An Imaging Fourier Transform Spectrometer working in the far-UV (IFTSUV, Figure 1) is an attractive instrumental solution to fulfill these requirements. However, due to the short wavelength, to preserve IFTSUV spectral precision and Signal to Noise Ratio (SNR) requires a high optical surface quality and a very accurate (linear and angular) metrology to maintain the optical path difference (OPD) during the entire scanning process by: optical path difference sampling trigger; and dynamic alignment for tip/tilt compensation (Figure 2).

  20. Solitons of shallow-water models from energy-dependent spectral problems

    NASA Astrophysics Data System (ADS)

    Haberlin, Jack; Lyons, Tony

    2018-01-01

    The current work investigates the soliton solutions of the Kaup-Boussinesq equation using the inverse scattering transform method. We outline the construction of the Riemann-Hilbert problem for a pair of energy-dependent spectral problems for the system, which we then use to construct the solution of this hydrodynamic system.

  1. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy.

    PubMed

    Svečnjak, Lidija; Prđun, Saša; Rogina, Josip; Bubalo, Dragan; Jerković, Igor

    2017-10-01

    Samples of Satsuma mandarin (Citrus unshiu Marc.) nectar, honey sac content and honey were analyzed by FTIR-ATR spectroscopy and reference methods. The spectral analysis allowed detection of the major chemical constituents in C. unshiu nectar-to-honey transformation pathway thus providing information on the intensity and location of the compositional changes occurring during this process. The preliminary results showed that in average more than one-third of sugar-related nectar-to-honey conversion takes place directly in the honey sac; the average sugar content (w/w) was 17.93% (nectar), 47.03% (honey sac) and 79.63% (honey). FTIR-ATR results showed great spectral similarity of analyzed honey samples and small degree variations in both sugar and water content in nectar samples. The spectral data revealed distinctive differences in the chemical composition of individual honey sac contents with the most intensive and complex absorption envelope in the spectral region between 1175 and 950cm -1 (glucose, fructose and sucrose absorption bands). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

    1995-08-01

    We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

  3. Emotion to emotion speech conversion in phoneme level

    NASA Astrophysics Data System (ADS)

    Bulut, Murtaza; Yildirim, Serdar; Busso, Carlos; Lee, Chul Min; Kazemzadeh, Ebrahim; Lee, Sungbok; Narayanan, Shrikanth

    2004-10-01

    Having an ability to synthesize emotional speech can make human-machine interaction more natural in spoken dialogue management. This study investigates the effectiveness of prosodic and spectral modification in phoneme level on emotion-to-emotion speech conversion. The prosody modification is performed with the TD-PSOLA algorithm (Moulines and Charpentier, 1990). We also transform the spectral envelopes of source phonemes to match those of target phonemes using LPC-based spectral transformation approach (Kain, 2001). Prosodic speech parameters (F0, duration, and energy) for target phonemes are estimated from the statistics obtained from the analysis of an emotional speech database of happy, angry, sad, and neutral utterances collected from actors. Listening experiments conducted with native American English speakers indicate that the modification of prosody only or spectrum only is not sufficient to elicit targeted emotions. The simultaneous modification of both prosody and spectrum results in higher acceptance rates of target emotions, suggesting that not only modeling speech prosody but also modeling spectral patterns that reflect underlying speech articulations are equally important to synthesize emotional speech with good quality. We are investigating suprasegmental level modifications for further improvement in speech quality and expressiveness.

  4. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn.

    PubMed

    Gordon, S H; Schudy, R B; Wheeler, B C; Wicklow, D T; Greene, R V

    1997-04-01

    Aspergillus flavus and other pathogenic fungi display typical infrared spectra which differ significantly from spectra of substrate materials such as corn. On this basis, specific spectral features have been identified which permit detection of fungal infection on the surface of corn kernels by photoacoustic infrared spectroscopy. In a blind study, ten corn kernels showing bright greenish yellow fluorescence (BGYF) in the germ or endosperm and ten BGYF-negative kernels were correctly classified as infected or not infected by Fourier transform infrared photoacoustic spectroscopy. Earlier studies have shown that BGYF-positive kernels contain the bulk of the aflatoxin contaminating grain at harvest. Ten major spectral features, identified by visual inspection of the photoacoustic spectra of A. flavus mycelium grown in culture versus uninfected corn, were interpreted and assigned by theoretical comparisons of the relative chemical compositions of fungi and corn. The spectral features can be built into either empirical or knowledge-based computer models (expert systems) for automatic infrared detection and segregation of grains or kernels containing aflatoxin from the food and feed supply.

  5. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  6. Parallel community climate model: Description and user`s guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.B.; Flanery, R.E.; Semeraro, B.D.

    This report gives an overview of a parallel version of the NCAR Community Climate Model, CCM2, implemented for MIMD massively parallel computers using a message-passing programming paradigm. The parallel implementation was developed on an Intel iPSC/860 with 128 processors and on the Intel Delta with 512 processors, and the initial target platform for the production version of the code is the Intel Paragon with 2048 processors. Because the implementation uses a standard, portable message-passing libraries, the code has been easily ported to other multiprocessors supporting a message-passing programming paradigm. The parallelization strategy used is to decompose the problem domain intomore » geographical patches and assign each processor the computation associated with a distinct subset of the patches. With this decomposition, the physics calculations involve only grid points and data local to a processor and are performed in parallel. Using parallel algorithms developed for the semi-Lagrangian transport, the fast Fourier transform and the Legendre transform, both physics and dynamics are computed in parallel with minimal data movement and modest change to the original CCM2 source code. Sequential or parallel history tapes are written and input files (in history tape format) are read sequentially by the parallel code to promote compatibility with production use of the model on other computer systems. A validation exercise has been performed with the parallel code and is detailed along with some performance numbers on the Intel Paragon and the IBM SP2. A discussion of reproducibility of results is included. A user`s guide for the PCCM2 version 2.1 on the various parallel machines completes the report. Procedures for compilation, setup and execution are given. A discussion of code internals is included for those who may wish to modify and use the program in their own research.« less

  7. Analysis of the Advantages and Limitations of Stationary Imaging Fourier Transform Spectrometer. Revised

    NASA Technical Reports Server (NTRS)

    Beecken, Brian P.; Kleinman, Randall R.

    2004-01-01

    New developments in infrared sensor technology have potentially made possible a new space-based system which can measure far-infrared radiation at lower costs (mass, power and expense). The Stationary Imaging Fourier Transform Spectrometer (SIFTS) proposed by NASA Langley Research Center, makes use of new detector array technology. A mathematical model which simulates resolution and spectral range relationships has been developed for analyzing the utility of such a radically new approach to spectroscopy. Calculations with this forward model emulate the effects of a detector array on the ability to retrieve accurate spectral features. Initial computations indicate significant attenuation at high wavenumbers.

  8. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm

    DOE PAGES

    Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; ...

    2016-02-17

    We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.

  9. Speech transformation system (spectrum and/or excitation) without pitch extraction

    NASA Astrophysics Data System (ADS)

    Seneff, S.

    1980-07-01

    A speech analysis synthesis system was developed which is capable of independent manipulation of the fundamental frequency and spectral envelope of a speech waveform. The system deconvolved the original speech with the spectral envelope estimate to obtain a model for the excitation, explicit pitch extraction was not required and as a consequence, the transformed speech was more natural sounding than would be the case if the excitation were modeled as a sequence of pulses. It is shown that the system has applications in the areas of voice modifications, baseband excited vocoders, time scale modifications, and frequency compression as an aid to the partially deaf.

  10. Hyperspectral imaging using the single-pixel Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  11. High resolution group refractive index measurement by broadband supercontinuum interferometry and wavelet-transform analysis

    NASA Astrophysics Data System (ADS)

    Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette

    2006-12-01

    In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.

  12. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].

    PubMed

    Lin, Hai-jun; Zhang, Hui-fang; Gao, Ya-qi; Li, Xia; Yang, Fan; Zhou, Yan-fei

    2014-12-01

    The hyperspectral reflectance of Populus euphratica, Tamarix hispida, Haloxylon ammodendron and Calligonum mongolicum in the lower reaches of Tarim River and Turpan Desert Botanical Garden was measured by using the HR-768 field-portable spectroradiometer. The method of continuum removal, first derivative reflectance and second derivative reflectance were used to deal with the original spectral data of four tree species. The method of Mahalanobis Distance was used to select the bands with significant differences in the original spectral data and transform spectral data to identify the different tree species. The progressive discrimination analyses were used to test the selective bands used to identify different tree species. The results showed that The Mahalanobis Distance method was an effective method in feature band extraction. The bands for identifying different tree species were most near-infrared bands. The recognition accuracy of four methods was 85%, 93.8%, 92.4% and 95.5% respectively. Spectrum transform could improve the recognition accuracy. The recognition accuracy of different research objects and different spectrum transform methods were different. The research provided evidence for desert tree species classification, monitoring biodiversity and the analysis of area in desert by using large scale remote sensing method.

  13. Mach-Zehnder Fourier transform spectrometer for astronomical spectroscopy at submillimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Bradley G.; Schofield, Ian; Tompkins, Gregory; Davis, Gary R.

    2003-02-01

    Astronomical spectroscopy at submillimeter wavelengths holds much promise for fields as diverse as the study of planetary atmospheres, molecular clouds and extragalactic sources. Fourier transform spectrometers (FTS) represent an important class of spectrometers well suited to observations that require broad spectral coverage at intermediate spectral resolution. In this paper we present the design and performance of a novel FTS, which has been developed for use at the James Clerk Maxwell Telescope (JCMT). The design uses two broadband intensity beamsplitters in a Mach-Zehnder configuration, which provide access to all four interferometer ports while maintaining a high and uniform efficiency over a broad spectral range. Since the interferometer processes both polarizations it is twice as efficient as the Martin-Puplett interferometer (MPI). As with the MPI, the spatial separation of the two input ports allows a reference blackbody to be viewed at all times in one port, while continually viewing the astronomical source in the other. Furthermore, by minimizing the size of the optical beam at the beamsplitter, the design is well suited to imaging Fourier transform spectroscopy (IFTS) as evidenced by its selection for the SPIRE instrument on Herschel.

  14. Terascale spectral element algorithms and implementations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. F.; Tufo, H. M.

    1999-08-17

    We describe the development and implementation of an efficient spectral element code for multimillion gridpoint simulations of incompressible flows in general two- and three-dimensional domains. We review basic and recently developed algorithmic underpinnings that have resulted in good parallel and vector performance on a broad range of architectures, including the terascale computing systems now coming online at the DOE labs. Sustained performance of 219 GFLOPS has been recently achieved on 2048 nodes of the Intel ASCI-Red machine at Sandia.

  15. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    NASA Astrophysics Data System (ADS)

    Green, Robert G.; White, Robert S.; Greenfield, Tim

    2014-01-01

    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  16. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  17. Parallel processing implementations of a contextual classifier for multispectral remote sensing data

    NASA Technical Reports Server (NTRS)

    Siegel, H. J.; Swain, P. H.; Smith, B. W.

    1980-01-01

    Contextual classifiers are being developed as a method to exploit the spatial/spectral context of a pixel to achieve accurate classification. Classification algorithms such as the contextual classifier typically require large amounts of computation time. One way to reduce the execution time of these tasks is through the use of parallelism. The applicability of the CDC flexible processor system and of a proposed multimicroprocessor system (PASM) for implementing contextual classifiers is examined.

  18. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    NASA Technical Reports Server (NTRS)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  19. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  20. Ultraviolet, visible, and infrared laser delivery using laser-to-fiber coupling via a grazing-incidence-based hollow taper

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Waynant, Ronald W.

    2001-01-01

    We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.

  1. Limitations and potential of spectral subtractions in fourier-transform infrared (FTIR) spectroscopy of soil samples

    USDA-ARS?s Scientific Manuscript database

    Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...

  2. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Treesearch

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  3. The Kinetics of Mo(Co)6 Substitution Monitored by Fourier Transform Infrared Spectrophotometry.

    ERIC Educational Resources Information Center

    Suslick, Kenneth S.; And Others

    1987-01-01

    Describes a physical chemistry experiment that uses Fourier transform (FTIR) spectrometers and microcomputers as a way of introducing students to the spectral storage and manipulation techniques associated with digitized data. It can be used to illustrate FTIR spectroscopy, simple kinetics, inorganic mechanisms, and Beer's Law. (TW)

  4. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Analytical and phenomenological studies of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Mahalov, Alex; Zhou, YE

    1995-01-01

    A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.

  6. Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution

    PubMed Central

    Han, Fang; Liu, Han

    2016-01-01

    Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson’s sample correlation matrix. Although Pearson’s sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall’s tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall’s tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall’s tau correlation matrix and the latent Pearson’s correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of “effective rank” in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a “sign subgaussian condition” which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition. PMID:28337068

  7. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  8. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.

    PubMed

    Jensen, Jacob S; Egebo, Max; Meyer, Anne S

    2008-05-28

    Accomplishment of fast tannin measurements is receiving increased interest as tannins are important for the mouthfeel and color properties of red wines. Fourier transform mid-infrared spectroscopy allows fast measurement of different wine components, but quantification of tannins is difficult due to interferences from spectral responses of other wine components. Four different variable selection tools were investigated for the identification of the most important spectral regions which would allow quantification of tannins from the spectra using partial least-squares regression. The study included the development of a new variable selection tool, iterative backward elimination of changeable size intervals PLS. The spectral regions identified by the different variable selection methods were not identical, but all included two regions (1485-1425 and 1060-995 cm(-1)), which therefore were concluded to be particularly important for tannin quantification. The spectral regions identified from the variable selection methods were used to develop calibration models. All four variable selection methods identified regions that allowed an improved quantitative prediction of tannins (RMSEP = 69-79 mg of CE/L; r = 0.93-0.94) as compared to a calibration model developed using all variables (RMSEP = 115 mg of CE/L; r = 0.87). Only minor differences in the performance of the variable selection methods were observed.

  9. Terahertz Josephson spectral analysis and its applications

    NASA Astrophysics Data System (ADS)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  10. Mountain Plains Learning Experience Guide: Radio and T.V. Repair. Course: A.C. Circuits.

    ERIC Educational Resources Information Center

    Hoggatt, P.; And Others

    One of four individualized courses included in a radio and television repair curriculum, this course focuses on alternating current relationships and computations, transformers, power supplies, series and parallel resistive-reactive circuits, and series and parallel resonance. The course is comprised of eight units: (1) Introduction to Alternating…

  11. Angle-resolved spectral Fabry-Pérot interferometer for single-shot measurement of refractive index dispersion over a broadband spectrum

    NASA Astrophysics Data System (ADS)

    Dong, J. T.; Ji, F.; Xia, H. J.; Liu, Z. J.; Zhang, T. D.; Yang, L.

    2018-01-01

    An angle-resolved spectral Fabry-Pérot interferometer is reported for fast and accurate measurement of the refractive index dispersion of optical materials with parallel plate shape. The light sheet from the wavelength tunable laser is incident on the parallel plate with converging angles. The transmitted interference light for each angle is dispersed and captured by a 2D sensor, in which the rows and the columns are used to simultaneously record the intensities as a function of wavelength and incident angle, respectively. The interferogram, named angle-resolved spectral intensity distribution, is analyzed by fitting the phase information instead of finding the fringe peak locations that present periodic ambiguity. The refractive index dispersion and the physical thickness can be then retrieved from a single-shot interferogram within 18 s. Experimental results of an optical substrate standard indicate that the accuracy of the refractive index dispersion is less than 2.5  ×  10-5 and the relative uncertainty of the thickness is 6  ×  10-5 mm (3σ) due to the high stability and the single-shot measurement of the proposed system.

  12. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  13. SQDFT: Spectral Quadrature method for large-scale parallel O ( N ) Kohn–Sham calculations at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less

  14. Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns

    PubMed Central

    Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely

    2011-01-01

    Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088

  15. SQDFT: Spectral Quadrature method for large-scale parallel O ( N ) Kohn–Sham calculations at high temperature

    DOE PAGES

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; ...

    2017-12-07

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method formore » $$\\mathscr{O}(N)$$ Kohn–Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw–Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw–Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. Here, we further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect $$\\mathscr{O}(N)$$ scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.« less

  16. Hypercomplex Fourier transforms of color images.

    PubMed

    Ell, Todd A; Sangwine, Stephen J

    2007-01-01

    Fourier transforms are a fundamental tool in signal and image processing, yet, until recently, there was no definition of a Fourier transform applicable to color images in a holistic manner. In this paper, hypercomplex numbers, specifically quaternions, are used to define a Fourier transform applicable to color images. The properties of the transform are developed, and it is shown that the transform may be computed using two standard complex fast Fourier transforms. The resulting spectrum is explained in terms of familiar phase and modulus concepts, and a new concept of hypercomplex axis. A method for visualizing the spectrum using color graphics is also presented. Finally, a convolution operational formula in the spectral domain is discussed.

  17. OpenMP Parallelization and Optimization of Graph-based Machine Learning Algorithms

    DTIC Science & Technology

    2016-05-01

    composed of hyper - spectral video sequences recording the release of chemical plumes at the Dugway Proving Ground. We use the 329 frames of the...video. Each frame is a hyper - spectral image with dimension 128 × 320 × 129, where 129 is the dimension of the channel of each pixel. The total number of...j=1 . Then we use the nested for- loop to calculate the values of WXY by the formula (1). We then put the corresponding value in an array which

  18. Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography

    PubMed Central

    Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.

    2016-01-01

    A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012

  19. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

  20. Application of an impedance matching transformer to a plasma focus.

    PubMed

    Bures, B L; James, C; Krishnan, M; Adler, R

    2011-10-01

    A plasma focus was constructed using an impedance matching transformer to improve power transfer between the pulse power and the dynamic plasma load. The system relied on two switches and twelve transformer cores to produce a 100 kA pulse in short circuit on the secondary at 27 kV on the primary with 110 J stored. With the two transformer systems in parallel, the Thevenin equivalent circuit parameters on the secondary side of the driver are: C = 10.9 μF, V(0) = 4.5 kV, L = 17 nH, and R = 5 mΩ. An equivalent direct drive circuit would require a large number of switches in parallel, to achieve the same Thevenin equivalent. The benefits of this approach are replacement of consumable switches with non-consumable transformer cores, reduction of the driver inductance and resistance as viewed by the dynamic load, and reduction of the stored energy to produce a given peak current. The system is designed to operate at 100 Hz, so minimizing the stored energy results in less load on the thermal management system. When operated at 1 Hz, the neutron yield from the transformer matched plasma focus was similar to the neutron yield from a conventional (directly driven) plasma focus at the same peak current.

  1. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.

    PubMed

    Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy

    2015-10-01

    In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

  2. A method based on IHS cylindrical transform model for quality assessment of image fusion

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  3. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    NASA Astrophysics Data System (ADS)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  4. Snapshot Imaging Spectrometry in the Visible and Long Wave Infrared

    NASA Astrophysics Data System (ADS)

    Maione, Bryan David

    Imaging spectrometry is an optical technique in which the spectral content of an object is measured at each location in space. The main advantage of this modality is that it enables characterization beyond what is possible with a conventional camera, since spectral information is generally related to the chemical composition of the object. Due to this, imaging spectrometers are often capable of detecting targets that are either morphologically inconsistent, or even under resolved. A specific class of imaging spectrometer, known as a snapshot system, seeks to measure all spatial and spectral information simultaneously, thereby rectifying artifacts associated with scanning designs, and enabling the measurement of temporally dynamic scenes. Snapshot designs are the focus of this dissertation. Three designs for snapshot imaging spectrometers are developed, each providing novel contributions to the field of imaging spectrometry. In chapter 2, the first spatially heterodyned snapshot imaging spectrometer is modeled and experimentally validated. Spatial heterodyning is a technique commonly implemented in non-imaging Fourier transform spectrometry. For Fourier transform imaging spectrometers, spatial heterodyning improves the spectral resolution trade space. Additionally, in this chapter a unique neural network based spectral calibration is developed and determined to be an improvement beyond Fourier and linear operator based techniques. Leveraging spatial heterodyning as developed in chapter 2, in chapter 3, a high spectral resolution snapshot Fourier transform imaging spectrometer, based on a Savart plate interferometer, is developed and experimentally validated. The sensor presented in this chapter is the highest spectral resolution sensor in its class. High spectral resolution enables the sensor to discriminate narrowly spaced spectral lines. The capabilities of neural networks in imaging spectrometry are further explored in this chapter. Neural networks are used to perform single target detection on raw instrument data, thereby eliminating the need for an explicit spectral calibration step. As an extension of the results in chapter 2, neural networks are once again demonstrated to be an improvement when compared to linear operator based detection. In chapter 4 a non-interferometric design is developed for the long wave infrared (wavelengths spanning 8-12 microns). The imaging spectrometer developed in this chapter is a multi-aperture filtered microbolometer. Since the detector is uncooled, the presented design is ultra-compact and low power. Additionally, cost effective polymer absorption filters are used in lieu of interference filters. Since, each measurement of the system is spectrally multiplexed, an SNR advantage is realized. A theoretical model for the filtered design is developed, and the performance of the sensor for detecting liquid contaminants is investigated. Similar to past chapters, neural networks are used and achieve false detection rates of less than 1%. Lastly, this dissertation is concluded with a discussion on future work and potential impact of these devices.

  5. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  6. Spectral gamuts and spectral gamut mapping

    NASA Astrophysics Data System (ADS)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  7. Fast quantum nD Fourier and radon transforms

    NASA Astrophysics Data System (ADS)

    Labunets, Valeri G.; Labunets-Rundblad, Ekaterina V.; Astola, Jaakko T.

    2001-07-01

    Fast Classical and quantum algorithms are introduced for a wide class of non-separable nD discrete unitary K- transforms(DKT)KNn. They require a number of 1D DKT Kn smaller than in the Cooley-Tukey radix-p FFT-type approach. The method utilizes a decomposition of the nDK- transform into a product of original nD discrete Radon Transform and of a family parallel/independ 1DK-transforms. If the nDK-transform has a separable kernel, that again in this case our approach leads to decrease of multiplicative complexity by factor of n compared to the tow/column separable Cooley-Tukey p-radix approach.

  8. Exsolution of Ca-clinopyroxene from orthopyroxene aided by deformation

    USGS Publications Warehouse

    Kirby, S.H.; Etheridge, M.A.

    1981-01-01

    Monoclinic calcium-poor shear-transformation lamellae and calcium-rich exsolution lamellae occur parallel to (100) in orthopyroxene. The formation of both structures from an orthopyroxene host involves a shear on (100) parallel to [001], with additional cation exchange in the exsolution case. The shear transformation involves a macroscopic simple shear angle of 13.3?? (shear strain of 0.236) and produces a specific a-axis orientation with respect to the sense of shear; we have found that this orientation dominates in exsolution lamellae in kinked orthopyroxene, where the sense of shear is known. In undeformed orthopyroxene, there is generally no preferred sense of orientation of the monoclinic a axes. We advance a specific model for exsolution involving nucleation and growth by shear transformation combined with cation exchange, thus circumventing the classical nucleation barrier and permitting exsolution at lower solute supersaturations. ?? 1981 Springer-Verlag.

  9. The geology of the Oceanographer Transform: The ridge-transform intersection

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Fox, P. J.; Sloan, H.; Crane, K. T.; Kidd, W. S. F.; Bonatti, E.; Stroup, J. B.; Fornari, D. J.; Elthon, D.; Hamlyn, P.; Casey, J. F.; Gallo, D. G.; Needham, D.; Sartori, R.

    1984-06-01

    Seven dives in the submersible ALVIN and four deep-towed (ANGUS) camera lowerings have been made at the eastern ridge-transform intersection of the Oceanographer Transform with the axis of the Mid-Atlantic Ridge. These data constrain our understanding of the processes that create and shape the distinctive morphology that is characteristic of slowly-slipping ridge-transform-ridge plate boundaries. Although the geological relationships observed in the rift valley floor in the study area are similar to those reported for the FAMOUS area, we observe a distinct change in the character of the rift valley floor with increasing proximity to the transform. Over a distance of approximately ten kilometers the volcanic constructional terrain becomes increasingly more disrupted by faulting and degraded by mass wasting. Moreover, proximal to the transform boundary, faults with orientations oblique to the trend of the rift valley are recognized. The morphology of the eastern rift valley wall is characterized by inward-facing scarps that are ridge-axis parallel, but the western rift valley wall, adjacent to the active transform zone, is characterized by a complex fault pattern defined by faults exhibiting a wide range of orientations. However, even for transform parallel faults no evidence for strike-slip displacement is observed throughout the study area and evidence for normal (dip-slip) displacement is ubiquitous. Basalts, semi-consolidated sediments (chalks, debris slide deposits) and serpentinized ultramafic rocks are recovered from localities within or proximal to the rift valley. The axis of accretion-principal transform displacement zone intersection is not clearly established, but appears to be located along the E-W trending, southern flank of the deep nodal basin that defines the intersection of the transform valley with the rift floor.

  10. Fast algorithm for bilinear transforms in optics

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana

    2000-10-01

    The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.

  11. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    USDA-ARS?s Scientific Manuscript database

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  12. Study on time-frequency analysis method of very fast transient overvoltage

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun

    2018-04-01

    The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.

  13. Design of Warped Stretch Transform

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire Lifan; Jalali, Bahram

    2015-01-01

    Time stretch dispersive Fourier transform enables real-time spectroscopy at the repetition rate of million scans per second. High-speed real-time instruments ranging from analog-to-digital converters to cameras and single-shot rare-phenomena capture equipment with record performance have been empowered by it. Its warped stretch variant, realized with nonlinear group delay dispersion, offers variable-rate spectral domain sampling, as well as the ability to engineer the time-bandwidth product of the signal’s envelope to match that of the data acquisition systems. To be able to reconstruct the signal with low loss, the spectrotemporal distribution of the signal spectrum needs to be sparse. Here, for the first time, we show how to design the kernel of the transform and specifically, the nonlinear group delay profile dictated by the signal sparsity. Such a kernel leads to smart stretching with nonuniform spectral resolution, having direct utility in improvement of data acquisition rate, real-time data compression, and enhancement of ultrafast data capture accuracy. We also discuss the application of warped stretch transform in spectrotemporal analysis of continuous-time signals. PMID:26602458

  14. Cultural and environmental effects on the spectral development patterns of corn and soybeans: Field data analysis

    NASA Technical Reports Server (NTRS)

    Crist, E. P. (Principal Investigator)

    1982-01-01

    An overall approach to crop spectral understanding is presented which serves to maintain a strong link between actual plant responses and characteristics and spectral observations from ground based and spaceborne sensors. A specific technique for evaluating field reflectance data, as a part of the overall approach, is also described. Results of the application of this technique to corn and soybeans reflectance data collected by and at Purdue/LARS indicate that a number of common cultural and environmental factors can significantly affect the temporal spectral development patterns of these crops in tasseled cap greenness (a transformed variable of LANDSAT MSS signals).

  15. Broadband spectral shaping in regenerative amplifier based on modified polarization-encoded chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Wang, Xinliang; Lu, Xiaoming; Liu, Yanqi; Xu, Yi; Wang, Cheng; Li, Shuai; Yu, Linpeng; Liu, Xingyan; Liu, Keyang; Xu, Rongjie; Leng, Yuxin

    2018-06-01

    We present an intra-cavity spectral shaping method to suppress the spectral narrowing in a Ti:sapphire (Ti:Sa) regenerative amplifier. The spectral shaping is realized by manipulating the stored energies of two Ti:Sa crystals with orthogonal c-axes, changing the length of a quartz plate, and rotating a broadband achromatic half-wave plate. Using this method, in our proof-of-concept experiment, an 84-nm-(FWHM)-broadband amplified pulse with an energy gain larger than 106 is obtained, which supports a 17.8 fs Fourier-transform-limited pulse duration. The pulse is compressed to 18.9 fs.

  16. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  17. Spectral properties of the massless relativistic quartic oscillator

    NASA Astrophysics Data System (ADS)

    Durugo, Samuel O.; Lőrinczi, József

    2018-03-01

    An explicit solution of the spectral problem of the non-local Schrödinger operator obtained as the sum of the square root of the Laplacian and a quartic potential in one dimension is presented. The eigenvalues are obtained as zeroes of special functions related to the fourth order Airy function, and closed formulae for the Fourier transform of the eigenfunctions are derived. These representations allow to derive further spectral properties such as estimates of spectral gaps, heat trace and the asymptotic distribution of eigenvalues, as well as a detailed analysis of the eigenfunctions. A subtle spectral effect is observed which manifests in an exponentially tight approximation of the spectrum by the zeroes of the dominating term in the Fourier representation of the eigenfunctions and its derivative.

  18. SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël

    2015-10-15

    Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circularmore » spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.« less

  19. Series Transmission Line Transformer

    DOEpatents

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  20. HazMatID (trademark) Replacement Project

    DTIC Science & Technology

    2013-05-09

    replacement for the Smiths Detection HazMatIDTM on the 886H allowance standard, a search of Fourier transform infrared spectroscopy ( FTIR ) instruments was...uses FTIR spectroscopy. It has the capability to identify chemical warfare agents, explosives , toxic industrial chemicals, narcotics, and...uses FTIR technology , providing a wider spectral coverage and higher spectral resolution. Findings: As I operated the Mobile-IR, I found it to

  1. Interpolation by fast Wigner transform for rapid calculations of magnetic resonance spectra from powders.

    PubMed

    Stevensson, Baltzar; Edén, Mattias

    2011-03-28

    We introduce a novel interpolation strategy, based on nonequispaced fast transforms involving spherical harmonics or Wigner functions, for efficient calculations of powder spectra in (nuclear) magnetic resonance spectroscopy. The fast Wigner transform (FWT) interpolation operates by minimizing the time-consuming calculation stages, by sampling over a small number of Gaussian spherical quadrature (GSQ) orientations that are exploited to determine the spectral frequencies and amplitudes from a 10-70 times larger GSQ set. This results in almost the same orientational averaging accuracy as if the expanded grid was utilized explicitly in an order of magnitude slower computation. FWT interpolation is applicable to spectral simulations involving any time-independent or time-dependent and noncommuting spin Hamiltonian. We further show that the merging of FWT interpolation with the well-established ASG procedure of Alderman, Solum and Grant [J. Chem. Phys. 134, 3717 (1986)] speeds up simulations by 2-7 times relative to using ASG alone (besides greatly extending its scope of application), and between 1-2 orders of magnitude compared to direct orientational averaging in the absence of interpolation. Demonstrations of efficient spectral simulations are given for several magic-angle spinning scenarios in NMR, encompassing half-integer quadrupolar spins and homonuclear dipolar-coupled (13)C systems.

  2. Pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Ling-Ling; Hao, Hong-Xia

    2014-01-01

    The goal of pan-sharpening is to get an image with higher spatial resolution and better spectral information. However, the resolution of the pan-sharpened image is seriously affected by the thin clouds. For a single image, filtering algorithms are widely used to remove clouds. These kinds of methods can remove clouds effectively, but the detail lost in the cloud removal image is also serious. To solve this problem, a pan-sharpening algorithm to remove thin cloud via mask dodging and nonsampled shift-invariant shearlet transform (NSST) is proposed. For the low-resolution multispectral (LR MS) and high-resolution panchromatic images with thin clouds, a mask dodging method is used to remove clouds. For the cloud removal LR MS image, an adaptive principal component analysis transform is proposed to balance the spectral information and spatial resolution in the pan-sharpened image. Since the clouds removal process causes the detail loss problem, a weight matrix is designed to enhance the details of the cloud regions in the pan-sharpening process, but noncloud regions remain unchanged. And the details of the image are obtained by NSST. Experimental results over visible and evaluation metrics demonstrate that the proposed method can keep better spectral information and spatial resolution, especially for the images with thin clouds.

  3. Short time Fourier analysis of the electromyogram - Fast movements and constant contraction

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake; Lehman, Steven

    1986-01-01

    Short-time Fourier analysis was applied to surface electromyograms (EMG) recorded during rapid movements, and during isometric contractions at constant forces. A portion of the data to be transformed by multiplying the signal by a Hamming window was selected, and then the discrete Fourier transform was computed. Shifting the window along the data record, a new spectrum was computed each 10 ms. The transformed data were displayed in spectograms or 'voiceprints'. This short-time technique made it possible to see time-dependencies in the EMG that are normally averaged in the Fourier analysis of these signals. Spectra of EMGs during isometric contractions at constant force vary in the short (10-20 ms) term. Short-time spectra from EMGs recorded during rapid movements were much less variable. The windowing technique picked out the typical 'three-burst pattern' in EMG's from both wrist and head movements. Spectra during the bursts were more consistent than those during isometric contractions. Furthermore, there was a consistent shift in spectral statistics in the course of the three bursts. Both the center frequency and the variance of the spectral energy distribution grew from the first burst to the second burst in the same muscle. The analogy between EMGs and speech signals is extended to argue for future applicability of short-time spectral analysis of EMG.

  4. Speleothem stable isotope records for east-central Europe: resampling sedimentary proxy records to obtain evenly spaced time series with spectral guidance

    NASA Astrophysics Data System (ADS)

    Gábor Hatvani, István; Kern, Zoltán; Leél-Őssy, Szabolcs; Demény, Attila

    2018-01-01

    Uneven spacing is a common feature of sedimentary paleoclimate records, in many cases causing difficulties in the application of classical statistical and time series methods. Although special statistical tools do exist to assess unevenly spaced data directly, the transformation of such data into a temporally equidistant time series which may then be examined using commonly employed statistical tools remains, however, an unachieved goal. The present paper, therefore, introduces an approach to obtain evenly spaced time series (using cubic spline fitting) from unevenly spaced speleothem records with the application of a spectral guidance to avoid the spectral bias caused by interpolation and retain the original spectral characteristics of the data. The methodology was applied to stable carbon and oxygen isotope records derived from two stalagmites from the Baradla Cave (NE Hungary) dating back to the late 18th century. To show the benefit of the equally spaced records to climate studies, their coherence with climate parameters is explored using wavelet transform coherence and discussed. The obtained equally spaced time series are available at https://doi.org/10.1594/PANGAEA.875917.

  5. Calibrating AIS images using the surface as a reference

    NASA Technical Reports Server (NTRS)

    Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.

    1987-01-01

    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.

  6. Hyperspectral fundus imager

    NASA Astrophysics Data System (ADS)

    Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III

    2000-11-01

    A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.

  7. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy

    NASA Technical Reports Server (NTRS)

    Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.

    2000-01-01

    Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.

  8. Using the Cycloid as an Introduction to Transformations of "E" and "B" Fields

    ERIC Educational Resources Information Center

    Frodyma, Marc; Le, My Phuong

    2018-01-01

    The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require…

  9. A comparison of spectral decorrelation techniques and performance evaluation metrics for a wavelet-based, multispectral data compression algorithm

    NASA Technical Reports Server (NTRS)

    Matic, Roy M.; Mosley, Judith I.

    1994-01-01

    Future space-based, remote sensing systems will have data transmission requirements that exceed available downlinks necessitating the use of lossy compression techniques for multispectral data. In this paper, we describe several algorithms for lossy compression of multispectral data which combine spectral decorrelation techniques with an adaptive, wavelet-based, image compression algorithm to exploit both spectral and spatial correlation. We compare the performance of several different spectral decorrelation techniques including wavelet transformation in the spectral dimension. The performance of each technique is evaluated at compression ratios ranging from 4:1 to 16:1. Performance measures used are visual examination, conventional distortion measures, and multispectral classification results. We also introduce a family of distortion metrics that are designed to quantify and predict the effect of compression artifacts on multi spectral classification of the reconstructed data.

  10. Three-Component Reaction Discovery Enabled by Mass Spectrometry of Self-Assembled Monolayers

    PubMed Central

    Montavon, Timothy J.; Li, Jing; Cabrera-Pardo, Jaime R.; Mrksich, Milan; Kozmin, Sergey A.

    2011-01-01

    Multi-component reactions have been extensively employed in many areas of organic chemistry. Despite significant progress, the discovery of such enabling transformations remains challenging. Here, we present the development of a parallel, label-free reaction-discovery platform, which can be used for identification of new multi-component transformations. Our approach is based on the parallel mass spectrometric screening of interfacial chemical reactions on arrays of self-assembled monolayers. This strategy enabled the identification of a simple organic phosphine that can catalyze a previously unknown condensation of siloxy alkynes, aldehydes and amines to produce 3-hydroxy amides with high efficiency and diastereoselectivity. The reaction was further optimized using solution phase methods. PMID:22169871

  11. Optical computing using optical flip-flops in Fourier processors: use in matrix multiplication and discrete linear transforms.

    PubMed

    Ando, S; Sekine, S; Mita, M; Katsuo, S

    1989-12-15

    An architecture and the algorithms for matrix multiplication using optical flip-flops (OFFs) in optical processors are proposed based on residue arithmetic. The proposed system is capable of processing all elements of matrices in parallel utilizing the information retrieving ability of optical Fourier processors. The employment of OFFs enables bidirectional data flow leading to a simpler architecture and the burden of residue-to-decimal (or residue-to-binary) conversion to operation time can be largely reduced by processing all elements in parallel. The calculated characteristics of operation time suggest a promising use of the system in a real time 2-D linear transform.

  12. Classification of tree species based on longwave hyperspectral data from leaves, a case study for a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Harrison, D.; Rivard, B.; Sánchez-Azofeifa, A.

    2018-04-01

    Remote sensing of the environment has utilized the visible, near and short-wave infrared (IR) regions of the electromagnetic (EM) spectrum to characterize vegetation health, vigor and distribution. However, relatively little research has focused on the use of the longwave infrared (LWIR, 8.0-12.5 μm) region for studies of vegetation. In this study LWIR leaf reflectance spectra were collected in the wet seasons (May through December) of 2013 and 2014 from twenty-six tree species located in a high species diversity environment, a tropical dry forest in Costa Rica. A continuous wavelet transformation (CWT) was applied to all spectra to minimize noise and broad amplitude variations attributable to non-compositional effects. Species discrimination was then explored with Random Forest classification and accuracy improved was observed with preprocessing of reflectance spectra with continuous wavelet transformation. Species were found to share common spectral features that formed the basis for five spectral types that were corroborated with linear discriminate analysis. The source of most of the observed spectral features is attributed to cell wall or cuticle compounds (cellulose, cutin, matrix glycan, silica and oleanolic acid). Spectral types could be advantageous for the analysis of airborne hyperspectral data because cavity effects will lower the spectral contrast thus increasing the reliance of classification efforts on dominant spectral features. Spectral types specifically derived from leaf level data are expected to support the labeling of spectral classes derived from imagery. The results of this study and that of Ribeiro Da Luz (2006), Ribeiro Da Luz and Crowley (2007, 2010), Ullah et al. (2012) and Rock et al. (2016) have now illustrated success in tree species discrimination across a range of ecosystems using leaf-level spectral observations. With advances in LWIR sensors and concurrent improvements in their signal to noise, applications to large-scale species detection from airborne imagery appear feasible.

  13. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  14. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  15. Hyper-spectral image compression algorithm based on mixing transform of wave band grouping to eliminate redundancy

    NASA Astrophysics Data System (ADS)

    Xie, ChengJun; Xu, Lin

    2008-03-01

    This paper presents an algorithm based on mixing transform of wave band grouping to eliminate spectral redundancy, the algorithm adapts to the relativity difference between different frequency spectrum images, and still it works well when the band number is not the power of 2. Using non-boundary extension CDF(2,2)DWT and subtraction mixing transform to eliminate spectral redundancy, employing CDF(2,2)DWT to eliminate spatial redundancy and SPIHT+CABAC for compression coding, the experiment shows that a satisfied lossless compression result can be achieved. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, when the band number is not the power of 2, lossless compression result of this compression algorithm is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, Minimum Spanning Tree and Near Minimum Spanning Tree, on the average the compression ratio of this algorithm exceeds the above algorithms by 41%,37%,35%,29%,16%,10%,8% respectively; when the band number is the power of 2, for 128 frames of the image Canal, taking 8, 16 and 32 respectively as the number of one group for groupings based on different numbers, considering factors like compression storage complexity, the type of wave band and the compression effect, we suggest using 8 as the number of bands included in one group to achieve a better compression effect. The algorithm of this paper has priority in operation speed and hardware realization convenience.

  16. Combining the Hanning windowed interpolated FFT in both directions

    NASA Astrophysics Data System (ADS)

    Chen, Kui Fu; Li, Yan Feng

    2008-06-01

    The interpolated fast Fourier transform (IFFT) has been proposed as a way to eliminate the picket fence effect (PFE) of the fast Fourier transform. The modulus based IFFT, cited in most relevant references, makes use of only the 1st and 2nd highest spectral lines. An approach using three principal spectral lines is proposed. This new approach combines both directions of the complex spectrum based IFFT with the Hanning window. The optimal weight to minimize the estimation variance is established on the first order Taylor series expansion of noise interference. A numerical simulation is carried out, and the results are compared with the Cramer-Rao bound. It is demonstrated that the proposed approach has a lower estimation variance than the two-spectral-line approach. The improvement depends on the extent of sampling deviating from the coherent condition, and the best is decreasing variance by 2/7. However, it is also shown that the estimation variance of the windowed IFFT with the Hanning is significantly higher than that of without windowing.

  17. Fourier transform spectrometer for spectral emissivity measurement in the temperature range between 60 and 1500°C

    NASA Astrophysics Data System (ADS)

    Dai, Jingmin; Wang, Xinbei; Yuan, Guibin

    2005-01-01

    A new spectral emissivity measurement system has been developed at Harbin Institute of Technology (HIT) by using a Fourier transform infrared (FTIR) spectrometer. The spectral range between 0.6 and 25 µm was covered by a photovoltaic HgCdTe and a silicon photodiode detector. A SiC heater with a black hole was employed for heating the sample. The temperature of the sample can be controlled in a range between 60 and 1500°C with an error of less than 1°C. The system was calibrated against two high quality reference blackbodies: a low temperature heat-pipe blackbody operated in the temperature range between 60°C and 300°C and a high temperature blackbody with SiC heater operated in the temperature range between 300°C and 1500°C. Several tests were done for this new system. The estimated uncertainty of emissivity measurement is better than 3%.

  18. Spectral analysis of epicardial 60-lead electrograms in dogs with 4-week-old myocardial infarction.

    PubMed

    Hosoya, Y; Ikeda, K; Komatsu, T; Yamaki, M; Kubota, I

    2001-01-01

    There were few studies on the spectral analysis of multiple-lead epicardial electrograms in chronic myocardial infarction. Spectral analysis of multi-lead epicardial electrograms was performed in 6 sham-operated dogs (N group) and 8 dogs with 4-week-old myocardial infarction (MI group). Four weeks after the ligation of left anterior descending coronary artery, fast Fourier transform was performed on 60-lead epicardial electrograms, and then inverse transform was performed on 5 frequency ranges from 0 to 250 Hz. From the QRS onset to QRS offset, the time integration of unsigned value of reconstructed waveform was calculated and displayed as AQRS maps. On 0-25 Hz AQRS map, there was no significant difference between the 2 groups. In the frequency ranges of 25-250 Hz, MI group had significantly smaller AQRS values than N group solely in the infarct zone. It was shown that high frequency potentials (25-250 Hz) within QRS complex were reduced in the infarct zone.

  19. Spectral analysis method and sample generation for real time visualization of speech

    NASA Astrophysics Data System (ADS)

    Hobohm, Klaus

    A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.

  20. Determination of carotid disease with the application of STFT and CWT methods.

    PubMed

    Hardalaç, Firat; Yildirim, Hanefi; Serhatlioğlu, Selami

    2007-06-01

    In this study, Doppler signals were recorded from the output of carotid arteries of 40 subjects and transferred to a personal computer (PC) by using a 16-bit sound card. Doppler difference frequencies were recorded from each of the subjects, and then analyzed by using short-time Fourier transform (STFT) and the continuous wavelet transform (CWT) methods to obtain their sonograms. These sonograms were then used to determine the relationships of applied methods with medical conditions. The sonograms that were obtained by CWT method gave better results for spectral resolution than the STFT method. The sonograms of CWT method offer net envelope and better imaging, so that the measurement of blood flow and brain pressure can be made more accurately. Simultaneously, receiver operating characteristic (ROC) analysis has been conducted for this study and the estimation performance of the spectral resolution for the STFT and CTW has been obtained. The STFT has shown a 80.45% success for the spectral resolution while CTW has shown a 89.90% success.

  1. Association of spectral development patterns with development stages of corn

    NASA Technical Reports Server (NTRS)

    Crist, E. P. (Principal Investigator)

    1982-01-01

    Association is made between the development stages of corn as defined by Hanway and the temporal-spectral development pattern of corn in a transformed data space derived from Landsat-MSS band reflectance values, using field-collected reflectance and associated data. Results indicate that the spectral vegetation index used (a reflectance equivalent of Tasseled Cap Greenness) reaches a maximum well before the stage at which corn is expected to achieve its peak leaf area index. Possible physiological and canopy geometry related causes for this and other results are presented.

  2. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    NASA Astrophysics Data System (ADS)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  3. Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency

    NASA Astrophysics Data System (ADS)

    Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed

    2016-03-01

    Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  4. AZTEC. Parallel Iterative method Software for Solving Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.; Shadid, J.; Tuminaro, R.

    1995-07-01

    AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less

  5. Application of CRAFT in two-dimensional NMR data processing.

    PubMed

    Krishnamurthy, Krish; Sefler, Andrea M; Russell, David J

    2017-03-01

    Two-dimensional (2D) data are typically truncated in both dimensions, but invariably and severely so in the indirect dimension. These truncated FIDs and/or interferograms are extensively zero filled, and Fourier transformation of such zero-filled data is always preceded by a rapidly decaying apodization function. Hence, the frequency line width in the spectrum (at least parallel to the evolution dimension) is almost always dominated by the apodization function. Such apodization-driven line broadening in the indirect (t 1 ) dimension leads to the lack of clear resolution of cross peaks in the 2D spectrum. Time-domain analysis (i.e. extraction of frequency, amplitudes, line width, and phase parameters directly from the FID, in this case via Bayesian modeling into a tabular format) of NMR data is another approach for spectral resonance characterization and quantification. The recently published complete reduction to amplitude frequency table (CRAFT) technique converts the raw FID data (i.e. time-domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. CRAFT analyses of time-domain data require minimal or no apodization prior to extraction of the four parameters. We used the CRAFT processing approach for the decimation of the interferograms and compared the results from a variety of 2D spectra against conventional processing with and without linear prediction. The results show that use of the CRAFT technique to decimate the t 1 interferograms yields much narrower spectral line width of the resonances, circumventing the loss of resolution due to apodization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Exploiting Vector and Multicore Parallelsim for Recursive, Data- and Task-Parallel Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Bin; Krishnamoorthy, Sriram; Agrawal, Kunal

    Modern hardware contains parallel execution resources that are well-suited for data-parallelism-vector units-and task parallelism-multicores. However, most work on parallel scheduling focuses on one type of hardware or the other. In this work, we present a scheduling framework that allows for a unified treatment of task- and data-parallelism. Our key insight is an abstraction, task blocks, that uniformly handles data-parallel iterations and task-parallel tasks, allowing them to be scheduled on vector units or executed independently as multicores. Our framework allows us to define schedulers that can dynamically select between executing task- blocks on vector units or multicores. We show that thesemore » schedulers are asymptotically optimal, and deliver the maximum amount of parallelism available in computation trees. To evaluate our schedulers, we develop program transformations that can convert mixed data- and task-parallel pro- grams into task block-based programs. Using a prototype instantiation of our scheduling framework, we show that, on an 8-core system, we can simultaneously exploit vector and multicore parallelism to achieve 14×-108× speedup over sequential baselines.« less

  7. Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Shi, Yanjun

    A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less

  8. Parallelization of ARC3D with Computer-Aided Tools

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang; Hribar, Michelle; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A series of efforts have been devoted to investigating methods of porting and parallelizing applications quickly and efficiently for new architectures, such as the SCSI Origin 2000 and Cray T3E. This report presents the parallelization of a CFD application, ARC3D, using the computer-aided tools, Cesspools. Steps of parallelizing this code and requirements of achieving better performance are discussed. The generated parallel version has achieved reasonably well performance, for example, having a speedup of 30 for 36 Cray T3E processors. However, this performance could not be obtained without modification of the original serial code. It is suggested that in many cases improving serial code and performing necessary code transformations are important parts for the automated parallelization process although user intervention in many of these parts are still necessary. Nevertheless, development and improvement of useful software tools, such as Cesspools, can help trim down many tedious parallelization details and improve the processing efficiency.

  9. Delineating gas bearing reservoir by using spectral decomposition attribute: Case study of Steenkool formation, Bintuni Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Pradana, G. S.; Riyanto, A.

    2017-07-01

    Tectonic setting of the Bird Head Papua Island becomes an important model for petroleum system in Eastern part of Indonesia. The current exploration has been started since the oil seepage finding in Bintuni and Salawati Basin. The biogenic gas in shallow layer turns out to become an interesting issue in the hydrocarbon exploration. The hydrocarbon accumulation appearance in a shallow layer with dry gas type, appeal biogenic gas for further research. This paper aims at delineating the sweet spot hydrocarbon potential in shallow layer by applying the spectral decomposition technique. The spectral decomposition is decomposing the seismic signal into an individual frequency, which has significant geological meaning. One of spectral decomposition methods is Continuous Wavelet Transform (CWT), which transforms the seismic signal into individual time and frequency simultaneously. This method is able to make easier time-frequency map analysis. When time resolution increases, the frequency resolution will be decreased, and vice versa. In this study, we perform low-frequency shadow zone analysis in which the amplitude anomaly at a low frequency of 15 Hz was observed and we then compare it to the amplitude at the mid (20 Hz) and the high-frequency (30 Hz). The appearance of the amplitude anomaly at a low frequency was disappeared at high frequency, this anomaly disappears. The spectral decomposition by using CWT algorithm has been successfully applied to delineate the sweet spot zone.

  10. The Application of Hilbert-Huang Transforms to Meteorological Datasets

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    2003-01-01

    Recently a new spectral technique as been developed for the analysis of aperiodic and nonlinear signals - the Hilbert-Huang transform. This paper shows how these transforms can be used to discover synoptic and climatic features: For sea level data, the transforms capture the oceanic tides as well as large, aperiodic river outflows. In the case of solar radiation, we observe variations in the diurnal and seasonal cycles. Finally, from barographic data, the Hilbert-Huang transform reveals the passage of extratropical cyclones, fronts, and troughs. Thus, this technique can flag significant weather events such its a flood or the passage of a squall line.

  11. Sensitivity Analysis for CO2 Retrieval using GOSAT-2 FTS-2 Simulator

    NASA Astrophysics Data System (ADS)

    Kamei, Akihide; Yoshida, Yukio; Dupuy, Eric; Yokota, Yasuhiro; Hiraki, Kaduo; Matsunaga, Tsuneo

    2015-04-01

    The Greenhouse Gases Observing Satellite (GOSAT), launched in 2009, is the world's first satellite dedicated to global greenhouse gases observation. GOSAT-2, the successor mission to GOSAT, is scheduled for launch in early 2018. The Fourier Transform Spectrometer-2 (FTS-2) is the primary sensor onboard GOSAT-2. It observes infrared light reflected and emitted from the Earth's surface and atmosphere. The FTS-2 obtains high resolution spectra using three bands in the near to short-wavelength infrared (SWIR) region and two bands in the thermal infrared (TIR) region. Column amounts and vertical profiles of carbon dioxide (CO2) and methane (CH4) are retrieved from the radiance spectra obtained with the SWIR and TIR bands, respectively. Further, compared to the FTS onboard the GOSAT, the FTS-2 has several improvements: 1) added spectral coverage in the SWIR region for carbon monoxide (CO) retrieval, 2) increased signal-to-noise ratio (SNR) for all bands, 3) extended range of along-track pointing angles for sunglint observations, 4) intelligent pointing to avoid cloud contamination. Since 2012, we have been developing a simulator software to simulate the spectral radiance data that will be acquired by the GOSAT-2 FTS-2. The purpose of the GOSAT-2 FTS-2 simulator is to analyze/optimize data with respect to the sensor specification, the parameters for Level 1 processing, and the improvement of the Level 2 algorithms. The GOSAT-2 FTS-2 simulator includes the six components: 1) overall control, 2) sensor carrying platform, 3) spectral radiance calculation, 4) Fourier Transform module, 5) Level 1B (L1B) processing, and 6) L1B data output. It has been installed on the GOSAT Research Computation Facility (GOSAT RCF), which is a high-performance and energy-efficient supercomputer. More realistic and faster simulations have been made possible by the improvement of the details of sensor characteristics, the sophistication of the data processing and algorithms, the addition of the various observing modes including calibration observation, the use of surface and atmospheric ancillary data for radiative transfer calculation, and the speed-up and parallelization of the radiative transfer code. We will summarize the current status and the future plans in the development of the GOSAT-2 FTS-2 simulator. We will also demonstrate the reproduction of GOSAT FTS L1B data and present the sensitivity analysis relating to the engineering parameters, the aerosols and clouds, and so on, on the Level 1 processing for CO2 retrieval using latest version of the GOSAT-2 FTS-2 simulator.

  12. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    USDA-ARS?s Scientific Manuscript database

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  13. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    NASA Astrophysics Data System (ADS)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  14. Spectral Reconstruction Based on Svm for Cross Calibration

    NASA Astrophysics Data System (ADS)

    Gao, H.; Ma, Y.; Liu, W.; He, H.

    2017-05-01

    Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  15. Name that tune: Melodic recognition by songbirds.

    PubMed

    Templeton, Christopher N

    2016-12-01

    Recent findings have indicated that European starlings perceive overall spectral shape and use this, rather than absolute pitch or timbre, to generalize between similar melodic progressions. This finding highlights yet another parallel between human and avian vocal communication systems and has many biological implications.

  16. Higher order spectra and their use in digital communication signal estimation

    NASA Astrophysics Data System (ADS)

    Yayci, Cihat

    1995-03-01

    This thesis compared the detection ability of the spectrogram, the 1-1/2D instantaneous power spectrum (l-1/2D(sub ips)), the bispectrum, and outer product (dyadic) representation for digitally modulated signals corrupted by additive white Gaussian noise. Four detection schemes were tried on noise free BPSK, QPSK, FSK, and OOK signals using different transform lengths. After determining the optimum transform length, each test signal is corrupted by additive white Gaussian noise. Different SNR levels were used to determine the lowest SNR level at which the message or the modulation type could be extracted. The optimal transform length was found to be the symbol duration when processing BPSK, OOK, and FSK via the spectrogram, the 1-1/2D(sub ips) or the bispectrum method. The best transform size for QPSK was half of the symbol length. For the outer product (dyadic) spectral representation, the best transform size was four times larger than the symbol length. For all processing techniques, with the exception of the other product representation, the minimum detectable SNR is about 15 dB for BPSK, FSK, and OOK signals and about 20 dB for QPSK signals. For the outer product spectral method, these values tend to be about 10 dB lower.

  17. Acoustic Signal Processing in Photorefractive Optical Systems.

    NASA Astrophysics Data System (ADS)

    Zhou, Gan

    This thesis discusses applications of the photorefractive effect in the context of acoustic signal processing. The devices and systems presented here illustrate the ideas and optical principles involved in holographic processing of acoustic information. The interest in optical processing stems from the similarities between holographic optical systems and contemporary models for massively parallel computation, in particular, neural networks. An initial step in acoustic processing is the transformation of acoustic signals into relevant optical forms. A fiber-optic transducer with photorefractive readout transforms acoustic signals into optical images corresponding to their short-time spectrum. The device analyzes complex sound signals and interfaces them with conventional optical correlators. The transducer consists of 130 multimode optical fibers sampling the spectral range of 100 Hz to 5 kHz logarithmically. A physical model of the human cochlea can help us understand some characteristics of human acoustic transduction and signal representation. We construct a life-sized cochlear model using elastic membranes coupled with two fluid-filled chambers, and use a photorefractive novelty filter to investigate its response. The detection sensitivity is determined to be 0.3 angstroms per root Hz at 2 kHz. Qualitative agreement is found between the model response and physiological data. Delay lines map time-domain signals into space -domain and permit holographic processing of temporal information. A parallel optical delay line using dynamic beam coupling in a rotating photorefractive crystal is presented. We experimentally demonstrate a 64 channel device with 0.5 seconds of time-delay and 167 Hz bandwidth. Acoustic signal recognition is described in a photorefractive system implementing the time-delay neural network model. The system consists of a photorefractive optical delay-line and a holographic correlator programmed in a LiNbO_3 crystal. We demonstrate the recognition of synthesized chirps as well as spoken words. A photorefractive ring resonator containing an optical delay line can learn temporal information through self-organization. We experimentally investigate a system that learns by itself and picks out the most-frequently -presented signals from the input. We also give results demonstrating the separation of two orthogonal temporal signals into two competing ring resonators.

  18. Using the Cycloid as an Introduction to Transformations of E and B Fields

    NASA Astrophysics Data System (ADS)

    Frodyma, Marc; Le, My Phuong

    2018-05-01

    The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require the full apparatus of Lorentz contraction and Lorentz transformation of forces, they are often postponed until the upper-division undergraduate electrodynamics course.

  19. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  20. Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2003-01-01

    A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.

  1. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  2. Image reconstruction from cone-beam projections with attenuation correction

    NASA Astrophysics Data System (ADS)

    Weng, Yi

    1997-07-01

    In single photon emission computered tomography (SPECT) imaging, photon attenuation within the body is a major factor contributing to the quantitative inaccuracy in measuring the distribution of radioactivity. Cone-beam SPECT provides improved sensitivity for imaging small organs. This thesis extends the results for 2D parallel- beam and fan-beam geometry to 3D parallel-beam and cone- beam geometries in order to derive filtered backprojection reconstruction algorithms for the 3D exponential parallel-beam transform and for the exponential cone-beam transform with sampling on a sphere. An exact inversion formula for the 3D exponential parallel-beam transform is obtained and is extended to the 3D exponential cone-beam transform. Sampling on a sphere is not useful clinically and current cone-beam tomography, with the focal point traversing a planar orbit, does not acquire sufficient data to give an accurate reconstruction. Thus a data acquisition method that obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix that surrounds the patient was developed. First, an implementation of Grangeat's algorithm for helical cone- beam projections was developed without attenuation correction. A fast new rebinning scheme was developed that uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. In the case of attenuation no theorem analogous to Tuy's has been proven. We hypothesized that an artifact-free reconstruction could be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. Cone-beam emission data were acquired by using a circle- and-line and a helix orbit on a clinical SPECT system. An iterative conjugate gradient reconstruction algorithm was used to reconstruct projection data with a known attenuation map. The quantitative accuracy of the attenuation-corrected emission reconstruction was significantly improved.

  3. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  4. Spectral behavior of wheat yield variety trials

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.

    1981-01-01

    Little variation between varieties is seen at jointing, but the variability is found to increase during grain filling and decline again at maturity. No relationship is found between spectral response and yield, and when yields are segregated into various classes the spectral response is the same. Spring and winter nurseries are found to separate during the reproductive stage because of differences in dates of heading and maturity, but they exhibit similar spectral responses. The transformed normalized difference is at a minimum after the maximum grain weight occurs and the leaves begin to brown and fall off. These data of 100% ground cover demonstrate that it is not possible to predict grain yield from only spectral data. This, however, may not apply when reduced yields are caused by less-than-full ground cover

  5. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    PubMed Central

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  6. A portable 12-wavelength parallel near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer during neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Burger, William R.; Zhou, Mingwei; Pogue, Brian W.; Paulsen, Keith D.; Jiang, Shudong

    2017-02-01

    A portable, 12-wavelength hybrid frequency domain (FD) and continuous wave (CW) near-infrared spectral tomography (NIRST) system was developed for efficient characterization of breast cancer in a clinical oncology setting. Two sets of three FD and three CW measurements were acquired simultaneously. The imaging time was reduced from 90 to 55 seconds with a new gain adjustment scheme of the optical detector. The study of integrating this system into the workflow of clinical oncology practice is ongoing.

  7. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    NASA Astrophysics Data System (ADS)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  8. [Research on identification of species of fruit trees by spectral analysis].

    PubMed

    Xing, Dong-Xing; Chang, Qing-Rui

    2009-07-01

    Using the spectral reflectance data (R2) of canopies, the present paper identifies seven species of fruit trees bearing fruit in the fruit mature period. Firstly, it compares the fruit tree species identification capability of six kinds of satellite sensors and four kinds of vegetation index through re-sampling the spectral data with six kinds of pre-defined filter function and the related data processing of calculating vegetation indexes. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R(lambda) and optimizing the model parameters. The main conclusions are: (1) the order of the identification capability of the six kinds of satellite sensors from strong to weak is: MODIS, ASTER, ETM+, HRG, QUICKBIRD and IKONOS; (2) among the four kinds of vegetation indexes, the identification capability of RVI is the most powerful, the next is NDVI, while the identification capability of SAVI or DVI is relatively weak; (3) The identification capability of RVI and NDVI calculated with the reflectance of near-infrared and red channels of ETM+ or MODIS sensor is relatively powerful; (4) Among R(lambda) and its 22 kinds of transformation data, d1 [log(1/R(lambda))](derivative gap is set 9 nm) is the best transformation for structuring BP neural network model; (5) The paper structures a 3-layer BP neural network model for identifying seven species of fruit trees using the best transformation of R(lambda) which is d1 [log(1/R(lambda))](derivative gap is set 9 nm).

  9. Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.

    2008-06-01

    We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.

  10. Interactive Spectral Analysis and Computation (ISAAC)

    NASA Technical Reports Server (NTRS)

    Lytle, D. M.

    1992-01-01

    Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.

  11. Signature extraction of ocean pollutants by eigenvector transformation of remote spectra

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1978-01-01

    Spectral signatures of suspended matter in the ocean are being extracted through characteristic vector analysis of remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor). Spectral signatures appear to be obtainable through analyses of 'linear' clusters that appear on scatter diagrams associated with eigenvectors. Signatures associated with acid waste, sewage sludge, oil, and algae are presented. The application of vector analysis to two acid waste dumps overflown two years apart is examined in some detail. The relationships between eigenvectors and spectral signatures for these examples are analyzed. These cases demonstrate the value of characteristic vector analysis in remotely identifying pollutants in the ocean and in determining the consistency of their spectral signatures.

  12. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    PubMed

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress and the prognosis for performing atomic spectral-product calculations more generally and efficiently.

  13. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  14. GIFTS SM EDU Data Processing and Algorithms

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Johnson, David G.; Reisse, Robert A.; Gazarik, Michael J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration stage. The calibration procedures can be subdivided into three stages. In the pre-calibration stage, a phase correction algorithm is applied to the decimated and filtered complex interferogram. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected blackbody reference spectra. In the radiometric calibration stage, we first compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. During the post-processing stage, we estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. We then implement a correction scheme that compensates for the effect of fore-optics offsets. Finally, for off-axis pixels, the FPA off-axis effects correction is performed. To estimate the performance of the entire FPA, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation.

  15. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  16. Procedures for dealing with certain types of noise and systematic errors common to many Hadamard transform optical systems

    NASA Technical Reports Server (NTRS)

    Harwit, M.

    1977-01-01

    Sources of noise and error correcting procedures characteristic of Hadamard transform optical systems were investigated. Reduction of spectral noise due to noise spikes in the data, the effect of random errors, the relative performance of Fourier and Hadamard transform spectrometers operated under identical detector-noise-limited conditions, and systematic means for dealing with mask defects are among the topics discussed. The distortion in Hadamard transform optical instruments caused by moving Masks, incorrect mask alignment, missing measurements, and diffraction is analyzed and techniques for reducing or eliminating this distortion are described.

  17. [Fast determination of induction period of motor gasoline using Fourier transform attenuated total reflection infrared spectroscopy].

    PubMed

    Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin

    2014-11-01

    A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing fast determination of gasoline induction period, and of a positive meaning in the evaluation of fuel quality.

  18. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen

    2014-02-01

    High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.

  19. An experimental system for spectral line ratio measurements in the TJ-II stellarator.

    PubMed

    Zurro, B; Baciero, A; Fontdecaba, J M; Peláez, R; Jiménez-Rey, D

    2008-10-01

    The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C(5+) 5290 A and C(4+) 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

  20. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  1. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2009-09-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  2. Fourier transform spectra of quantum dots

    NASA Astrophysics Data System (ADS)

    Damian, V.; Ardelean, I.; Armăşelu, Anca; Apostol, D.

    2010-05-01

    Semiconductor quantum dots are nanometer-sized crystals with unique photochemical and photophysical properties that are not available from either isolated molecules or bulk solids. These nanocrystals absorb light over a very broad spectral range as compared to molecular fluorophores which have very narrow excitation spectra. High-quality QDs are proper to be use in different biological and medical applications (as fluorescent labels, the cancer treatment and the drug delivery). In this article, we discuss Fourier transform visible spectroscopy of commercial quantum dots. We reveal that QDs produced by Evident Technologies when are enlightened by laser or luminescent diode light provides a spectral shift of their fluorescence spectra correlated to exciting emission wavelengths, as shown by the ARCspectroNIR Fourier Transform Spectrometer. In the final part of this paper we show an important biological application of CdSe/ZnS core-shell ODs as microbial labeling both for pure cultures of cyanobacteria (Synechocystis PCC 6803) and for mixed cultures of phototrophic and heterotrophic microorganisms.

  3. FPGA design of correlation-based pattern recognition

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.

  4. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  5. Use of parallel computing for analyzing big data in EEG studies of ambiguous perception

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Grubov, Vadim V.; Kirsanov, Daniil V.

    2018-02-01

    Problem of interaction between human and machine systems through the neuro-interfaces (or brain-computer interfaces) is an urgent task which requires analysis of large amount of neurophysiological EEG data. In present paper we consider the methods of parallel computing as one of the most powerful tools for processing experimental data in real-time with respect to multichannel structure of EEG. In this context we demonstrate the application of parallel computing for the estimation of the spectral properties of multichannel EEG signals, associated with the visual perception. Using CUDA C library we run wavelet-based algorithm on GPUs and show possibility for detection of specific patterns in multichannel set of EEG data in real-time.

  6. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  7. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2012-02-01

    This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis. In conclusion, the image processing methods used can provide cost-effective information to discover possible locations of porphyry copper and epithermal gold mineralization prior to detailed and costly ground investigations. The extraction of spectral information from ASTER data can produce comprehensive and accurate information for copper and gold resource investigations around the world, including those yet to be discovered.

  8. Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms

    NASA Astrophysics Data System (ADS)

    Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru

    2007-10-01

    Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.

  9. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    PubMed

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  10. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  11. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  12. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  13. Canopy reflectance related to marsh dieback onset and progression in Coastal Louisiana

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, A.

    2006-01-01

    In this study, we extended previous work linking leaf spectral changes, dieback onset, and progression of Spartina alterniflora marshes to changes in site-specific canopy reflectance spectra. First, we obtained canopy reflectance spectra (approximately 20 m ground resolution) from the marsh sites occupied during the leaf spectral analyses and from additional sites exhibiting visual signs of dieback. Subsequently, the canopy spectra were analyzed at two spectral scales: the first scale corresponded to whole-spectra sensors, such as the NASA Earth Observing-1 (EO-1) Hyperion, and the second scale corresponded to broadband spectral sensors, such as the EO-1 Advanced Land Imager and the Landsat Enhanced Thematic Mapper. In the whole-spectra analysis, spectral indicators were generated from the whole canopy spectra (about 400 nm to 1,000 nm) by extracting typical dead and healthy marsh spectra, and subsequently using them to determine the percent composition of all canopy reflectance spectra. Percent compositions were then used to classify canopy spectra at each field site into groups exhibiting similar levels of dieback progression ranging from relatively healthy to completely dead. In the broadband reflectance analysis, blue, green, red, red-edge, and near infrared (NIR) spectral bands and NIR/green and NIR/red transforms were extracted from the canopy spectra. Spectral band and band transform indicators of marsh dieback and progression were generated by relating them to marsh status indicators derived from classifications of the 35 mm slides collected at the same time as the canopy reflectance recordings. The whole spectra and broadband spectral indicators were both able to distinguish (a) healthy marsh, (b) live marsh impacted by dieback, and (c) dead marsh, and they both provided some discrimination of dieback progression. Whole-spectra resolution sensors like the EO-1 Hyperion, however, offered an enhanced ability to categorize dieback progression. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  14. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  15. Determination of statistics for any rotation of axes of a bivariate normal elliptical distribution. [of wind vector components

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Crutcher, H. L.

    1976-01-01

    Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.

  16. Parallel processing for digital picture comparison

    NASA Technical Reports Server (NTRS)

    Cheng, H. D.; Kou, L. T.

    1987-01-01

    In picture processing an important problem is to identify two digital pictures of the same scene taken under different lighting conditions. This kind of problem can be found in remote sensing, satellite signal processing and the related areas. The identification can be done by transforming the gray levels so that the gray level histograms of the two pictures are closely matched. The transformation problem can be solved by using the packing method. Researchers propose a VLSI architecture consisting of m x n processing elements with extensive parallel and pipelining computation capabilities to speed up the transformation with the time complexity 0(max(m,n)), where m and n are the numbers of the gray levels of the input picture and the reference picture respectively. If using uniprocessor and a dynamic programming algorithm, the time complexity will be 0(m(3)xn). The algorithm partition problem, as an important issue in VLSI design, is discussed. Verification of the proposed architecture is also given.

  17. A near-infrared Fourier transform Raman spectroscopy of epidermal keratinocytes: changes in the protein?DNA structure following malignant transformation

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoling; Butler, Ian S.; Kremer, Richard

    2005-01-01

    We report here the use of near-infrared (NIR) Fourier transform (FT) Raman spectroscopy to analyze normal human epidermal keratinocytes prior to and following malignant transformation. Our analysis indicates specific Raman spectral differences between immortalized (HPK1A) and malignant ras transformed (HPK1A- ras) cells. In addition, striking spectral differences are seen in the DNA isolated from these cells and particularly in the 843/810 cm -1 ratio with values of 1.6 ± 0.13 in HPK1A cells and 0.68 ± 0.09 in HPK1A- ras cells (mean ± S.D., n = 12, P < 0.001) indicating specific alterations in the backbone conformation markers following malignant transformation. Subsequently, we analysed the effect of a strong inhibitor of keratinocyte growth, the Vitamin D analog EB1089, on the Raman spectra of intact cells and on the 843/810 cm -1 ratio in the DNA isolated from both cell lines. Specific changes were observed in intact cells in the 1300-750 cm -1 region. Furthermore, the 843/810cm -1 ratio of isolated DNA from HPK1A cells was not affected by EB1089 but significantly increased in DNA isolated from HPK1A-ras cells so much that it became closer to the value observed for HPK1A cells (1.07 ± 0.10). Our data suggest that Raman analysis of DNA and in particular the 843/810cm -1 ratio can provide useful indices of malignant transformation and efficacy of anticancer agents.

  18. Paleo-productivity changes revealed by spectral analysis performed on coccoliths assemblages

    NASA Astrophysics Data System (ADS)

    Palumbo, Eliana; Ornella Amore, Filomena; Perugia, Carmen

    2010-05-01

    Several climate changes occurred over geological time at different time-scales. Spectral analyses performed on paleo-climate data suggested that these cyclicities verify irregularly into time-space domain. Paleo-climate oscillations occur with high or low frequencies dues to the oscillation of the major orbital parameters (characterized by low frequencies and high period) and some minor high-frequencies events. During last years, analyses on frequencies domain have been performed also on coccoliths assemblages. Coccolithophores are a special phytoplankton group living today at all latitude regions within the photic zone (0-200 m of depth) (Winter & Siesser, 1994). They are sensitive indicators of environmental conditions because they directly depend on temperature, salinity and nutrients as well as the availability of sunlight (McIntyre and Bé, 1967; Giradeau et al., 1993; Winter & Siesser, 1994; Baumann & Freitag, 2004). Therefore coccolithophores quickly respond to fluctuations in climate as well as changes in surface-water conditions (Baumann & Freitag, 2004). Thus coccoliths can be clearly used as paleo-climate data because of their power of recordering and amplifying climatic change signals. In addition, primary productivity depends on the amount of insolation received by Earth surface. In this study Sun insolation has been calculated in terms of intensity and energy, in order to compare them with maximum productivity activity. Precession controls sun intensity insolation, while the energy is controlled by obliquity. Thus, the intensity depends on the duration of the insolation,while the energy is connected to the amount of insolation (Berger, 1978; Loutre et al., 2004; Huybers, 2006). In this study, spectral analyses have been performed on coccoliths data with the result of individuating high and low frequencies content in productivity signals. Auto-spectral and cross-spectral analyses have been performed through Matlab software using several available functions plus a new function created in order to evaluate cross-wavelet power spectra. Auto-spectral analysis aims to describe the distribution of variance contained in each single signal over frequency or wavelength, while cross-spectral analysis correlates two time series in the frequency domain (Trauth, 2009). We have performed spectral analyses using the complex Fourier transform and the Short time Fourier transform. Both the transforms lose any kind of time information in transforming the signal from time to frequency domain (Jenkins and Watt, 1968). These transforms don't allow us to individuate when an event occurred in the past. In order to overcome this limit we have also applied Wavelet analysis which represents frequency content of a signal over the time thus it allows us to visualize when an event occurred into time domain (Torrence and Compo, 1998; Prokoph and El Bilali, 2008; Grinsted et al., 2004). Moreover we have performed a simple cross and a cross-spectral analysis between different proxy groups to discover their possible correlations into time and frequency domains. References. Berger, A., 1978. J. Atmos. Sc., 35 (12): 2362-2367. Baumann, K.-H., and Freitag, T., 2004. Marine Micropaleontology 52: 195-215. Giraudeau, J., Monteiro, P.M.S., Nikodemus, K., 1993. Mar. Micropalaeontol. 22: 93- 110. Grinsted, A., Moore, J. C., and Jevrejeva, S., 2004. Nonlinear Processes in Geophysics 11: 561-566. Huybers, P., 2006. Science 313: 508-511. Jenkins, G. M., and Watt, D. G., 1968. Holden Day, pp. 410, Oakland. Loutre, M. F., Paillard, D., Vimeux, F., and Cortijo, E., 2004. Earth Planet. Sci. Lett., 221, 1-14. McIntyre, A., and Bè, A.H.W., 1967. Deep-Sea Res. 14, pp. 561-597. Prokoph, A., and El Bilali, H., 2008. Math Geosciences 40: 575-586. Torrence, C., and Compo, G. P., 1998. Bulletin of American Meteorological Society 79:61-78. Trauth, M.H., 2009. Springer 288 p. Winter, A., and Siesser, W., 1994. Cambridge University Press 242 p.

  19. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments

    PubMed Central

    D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg

    2017-01-01

    The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral–Symbiodinium association across steep environmental gradients. PMID:28679724

  20. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments.

    PubMed

    Smith, Edward G; D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg

    2017-07-12

    The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral- Symbiodinium association across steep environmental gradients. © 2017 The Authors.

  1. Phase-sensitive spectral estimation by the hybrid filter diagonalization method.

    PubMed

    Celik, Hasan; Ridge, Clark D; Shaka, A J

    2012-01-01

    A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.

  2. Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent

    Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less

  3. Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach

    DOE PAGES

    Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...

    2017-03-01

    Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less

  4. Resampling algorithm for the Spatial Infrared Imaging Telescope (SPIRIT III) Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Sargent, Steven D.; Greenman, Mark E.; Hansen, Scott M.

    1998-11-01

    The Spatial Infrared Imaging Telescope (SPIRIT III) is the primary sensor aboard the Midcourse Space Experiment (MSX), which was launched 24 April 1996. SPIRIT III included a Fourier transform spectrometer that collected terrestrial and celestial background phenomenology data for the Ballistic Missile Defense Organization (BMDO). This spectrometer used a helium-neon reference laser to measure the optical path difference (OPD) in the spectrometer and to command the analog-to-digital conversion of the infrared detector signals, thereby ensuring the data were sampled at precise increments of OPD. Spectrometer data must be sampled at accurate increments of OPD to optimize the spectral resolution and spectral position of the transformed spectra. Unfortunately, a failure in the power supply preregulator at the MSX spacecraft/SPIRIT III interface early in the mission forced the spectrometer to be operated without the reference laser until a failure investigation was completed. During this time data were collected in a backup mode that used an electronic clock to sample the data. These data were sampled evenly in time, and because the scan velocity varied, at nonuniform increments of OPD. The scan velocity profile depended on scan direction and scan length, and varied over time, greatly degrading the spectral resolution and spectral and radiometric accuracy of the measurements. The Convert software used to process the SPIRIT III data was modified to resample the clock-sampled data at even increments of OPD, using scan velocity profiles determined from ground and on-orbit data, greatly improving the quality of the clock-sampled data. This paper presents the resampling algorithm, the characterization of the scan velocity profiles, and the results of applying the resampling algorithm to on-orbit data.

  5. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  6. Spread Spectrum Signal Characteristic Estimation Using Exponential Averaging and an AD-HOC Chip rate Estimator

    DTIC Science & Technology

    2007-03-01

    Quadrature QPSK Quadrature Phase-Shift Keying RV Random Variable SHAC Single-Hop-Observation Auto- Correlation SINR Signal-to-Interference...The fast Fourier transform ( FFT ) accumulation method and the strip spectral correlation algorithm subdivide the support region in the bi-frequency...diamond shapes, while the strip spectral correlation algorithm subdivides the region into strips. Each strip covers a number of the FFT accumulation

  7. The distribution of spectral index of magnetic field and ion velocity in Pi2 frequency band in BBFs: THEMIS statistics

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Du, A. M.; Volwerk, M.; Wang, G. Q.

    2016-09-01

    A statistical study of the THEMIS FGM and ESA data is performed on turbulence of magnetic field and velocity for 218 selected 12 min intervals in BBFs. The spectral index α in the frequency range of 0.005-0.06 Hz are Gaussian distributions. The peaks indexes of total ion velocity Vi and parallel velocity V‖ are 1.95 and 2.07 nearly the spectral index of intermittent low frequency turbulence with large amplitude. However, most probable α of perpendicular velocity V⊥ is about 1.75. It is a little bigger than 5/3 of Kolmogorov (1941). The peak indexes of total magnetic field BT is 1.70 similar to V⊥. Compression magnetic field B‖ are 1.85 which is smaller than 2 and bigger than 5/3 of Kolmogorov (1941). The most probable spectral index of shear B⊥ is about 1.44 which is close to 3/2 of Kraichnan (1965). Max V⊥ have little effect on the power magnitude of VT and V‖ but is positively correlated to spectral index of V⊥. The spectral power of BT, B‖ and B⊥ increase with max perpendicular velocity but spectral indexes of them are negatively correlated to V⊥. The spectral index and the spectral power of magnetic field over the frequency interval 0.005-0.06 Hz is very different from that over 0.08-1 Hz.

  8. Multispectral scanner system parameter study and analysis software system description, volume 2

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.

    1978-01-01

    The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.

  9. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

    PubMed

    Celej, María Soledad; Sarroukh, Rabia; Goormaghtigh, Erik; Fidelio, Gerardo D; Ruysschaert, Jean-Marie; Raussens, Vincent

    2012-05-01

    Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.

  10. Damage Detection in Composite Structures with Wavenumber Array Data Processing

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.

  11. [The Study on the Far-FTIR and THz Spectra of Azitromycin Drugs with Different Physical Forms].

    PubMed

    Yang, Yu-ping; Fan, Li-jie; Cui, Bin; Chen, Gen-xiang; Zhang, Zhen-wei; Zhang, Cun-lin

    2015-11-01

    Far Fourier transform infrared spectroscopy (Far-FTIR) and terahertz time-domain spectroscopy (THz-TDS) were used to measure the fingerprint spectra of Azitromycin suspension, capsule, tablet and dispersible tablet under vacuum and nitrogen conditions, respectively. In the frequency range of 0.2-15 THz, highly resolved spectral features for Azitromycin suspension were measured and some minor differences were observed between domestic and exotic Azitromycin Suspension, such as linewidth broadening and additional peaks. As same time, for the domestic Azitromycin capsule, tablet and dispersible tablet, the absorption baselines in the range of 0.2-2.7 THz rise with the increase of frequency while absorption peaks become weaker due to the scattering of bigger particles and smaller amount of Azitromycin. Also, the additional peaks are caused by the absorption of filling materials. In parallel with the qualitative measurement, the THz absorption spectra for mixtures of polyethylene (PE) powders and exotic Azithomycin suspension with different concentrations were also measured. According to the linear correlation between the concentration and the absorption intensity, the concentration of effective component can be evaluated accurately. This means that THz-TDS method is suitable for the quality inspection and evaluation of the mixed Azithromycin system.

  12. "Drinking Deeply with Delight": An Investigation of Transformative Images in Isaiah 1 and 65-66

    ERIC Educational Resources Information Center

    Radford, Peter

    2016-01-01

    This project examines the images used in the beginning and ending chapters of Isaiah. The purpose of this project is to trace the transformation of specific images from their introduction in Isaiah 1 to their re-interpretation in Isaiah 65-66. While this analysis uses the verbal parallels (shared vocabulary) as a starting point, the present…

  13. The application of the piecewise linear approximation to the spectral neighborhood of soil line for the analysis of the quality of normalization of remote sensing materials

    NASA Astrophysics Data System (ADS)

    Kulyanitsa, A. L.; Rukhovich, A. D.; Rukhovich, D. D.; Koroleva, P. V.; Rukhovich, D. I.; Simakova, M. S.

    2017-04-01

    The concept of soil line can be to describe the temporal distribution of spectral characteristics of the bare soil surface. In this case, the soil line can be referred to as the multi-temporal soil line, or simply temporal soil line (TSL). In order to create TSL for 8000 regular lattice points for the territory of three regions of Tula oblast, we used 34 Landsat images obtained in the period from 1985 to 2014 after their certain transformation. As Landsat images are the matrices of the values of spectral brightness, this transformation is the normalization of matrices. There are several methods of normalization that move, rotate, and scale the spectral plane. In our study, we applied the method of piecewise linear approximation to the spectral neighborhood of soil line in order to assess the quality of normalization mathematically. This approach allowed us to range normalization methods according to their quality as follows: classic normalization > successive application of the turn and shift > successive application of the atmospheric correction and shift > atmospheric correction > shift > turn > raw data. The normalized data allowed us to create the maps of the distribution of a and b coefficients of the TSL. The map of b coefficient is characterized by the high correlation with the ground-truth data obtained from 1899 soil pits described during the soil surveys performed by the local institute for land management (GIPROZEM).

  14. Signal noise ratio analysis and on-orbit performance estimation of a solar occultation Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Bicen; Xu, Pengmei; Hou, Lizhou; Wang, Caiqin

    2017-10-01

    Taking the advantages of high spectral resolution, high sensitivity and wide spectral coverage, space borne Fourier transform infrared spectrometer (FTS) plays more and more important role in atmospheric composition sounding. The combination of solar occultation and FTS technique improves the sensitivity of instrument. To achieve both high spectral resolution and high signal to noise ratio (SNR), reasonable allocation and optimization for instrument parameters are the foundation and difficulty. The solar occultation FTS (SOFTS) is a high spectral resolution (0.03 cm-1) FTS operating from 2.4 to 13.3 μm (750-4100cm-1), which will determine the altitude profile information of typical 10-100km for temperature, pressure, and the volume mixing ratios for several dozens of atmospheric compositions. As key performance of SOFTS, SNR is crucially important to high accuracy retrieval of atmospheric composition, which is required to be no less than 100:1 at the radiance of 5800K blackbody. Based on the study of various parameters and its interacting principle, according to interference theory and operation principle of time modulated FTS, a simulation model of FTS SNR has been built, which considers satellite orbit, spectral radiometric features of sun and atmospheric composition, optical system, interferometer and its control system, measurement duration, detector sensitivity, noise of detector and electronic system and so on. According to the testing results of SNR at the illuminating of 1000 blackbody, the on-orbit SNR performance of SOFTS is estimated, which can meet the mission requirement.

  15. High-resolution Fourier transform synchrotron spectroscopy of the C-S stretching band of methyl mercaptan, CH332SH

    NASA Astrophysics Data System (ADS)

    Lees, R. M.; Xu, Li-Hong; Billinghurst, B. E.

    2016-01-01

    The C-S stretching fundamental band of 12CH332SH, the principal isotopologue of methyl mercaptan, has been investigated by Fourier transform infrared spectroscopy on the Far-Infrared beamline at the Canadian Light Source synchrotron. The band is centered around 710 cm-1 and shows well-resolved a-type parallel structure. Most of the A and E spectral sub-bands have been assigned up to K = 12 for the vt = 0 torsional state and K = 9 for the vt = 1 state, along with a smaller variety of sub-bands for vt = 2. C-S stretching energy term values have been determined employing known ground-state energies, and have been fitted to series expansions in powers of J(J + 1) to determine the substate origins. The origins have in turn been fitted to a Fourier model to characterize the oscillatory torsional energy structure of the C-S stretching state. The amplitude of oscillation of the vt = 0 torsional curves is significantly larger for the C-S stretch state compared to the ground state. A strategy devised to relate this amplitude to an effective torsional barrier height indicates a decrease of about 7% in the effective V3 for the C-S stretch. The vibrational frequency determined for the stretching fundamental from the Fourier fit is 710.3 cm-1. The C-S stretching manifold is crossed by excited vt = 4 torsional levels of the ground state, and strong torsion-vibrational resonant coupling is observed via perturbations in the spectrum together with forbidden sub-bands induced by mixing and intensity borrowing.

  16. Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2010-08-01

    Transform faults at mid-ocean ridges—one of the most striking, yet enigmatic features of terrestrial plate tectonics—are considered to be the inherited product of preexisting fault structures. Ridge offsets along these faults therefore should remain constant with time. Here, numerical models suggest that transform faults are actively developing and result from dynamical instability of constructive plate boundaries, irrespective of previous structure. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Fracture-related rheological weakening stabilizes ridge-parallel detachment faults. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps.

  17. Fractional-order Fourier analysis for ultrashort pulse characterization.

    PubMed

    Brunel, Marc; Coetmellec, Sébastien; Lelek, Mickael; Louradour, Frédéric

    2007-06-01

    We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fractional-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces.

  18. Mapping accuracy via spectrally and structurally based filtering techniques: comparisons through visual observations

    NASA Astrophysics Data System (ADS)

    Chockalingam, Letchumanan

    2005-01-01

    The data of Gunung Ledang region of Malaysia acquired through LANDSAT are considered to map certain hydrogeolocial features. To map these significant features, image-processing tools such as contrast enhancement, edge detection techniques are employed. The advantages of these techniques over the other methods are evaluated from the point of their validity in properly isolating features of hydrogeolocial interest are discussed. As these techniques take the advantage of spectral aspects of the images, these techniques have several limitations to meet the objectives. To discuss these limitations, a morphological transformation, which generally considers the structural aspects rather than spectral aspects from the image, are applied to provide comparisons between the results derived from spectral based and the structural based filtering techniques.

  19. Optical design of the ATMOS Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Abel, I. R.; Reynolds, B. R.; Breckinridge, J. B.; Pritchard, J.

    1979-01-01

    The optical system design of the ATMOS Fourier transform spectrometer to be operated from Spacelab for the measurement of stratospheric trace molecules is described. The design contains features which can achieve the required fringe contrast of 80% and spectral resolution of 0.02/cm over a spectral range of 2-16 microns. In particular, the design is based on the following features which alleviate the usual requirements for alignment precision: (1) 'cat's eye' mirror configuration in the two arms of the interferometer for retroreflection stability, (2) tilt-compensated system of beamsplitter, compensator, and fold mirrors for wavefront directional stability, (3) paraboloidal 'cat's eye' primary mirror for wavefront stability against shear, (4) rotatable compensator for matching chromatic dispersion, and (5) wedged refractive components to avoid channel spectra due to the Fabry-Perot effect.

  20. Détection des transitions lithologiques par l'analyse de la composante fractale des diagraphies par transformée continue en ondelettes

    NASA Astrophysics Data System (ADS)

    Zaourar, Naima; Hamoudi, Mohamed; Briqueu, Louis

    2006-06-01

    The frequency analysis of many log data permits to verify that their stochastic component show 'power-law-type' spectral densities, characteristic of 1/f noise. They can be modelled by fractional Brownian motions. Continuous Wavelet Transformation (CWT) provides us with very efficient methods to determine the local spectral exponents of these scaling laws. These new attributes are related to the local fractality of these signals. We first present some theoretical results and an application to a fractional Brownian motion. The second application concerns a dataset recorded in the MAR203 borehole. We show that clustering of these new pseudo-logs leads to a good resolution between different lithofacies. To cite this article: N. Zaourar et al., C. R. Geoscience 338 (2006).

  1. An Archive of Spectra from the Mayall Fourier Transform Spectrometer at Kitt Peak

    NASA Astrophysics Data System (ADS)

    Pilachowski, C. A.; Hinkle, K. H.; Young, M. D.; Dennis, H. B.; Gopu, A.; Henschel, R.; Hayashi, S.

    2017-02-01

    We describe the SpArc science gateway for spectral data obtained using the Fourier Transform Spectrometer (FTS) in operation at the Mayall 4-m telescope at the Kitt Peak National Observatory during the period from 1975 through 1995. SpArc is hosted by Indiana University Bloomington and is available for public access. The archive includes nearly 10,000 individual spectra of more than 800 different astronomical sources including stars, nebulae, galaxies, and solar system objects. We briefly describe the FTS instrument itself and summarize the conversion of the original interferograms into spectral data and the process for recovering the data into FITS files. The architecture of the archive is discussed and the process for retrieving data from the archive is introduced. Sample use cases showing typical FTS spectra are presented.

  2. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  3. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    NASA Astrophysics Data System (ADS)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  5. Multi-objective based spectral unmixing for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei

    2017-02-01

    Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.

  6. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  7. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms.

  8. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  9. Efficient implementation of parallel three-dimensional FFT on clusters of PCs

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke

    2003-05-01

    In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.

  10. Optical Hilbert transform using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ge, Jing; Wang, Chinhua; Zhu, Xiaojun

    2010-11-01

    In this paper, we demonstrate that a simple and practical phase-shifted fiber Bragg grating (PSFBG) operated in reflection can provide the required spectral response for implementing an all-optical Hilbert transformer (HT), including both integer and fractional orders. The PSFBG consists of two concatenated identical uniform FBGs with a phase shift between them. It can be proved that the phase shift of the FBG and the apodizing profile of the refractive index modulation determine the order of the transform. The device shows a good accuracy in calculating the Hilbert transform of the complex field of an arbitrary input optical waveforms when compared with the theoretical results.

  11. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael W.; Berk, Alexander; Bernstein, Lawrence S.; Lee, Jamine; Fox, Marsha

    2012-11-01

    Remotely sensed spectral imagery of the earth's surface can be used to fullest advantage when the influence of the atmosphere has been removed and the measurements are reduced to units of reflectance. Here, we provide a comprehensive summary of the latest version of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes atmospheric correction algorithm. We also report some new code improvements for speed and accuracy. These include the re-working of the original algorithm in C-language code parallelized with message passing interface and containing a new radiative transfer look-up table option, which replaces executions of the MODTRAN model. With computation times now as low as ~10 s per image per computer processor, automated, real-time, on-board atmospheric correction of hyper- and multi-spectral imagery is within reach.

  12. Aircraft Engine Noise Scattering - A Discontinuous Spectral Element Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2002-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. Our approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Largescale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic con.guration, with and without a wing.

  13. On Holo-Hilbert Spectral Analysis: A Full Informational Spectral Representation for Nonlinear and Non-Stationary Data

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Huang; Peng, Chung Kang; hide

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert-Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time- frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and nonstationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.

  14. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    PubMed Central

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities. PMID:26953180

  15. Modification of kaolinite surfaces through mechanochemical activation with quartz: A diffuse reflectance infrared fourier transform and chemometrics study.

    PubMed

    Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva

    2006-12-01

    Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.

  16. An object-oriented approach to nested data parallelism

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.; Chatterjee, Siddhartha

    1994-01-01

    This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.

  17. Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets.

    PubMed

    Stilp, Christian E; Alexander, Joshua M; Kiefte, Michael; Kluender, Keith R

    2010-02-01

    Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds-extensively edited samples produced by a French horn and a tenor saxophone-following either resynthesized speech or a short passage of music. Preceding contexts were "colored" by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color.

  18. Broadening and collisional interference of lines in the IR spectra of ammonia. Theory

    NASA Astrophysics Data System (ADS)

    Cherkasov, M. R.

    2016-06-01

    The general theory of relaxation spectral shape parameters in the impact approximation (M. R. Cherkasov, J. Quant. Spectrosc. Radiat. Transfer 141, 73 (2014)) is adapted to the case of line broadening of infrared spectra of ammonia. Specific features of line broadening of parallel and perpendicular bands are discussed. It is shown that in both cases the spectrum consists of independently broadened singlets and doublets; however, the components of doublets can be affected by collisional interference. The paper is the first part of a cycle of studies devoted to the problems of spectral line broadening of ammonia.

  19. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    PubMed Central

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-01-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters. PMID:27181496

  20. A Review of Maximum Entropy Spectral Analysis and Applications to Fourier Spectroscopy.

    DTIC Science & Technology

    1985-04-03

    1 From Pythagoras to Fourier 3 2. 2 The Periodogram as Introduced by Sir Arthur Schuster 6 2. 3 The Slutzky Effect and the Work of Yule 7 2.4 The...Transform 27 4. 2 The Z-Transform Convolution Theorem 29 4. 3 The Wiener -Khintchmne , Theorem 31 4.4 The Z-Transform of el. 3 5. A COMPARISON BETWEEN...the Convolution I’heoreni, the Wiene i-Khintrbitte Theorem , aind the conventional ;pp roach of Il1ac km in and Tuke-,. Finally, it should he

Top