Innovative Language-Based & Object-Oriented Structured AMR Using Fortran 90 and OpenMP
NASA Technical Reports Server (NTRS)
Norton, C.; Balsara, D.
1999-01-01
Parallel adaptive mesh refinement (AMR) is an important numerical technique that leads to the efficient solution of many physical and engineering problems. In this paper, we describe how AMR programing can be performed in an object-oreinted way using the modern aspects of Fortran 90 combined with the parallelization features of OpenMP.
Multiscale Simulations of Magnetic Island Coalescence
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2010-01-01
We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.
An object-oriented approach for parallel self adaptive mesh refinement on block structured grids
NASA Technical Reports Server (NTRS)
Lemke, Max; Witsch, Kristian; Quinlan, Daniel
1993-01-01
Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.
Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR
NASA Astrophysics Data System (ADS)
Carroll-Nellenback, Jonathan J.; Shroyer, Brandon; Frank, Adam; Ding, Chen
2013-03-01
Current adaptive mesh refinement (AMR) simulations require algorithms that are highly parallelized and manage memory efficiently. As compute engines grow larger, AMR simulations will require algorithms that achieve new levels of efficient parallelization and memory management. We have attempted to employ new techniques to achieve both of these goals. Patch or grid based AMR often employs ghost cells to decouple the hyperbolic advances of each grid on a given refinement level. This decoupling allows each grid to be advanced independently. In AstroBEAR we utilize this independence by threading the grid advances on each level with preference going to the finer level grids. This allows for global load balancing instead of level by level load balancing and allows for greater parallelization across both physical space and AMR level. Threading of level advances can also improve performance by interleaving communication with computation, especially in deep simulations with many levels of refinement. While we see improvements of up to 30% on deep simulations run on a few cores, the speedup is typically more modest (5-20%) for larger scale simulations. To improve memory management we have employed a distributed tree algorithm that requires processors to only store and communicate local sections of the AMR tree structure with neighboring processors. Using this distributed approach we are able to get reasonable scaling efficiency (>80%) out to 12288 cores and up to 8 levels of AMR - independent of the use of threading.
Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy
2006-01-01
This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Parallel deterministic neutronics with AMR in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C.; Ferguson, J.; Hendrickson, C.
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species.
Baker, Kate S; Dallman, Timothy J; Field, Nigel; Childs, Tristan; Mitchell, Holly; Day, Martin; Weill, François-Xavier; Lefèvre, Sophie; Tourdjman, Mathieu; Hughes, Gwenda; Jenkins, Claire; Thomson, Nicholas
2018-04-13
Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.
GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid
NASA Astrophysics Data System (ADS)
Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua
2016-10-01
A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clough, Katy; Figueras, Pau; Finkel, Hal
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. Wemore » show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.« less
AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven
Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less
High Performance Fortran for Aerospace Applications
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.
NASA Astrophysics Data System (ADS)
Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.
2013-10-01
The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrnstein, Aaron R.
An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations
NASA Astrophysics Data System (ADS)
Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.
2012-09-01
Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.
A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh
A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less
A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator
Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub Mehdizadeh; ...
2017-10-25
A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizationsmore » has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. Here, the DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.« less
A numerical analysis of a magnetocaloric refrigerator with a 16-layer regenerator.
Zhang, Mingkan; Abdelaziz, Omar; Momen, Ayyoub M; Abu-Heiba, Ahmad
2017-10-25
A numerical analysis was conducted to study a room temperature magnetocaloric refrigerator with a 16-layer parallel plates active magnetic regenerator (AMR). Sixteen layers of LaFeMnSiH having different Curie temperatures were employed as magnetocaloric material (MCM) in the regenerator. Measured properties data was used. A transient one dimensional (1D) model was employed, in which a unique numerical method was developed to significantly accelerate the simulation speed of the multi-layer AMR system. As a result, the computation speed of a multi-layer AMR case was very close to the single-layer configuration. The performance of the 16-layer AMR system in different frequencies and utilizations has been investigated using this model. To optimize the layer length distribution of the 16-layer MCMs in the regenerator, a set of 137 simulations with different MCM distributions based on the Design of Experiments (DoE) method was conducted and the results were analyzed. The results show that the 16-layer AMR system can operate up to 84% of Carnot cycle COP at a temperature span of 41 K, which cannot be obtained using an AMR with fewer layers. The DoE results indicate that for a 16-layer AMR system, the uniform distribution is very close to the optimized design.
Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators.
Singer, Andrew C; Shaw, Helen; Rhodes, Vicki; Hart, Alwyn
2016-01-01
The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England's regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed.
Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators
Singer, Andrew C.; Shaw, Helen; Rhodes, Vicki; Hart, Alwyn
2016-01-01
The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed. PMID:27847505
Developing parallel GeoFEST(P) using the PYRAMID AMR library
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Tisdale, Robert E.
2004-01-01
The PYRAMID parallel unstructured adaptive mesh refinement (AMR) library has been coupled with the GeoFEST geophysical finite element simulation tool to support parallel active tectonics simulations. Specifically, we have demonstrated modeling of coseismic and postseismic surface displacement due to a simulated Earthquake for the Landers system of interacting faults in Southern California. The new software demonstrated a 25-times resolution improvement and a 4-times reduction in time to solution over the sequential baseline milestone case. Simulations on workstations using a few tens of thousands of stress displacement finite elements can now be expanded to multiple millions of elements with greater than 98% scaled efficiency on various parallel platforms over many hundreds of processors. Our most recent work has demonstrated that we can dynamically adapt the computational grid as stress grows on a fault. In this paper, we will describe the major issues and challenges associated with coupling these two programs to create GeoFEST(P). Performance and visualization results will also be described.
A User's Guide to AMR1D: An Instructional Adaptive Mesh Refinement Code for Unstructured Grids
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda
1996-01-01
This report documents the code AMR1D, which is currently posted on the World Wide Web (http://sdcd.gsfc.nasa.gov/ESS/exchange/contrib/de-fainchtein/adaptive _mesh_refinement.html). AMR1D is a one-dimensional finite element fluid-dynamics solver, capable of adaptive mesh refinement (AMR). It was written as an instructional tool for AMR on unstructured mesh codes. It is meant to illustrate the minimum requirements for AMR on more than one dimension. For that purpose, it uses the same type of data structure that would be necessary on a two-dimensional AMR code (loosely following the algorithm described by Lohner).
Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver
NASA Astrophysics Data System (ADS)
Kestener, Pierre
2017-10-01
RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.
A new parallelization scheme for adaptive mesh refinement
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...
2016-05-06
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
A new parallelization scheme for adaptive mesh refinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.
Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less
Magnetohydrodynamics with GAMER
NASA Astrophysics Data System (ADS)
Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong
2018-06-01
GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.
Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, N D; Kaiser, T B; Anderson, R W
2009-09-28
ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.
TORUS: Radiation transport and hydrodynamics code
NASA Astrophysics Data System (ADS)
Harries, Tim
2014-04-01
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
Antimicrobial resistance in South East Asia: time to ask the right questions.
Kakkar, Manish; Chatterjee, Pranab; Chauhan, Abhimanyu Singh; Grace, Delia; Lindahl, Johanna; Beeche, Arlyne; Jing, Fang; Chotinan, Suwit
2018-01-01
Antimicrobial resistance (AMR) has emerged as a major public health concern, around which the international leadership has come together to form strategic partnerships and action plans. The main driving force behind the emergence of AMR is selection pressure created due to consumption of antibiotics. Consumption of antibiotics in human as well as animal sectors are driven by a complex interplay of determinants, many of which are typical to the local settings. Several sensitive and essential realities are tied with antibiotic consumption - food security, livelihoods, poverty alleviation, healthcare access and national economies, to name a few. That makes one-size-fits-all policies, framed with the developed country context in mind, inappropriate for developing countries. Many countries in the South East Asian Region have some policy structures in place to deal with AMR, but most of them lack detailed implementation plans or monitoring structures. In this current debates piece, the authors argue that the principles driving the AMR agenda in the South East Asian countries need to be dealt with using locally relevant policy structures. Strategies, which have successfully reduced the burden of AMR in the developed countries, should be evaluated in the developing country contexts instead of ad hoc implementation. The Global Action Plan on AMR encourages member states to develop locally relevant National Action Plans on AMR. This policy position should be leveraged to develop and deploy locally relevant strategies, which are based on a situation analysis of the local systems, and are likely to meet the needs of the individual member states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Inmyong; Park, Jiho; Jeong, Sangkwon
2014-01-29
An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael
2007-07-01
One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.
Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.
2011-01-01
We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
Statins: antimicrobial resistance breakers or makers?
Lareu, Ricky R.; Dix, Brett R.; Hughes, Jeffery D.
2017-01-01
Introduction The repurposing of non-antibiotic drugs as adjuvant antibiotics may help break antimicrobial resistance (AMR). Statins are commonly prescribed worldwide to lower cholesterol. They also possess qualities of AMR “breakers”, namely direct antibacterial activity, synergism with antibiotics, and ability to stimulate the host immune system. However, statins’ role as AMR breakers may be limited. Their current extensive use for cardiovascular protection might result in selective pressures for resistance, ironically causing statins to be AMR “makers” instead. This review examines statins’ potential as AMR breakers, probable AMR makers, and identifies knowledge gaps in a statin-bacteria-human-environment continuum. The most suitable statin for repurposing is identified, and a mechanism of antibacterial action is postulated based on structure-activity relationship analysis. Methods A literature search using keywords “statin” or “statins” combined with “minimum inhibitory concentration” (MIC) was performed in six databases on 7th April 2017. After screening 793 abstracts, 16 relevant studies were identified. Unrelated studies on drug interactions; antifungal or antiviral properties of statins; and antibacterial properties of mevastatin, cerivastatin, antibiotics, or natural products were excluded. Studies involving only statins currently registered for human use were included. Results Against Gram-positive bacteria, simvastatin generally exerted the greatest antibacterial activity (lowest MIC) compared to atorvastatin, rosuvastatin, and fluvastatin. Against Gram-negative bacteria, atorvastatin generally exhibited similar or slightly better activity compared to simvastatin, but both were more potent than rosuvastatin and fluvastatin. Discussion Statins may serve as AMR breakers by working synergistically with existing topical antibiotics, attenuating virulence factors, boosting human immunity, or aiding in wound healing. It is probable that statins’ mechanism of antibacterial activity involves interference of bacterial cell regulatory functions via binding and disrupting cell surface structures such as wall teichoic acids, lipoteichoic acids, lipopolysaccharides, and/or surface proteins. The widespread use of statins for cardiovascular protection may favor selective pressures or co-selection for resistance, including dysbiosis of the human gut microbiota, sublethal plasma concentrations in bacteremic patients, and statin persistence in the environment, all possibly culminating in AMR. Conclusion Simvastatin appears to be the most suitable statin for repurposing as a novel adjuvant antibiotic. Current evidence better supports statins as potential AMR breakers, but their role as plausible AMR makers cannot be excluded. Elucidating the mechanism of statins’ antibacterial activity is perhaps the most important knowledge gap to address as this will likely clarify statins’ role as AMR breakers or makers. PMID:29085751
Antimicrobial resistance: A global emerging threat to public health systems.
Ferri, Maurizio; Ranucci, Elena; Romagnoli, Paola; Giaccone, Valerio
2017-09-02
Antimicrobial resistance (AMR) became in the last two decades a global threat to public health systems in the world. Since the antibiotic era, with the discovery of the first antibiotics that provided consistent health benefits to human medicine, the misuse and abuse of antimicrobials in veterinary and human medicine have accelerated the growing worldwide phenomenon of AMR. This article presents an extensive overview of the epidemiology of AMR, with a focus on the link between food producing-animals and humans and on the legal framework and policies currently implemented at the EU level and globally. The ways of responding to the AMR challenges foresee an array of measures that include: designing more effective preventive measures at farm level to reduce the use of antimicrobials; development of novel antimicrobials; strengthening of AMR surveillance system in animal and human populations; better knowledge of the ecology of resistant bacteria and resistant genes; increased awareness of stakeholders on the prudent use of antibiotics in animal productions and clinical arena; and the public health and environmental consequences of AMR. Based on the global nature of AMR and considering that bacterial resistance does not recognize barriers and can spread to people and the environment, the article ends with specific recommendations structured around a holistic approach and targeted to different stakeholders.
Magnetosphere simulations with a high-performance 3D AMR MHD Code
NASA Astrophysics Data System (ADS)
Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul
1998-11-01
BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.
Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heatmore » transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.« less
Effect of a CoFeB layer on the anisotropic magnetoresistance of Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta films
NASA Astrophysics Data System (ADS)
Li, Minghua; Shi, Hui; Dong, Yuegang; Ding, Lei; Han, Gang; Zhang, Yao; Liu, Ye; Yu, Guanghua
2017-10-01
The anisotropic magnetoresistance (AMR) and magnetic properties of NiFe films can be remarkably enhanced via CoFeB layer. In the case of an ultrathin NiFe film having a Ta/CoFeB/MgO/NiFe/MgO/CoFeB/Ta structure, the CoFeB/MgO layers suppressed the formation of magnetic dead layers and the interdiffusions and interface reactions between the NiFe and Ta layers. The AMR reached a maximum value of 3.56% at 450 °C. More importantly, a single NiFe (1 1 1) peak can be formed resulting in higher AMR values for films having CoFeB layer. This enhanced AMR also originated from the significant specular reflection of electrons owing to the crystalline MgO layer, together with the sharp interfaces with the NiFe layer. These factors together resulted in higher AMR and improved magnetic properties.
Parallel Adjective High-Order CFD Simulations Characterizing SOFIA Cavity Acoustics
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak
2016-01-01
This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A temporally fourth-order accurate Runge-Kutta, and spatially fth-order accurate WENO- 5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.
Parallel Adaptive High-Order CFD Simulations Characterizing SOFIA Cavitiy Acoustics
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak
2015-01-01
This paper presents large-scale MPI-parallel computational uid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft fuselage of a Boeing 747SP. These simulations focus on how the unsteady ow eld inside and over the cavity interferes with the optical path and mounting structure of the telescope. A tempo- rally fourth-order accurate Runge-Kutta, and a spatially fth-order accurate WENO-5Z scheme were used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh re nement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32k CPU cores and 4 billion compu- tational cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregular numerical cost associated with blocks con- taining boundaries. Limits to scaling beyond 32k cores are identi ed, and targeted code optimizations are discussed.
Lopes, Ana C; Nunes, Urbano
2009-01-01
This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
Wu, Kaiyin; Budde, Klemens; Schmidt, Danilo; Neumayer, Hans-Hellmut; Lehner, Lukas; Bamoulid, Jamal; Rudolph, Birgit
2016-02-01
Antibody-mediated rejection (AMR) can induce and develop thrombotic microangiopathy (TMA) in renal allografts. A definitive AMR (dAMR) co-presents three diagnostic features. A suspicious AMR (sAMR) is designated when one of the three features is missing. Thirty-two TMA cases overlapping with AMR (AMR+ TMA) were studied, which involved 14 cases of sAMR+ TMA and 18 cases of dAMR+ TMA. Thirty TMA cases free of AMR features (AMR- TMA) were enrolled as control group. The ratio of complete response to treatment was similar between AMR- TMA and AMR+ TMA group (23.3% vs. 12.5%, p = 0.33), or between sAMR+ TMA and dAMR+ TMA group (14.3% vs. 11.1%, p = 0.79). At eight yr post-transplantation, the death-censored graft survival (DCGS) rate of AMR- TMA group was 62.8%, which was significantly higher than 28.0% of AMR+ TMA group (p = 0.01), but similar between sAMR+ TMA and dAMR+ TMA group (30.0% vs. 26.7%, p = 0.92). Overall, the intimal arteritis and the broad HLA (Human leukocyte antigens) mismatches were closely associated with over time renal allograft failure. The AMR+ TMA has inferior long-term graft survival, but grafts with sAMR+ TMA or dAMR+ TMA have similar characteristics and clinical courses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.L. McGregor
The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisionsmore » for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.« less
NASA Astrophysics Data System (ADS)
Angelidis, Dionysios; Sotiropoulos, Fotis
2015-11-01
The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.
Critical Discourse Analysis of Religious Sermons in Egypt--Case Study of Amr Khalid's Sermons
ERIC Educational Resources Information Center
Eldin, Ahmad Abdel Tawwab Sharaf
2014-01-01
This paper attempts to provide an ideological approach within a critical discourse analysis (CDA) in order to investigate the Islamic discourse and to trace the ideological devices in Amr Khalid's sermons. In so doing, this paper tries to show how language, employed in Khalid's sermons, reflects the common conceptual structures and…
CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database
Jia, Baofeng; Raphenya, Amogelang R.; Alcock, Brian; Waglechner, Nicholas; Guo, Peiyao; Tsang, Kara K.; Lago, Briony A.; Dave, Biren M.; Pereira, Sheldon; Sharma, Arjun N.; Doshi, Sachin; Courtot, Mélanie; Lo, Raymond; Williams, Laura E.; Frye, Jonathan G.; Elsayegh, Tariq; Sardar, Daim; Westman, Erin L.; Pawlowski, Andrew C.; Johnson, Timothy A.; Brinkman, Fiona S.L.; Wright, Gerard D.; McArthur, Andrew G.
2017-01-01
The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins and mutations involved in AMR. CARD is ontologically structured, model centric, and spans the breadth of AMR drug classes and resistance mechanisms, including intrinsic, mutation-driven and acquired resistance. It is built upon the Antibiotic Resistance Ontology (ARO), a custom built, interconnected and hierarchical controlled vocabulary allowing advanced data sharing and organization. Its design allows the development of novel genome analysis tools, such as the Resistance Gene Identifier (RGI) for resistome prediction from raw genome sequence. Recent improvements include extensive curation of additional reference sequences and mutations, development of a unique Model Ontology and accompanying AMR detection models to power sequence analysis, new visualization tools, and expansion of the RGI for detection of emergent AMR threats. CARD curation is updated monthly based on an interplay of manual literature curation, computational text mining, and genome analysis. PMID:27789705
Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement
NASA Astrophysics Data System (ADS)
Leng, W.; Zhong, S.
2008-12-01
In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].
An Adaptive Mesh Algorithm: Mesh Structure and Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Anthony J.
2016-06-21
The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.; Biswas, Rupak
2014-01-01
This paper presents one-of-a-kind MPI-parallel computational fluid dynamics simulations for the Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is an airborne, 2.5-meter infrared telescope mounted in an open cavity in the aft of a Boeing 747SP. These simulations focus on how the unsteady flow field inside and over the cavity interferes with the optical path and mounting of the telescope. A temporally fourth-order Runge-Kutta, and spatially fifth-order WENO-5Z scheme was used to perform implicit large eddy simulations. An immersed boundary method provides automated gridding for complex geometries and natural coupling to a block-structured Cartesian adaptive mesh refinement framework. Strong scaling studies using NASA's Pleiades supercomputer with up to 32,000 cores and 4 billion cells shows excellent scaling. Dynamic load balancing based on execution time on individual AMR blocks addresses irregularities caused by the highly complex geometry. Limits to scaling beyond 32K cores are identified, and targeted code optimizations are discussed.
Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Ahmad, Jasim U.
2012-01-01
Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.
NASA Technical Reports Server (NTRS)
Berger, Marsha J.; Saltzman, Jeff S.
1992-01-01
We describe the development of a structured adaptive mesh algorithm (AMR) for the Connection Machine-2 (CM-2). We develop a data layout scheme that preserves locality even for communication between fine and coarse grids. On 8K of a 32K machine we achieve performance slightly less than 1 CPU of the Cray Y-MP. We apply our algorithm to an inviscid compressible flow problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R W; Pember, R B; Elliott, N S
2001-10-22
A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less
Makino, Yoshinori; Watanabe, Michiko; Makihara, Reiko Ando; Nokihara, Hiroshi; Yamamoto, Noboru; Ohe, Yuichiro; Sugiyama, Erika; Sato, Hitoshi; Hayashi, Yoshikazu
2016-09-01
Limited sampling points for both amrubicin (AMR) and its active metabolite amrubicinol (AMR-OH) were simultaneously optimized using Akaike's information criterion (AIC) calculated by pharmacokinetic modeling. In this pharmacokinetic study, 40 mg/m(2) of AMR was administered as a 5-min infusion on three consecutive days to 21 Japanese lung cancer patients. Blood samples were taken at 0, 0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 h after drug infusion, and AMR and AMR-OH concentrations in plasma were quantitated using a high-performance liquid chromatography. The pharmacokinetic profile of AMR was characterized using a three-compartment model and that of AMR-OH using a one-compartment model following a first-order absorption process. These pharmacokinetic profiles were then integrated into one pharmacokinetic model for simultaneous fitting of AMR and AMR-OH. After fitting to the pharmacokinetic model, 65 combinations of four sampling points from the concentration profiles were evaluated for their AICs. Stepwise regression analysis was applied to select the sampling points for AMR and AMR-OH to predict the area under the concentration-time curves (AUCs) at best. Of the three combinations that yielded favorable AIC values, 0.25, 2, 4 and 8 h yielded the best AUC prediction for both AMR (R(2) = 0.977) and AMR-OH (R(2) = 0.886). The prediction error for AUC was less than 15%. The optimal limited sampling points of AMR and AMR-OH after AMR infusion were found to be 0.25, 2, 4 and 8 h, enabling less frequent blood sampling in further expanded pharmacokinetic studies for both AMR and AMR-OH. © 2016 John Wiley & Sons Australia, Ltd.
Mapping global policy discourse on antimicrobial resistance.
Wernli, Didier; Jørgensen, Peter S; Morel, Chantal M; Carroll, Scott; Harbarth, Stephan; Levrat, Nicolas; Pittet, Didier
2017-01-01
The rising importance of antimicrobial resistance (AMR) to the global health agenda is associated with a growing number of parties voicing their concern about the issue. With more recommendations and policies appearing, understanding the policy process requires making sense of the views, values, interests and goals of each participant. Policy frame analysis provides a method to understand both the scientific view and the actions advocated by global health actors to tackle AMR. Here we review and refine policy frame analyses of AMR using a deductive approach. Among several policy frames previously defined in the field of global health, we identify 'AMR as healthcare', 'AMR as development', 'AMR as innovation' and 'AMR as security' as frequent frames used in dealing with AMR. In addition, we found that 'AMR as One Health' constitutes a recent framing of the topic that seeks to provide an integrated understanding between human and animal health. Each frame originates in distinct scientific fields, conceptualises the main causes of AMR and prioritises different interventions and measurements. Better understanding and integration of these frames into an overarching social and ecological framework will support policy progress in tackling AMR.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches
NASA Astrophysics Data System (ADS)
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Jones, Christopher J.; Newsom, David; Kelly, Benjamin; Irie, Yasuhiko; Jennings, Laura K.; Xu, Binjie; Limoli, Dominique H.; Harrison, Joe J.; Parsek, Matthew R.; White, Peter; Wozniak, Daniel J.
2014-01-01
The transcription factor AmrZ regulates genes important for P. aeruginosa virulence, including type IV pili, extracellular polysaccharides, and the flagellum; however, the global effect of AmrZ on gene expression remains unknown, and therefore, AmrZ may directly regulate many additional genes that are crucial for infection. Compared to the wild type strain, a ΔamrZ mutant exhibits a rugose colony phenotype, which is commonly observed in variants that accumulate the intracellular second messenger cyclic diguanylate (c-di-GMP). Cyclic di-GMP is produced by diguanylate cyclases (DGC) and degraded by phosphodiesterases (PDE). We hypothesized that AmrZ limits the intracellular accumulation of c-di-GMP through transcriptional repression of gene(s) encoding a DGC. In support of this, we observed elevated c-di-GMP in the ΔamrZ mutant compared to the wild type strain. Consistent with other strains that accumulate c-di-GMP, when grown as a biofilm, the ΔamrZ mutant formed larger microcolonies than the wild-type strain. This enhanced biofilm formation was abrogated by expression of a PDE. To identify potential target DGCs, a ChIP-Seq was performed and identified regions of the genome that are bound by AmrZ. RNA-Seq experiments revealed the entire AmrZ regulon, and characterized AmrZ as an activator or repressor at each binding site. We identified an AmrZ-repressed DGC-encoding gene (PA4843) from this cohort, which we named AmrZ dependent cyclase A (adcA). PAO1 overexpressing adcA accumulates 29-fold more c-di-GMP than the wild type strain, confirming the cyclase activity of AdcA. In biofilm reactors, a ΔamrZ ΔadcA double mutant formed smaller microcolonies than the single ΔamrZ mutant, indicating adcA is responsible for the hyper biofilm phenotype of the ΔamrZ mutant. This study combined the techniques of ChIP-Seq and RNA-Seq to define the comprehensive regulon of a bifunctional transcriptional regulator. Moreover, we identified a c-di-GMP mediated mechanism for AmrZ regulation of biofilm formation and chronicity. PMID:24603766
Kesten, Joanna May; Bhattacharya, Alex; Ashiru-Oredope, Diane; Gobin, Maya; Audrey, Suzanne
2017-07-11
The Antibiotic Guardian Campaign was developed to increase commitment to reducing Antimicrobial Resistance (AMR), change behaviour and increase knowledge through an online pledge system for healthcare professionals and members of the public to become Antibiotic Guardians (AG). This qualitative evaluation aimed to understand AG experiences of the campaign and perceived impact on behaviour. Ninety-four AGs (48 via a survey and 46 who had agreed to future contact) were invited to participate in a telephone semi-structured interview. The sample was based on self-identification as a healthcare professional or a member of the public, pledge group (e.g. adults, primary care prescribers etc.), pledge and gender. Interviews explored how participants became aware of the campaign, reasons for joining, pledge choices, responses to joining and views about the campaign's implementation. Interviews were analysed using the Framework Method. Twenty-two AGs (10 healthcare professionals and 12 members of the public) were interviewed. AGs became aware of the campaign through professional networks and social media, and were motivated to join by personal and professional concern for AMR. Choice of pledge group and pledge were attributed to relevance and potential impact on AMR and the behaviour of others through pledge enactment and promotion of the campaign. Most AGs could not recall their pledge unprompted. Most felt they fulfilled their pledge, although this reflected either behaviour change or the pledge reinforcing pre-existing behaviour. The campaign triggered AGs to reflect on AMR related behaviour and reinforced pre-existing beliefs. Several AGs promoted the campaign to others. Responding collectively as part of the campaign was thought to have a greater impact than individual action. However, limited campaign visibility was observed and the campaign was perceived to have restricted ability to reach those unaware of AMR. AGs were motivated to reduce AMR and most felt they fulfilled their pledges although for many this appeared to be through reinforcement of existing behaviours. We recommend that the campaign engages those without pre-existing knowledge of AMR by increasing its visibility, capitalising on the diffusion of its message and including more awareness-raising content for those with limited AMR knowledge.
Echoes on the motor network: how internal motor control structures afford sensory experience.
Burgess, Jed D; Lum, Jarrad A G; Hohwy, Jakob; Enticott, Peter G
2017-12-01
Often, during daily experiences, hearing peers' actions can activate motor regions of the CNS. This activation is termed auditory-motor resonance (AMR) and is thought to represent an internal simulation of one's motor memories. Currently, AMR is demonstrated at the neuronal level in the Macaque and songbird, in conjunction with evidence on a systems level in humans. Here, we review evidence of AMR development from a motor control perspective. In the context of internal modelling, we consider data that demonstrates sensory-guided motor learning and action maintenance, particularly the notion of sensory comparison seen during songbird vocalisation. We suggest that these comparisons generate accurate sensory-to-motor inverse mappings. Furthermore, given reports of mapping decay after songbird learning, we highlight the proposal that the maintenance of these sensorimotor maps potentially explains why frontoparietal regions are activated upon hearing known sounds (i.e., AMR). In addition, we also recommend that activation of these types of internal models outside of action execution may provide an ecological advantage when encountering known stimuli in ambiguous conditions.
Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics
NASA Astrophysics Data System (ADS)
Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.
2006-06-01
Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.
Clerkin, Kevin J.; Restaino, Susan W.; Zorn, Emmanuel; Vasilescu, Elena R.; Marboe, Charles C.; Mancini, Donna M.
2017-01-01
Background Antibody mediated rejection (AMR) has been associated with increased mortality and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction while recent reports have demonstrated an association with increased mortality. We sought to investigate the timing of AMR and its association with graft dysfunction, mortality, and CAV. Methods This retrospective cohort study identified all adult heart transplant recipients at Columbia University Medical Center from 2004–2013 (689 patients). There were 68 primary cases of AMR, which were stratified by early (<1 year post-OHT) or late (>1-year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. Results From January 1, 2004 through October 1, 2015 43 patients had early AMR (median 23 days post-OHT) and 25 had late AMR (median 1084 days post-OHT). Graft dysfunction was less common with early compared with late AMR (25.6% vs. 56%, p=0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1-year 80% vs. 93%, 5-year 51% vs. 73%, p<0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30-day 79%, 1-year 64%, and 5-year 36%, p<0.006). The association remained irrespective of age, sex, DSA, LVAD use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de-novo CAV (50% at 1 year, HR 5.42, p=0.009), while all other groups were all similar to the general transplant population. Conclusion Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR there is an early and sustained increased risk of mortality and rapid development of de-novo CAV despite aggressive treatment. PMID:27423693
Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.
2010-01-01
AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902
Nhung, N. T.; Cuong, N. V.; Campbell, J.; Hoa, N. T.; Bryant, J. E.; Truc, V. N. T.; Kiet, B. T.; Jombart, T.; Trung, N. V.; Hien, V. B.; Thwaites, G.; Baker, S.
2014-01-01
In Mekong Delta farms (Vietnam), antimicrobials are extensively used, but limited data are available on levels of antimicrobial resistance (AMR) among Escherichia coli isolates. We performed a structured survey of AMR in E. coli isolates (n = 434) from 90 pig, chicken, and duck farms. The results were compared with AMR among E. coli isolates (n = 234) from 66 small wild animals (rats and shrews) trapped on farms and in forests and rice fields. The isolates were susceptibility tested against eight antimicrobials. E. coli isolates from farmed animals were resistant to a median of 4 (interquartile range [IQR], 3 to 6) antimicrobials versus 1 (IQR, 1 to 2) among wild mammal isolates (P < 0.001). The prevalences of AMR among farmed species isolates (versus wild animals) were as follows: tetracycline, 84.7% (versus 25.6%); ampicillin, 78.9% (versus 85.9%); trimethoprim-sulfamethoxazole, 52.1% (versus 18.8%); chloramphenicol, 39.9% (versus 22.5%); amoxicillin-clavulanic acid, 36.6% (versus 34.5%); and ciprofloxacin, 24.9% (versus 7.3%). The prevalence of multidrug resistance (MDR) (resistance against three or more antimicrobial classes) among pig isolates was 86.7% compared to 66.9 to 72.7% among poultry isolates. After adjusting for host species, MDR was ∼8 times greater among isolates from wild mammals trapped on farms than among those trapped in forests/rice fields (P < 0.001). Isolates were assigned to unique profiles representing their combinations of susceptibility results. Multivariable analysis of variance indicated that AMR profiles from wild mammals trapped on farms and those from domestic animals were more alike (R2 range, 0.14 to 0.30) than E. coli isolates from domestic animals and mammals trapped in the wild (R2 range, 0.25 to 0.45). The results strongly suggest that AMR on farms is a key driver of environmental AMR in the Mekong Delta. PMID:25398864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, A. C.; Bailey, D. S.; Kaiser, T. B.
2015-02-01
Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.
Donà, Valentina; Low, Nicola; Golparian, Daniel; Unemo, Magnus
2017-09-01
The number of genetic tests, mostly real-time PCRs, to detect antimicrobial resistance (AMR) determinants and predict AMR in Neisseria gonorrhoeae is increasing. Several of these assays are promising, but there are important shortcomings and few assays have been adequately validated and quality assured. Areas covered: Recent advances, focusing on publications since 2012, in the development and use of molecular tests to predict gonococcal AMR for surveillance and for clinical use, advantages and disadvantages of these tests and of molecular AMR prediction compared with phenotypic AMR testing, and future perspectives for effective use of molecular AMR tests for different purposes. Expert commentary: Several challenges for direct testing of clinical, especially extra-genital, specimens remain. The choice of molecular assay needs to consider the assay target, quality controls, sample types, limitations intrinsic to molecular technologies, and specific to the chosen methodology, and the intended use of the test. Improved molecular- and particularly genome-sequencing-based methods will supplement AMR testing for surveillance purposes, and translate into point-of-care tests that will lead to personalized treatments, while sparing the last available empiric treatment option (ceftriaxone). However, genetic AMR prediction will never completely replace phenotypic AMR testing, which detects also AMR due to unknown AMR determinants.
The role of vaccines in fighting antimicrobial resistance (AMR).
Jansen, Kathrin U; Anderson, Annaliesa S
2018-05-22
The problem of antimicrobial resistance (AMR) and the associated morbidity and mortality due to antibiotic resistant bacterial pathogens is not new. However, AMR has been increasing at an alarming rate with appearances of diseases caused by bacteria exhibiting resistance to not just one but multiple classes of antibiotics. The World Health Organization (WHO) supported by governments, health ministries and health agencies has formulated global action plans to combat the rise in AMR, supporting a number of proven initiatives such as antimicrobial stewardship, investments in development of new classes of antibiotics, and educational programs designed to eliminate inappropriate antibiotic use. Vaccines as tools to reduce AMR have historically been under-recognized, yet the positive effect in reducing AMR has been well established. For example Haemophilus influenzae type B (Hib) as well as Streptococcus pneumoniae (pneumococcal) conjugate vaccines have impressive track records in not only preventing life threatening diseases caused by these bacteria, but also reducing antibiotic use and AMR. This paper will describe the drivers of antibiotic use and subsequent development of AMR; it will make the case how existing vaccines are already participating in combatting AMR, describe future prospects for the role of new vaccines in development to reduce AMR, and highlight challenges associated with future vaccine development to combat AMR.
Magnetic refrigeration system with separated inlet and outlet flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auringer, Jon Jay; Boeder, Andre Michael; Chell, Jeremy Jonathan
An active magnetic regenerative (AMR) refrigerator apparatus can include at least one AMR bed with a first end and a second end and a first heat exchanger (HEX) with a first end and a second end. The AMR refrigerator can also include a first pipe that fluidly connects the first end of the first HEX to the first end of the AMR bed and a second pipe that fluidly connects the second end of the first HEX to the first end of the AMR bed. The first pipe can divide into two or more sub-passages at the AMR bed. Themore » second pipe can divide into two or more sub-passages at the AMR bed. The sub-passages of the first pipe and the second pipe can interleave at the AMR bed.« less
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Wang, Y.; Shu, C.
2017-12-01
This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.
Musicha, Patrick; Feasey, Nicholas A; Cain, Amy K; Kallonen, Teemu; Chaguza, Chrispin; Peno, Chikondi; Khonga, Margaret; Thompson, Sarah; Gray, Katherine J; Mather, Alison E; Heyderman, Robert S; Everett, Dean B; Thomson, Nicholas R; Msefula, Chisomo L
2017-06-01
Efforts to treat Escherichia coli infections are increasingly being compromised by the rapid, global spread of antimicrobial resistance (AMR). Whilst AMR in E. coli has been extensively investigated in resource-rich settings, in sub-Saharan Africa molecular patterns of AMR are not well described. In this study, we have begun to explore the population structure and molecular determinants of AMR amongst E. coli isolates from Malawi. Ninety-four E. coli isolates from patients admitted to Queen's Hospital, Malawi, were whole-genome sequenced. The isolates were selected on the basis of diversity of phenotypic resistance profiles and clinical source of isolation (blood, CSF and rectal swab). Sequence data were analysed using comparative genomics and phylogenetics. Our results revealed the presence of five clades, which were strongly associated with E. coli phylogroups A, B1, B2, D and F. We identified 43 multilocus STs, of which ST131 (14.9%) and ST12 (9.6%) were the most common. We identified 25 AMR genes. The most common ESBL gene was bla CTX-M-15 and it was present in all five phylogroups and 11 STs, and most commonly detected in ST391 (4/4 isolates), ST648 (3/3 isolates) and ST131 [3/14 (21.4%) isolates]. This study has revealed a high diversity of lineages associated with AMR, including ESBL and fluoroquinolone resistance, in Malawi. The data highlight the value of longitudinal bacteraemia surveillance coupled with detailed molecular epidemiology in all settings, including low-income settings, in describing the global epidemiology of ESBL resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Barajas-Solano, D. A.; Tartakovsky, A. M.
2017-12-01
We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.
Magnetization reversal in exchange biased Co/CoO probed with anisotropic magnetoresistance
NASA Astrophysics Data System (ADS)
Gredig, Thomas; Krivorotov, Ilya N.; Dahlberg, E. Dan
2002-05-01
The magnetization reversal in exchange coupled polycrystalline Co/CoO bilayers has been investigated as a function of CoO thickness using anisotropic magnetoresistance as a probe. The anisotropic magnetoresistance (AMR) was measured during the magnetization reversal and it was used to determine the orientation of the magnetization. For thin CoO layers large training effects were present; ergo the first hysteresis loop after field cooling was not the same as the second. The magnitude of the observed training was found to decrease with increasing CoO thickness. In the samples where substantial training was observed, the first magnetization reversal was dominated by nucleation of reversed domains. For the reversal from the antiparallel state back to the parallel direction, the AMR is consistent with a rotation process. In thicker CoO films where the training was less, the asymmetry was drastically reduced. A simple model that couples the antiferromagnetic grains to the ferromagnetic layer simulates qualitatively the observed magnetoresistance.
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, A.; Tzeferacos, P.; Zanni, C.
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less
Visualization of AMR data with multi-level dual-mesh interpolation.
Moran, Patrick J; Ellsworth, David
2011-12-01
We present a new technique for providing interpolation within cell-centered Adaptive Mesh Refinement (AMR) data that achieves C(0) continuity throughout the 3D domain. Our technique improves on earlier work in that it does not require that adjacent patches differ by at most one refinement level. Our approach takes the dual of each mesh patch and generates "stitching cells" on the fly to fill the gaps between dual meshes. We demonstrate applications of our technique with data from Enzo, an AMR cosmological structure formation simulation code. We show ray-cast visualizations that include contributions from particle data (dark matter and stars, also output by Enzo) and gridded hydrodynamic data. We also show results from isosurface studies, including surfaces in regions where adjacent patches differ by more than one refinement level. © 2011 IEEE
Machine learning: novel bioinformatics approaches for combating antimicrobial resistance.
Macesic, Nenad; Polubriaginof, Fernanda; Tatonetti, Nicholas P
2017-12-01
Antimicrobial resistance (AMR) is a threat to global health and new approaches to combating AMR are needed. Use of machine learning in addressing AMR is in its infancy but has made promising steps. We reviewed the current literature on the use of machine learning for studying bacterial AMR. The advent of large-scale data sets provided by next-generation sequencing and electronic health records make applying machine learning to the study and treatment of AMR possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype prediction, development of AMR clinical decision rules, novel antimicrobial agent discovery and antimicrobial therapy optimization. Application of machine learning to studying AMR is feasible but remains limited. Implementation of machine learning in clinical settings faces barriers to uptake with concerns regarding model interpretability and data quality.Future applications of machine learning to AMR are likely to be laboratory-based, such as antimicrobial susceptibility phenotype prediction.
Improved tests reveal that the accelarating moment release hypothesis is statistically insignificant
Hardebeck, J.L.; Felzer, K.R.; Michael, A.J.
2008-01-01
We test the hypothesis that accelerating moment release (AMR) is a precursor to large earthquakes, using data from California, Nevada, and Sumatra. Spurious cases of AMR can arise from data fitting because the time period, area, and sometimes magnitude range analyzed before each main shock are often optimized to produce the strongest AMR signal. Optimizing the search criteria can identify apparent AMR even if no robust signal exists. For both 1950-2006 California-Nevada M ??? 6.5 earthquakes and the 2004 M9.3 Sumatra earthquake, we can find two contradictory patterns in the pre-main shock earthquakes by data fitting: AMR and decelerating moment release. We compare the apparent AMR found in the real data to the apparent AMR found in four types of synthetic catalogs with no inherent AMR. When spatiotemporal clustering is included in the simulations, similar AMR signals are found by data fitting in both the real and synthetic data sets even though the synthetic data sets contain no real AMR. These tests demonstrate that apparent AMR may arise from a combination of data fitting and normal foreshock and aftershock activity. In principle, data-fitting artifacts could be avoided if the free parameters were determined from scaling relationships between the duration and spatial extent of the AMR pattern and the magnitude of the earthquake that follows it. However, we demonstrate that previously proposed scaling relationships are unstable, statistical artifacts caused by the use of a minimum magnitude for the earthquake catalog that scales with the main shock magnitude. Some recent AMR studies have used spatial regions based on hypothetical stress loading patterns, rather than circles, to select the data. We show that previous tests were biased and that unbiased tests do not find this change to the method to be an improvement. The use of declustered catalogs has also been proposed to eliminate the effect of clustering but we demonstrate that this does not increase the statistical significance of AMR. Given the ease with which data fitting can find desired patterns in seismicity, future studies of AMR-like observations must include complete tests against synthetic catalogs that include spatiotemporal clustering.
Clerkin, Kevin J; Restaino, Susan W; Zorn, Emmanuel; Vasilescu, Elena R; Marboe, Charles C; Mancini, Donna M
2016-09-01
Antibody-mediated rejection (AMR) has been associated with increased death and cardiac allograft vasculopathy (CAV). Early studies suggested that late AMR was rarely associated with graft dysfunction, whereas recent reports have demonstrated an association with increased mortality. We investigated the timing of AMR and its association with graft dysfunction, death, and CAV. This retrospective cohort study identified all adult orthotopic heart transplant (OHT) recipients (N = 689) at Columbia University Medical Center from 2004 to 2013. There were 68 primary cases of AMR, which were stratified by early (< 1 year post-OHT) or late (> 1 year post-OHT) AMR. Kaplan-Meier survival analysis and modeling was performed with multivariable logistic regression and Cox proportional hazards regression. From January 1, 2004, through October 1, 2015, early AMR (median 23 days post-OHT) occurred in 43 patients and late AMR (median 1,084 days post-OHT) occurred in 25. Graft dysfunction was less common with early compared with late AMR (25.6% vs 56%, p = 0.01). Patients with late AMR had decreased post-AMR survival compared with early AMR (1 year: 80% vs 93%, 5 years: 51% vs 73%, p < 0.05). When stratified by graft dysfunction, only those with late AMR and graft dysfunction had worse survival (30 days: 79%, 1 year: 64%, 5 years: 36%; p < 0.006). The association remained irrespective of age, sex, donor-specific antibodies, left ventricular assist device use, reason for OHT, and recovery of graft function. Similarly, those with late AMR and graft dysfunction had accelerated development of de novo CAV (50% at 1 year; hazard ratio, 5.42; p = 0.009), whereas all other groups were all similar to the general transplant population. Late AMR is frequently associated with graft dysfunction. When graft dysfunction is present in late AMR, there is an early and sustained increased risk of death and rapid development of de novo CAV despite aggressive treatment. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ'-Fe4N thin films
NASA Astrophysics Data System (ADS)
Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi
2016-05-01
Transverse anisotropic magnetoresistance (AMR) effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C2 tr ) exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C2 tr shows a positive small value (0.12%) from 300 K to 50 K. However, the C2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a) were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002).
Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya
2017-06-01
Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.
NASA Astrophysics Data System (ADS)
Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang
2018-01-01
We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a ‘parent’ compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s/T N) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ) = Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s/T N, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.
Adam, B A; Smith, R N; Rosales, I A; Matsunami, M; Afzali, B; Oura, T; Cosimi, A B; Kawai, T; Colvin, R B; Mengel, M
2017-11-01
Molecular testing represents a promising adjunct for the diagnosis of antibody-mediated rejection (AMR). Here, we apply a novel gene expression platform in sequential formalin-fixed paraffin-embedded samples from nonhuman primate (NHP) renal transplants. We analyzed 34 previously described gene transcripts related to AMR in humans in 197 archival NHP samples, including 102 from recipients that developed chronic AMR, 80 from recipients without AMR, and 15 normal native nephrectomies. Three endothelial genes (VWF, DARC, and CAV1), derived from 10-fold cross-validation receiver operating characteristic curve analysis, demonstrated excellent discrimination between AMR and non-AMR samples (area under the curve = 0.92). This three-gene set correlated with classic features of AMR, including glomerulitis, capillaritis, glomerulopathy, C4d deposition, and DSAs (r = 0.39-0.63, p < 0.001). Principal component analysis confirmed the association between three-gene set expression and AMR and highlighted the ambiguity of v lesions and ptc lesions between AMR and T cell-mediated rejection (TCMR). Elevated three-gene set expression corresponded with the development of immunopathological evidence of rejection and often preceded it. Many recipients demonstrated mixed AMR and TCMR, suggesting that this represents the natural pattern of rejection. These data provide NHP animal model validation of recent updates to the Banff classification including the assessment of molecular markers for diagnosing AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Development and validation of measures to assess prevention and control of AMR in hospitals.
Flanagan, Mindy; Ramanujam, Rangaraj; Sutherland, Jason; Vaughn, Thomas; Diekema, Daniel; Doebbeling, Bradley N
2007-06-01
The rapid spread of antimicrobial resistance (AMR) in the US hospitals poses serious quality and safety problems. Expert panels, identifying strategies for optimizing antibiotic use and preventing AMR spread, have recommended hospitals undertake efforts to implement specific evidence-based practices. To develop and validate a measurement scale for assessing hospitals' efforts to implement recommended AMR prevention and control measures. Surveys were mailed to infection control professionals in a national sample of 670 US hospitals stratified by geographic region, bedsize, teaching status, and VA affiliation. : Four hundred forty-eight infection control professionals participated (67% response rate). Survey items measured implementation of guideline recommendations, practices for AMR monitoring and feedback, AMR-related outcomes (methicillin-resistant Staphylococcus aureus prevalence and outbreaks [MRSA]), and organizational features. "Derivation" and "validation" samples were randomly selected. Exploratory factor analysis was performed to identify factors underlying AMR prevention and control efforts. Multiple methods were used for validation. We identified 4 empirically distinct factors in AMR prevention and control: (1) practices for antimicrobial prescription/use, (2) information/resources for AMR control, (3) practices for isolating infected patients, and (4) organizational support for infection control policies. The Prevention and Control of Antimicrobial Resistance scale was reliable and had content and construct validity. MRSA prevalence was significantly lower in hospitals with higher resource/information availability and broader organizational support. The Prevention and Control of Antimicrobial Resistance scale offers a simple yet discriminating assessment of AMR prevention and control efforts. Use should complement assessment methods based exclusively on AMR outcomes.
Clerkin, Kevin J.; Farr, Maryjane A.; Restaino, Susan W.; Zorn, Emmanuel; Latif, Farhana; Vasilescu, Elena R.; Marboe, Charles C.; Colombo, Paolo C.; Mancini, Donna M.
2017-01-01
Introduction Donor specific anti-HLA antibodies (DSA) are common following heart transplantation and are associated with rejection, cardiac allograft vasculopathy (CAV), and mortality. Currently a non-invasive diagnostic test for pathologic AMR (pAMR) does not exist. Methods 221 consecutive adult patients underwent heart transplantation from January 1st, 2010 through August 31th, 2013 and followed through October 1st, 2015. The primary objective was to determine whether the presence of DSA could detect AMR at the time of pathologic diagnosis. Secondary analyses included the association of DSA (stratified by MHC Class and de-novo status) during AMR with new graft dysfunction, graft loss (mortality or retransplantation), and development of CAV. Results During the study period 69 individual patients (31.2%) had DSA (24% had de-novo DSA) and there were 74 episodes of pAMR in 38 unique patients. The sensitivity of DSA at any MFI to detect concurrent pAMR was only 54.3%. The presence of any DSA during pAMR increased the odds of graft dysfunction (OR 5.37, 95% CI 1.34–21.47, p=0.018), adjusting for age, gender, and timing of AMR. Circulating Class II DSA after transplantation increased the risk of future pAMR (HR 2.97, 95% CI 1.31–6.73, p=0.009). Patients who developed de-novo Class II DSA had a 151% increase in risk of graft loss (contingent on 30-day survival) compared with those who did not have DSA (95% CI 1.11–5.69, p=0.027). Conclusions DSA were inadequate to diagnose pAMR, but Class II DSA provided prognostic information regarding future pAMR, graft dysfunction with pAMR, and graft loss. PMID:27916323
Schaefer, S M; Süsal, C; Opelz, G; Döhler, B; Becker, L E; Klein, K; Sickmüller, S; Waldherr, R; Macher-Goeppinger, S; Schemmer, P; Beimler, J; Zeier, M; Morath, C
2016-02-01
Presensitized kidney transplant recipients are at high-risk for early antibody-mediated rejection. We studied the impact of pre- and post-transplant donor-specific human leukocyte antigen (HLA) antibodies (DSA) and T-cell-activation on the occurrence of antibody-mediated rejection episodes (AMR) and graft loss (AMR-GL) in a unique cohort of 80 desensitized high-risk kidney transplant recipients. Patients with pre-transplant DSA demonstrated more AMR episodes than patients without DSA, but did not show a significantly increased rate of AMR-GL. The rates of AMR and AMR-GL were not significantly increased in patients with complement split product (C1q)-binding pre-transplant DSA. Pre-transplant C1q-DSA became undetectable post-transplant in 11 of 13 (85%) patients; 2 (18%) of these 11 patients showed AMR but no AMR-GL. In contrast, the post-transplant presence of C1q-DSA was associated with significantly higher rates of AMR (86 vs 33 vs 0%; P < 0.001) and AMR-GL (86 vs 0 vs 0%; log-rank P < 0.001) compared with post-transplant DSA without C1q-binding or the absence of DSA. Patients with both pre-transplant DSA and evidence of pre-transplant T-cell-activation as indicated by soluble CD30-positivity showed a significantly increased risk for AMR-GL [HR = 11.1, 95% confidence interval (CI) = 1.68-73.4; log-rank P = 0.013]. In these high-risk patients, AMR-GL was associated with total DSA in combination with T-cell-activation pre-transplant, and de novo or persistent C1q-binding DSA post-transplant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Xu, Binjie; Soukup, Randal J; Jones, Christopher J; Fishel, Richard; Wozniak, Daniel J
2016-10-01
During late stages of cystic fibrosis pulmonary infections, Pseudomonas aeruginosa often overproduces the exopolysaccharide alginate, protecting the bacterial community from host immunity and antimicrobials. The transcription of the alginate biosynthesis operon is under tight control by a number of factors, including AmrZ, the focus of this study. Interestingly, multiple transcription factors interact with the far-upstream region of this promoter (PalgD), in which one AmrZ binding site has been identified previously. The mechanisms of AmrZ binding and subsequent activation remain unclear and require more-detailed investigation. In this study, in-depth examinations elucidated four AmrZ binding sites, and their disruption eliminated AmrZ binding and promoter activation. Furthermore, our in vitro fluorescence resonance energy transfer experiments suggest that AmrZ holds together multiple binding sites in PalgD and thereafter induces the formation of higher-order DNA-AmrZ complexes. To determine the importance of interactions between those AmrZ oligomers in the cell, a DNA phasing experiment was performed. PalgD transcription was significantly impaired when the relative phase between AmrZ binding sites was reversed (5 bp), while a full-DNA-turn insertion (10 bp) restored promoter activity. Taken together, the investigations presented here provide a deeper mechanistic understanding of AmrZ-mediated binding to PalgD IMPORTANCE: Overproduction of the exopolysaccharide alginate provides protection to Pseudomonas aeruginosa against antimicrobial treatments and is associated with chronic P. aeruginosa infections in the lungs of cystic fibrosis patients. In this study, we combined a variety of microbiological, genetic, biochemical, and biophysical approaches to investigate the activation of the alginate biosynthesis operon promoter by a key transcription factor named AmrZ. This study has provided important new information on the mechanism of activation of this extremely complex promoter. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G
2018-04-02
Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.
Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G
2019-03-01
Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.
Abera, Bayeh; Kibret, Mulugeta; Mulu, Wondemagegn
2014-05-19
Antimicrobial resistance (AMR) is a major global public health problem both in hospital and community acquired infections. The present study assessed the knowledge and beliefs on AMR among physicians and nurses in 13 hospitals in Amhara region, Ethiopia, which is a low-income country. A cross-sectional study using a self-administered questionnaire was applied. A total of 385 participants (175 physicians and 210 nurses) took part in the study. Sixty five percent of physicians and 98% of nurses replied that they need training on antimicrobial stewardship. Only 48% of physicians and 22.8% of nurses had exposures for local antibiogram data. Overall, 278 (72.2%) of participants were knowledgeable about AMR. Majority of participants agreed or strongly agreed AMR as worldwide and national problem but few considered AMR as problem in their own hospitals. The two most important factors mentioned for AMR development were patients' poor adherence to prescribed antimicrobials (86%) and overuse of antibiotics (80.5%). The most leading local factors identified for AMR development were: self-antibiotic prescription (53.5%), lack of access to local antibiogram data (12.3%) and prescriber poor awareness about AMR (9.2%). Factors perceived for excessive antibiotic prescriptions were: patient drive (56%), treatment failure (79%), unknown febrile illnesses (39.7%) and upper respiratory tract infections (33.4%). Majority of physicians and nurses lack up to-date knowledge on AMR. Unavailability of local antibiogram data, self-prescription by patients and poor awareness on AMR are areas of interventions for prevention and control of AMR.
Report from a consensus conference on antibody-mediated rejection in heart transplantation
Kobashigawa, Jon; Crespo-Leiro, Maria G.; Ensminger, Stephan M.; Reichenspurner, Hermann; Angelini, Annalisa; Berry, Gerald; Burke, Margaret; Czer, Lawrence; Hiemann, Nicola; Kfoury, Abdallah G.; Mancini, Donna; Mohacsi, Paul; Patel, Jignesh; Pereira, Naveen; Platt, Jeffrey L.; Reed, Elaine F.; Reinsmoen, Nancy; Rodriguez, E. Rene; Rose, Marlene L.; Russell, Stuart D.; Starling, Randy; Suciu-Foca, Nicole; Tallaj, Jose; Taylor, David O.; Van Bakel, Adrian; West, Lori; Zeevi, Adriana; Zuckermann, Andreas
2012-01-01
BACKGROUND The problem of AMR remains unsolved because standardized schemes for diagnosis and treatment remains contentious. Therefore, a consensus conference was organized to discuss the current status of antibody-mediated rejection (AMR) in heart transplantation. METHODS The conference included 83 participants (transplant cardiologists, surgeons, immunologists and pathologists) representing 67 heart transplant centers from North America, Europe, and Asia who all participated in smaller break-out sessions to discuss the various topics of AMR and attempt to achieve consensus. RESULTS A tentative pathology diagnosis of AMR was established, however, the pathologist felt that further discussion was needed prior to a formal recommendation for AMR diagnosis. One of the most important outcomes of this conference was that a clinical definition for AMR (cardiac dysfunction and/or circulating donor-specific antibody) was no longer believed to be required due to recent publications demonstrating that asymptomatic (no cardiac dysfunction) biopsy-proven AMR is associated with subsequent greater mortality and greater development of cardiac allograft vasculopathy. It was also noted that donor-specific antibody is not always detected during AMR episodes as the antibody may be adhered to the donor heart. Finally, recommendations were made for the timing for specific staining of endomyocardial biopsy specimens and the frequency by which circulating antibodies should be assessed. Recommendations for management and future clinical trials were also provided. CONCLUSIONS The AMR Consensus Conference brought together clinicians, pathologists and immunologists to further the understanding of AMR. Progress was made toward a pathology AMR grading scale and consensus was accomplished regarding several clinical issues. PMID:21300295
Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh
2018-01-01
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host–microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector. PMID:29359135
Sharma, Chetan; Rokana, Namita; Chandra, Mudit; Singh, Brij Pal; Gulhane, Rohini Devidas; Gill, Jatinder Paul Singh; Ray, Pallab; Puniya, Anil Kumar; Panwar, Harsh
2017-01-01
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Tackling antibiotic resistance in India.
Wattal, Chand; Goel, Neeraj
2014-12-01
Infectious diseases are major causes of mortality in India. This is aggravated by the increasing prevalence of antimicrobial resistance (AMR) both in the community and in hospitals. Due to the emergence of resistance to all effective antibiotics in nosocomial pathogens, the situation calls for emergency measures to tackle AMR in India. India has huge challenges in tackling AMR, ranging from lack of surveillance mechanisms for monitoring AMR and use; effective hospital control policies; sanitation and non-human use of antimicrobial. The Ministry of Health and Family Welfare of Govt. of India has taken initiatives to tackle AMR. Extensive guidelines have been drafted and a model worksheet has been developed as a roadmap to tackle AMR.
Liu, Chuangjun; Best, Quinn A.; Suarez, Brian; Pertile, Jack; McCarroll, Matthew E.; Scott, Colleen N.
2015-01-01
A series of fluorescent pH probes based on the spiro-cyclic rhodamine core, aminomethylrhodamines (AMR), was synthesized and the effect of cycloalkane ring size on the acid/base properties of the AMR system was explored. The study involved a series of rhodamine 6G (cAMR6G) and rhodamine B (cAMR) pH probes with cycloalkane ring sizes from C-3 to C-6 on the spiro-cyclic amino group. It is known that the pKa value of cycloalkylamines can be tuned by the different ring sizes in accordance with the Baeyer ring strain theory. Smaller ring amines have lower pKa value, i.e. they're less basic, such that the relative order in cycloalkylamine basicity is: cyclohexyl>cyclopentyl>cyclobutyl>cyclopropyl. Herein, it was found that the pKa values of the cAMR and cAMR6G systems can also be predicted by Baeyer ring strain theory. The pKa values for the cAMR6G series were shown to be higher than the cAMR series by a value of approximately 1. PMID:25686771
Clerkin, Kevin J; Farr, Maryjane A; Restaino, Susan W; Zorn, Emmanuel; Latif, Farhana; Vasilescu, Elena R; Marboe, Charles C; Colombo, Paolo C; Mancini, Donna M
2017-05-01
Donor-specific anti-HLA antibodies (DSA) are common after heart transplantation and are associated with rejection, cardiac allograft vasculopathy, and mortality. A noninvasive diagnostic test for pathologic antibody-mediated rejection (pAMR) does not exist. From January 1, 2010, through August 31, 2013, 221 consecutive adult patients underwent heart transplantation and were followed through October 1, 2015. The primary objective was to determine whether the presence of DSA could detect AMR at the time of pathologic diagnosis. Secondary analyses included association of DSA (stratified by major histocompatibility complex class and de novo status) during AMR with new graft dysfunction, graft loss (mortality or retransplantation), and development of cardiac allograft vasculopathy. During the study period, 69 patients (31.2%) had DSA (24% had de novo DSA), and there were 74 episodes of pAMR in 38 patients. Sensitivity of DSA at any mean fluorescence intensity to detect concurrent pAMR was only 54.3%. The presence of any DSA during pAMR increased the odds of graft dysfunction (odds ratio = 5.37; 95% confidence interval [CI], 1.34-21.47; p = 0.018), adjusting for age, sex, and timing of AMR. Circulating class II DSA after transplantation increased risk of future pAMR (hazard ratio = 2.97; 95% CI, 1.31-6.73; p = 0.009). Patients who developed de novo class II DSA had 151% increased risk of graft loss (contingent on 30-day survival) compared with patients who did not have DSA (95% CI, 1.11-5.69; p = 0.027). DSA were inadequate to diagnose pAMR. Class II DSA provided prognostic information regarding future pAMR, graft dysfunction with pAMR, and graft loss. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level
Jans, Christoph; Sarno, Eleonora; Collineau, Lucie; Meile, Leo; Stärk, Katharina D. C.; Stephan, Roger
2018-01-01
Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers. PMID:29559960
A current perspective on antimicrobial resistance in Southeast Asia
Zellweger, Raphaël M; Carrique-Mas, Juan; Limmathurotsakul, Direk; Day, Nicholas P. J; Thwaites, Guy E; Baker, Stephen; Ashley, Elizabeth; de Balogh, Katinka; Baird, Kevin; Basnyat, Buddha; Benigno, Carolyne; Bodhidatta, Ladaporn; Chantratita, Narisara; Cooper, Ben; Dance, David; Dhorda, Mehul; van Doorn, Rogier; Dougan, Gordon; Hoa, Ngo Thi; Ip, Margaret; Lawley, Trevor; Lim, Cherry; Lin, Thong Kwai; Ling, Claire; Lubell, Yoel; Mather, Alison; Marks, Florian; Mohan, Venkata Raghava; Newton, Paul; Paris, Daniel; Thomson, Nicholas; Turner, Paul; Serichantalergs, Oralak; Smithuis, Frank; Wuthiekanun, Vanaporn; White, Nicholas; Li Yang, Hsu
2017-01-01
Abstract Southeast Asia, a vibrant region that has recently undergone unprecedented economic development, is regarded as a global hotspot for the emergence and spread of antimicrobial resistance (AMR). Understanding AMR in Southeast Asia is crucial for assessing how to control AMR on an international scale. Here we (i) describe the current AMR situation in Southeast Asia, (ii) explore the mechanisms that make Southeast Asia a focal region for the emergence of AMR, and (iii) propose ways in which Southeast Asia could contribute to a global solution. PMID:28961709
Investigating a method of producing "red and dead" galaxies
NASA Astrophysics Data System (ADS)
Skory, Stephen
2010-08-01
In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles, but has memory bottlenecks as the datasets get larger. These bottlenecks inspired the second version, "Parallel HOP," which is a fully parallelized method and implementation of HOP that has worked on datasets with more than 20483 particles on hundreds of processing cores. Both methods are described in detail, as are the various effects of performance-related runtime options. Additionally, both halo finders are subjected to a full suite of performance benchmarks varying both dataset sizes and computational resources used. I conclude with descriptions of four new tools I added to yt. A Parallel Structure Function Generator allows analysis of two-point functions, such as correlation functions, using memory- and workload-parallelism. A Parallel Merger Tree Generator leverages the parallel halo finders in yt, such as Parallel HOP, to build the merger tree of halos in a cosmological simulation, and outputs the result to a SQLite database for simple and powerful data extraction. A Star Particle Analysis toolkit takes a group of star particles and can output the rate of formation as a function of time, and/or a synthetic Spectral Energy Distribution (S.E.D.) using the Bruzual and Charlot (2003) data tables. Finally, a Halo Mass Function toolkit takes as input a list of halo masses and can output the halo mass function for the halos, as well as an analytical fit for those halos using several previously published fits.
Stanczak-Mrozek, Kinga I.; Laing, Ken G.
2017-01-01
Objectives: Horizontal gene transfer of antimicrobial resistance (AMR) genes between clinical isolates via transduction is poorly understood. MRSA are opportunistic pathogens resistant to all classes of antimicrobial agents but currently no strains are fully drug resistant. AMR gene transfer between Staphylococcus aureus isolates is predominantly due to generalized transduction via endogenous bacteriophage, and recent studies have suggested transfer is elevated during host colonization. The aim was to investigate whether exposure to sub-MIC concentrations of antimicrobials triggers bacteriophage induction and/or increased efficiency of AMR gene transfer. Methods: Isolates from MRSA carriers were exposed to nine antimicrobials and supernatants were compared for lytic phage particles and ability to transfer an AMR gene. A new technology, droplet digital PCR, was used to measure the concentration of genes in phage particles. Results: All antibiotics tested induced lytic phage and AMR gene transduction, although the ratio of transducing particles to lytic particles differed substantially for each antibiotic. Mupirocin induced the highest ratio of transducing versus lytic particles. Gentamicin and novobiocin reduced UV-induced AMR transduction. The genes carried in phage particles correlated with AMR transfer or lytic particle activity, suggesting antimicrobials influence which DNA sequences are packaged into phage particles. Conclusions: Sub-inhibitory antibiotics induce AMR gene transfer between clinical MRSA, while combination therapy with an inhibiting antibiotic could potentially alter AMR gene packaging into phage particles, reducing AMR transfer. In a continually evolving environment, pathogens have an advantage if they can transfer DNA while lowering the risk of lytic death. PMID:28369562
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Xu, Binjie; Ju, Yue; Soukup, Randal J.; Ramsey, Deborah M.; Fishel, Richard; Wysocki, Vicki H.; Wozniak, Daniel J.
2015-01-01
Summary Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher-order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets. PMID:26549743
Mortality risk stratification in severely anaemic Jehovah's Witness patients.
Beliaev, A M; Marshall, R J; Smith, W; Windsor, J A
2012-03-01
The aim of this retrospective cohort study was to identify early risk factors of mortality and develop a mortality risk stratification instrument for severely anaemic Jehovah's Witness patients. It has been shown that Jehovah's Witness patients with the Auckland Anaemia Mortality Risk Score (Auckland AMRS) of 0 to 3 had 4% mortality, Auckland AMRS 4 to 5 32%, Auckland AMRS 6 to 7 50% and Auckland AMRS 8 and above 83%. It is concluded that the Auckland AMRS predicts mortality of severely anaemic Jehovah's Witness patients. © 2012 The Authors. Internal Medicine Journal © 2012 Royal Australasian College of Physicians.
Rabi, Thangaiyan; Huwiler, Andrea; Zangemeister-Wittke, Uwe
2014-07-01
AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy. © 2013 Wiley Periodicals, Inc.
Evolutionary Plasticity of AmrZ Regulation in Pseudomonas
Dougherty, Kevin; Diaz, Beatriz; Murillo, Rachel
2018-01-01
ABSTRACT amrZ encodes a master regulator protein conserved across pseudomonads, which can be either a positive or negative regulator of swimming motility depending on the species examined. To better understand plasticity in the regulatory function of AmrZ, we characterized the mode of regulation for this protein for two different motility-related phenotypes in Pseudomonas stutzeri. As in Pseudomonas syringae, AmrZ functions as a positive regulator of swimming motility within P. stutzeri, which suggests that the functions of this protein with regard to swimming motility have switched at least twice across pseudomonads. Shifts in mode of regulation cannot be explained by changes in AmrZ sequence alone. We further show that AmrZ acts as a positive regulator of colony spreading within this strain and that this regulation is at least partially independent of swimming motility. Closer investigation of mechanistic shifts in dual-function regulators like AmrZ could provide unique insights into how transcriptional pathways are rewired between closely related species. IMPORTANCE Microbes often display finely tuned patterns of gene regulation across different environments, with major regulatory changes controlled by a small group of “master” regulators within each cell. AmrZ is a master regulator of gene expression across pseudomonads and can be either a positive or negative regulator for a variety of pathways depending on the strain and genomic context. Here, we demonstrate that the phenotypic outcomes of regulation of swimming motility by AmrZ have switched at least twice independently in pseudomonads, so that AmrZ promotes increased swimming motility in P. stutzeri and P. syringae but represses this phenotype in Pseudomonas fluorescens and Pseudomonas aeruginosa. Since examples of switches in regulatory mode are relatively rare, further investigation into the mechanisms underlying shifts in regulator function for AmrZ could provide unique insights into the evolution of bacterial regulatory proteins. PMID:29669886
Sommanustweechai, A; Tangcharoensathien, V; Malathum, K; Sumpradit, N; Kiatying-Angsulee, N; Janejai, N; Jaroenpoj, S
2018-04-01
Thailand has developed a national strategic plan on antimicrobial resistance (NSP-AMR) and endorsed by the Cabinet in August 2016. This study reviewed the main contents of the NSP-AMR and the mandates of relevant implementing agencies and identified challenges and recommends actions to mitigate implementation gaps. This study analysed the contents of NSP-AMR, reviewed institutional mandates and assessed the implementation gaps among agencies responsible for NSP-AMR. Two of six strategies are related to monitoring and surveillance of AMR and antimicrobial consumption in human and animal. Two other strategies aim to improve antibiotic stewardship and control the spread of AMR in both clinical and farm settings. The remaining two strategies aim to increase knowledge and public awareness on AMR and establish national governance for inter-sectoral actions. Strategies to overcome implementation challenges are sustaining cross-sectoral policy commitments, effective cross-sectoral coordination using One Health approach, generating evidence which guides policy implementation, and improving enforcement capacities in regulatory authorities. To address AMR, Thailand requires significant improvements in implementation capacities in two dimensions. First, technical capacities among implementing agencies are needed to translate policies into practice. Second, governance and organizational capacities enable effective multi-sectoral actions across human, animal, and environmental sectors. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Ahlstrom, Christina A; Bonnedahl, Jonas; Woksepp, Hanna; Hernandez, Jorge; Olsen, Björn; Ramey, Andrew M
2018-05-09
Antimicrobial resistance (AMR) in bacterial pathogens threatens global health, though the spread of AMR bacteria and AMR genes between humans, animals, and the environment is still largely unknown. Here, we investigated the role of wild birds in the epidemiology of AMR Escherichia coli. Using next-generation sequencing, we characterized cephalosporin-resistant E. coli cultured from sympatric gulls and bald eagles inhabiting a landfill habitat in Alaska to identify genetic determinants conferring AMR, explore potential transmission pathways of AMR bacteria and genes at this site, and investigate how their genetic diversity compares to isolates reported in other taxa. We found genetically diverse E. coli isolates with sequence types previously associated with human infections and resistance genes of clinical importance, including bla CTX-M and bla CMY . Identical resistance profiles were observed in genetically unrelated E. coli isolates from both gulls and bald eagles. Conversely, isolates with indistinguishable core-genomes were found to have different resistance profiles. Our findings support complex epidemiological interactions including bacterial strain sharing between gulls and bald eagles and horizontal gene transfer among E. coli harboured by birds. Results suggest that landfills may serve as a source for AMR acquisition and/or maintenance, including bacterial sequence types and AMR genes relevant to human health.
Experimental investigation of 20 K two-stage layered active magnetic regenerative refrigerator
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2015-12-01
The performance of a two-stage layered AMRR is experimentally investigated. The test apparatus includes two-stage layered AMRs, low temperature superconducting (LTS) magnet which generates maximum magnetic field of 4 T, and the helium gas flow system. The helium compressor with the tandem rotary valve is employed to generate the oscillating flow of the helium gas minimizing the pressure swing effect. The mass flow rate of working fluid is controlled separately at the first and second stages of the AMR by solenoid valves. The mass flow rate of the AMRs is measured by the mass flow meter and the cryogenic hot-film sensor which is calibrated at cryogenic temperature range from 20 K to 77 K. In order to reduce the heat leak by shuttle heat transfer of the working fluid, void volumes have been implemented and connected to the cold ends of the AMR1 and AMR2. The temperature span of the AMR is recorded as 52 K and the performance of the AMR with the variation of the mass flow rate is analysed. The results show that the mass flow rate and the heat leak due to the shuttle heat transfer by oscillating working fluid are crucial factors in the AMR performance.
Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top.
Tagliabue, Aldo; Rappuoli, Rino
2018-01-01
Antimicrobial resistance (AMR) is currently the most alarming issue for human health. AMR already causes 700,000 deaths/year. It is estimated that 10 million deaths due to AMR will occur every year after 2050. This equals the number of people dying of cancer every year in present times. International institutions such as G20, World Bank, World Health Organization (WHO), UN General Assembly, European Union, and the UK and USA governments are calling for new antibiotics. To underline this emergency, a list of antibiotic-resistant "priority pathogens" has been published by WHO. It contains 12 families of bacteria that represent the greatest danger for human health. Resistance to multiple antibiotics is particularly relevant for the Gram-negative bacteria present in the list. The ability of these bacteria to develop mechanisms to resist treatment could be transmitted with genetic material, allowing other bacteria to become drug resistant. Although the search for new antimicrobial drugs remains a top priority, the pipeline for new antibiotics is not promising, and alternative solutions are needed. A possible answer to AMR is vaccination. In fact, while antibiotic resistance emerges rapidly, vaccines can lead to a much longer lasting control of infections. New technologies, such as the high-throughput cloning of human B cells from convalescent or vaccinated people, allow for finding new protective antigens (Ags) that could not be identified with conventional technologies. Antibodies produced by convalescent B cell clones can be screened for their ability to bind, block, and kill bacteria, using novel high-throughput microscopy platforms that rapidly capture digital images, or by conventional technologies such as bactericidal, opsono-phagocytosis and FACS assays. Selected antibodies expressed by recombinant DNA techniques can be used for passive immunization in animal models and tested for protection. Antibodies providing the best protection can be employed to identify new Ags and then used for generating highly specific recombinant Fab fragments. Co-crystallization of Ags bound to Fab fragments will allow us to determine the structure and characteristics of new Ags. This structure-based Ag design will bring to a new generation of vaccines able to target previously elusive infections, thereby offering an effective solution to the problem of AMR.
Recovering area-to-mass ratio of resident space objects through data mining
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-01-01
The area-to-mass ratio (AMR) of a resident space object (RSO) is an important parameter for improved space situation awareness capability due to its effect on the non-conservative forces including the atmosphere drag force and the solar radiation pressure force. However, information about AMR is often not provided in most space catalogs. The present paper investigates recovering the AMR information from the consistency error, which refers to the difference between the orbit predicted from an earlier estimate and the orbit estimated at the current epoch. A data mining technique, particularly the random forest (RF) method, is used to discover the relationship between the consistency error and the AMR. Using a simulation-based space catalog environment as the testbed, this paper demonstrates that the classification RF model can determine the RSO's category AMR and the regression RF model can generate continuous AMR values, both with good accuracies. Furthermore, the paper reveals that by recording additional information besides the consistency error, the RF model can estimate the AMR with even higher accuracy.
A coupled ALE-AMR method for shock hydrodynamics
Waltz, J.; Bakosi, J.
2018-03-05
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
A coupled ALE-AMR method for shock hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J.; Bakosi, J.
We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less
Jacobson, Terry A
2012-06-01
ω-3 fatty acids reduce triglyceride (TG) levels, but corresponding increases in low-density lipoprotein cholesterol (LDL-C) levels may compromise achievement of lipid goals in patients with elevated cardiovascular risk. AMR101 is an investigational agent containing ≥96% of pure icosapent ethyl (the ethyl ester of eicosapentaenoic acid). The Phase III Multi-Center, Placebo-Controlled, Randomized, Double-Blind, 12-Week Study with an Open-Label Extension (MARINE) investigated the efficacy and safety of AMR101 in 229 patients with very high TG levels (≥500 mg/dl). AMR101 4 g/day significantly reduced median placebo-adjusted TG levels from baseline by 33.1% (p < 0.0001), and AMR101 2 g/day reduced TG levels by 19.7% (p = 0.0051). Changes in LDL-C were minimal and nonsignificant. AMR101 may offer substantial TG lowering without increases in LDL-C levels.
[Global and national strategies against antibiotic resistance].
Abu Sin, Muna; Nahrgang, Saskia; Ziegelmann, Antina; Clarici, Alexandra; Matz, Sibylle; Tenhagen, Bernd-Alois; Eckmanns, Tim
2018-05-01
Antimicrobial resistance (AMR) is increasingly perceived as a global health problem. To tackle AMR effectively, a multisectoral one health approach is needed. We present some of the initiatives and activities at the national and global level that target the AMR challenge. The Global Action Plan on AMR, which has been developed by the World Health Organization (WHO), in close collaboration with the Food and Agriculture Organization of the United Nations (FAO) and the World Organisation for Animal Health (OIE) is considered a blueprint to combat AMR. Member states endorsed the action plan during the World Health Assembly 2015 and committed themselves to develop national action plans on AMR. The German Antibiotic Resistance Strategy (DART 2020) is based on the main objectives of the global action plan and was revised and published in 2015. Several examples of the implementation of DART 2020 are outlined here.
Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Oogane, Mikihiko; McFadden, Anthony P.; Kota, Yohei; Brown-Heft, Tobias L.; Tsunoda, Masakiyo; Ando, Yasuo; Palmstrøm, Chris J.
2018-06-01
In this study, we systematically investigated the anisotropic magnetoresistance (AMR) effect in half-metallic Co2MnSi Heusler alloy films epitaxially grown by molecular beam epitaxy. The fourfold symmetric AMR was observed in the temperature range of 25–275 K. In addition, the films exhibited a marked change in twofold symmetric AMR below 100 K. This specific temperature dependence of the AMR effect in Co2MnSi films can be caused by the tetragonal crystal field because of the distortion of the lattice at low temperatures. The influence of tetragonal distortion on both the AMR effect and half-metallicity is also discussed by first-principles calculations.
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2017-12-01
The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A
2015-01-01
Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Miae; Martin, Spencer T; Townsend, Keri R; Gabardi, Steven
2014-07-01
Antibody-mediated rejection (AMR), also known as B-cell-mediated or humoral rejection, is a significant complication after kidney transplantation that carries a poor prognosis. Although fewer than 10% of kidney transplant patients experience AMR, as many as 30% of these patients experience graft loss as a consequence. Although AMR is mediated by antibodies against an allograft and results in histologic changes in allograft vasculature that differ from cellular rejection, it has not been recognized as a separate disease process until recently. With an improved understanding about the importance of the development of antibodies against allografts as well as complement activation, significant advances have occurred in the treatment of AMR. The standard of care for AMR includes plasmapheresis and intravenous immunoglobulin that remove and neutralize antibodies, respectively. Agents targeting B cells (rituximab and alemtuzumab), plasma cells (bortezomib), and the complement system (eculizumab) have also been used successfully to treat AMR in kidney transplant recipients. However, the high cost of these medications, their use for unlabeled indications, and a lack of prospective studies evaluating their efficacy and safety limit the routine use of these agents in the treatment of AMR in kidney transplant recipients. © 2014 Pharmacotherapy Publications, Inc.
Water & Sanitation: An Essential Battlefront in the War on Antimicrobial Resistance.
Bürgmann, Helmut; Frigon, Dominic; Gaze, William; Manaia, Célia; Pruden, Amy; Singer, Andrew C; Smets, Barth; Zhang, Tong
2018-06-05
Water and sanitation represents a key battlefront in combating the spread of antimicrobial resistance (AMR). Basic water sanitation infrastructure is an essential first step to protecting public health, thereby limiting the spread of pathogens and the need for antibiotics. AMR presents unique human health risks, meriting new risk assessment frameworks specifically adapted to water and sanitation-borne AMR. There are numerous exposure routes to AMR originating from human waste, each of which must be quantified for its relative risk to human health. Wastewater treatment plants (WWTPs) play a vital role in centralized collection and treatment of human sewage, but there are numerous unresolved questions in terms of the microbial ecological processes occurring within and the extent to which they attenuate or amplify AMR. Research is needed to advance understanding of the fate of resistant bacteria and antibiotic resistance genes (ARGs) in various waste management systems, depending on the local constraints and intended re-use applications. WHO and national AMR action plans would benefit from a more holistic 'One Water' understanding. Here we provide a framework for research, policy, practice, and public engagement aimed at limiting the spread of AMR from water and sanitation in both low-, medium- and high-income countries, alike.
MPI-AMRVAC 2.0 for Solar and Astrophysical Applications
NASA Astrophysics Data System (ADS)
Xia, C.; Teunissen, J.; El Mellah, I.; Chané, E.; Keppens, R.
2018-02-01
We report on the development of MPI-AMRVAC version 2.0, which is an open-source framework for parallel, grid-adaptive simulations of hydrodynamic and magnetohydrodynamic (MHD) astrophysical applications. The framework now supports radial grid stretching in combination with adaptive mesh refinement (AMR). The advantages of this combined approach are demonstrated with one-dimensional, two-dimensional, and three-dimensional examples of spherically symmetric Bondi accretion, steady planar Bondi–Hoyle–Lyttleton flows, and wind accretion in supergiant X-ray binaries. Another improvement is support for the generic splitting of any background magnetic field. We present several tests relevant for solar physics applications to demonstrate the advantages of field splitting on accuracy and robustness in extremely low-plasma β environments: a static magnetic flux rope, a magnetic null-point, and magnetic reconnection in a current sheet with either uniform or anomalous resistivity. Our implementation for treating anisotropic thermal conduction in multi-dimensional MHD applications is also described, which generalizes the original slope-limited symmetric scheme from two to three dimensions. We perform ring diffusion tests that demonstrate its accuracy and robustness, and show that it prevents the unphysical thermal flux present in traditional schemes. The improved parallel scaling of the code is demonstrated with three-dimensional AMR simulations of solar coronal rain, which show satisfactory strong scaling up to 2000 cores. Other framework improvements are also reported: the modernization and reorganization into a library, the handling of automatic regression tests, the use of inline/online Doxygen documentation, and a new future-proof data format for input/output.
Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang
2016-09-01
Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. Copyright © 2016 Elsevier Inc. All rights reserved.
Hui, Ben B; Ryder, Nathan; Su, Jiunn-Yih; Ward, James; Chen, Marcus Y; Donovan, Basil; Fairley, Christopher K; Guy, Rebecca J; Lahra, Monica M; Law, Mathew G; Whiley, David M; Regan, David G
2015-01-01
Surveillance for gonorrhoea antimicrobial resistance (AMR) is compromised by a move away from culture-based testing in favour of more convenient nucleic acid amplification test (NAAT) tests. We assessed the potential benefit of a molecular resistance test in terms of the timeliness of detection of gonorrhoea AMR. An individual-based mathematical model was developed to describe the transmission of gonorrhoea in a remote Indigenous population in Australia. We estimated the impact of the molecular test on the time delay between first importation and the first confirmation that the prevalence of gonorrhoea AMR (resistance proportion) has breached the WHO-recommended 5% threshold (when a change in antibiotic should occur). In the remote setting evaluated in this study, the model predicts that when culture is the only available means of testing for AMR, the breach will only be detected when the actual prevalence of AMR in the population has already reached 8 - 18%, with an associated delay of ~43 - 69 months between first importation and detection. With the addition of a molecular resistance test, the number of samples for which AMR can be determined increases facilitating earlier detection at a lower resistance proportion. For the best case scenario, where AMR can be determined for all diagnostic samples, the alert would be triggered at least 8 months earlier than using culture alone and the resistance proportion will have only slightly exceeded the 5% notification threshold. Molecular tests have the potential to provide more timely warning of the emergence of gonorrhoea AMR. This in turn will facilitate earlier treatment switching and more targeted treatment, which has the potential to reduce the population impact of gonorrhoea AMR.
Hui, Ben B.; Ryder, Nathan; Su, Jiunn-Yih; Ward, James; Chen, Marcus Y.; Donovan, Basil; Fairley, Christopher K.; Guy, Rebecca J.; Lahra, Monica M.; Law, Mathew G.; Whiley, David M.; Regan, David G.
2015-01-01
Background Surveillance for gonorrhoea antimicrobial resistance (AMR) is compromised by a move away from culture-based testing in favour of more convenient nucleic acid amplification test (NAAT) tests. We assessed the potential benefit of a molecular resistance test in terms of the timeliness of detection of gonorrhoea AMR. Methods and Findings An individual-based mathematical model was developed to describe the transmission of gonorrhoea in a remote Indigenous population in Australia. We estimated the impact of the molecular test on the time delay between first importation and the first confirmation that the prevalence of gonorrhoea AMR (resistance proportion) has breached the WHO-recommended 5% threshold (when a change in antibiotic should occur). In the remote setting evaluated in this study, the model predicts that when culture is the only available means of testing for AMR, the breach will only be detected when the actual prevalence of AMR in the population has already reached 8 – 18%, with an associated delay of ~43 – 69 months between first importation and detection. With the addition of a molecular resistance test, the number of samples for which AMR can be determined increases facilitating earlier detection at a lower resistance proportion. For the best case scenario, where AMR can be determined for all diagnostic samples, the alert would be triggered at least 8 months earlier than using culture alone and the resistance proportion will have only slightly exceeded the 5% notification threshold. Conclusions Molecular tests have the potential to provide more timely warning of the emergence of gonorrhoea AMR. This in turn will facilitate earlier treatment switching and more targeted treatment, which has the potential to reduce the population impact of gonorrhoea AMR. PMID:26181042
Del Bello, Arnaud; Danjoux, Marie; Congy-Jolivet, Nicolas; Lavayssière, Laurence; Esposito, Laure; Muscari, Fabrice; Kamar, Nassim
2017-04-01
Acute antibody-mediated rejection (aAMR) is an unusual complication after orthotopic ABO-compatible liver transplantation. To date, the clinical and histological long-term outcomes after aAMR are not well known. Herein, we describe nine cases of aAMR that occurred in our liver-transplant center between 2008 and 2016, with an initial and reevaluation liver biopsy available for reexamination. Two patients presented with aAMR at 10.5 (10, 11) days post-transplantation, caused by preformed donor-specific antibodies. Seven other recipients developed de novo donor-specific antibodies and aAMR at 11.2 (3-24) months post-transplantation. Eight of the nine patients received a B-cell targeting agent (rituximab, with or without plasma exchange), associated with polyclonal antibodies (three patients) or intravenous immunoglobulins (three patients). At the last follow up (i.e. 21 [4-90] months post-aAMR), seven patients were alive, including two patients with normal liver tests. Grafts' survival was 66%. A liver biopsy performed at 11.5 (5-48.5) months after the first biopsy showed no significant improvement in aAMR score (from 2 ± 1.3 to 1.6 ± 1.5, P = 0.6), a significant improvement in chronic AMR score (from 37 ± 9 to 25 ± 8, P = 0.003) and an increase in the Metavir score (1.2 ± 0.6 to 2.1 ± 0.9, P = 0.03). In this study, a B-cell-depleting agent seemed to improve the prognosis of aAMR in selected cases, but several patients kept active lesions antibody-mediated rejection. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Harris, Suvi; Morris, Carol; Morris, Dearbhaile; Cormican, Martin; Cummins, Enda
2014-01-15
The prevalence of antimicrobial resistant (AMR) bacteria is increasing worldwide and remains a significant medical challenge which may lead to antimicrobial redundancy. The contribution of hospital effluent to the prevalence of resistance in wastewater treatment plant (WWTP) effluents is not fully understood. AMR bacteria contained in hospital effluent may be released into the aquatic and soil environments after WWTP processing. Hence, the objective of this study is to identify the extent hospital effluent contributes to contamination of these environments by comparing two WWTPs, one which receives hospital effluent and one which does not. AMR Escherichia coli were monitored in the two WWTPs. A model was developed using these monitored values to predict the effect of hospital effluent within a WWTP. The model predicted levels of AMR E. coli in the aquatic environment and potential bather exposure to AMR E. coli. The model results were highly variable. WWTP influent containing hospital effluent had a higher mean percentage of AMR E. coli; although, there appeared to be no within treatment plant effect on the prevalence of AMR E. coli. Examination of WWTP sludge showed a similar variation. There appeared to be no consistent effect from the presence of hospital effluent. The human exposure assessment model predicted swimmer intake of AMR E. coli between 6 and 193CFU/100ml sea water. It appears that hospital effluent is not the main contributing factor behind the development and persistence of AMR E. coli within WWTPs, although resistance may be too well-developed to identify an influence from hospital effluent. Mitigation needs to focus on the removal of already present resistant bacteria but for new or hospital specific antimicrobials focus needs to be on their limited release within effluents or separate treatment. © 2013.
Oniciuc, Elena A.; Likotrafiti, Eleni; Alvarez-Molina, Adrián; Alvarez-Ordóñez, Avelino
2018-01-01
Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes. PMID:29789467
van Leth, Frank; den Heijer, Casper; Beerepoot, Mariëlle; Stobberingh, Ellen; Geerlings, Suzanne; Schultsz, Constance
2017-04-01
Increasing antimicrobial resistance (AMR) requires rapid surveillance tools, such as Lot Quality Assurance Sampling (LQAS). LQAS classifies AMR as high or low based on set parameters. We compared classifications with the underlying true AMR prevalence using data on 1335 Escherichia coli isolates from surveys of community-acquired urinary tract infection in women, by assessing operating curves, sensitivity and specificity. Sensitivity and specificity of any set of LQAS parameters was above 99% and between 79 and 90%, respectively. Operating curves showed high concordance of the LQAS classification with true AMR prevalence estimates. LQAS-based AMR surveillance is a feasible approach that provides timely and locally relevant estimates, and the necessary information to formulate and evaluate guidelines for empirical treatment.
Newitt, Sophie; Anthierens, Sibyl; Coenen, Samuel; Lo Fo Wong, Danilo; Salvi, Cristiana; Puleston, Richard; Ashiru-Oredope, Diane
2018-06-01
Antimicrobial resistance (AMR) is a major public health threat. The UK Antibiotic Guardian (AG) behavioural change campaign developed to tackle AMR was expanded across Europe through translation into Russian, Dutch and French. Demographics and knowledge of AGs were analyzed between 01 November 2016 and 31 December 2016. A total of 367 pledges were received with the majority from the public and health care professionals. The pilot has significantly increased the proportion of pledges from Europe (excluding UK) (χ2 = 108.7, P < 0.001). AMR knowledge was greater in AGs (including the public) compared to the EU Eurobarometer survey. Further promotion across Europe is required to measure an impact on tackling AMR.
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...
2017-01-26
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas
2017-04-01
We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.
Marrón-Liñares, Grecia M; Núñez, Lucía; Crespo-Leiro, María G; Álvarez-López, Eloy; Barge-Caballero, Eduardo; Barge-Caballero, Gonzalo; Couto-Mallón, David; Pradas-Irun, Concepción; Muñiz, Javier; Tan, Carmela; Rodríguez, E Rene; Vázquez-Rodríguez, José Manuel; Hermida-Prieto, Manuel
2018-04-25
Heart transplantation (HT) is a well-established lifesaving treatment for endstage cardiac failure. Antibody-mediated rejection (AMR) represents one of the main problems after HT because of its diagnostic complexity and the poor evidence for supporting treatments. Complement cascade and B-cells play a key role in AMR and contribute to graft damage. This study explored the importance of variants in genes related to complement pathway and B-cell biology in HT and AMR in donors and in donor-recipient pairs.Methods and Results:Genetic variants in 112 genes (51 complement and 61 B-cell biology genes) were analyzed on next-generation sequencing in 28 donor-recipient pairs, 14 recipients with and 14 recipients without AMR. Statistical analysis was performed with SNPStats, R, and EPIDAT3.1. We identified one single nucleotide polymorphism (SNP) in donors in genes related to B-cell biology,interleukin-4 receptor subunitα (p.Ile75Val-IL4Rα), which correlated with the development of AMR. Moreover, in the analysis of recipient-donor genotype discrepancies, we identified another SNP, in this case inadenosine deaminase(ADA; p.Val178(p=)), which was related to B-cell biology, associated with the absence of AMR. Donor polymorphisms and recipient-donor discrepancies in genes related to the biology of B-cells, could have an important role in the development of AMR. In contrast, no variants in donor or in donor-recipient pairs in complement pathways seem to have an impact on AMR.
A weakly-compressible Cartesian grid approach for hydrodynamic flows
NASA Astrophysics Data System (ADS)
Bigay, P.; Oger, G.; Guilcher, P.-M.; Le Touzé, D.
2017-11-01
The present article aims at proposing an original strategy to solve hydrodynamic flows. In introduction, the motivations for this strategy are developed. It aims at modeling viscous and turbulent flows including complex moving geometries, while avoiding meshing constraints. The proposed approach relies on a weakly-compressible formulation of the Navier-Stokes equations. Unlike most hydrodynamic CFD (Computational Fluid Dynamics) solvers usually based on implicit incompressible formulations, a fully-explicit temporal scheme is used. A purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. This characteristic allows an easy use of Adaptive Mesh Refinement (AMR) methods embedded within a massively parallel framework. Geometries are automatically immersed within the Cartesian grid with an AMR compatible treatment. The method proposed uses an Immersed Boundary Method (IBM) adapted to the weakly-compressible formalism and imposed smoothly through a regularization function, which stands as another originality of this work. All these features have been implemented within an in-house solver based on this WCCH (Weakly-Compressible Cartesian Hydrodynamic) method which meets the above requirements whilst allowing the use of high-order (> 3) spatial schemes rarely used in existing hydrodynamic solvers. The details of this WCCH method are presented and validated in this article.
Seale, Anna C.; Gordon, N. Claire; Islam, Jasmin; Peacock, Sharon J.; Scott, J. Anthony G.
2017-01-01
Drug-resistant infections caused by bacteria with increasing antimicrobial resistance (AMR) threaten our ability to treat life-threatening conditions. Tackling AMR requires international collaboration and partnership. An early and leading priority to do this is to strengthen AMR surveillance, particularly in low-income countries where the burden of infectious diseases is highest and where data are most limited. The World Health Organization (WHO) has developed the Global AMR Surveillance System (GLASS) as one of a number of measures designed to tackle the problem of AMR, and WHO member states have been encouraged to produce National Action Plans for AMR by 2017. However, low-income countries are unlikely to have the resources or capacity to implement all the components in the GLASS manual. To facilitate their efforts, we developed a guideline that is aligned to the GLASS procedures, but written specifically for implementation in low-income countries. The guideline allows for flexibility across different systems, but has sufficient standardisation of core protocols to ensure that, if followed, data will be valid and comparable. This will ensure that the surveillance programme can provide health intelligence data to inform evidence-based interventions at local, national and international levels. PMID:29062918
Passive force balancing of an active magnetic regenerative liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teyber, R.; Meinhardt, K.; Thomsen, E.
Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less
Passive force balancing of an active magnetic regenerative liquefier
Teyber, R.; Meinhardt, K.; Thomsen, E.; ...
2017-11-02
Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Finally, implementation details aremore » investigated which affirm the potential of the proposed methodology.« less
Passive force balancing of an active magnetic regenerative liquefier
NASA Astrophysics Data System (ADS)
Teyber, R.; Meinhardt, K.; Thomsen, E.; Polikarpov, E.; Cui, J.; Rowe, A.; Holladay, J.; Barclay, J.
2018-04-01
Active magnetic regenerators (AMR) have the potential for high efficiency cryogen liquefaction. One active magnetic regenerative liquefier (AMRL) configuration consists of dual magnetocaloric regenerators that reciprocate in a persistent-mode superconducting solenoid. Issues with this configuration are the spatial and temporal magnetization gradients that induce large magnetic forces and winding currents. To solve the coupled problem, we present a force minimization approach using passive magnetic material to balance a dual-regenerator AMR. A magnetostatic model is developed and simulated force waveforms are compared with experimental measurements. A genetic algorithm identifies force-minimizing passive structures with virtually ideal balancing characteristics. Implementation details are investigated which affirm the potential of the proposed methodology.
Nath, Dilip S.; Tiriveedhi, Venkataswarup; Bash, Haseeb Ilias; Phelan, Donna; Moazami, Nader; Ewald, Gregory A.; Mohanakumar, T.
2013-01-01
Background We determined role of donor specific antibodies (DSA) and antibodies (Abs) to self-antigens, collagen-V (Col-V) and K-α1-Tubulin (KAT) in pathogenesis of acute antibody mediated rejection (AMR) and cardiac allograft vasculopathy (CAV) following human heart transplantation (HTx). Methods 137 HTx recipients - 60 early period (≤ 12months) and 77 late period (> 12months) patients were enrolled. Circulating DSA was determined using LUMINEX. Abs against Col-I, II, IV, V and KAT were measured using ELISA. Frequency of CD4+T helper cells (CD4+Th) secreting IFN-γ, IL-5, IL-10 or IL-17 specific to self-antigens were determined using ELISPOT. Results A significant association between AMR and DSA was demonstrated. Development of DSA in AMR patients correlated well with the development of auto-Abs to Col-V(AMR(+): 383±72μg/mL, AMR(−): 172±49μg/mL, p=0.033) and KAT (AMR(+): 252±49μg/mL, AMR(−): 61±21μg/mL, p=0.014). Patients who developed AMR demonstrated increased frequencies of CD4+Th secreting IFN-γ and IL-5 with reduction in IL-10 specific for Col-V/KAT. Patients diagnosed with CAV also developed DSA and auto-Abs to Col-V (CAV(+): 835±142μg/mL, CAV(−): 242±68μg/mL, p=0.025) and KAT (CAV(+): 768±206μg/mL, CAV(−): 196±72μg/mL, p=0.001) with increased frequencies of CD4+Th secreting IL-17 with reduction in IL-10 specific for Col-V/KAT. Conclusions Development of Abs to HLA and self-antigens are associated with increases in CD4+Th secreting IFN-γ and IL-5 in AMR and IL-17 in CAV, with reduction in CD4+Th secreting IL-10 in both AMR and CAV. PMID:21383658
Rogers Van Katwyk, Susan; Danik, Marie Évelyne; Pantis, Ioana; Smith, Rachel; Røttingen, John-Arne; Hoffman, Steven J
2016-01-01
Antimicrobial resistance (AMR) is a global issue. International trade, travel, agricultural practices, and environmental contamination all make it possible for resistant microbes to cross national borders. Global collective action is needed in the form of an international agreement or other mechanism that brings states together at the negotiation table and commits them to adopt or implement policies to limit the spread of resistant microorganisms. This article describes an approach to assessing whether political and stakeholder interests can align to commit to tackling AMR. Two dimensions affecting political feasibility were selected and compared across 82 countries: 1) states' global influence and 2) self-interest in addressing AMR. World Bank GDP ranking was used as a proxy for global influence, while human antibiotic consumption (10-year percent change) was used as a proxy for self-interest in addressing AMR. We used these data to outline a typology of four country archetypes, and discuss how these archetypes can be used to understand whether a proposed agreement may have sufficient support to be politically feasible. Four types of countries exist within our proposed typology: 1) wealthy countries who have the expertise and financial resources to push for global collective action on AMR, 2) wealthy countries who need to act on AMR, 3) countries who require external assistance to act on AMR, and 4) neutral countries who may support action where applicable. Any international agreement will require substantial support from countries of the first type to lead global action, and from countries of the second type who have large increasing antimicrobial consumption levels. A large number of barriers exist that could derail efforts towards global collective action on AMR; issues of capacity, infrastructure, regulation, and stakeholder interests will need to be addressed in coordination with other actors to achieve an agreement on AMR. Achieving a global agreement on access, conservation, and innovation - the three pillars of AMR - will not be easy. However, smaller core groups of interested Initiator and Pivotal Countries could develop policy and resolve many issues. If highly influential countries take the lead, agreements could then be scaled up to achieve global action.
Sinha, Dona; Dutta, Kaustav; Ganguly, Kirat K.; Biswas, Jaydip; Bishayee, Anupam
2014-01-01
Background A methyl derivative natural triterpenoid amooranin (methyl-25-hydroxy-3-oxoolean-12-en-28-oate, AMR-Me) has been found to possess antiproliferative, proapoptotic and anti-inflammatory effects against established tumor cells. Large-scale synthesis of pure AMR-Me has eliminated the need of the natural phytochemical for further development of AMR-Me as an anticancer drug. Metastatic melanoma is a fatal form of cutaneous malignancy with poor prognosis and limited therapeutic options. It was hypothesized that antitumor pharmacological effect of AMR-Me could be linked to AMR-Me-mediated suppression of the metastatic potential of B16F10 murine melanoma. Methods AMR-Me was assessed for its antimetastatic efficacy by cell adhesion, migration and invasion assays in B16F10 cells. The signaling crosstalk was explored by gelatin zymography, Western blot, ELISA and immunocytochemistry. Results The results elicited that AMR-Me was successful in restricting the adhesion, migration and invasion of highly metastatic cells. The antimetastatic potential of this compound may be attributed to the reduced expression of membrane type 1 metalloproteinase (MT1-MMP) and matrix metalloproteinases (MMP-2 and MMP-9). AMR-Me was found to downregulate vascular endothelial growth factor (VEGF)/prosphorylated forms of focal adhesion kinase (pFAK397)/Jun N-terminus kinase (pJNK)/extracellular signal-regulated kinase (pERK). This, in turn, inhibited transcription factor nuclear factor-κB (NF-κB) and transactivation of MMPs. Moreover the activation of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) might have influenced the downmodulation of MT1-MMP, MMP-2 and MMP-9. Conclusion AMR-Me suppresses the activity of MT1-MMP, MMP-2 and MMP-9 by downregulation of VEGF/pFAK397/pJNK/pERK/NF-κB and activation of TIMP-1 and TIMP-2 in metastatic melanoma cell line, B16F10. General significance AMR-Me has the potential as an effective anticancer drug for metastatic melanoma which is a dismal disease. PMID:24510625
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
Wild small mammals as sentinels for the environmental transmission of antimicrobial resistance.
Furness, Lauren E; Campbell, Amy; Zhang, Lihong; Gaze, William H; McDonald, Robbie A
2017-04-01
Antimicrobial resistance (AMR) represents a serious threat to human health worldwide. We have tested the use of free-living small mammals (mice, voles and shrews) as sentinels of variation in the distribution of AMR in the environment and the potential for transmission from the natural environment to animal hosts. Escherichia coli isolated from the faeces of small mammals trapped at paired coastal and inland sites were tested for resistance to four antibiotics: trimethoprim, ampicillin, ciprofloxacin and cefotaxime. Coastal individuals were over twice as likely to carry AMR E. coli than inland individuals (79% and 35% respectively), and both between-site and between-species variation was observed. Animals from coastal populations also excreted increased numbers of AMR E. coli and a greater diversity of E. coli phylotypes, including human-associated pathogenic strains. Small mammals appear to be useful bioindicators of fine-scale spatial variation in the distribution of AMR and, potentially, of the risks of AMR transmission to mammalian hosts, including humans. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven Ft; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne Lm; van der Sande, Marianne Ab; Leenstra, Tjalling
2017-11-01
An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data.
Altorf-van der Kuil, Wieke; Schoffelen, Annelot F; de Greeff, Sabine C; Thijsen, Steven FT; Alblas, H Jeroen; Notermans, Daan W; Vlek, Anne LM; van der Sande, Marianne AB; Leenstra, Tjalling
2017-01-01
An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the scientific impact and the possibility of detecting outbreaks may be amplified by merging the AMR surveillance database with databases from selected pathogen-based surveillance programmes containing patient data and genotypic typing data. PMID:29162208
Ballantyne, Christie M; Bays, Harold E; Kastelein, John J; Stein, Evan; Isaacsohn, Jonathan L; Braeckman, Rene A; Soni, Paresh N
2012-10-01
AMR101 is an ω-3 fatty acid agent containing ≥96% pure icosapent-ethyl, the ethyl ester of eicosapentaenoic acid. The efficacy and safety of AMR101 were evaluated in this phase 3, multicenter, placebo-controlled, randomized, double-blinded, 12-week clinical trial (ANCHOR) in high-risk statin-treated patients with residually high triglyceride (TG) levels (≥200 and <500 mg/dl) despite low-density lipoprotein (LDL) cholesterol control (≥40 and <100 mg/dl). Patients (n = 702) on a stable diet were randomized to AMR101 4 or 2 g/day or placebo. The primary end point was median percent change in TG levels from baseline versus placebo at 12 weeks. AMR101 4 and 2 g/day significantly decreased TG levels by 21.5% (p <0.0001) and 10.1% (p = 0.0005), respectively, and non-high-density lipoprotein (non-HDL) cholesterol by 13.6% (p <0.0001) and 5.5% (p = 0.0054), respectively. AMR101 4 g/day produced greater TG and non-HDL cholesterol decreases in patients with higher-efficacy statin regimens and greater TG decreases in patients with higher baseline TG levels. AMR101 4 g/day decreased LDL cholesterol by 6.2% (p = 0.0067) and decreased apolipoprotein B (9.3%), total cholesterol (12.0%), very-low-density lipoprotein cholesterol (24.4%), lipoprotein-associated phospholipase A(2) (19.0%), and high-sensitivity C-reactive protein (22.0%) versus placebo (p <0.001 for all comparisons). AMR101 was generally well tolerated, with safety profiles similar to placebo. In conclusion, AMR101 4 g/day significantly decreased median placebo-adjusted TG, non-HDL cholesterol, LDL cholesterol, apolipoprotein B, total cholesterol, very-low-density lipoprotein cholesterol, lipoprotein-associated phospholipase A(2), and high-sensitivity C-reactive protein in statin-treated patients with residual TG elevations. Copyright © 2012 Elsevier Inc. All rights reserved.
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...
2016-11-09
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows
NASA Astrophysics Data System (ADS)
Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.
2017-12-01
Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans
Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less
Adler, Alexandra C; Zamfir, Mihai; Hendrowarsito, Lana; Dammeyer, Antchen; Schomacher, Lasse; Karlin, Barbara; Franitza, Manuela; Nasri, Lilia; Hörmansdorfer, Stefan; Tuschak, Christian; Valenza, Giuseppe; Ewert, Thomas; Hierl, Wolfgang; Ochmann, Uta; Herr, Caroline; Heinze, Stefanie
2017-08-01
Antimicrobial resistant bacteria (AMR) are of public health and economic relevance. However, there is a lack of data regarding AMR colonization in pregnant women and in newborns. Furthermore, there are few studies analyzing hospital's net income (revenues and costs). The cross-sectional study took place in two Bavarian clinics. Available data regarding women and newborns were collected using a standardized questionnaire, personal IDs and medical records in addition to AMR/MSSA screening. Economic data consisted of estimated hospitalization costs, calculated using a billing system called G-DRG (German-Diagnosis Related Groups) as well as real hospitalization costs (e.g. staff, medical and non-medical infrastructure costs). Data from 635 pregnant women and 566 newborns were included. While AMR colonization has shown no significant association with clinical complications, or net hospital income; primipara status and medical condition during pregnancy did. AMR colonization did not have a significant influence on the health status of pregnant women or of the newborns. Net hospital income for pregnant women was mostly negative in 2014. In 2014 and 2015 the majority of the cases had a net income between ±€ 1000. Newborns with clinical complications differed significantly in Apgar score at 1min, weight, body length and AMR colonization of the pregnant woman and/or the newborn (p<=0.05). Results indicate that colonization does not lead to increased costs during hospitalization considering real hospitalization costs as well as G-DRG estimated costs. Both DRG groups had similar MSSA and AMR prevalence and health status. In future studies, a Centralized Cost Accounting as billing method and an improved possibility of AMR coding in G-DRG catalog would be desirable. Copyright © 2017 Elsevier B.V. All rights reserved.
Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y
2015-08-01
We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.
Automatic Thread-Level Parallelization in the Chombo AMR Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christen, Matthias; Keen, Noel; Ligocki, Terry
2011-05-26
The increasing on-chip parallelism has some substantial implications for HPC applications. Currently, hybrid programming models (typically MPI+OpenMP) are employed for mapping software to the hardware in order to leverage the hardware?s architectural features. In this paper, we present an approach that automatically introduces thread level parallelism into Chombo, a parallel adaptive mesh refinement framework for finite difference type PDE solvers. In Chombo, core algorithms are specified in the ChomboFortran, a macro language extension to F77 that is part of the Chombo framework. This domain-specific language forms an already used target language for an automatic migration of the large number ofmore » existing algorithms into a hybrid MPI+OpenMP implementation. It also provides access to the auto-tuning methodology that enables tuning certain aspects of an algorithm to hardware characteristics. Performance measurements are presented for a few of the most relevant kernels with respect to a specific application benchmark using this technique as well as benchmark results for the entire application. The kernel benchmarks show that, using auto-tuning, up to a factor of 11 in performance was gained with 4 threads with respect to the serial reference implementation.« less
NASA Astrophysics Data System (ADS)
Yahagi, Y.; Miura, D.; Sakuma, A.
2018-05-01
We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.
Valenzuela, Nicole M; Reed, Elaine F
2017-06-30
Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.
Lesho, Emil P; Waterman, Paige E; Chukwuma, Uzo; McAuliffe, Kathryn; Neumann, Charlotte; Julius, Michael D; Crouch, Helen; Chandrasekera, Ruvani; English, Judith F; Clifford, Robert J; Kester, Kent E
2014-08-01
Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Majowicz, Shannon E; Parmley, E Jane; Carson, Carolee; Pintar, Katarina
2018-03-12
Antimicrobial resistance (AMR) is a critical public health issue that involves interrelationships between people, animals, and the environment. Traditionally, interdisciplinary efforts to mitigate AMR in the food chain have involved public health, human and veterinary medicine, and agriculture stakeholders. Our objective was to identify a more diverse range of stakeholders, beyond those traditionally engaged in AMR mitigation efforts, via diagramming both proximal and distal factors impacting, or impacted by, use and resistance along the Canadian food chain. We identified multiple stakeholders that are not traditionally engaged by public health when working to mitigate AMR in the food chain, including those working broadly in the area of food (e.g., nutrition, food security, international market economists) and health (e.g., health communication, program evaluation), as well as in domains as diverse as law, politics, demography, education, and social innovation. These findings can help researchers and policymakers who work on issues related to AMR in the food chain to move beyond engaging the 'traditional' agri-food stakeholders (e.g., veterinarians, farmers), to also engage those from the wider domains identified here, as potential stakeholders in their AMR mitigation efforts.
Antimicrobial Resistance Prediction in PATRIC and RAST.
Davis, James J; Boisvert, Sébastien; Brettin, Thomas; Kenyon, Ronald W; Mao, Chunhong; Olson, Robert; Overbeek, Ross; Santerre, John; Shukla, Maulik; Wattam, Alice R; Will, Rebecca; Xia, Fangfang; Stevens, Rick
2016-06-14
The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88-99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71-88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.
Smith, Courtney R; Pogany, Lisa; Foley, Simon; Wu, Jun; Timmerman, Karen; Gale-Rowe, Margaret; Demers, Alain
2017-12-01
To establish a baseline for physicians' knowledge of and counseling practices on the use of antibiotics and antimicrobial resistance (AMR), and to determine potential changes in these measures after the implementation of a national AMR awareness campaign. Cross-sectional design. Canada. A total of 1600 physicians. Physicians' knowledge of and counseling practices on antibiotic use and AMR at baseline and after implementation of the AMR awareness campaign. A total of 336 physicians responded to the first-cycle survey (before the campaign), and 351 physicians responded to the second-cycle survey (after the campaign). Overall, physicians' knowledge of appropriate antibiotic use and AMR was high and their counseling practices in relation to antibiotics were appropriate in both surveys. Counseling levels about topics related to infection prevention and control (eg, food handling, household hygiene) were slightly lower. Counseling levels were also lower for certain antibiotic-use practices (eg, proper disposal of antibiotics). In addition, physicians with less than 10 years of practice experience had significantly lower odds of counseling their patients on topics related to preventing antibiotic resistance and infection prevention than those with 15 or more years of practice experience (adjusted odds ratio = 0.27, 95% CI 0.10 to 0.74). Significantly more physicians from the second-cycle survey counseled patients on the appropriate disposal of antibiotics ( P = .03), as well as on some of the infection prevention topics (eg, using antibacterial hand soap [ P = .02] and cleaning supplies [ P = .01]). Most respondents in both surveys reported feeling confident with respect to counseling their patients on the appropriate use of antibiotics and AMR. Physicians' knowledge of and levels of counseling on the use of antibiotics and AMR were high and fairly stable in both survey results. This shows that Canadian physicians are demonstrating behaviour patterns of AMR stewardship. Existing gaps in counseling practices might be a result of physicians believing that pharmacists or nurses are addressing these issues with patients. Future national surveys conducted among pharmacists and nurses would contribute to the evidence base for AMR stewardship activities. Copyright© the College of Family Physicians of Canada.
Smith, Courtney R.; Pogany, Lisa; Foley, Simon; Wu, Jun; Timmerman, Karen; Gale-Rowe, Margaret; Demers, Alain
2017-01-01
Abstract Objective To establish a baseline for physicians’ knowledge of and counseling practices on the use of antibiotics and antimicrobial resistance (AMR), and to determine potential changes in these measures after the implementation of a national AMR awareness campaign. Design Cross-sectional design. Setting Canada. Participants A total of 1600 physicians. Main outcome measures Physicians’ knowledge of and counseling practices on antibiotic use and AMR at baseline and after implementation of the AMR awareness campaign. Results A total of 336 physicians responded to the first-cycle survey (before the campaign), and 351 physicians responded to the second-cycle survey (after the campaign). Overall, physicians’ knowledge of appropriate antibiotic use and AMR was high and their counseling practices in relation to antibiotics were appropriate in both surveys. Counseling levels about topics related to infection prevention and control (eg, food handling, household hygiene) were slightly lower. Counseling levels were also lower for certain antibiotic-use practices (eg, proper disposal of antibiotics). In addition, physicians with less than 10 years of practice experience had significantly lower odds of counseling their patients on topics related to preventing antibiotic resistance and infection prevention than those with 15 or more years of practice experience (adjusted odds ratio = 0.27, 95% CI 0.10 to 0.74). Significantly more physicians from the second-cycle survey counseled patients on the appropriate disposal of antibiotics (P = .03), as well as on some of the infection prevention topics (eg, using antibacterial hand soap [P = .02] and cleaning supplies [P = .01]). Most respondents in both surveys reported feeling confident with respect to counseling their patients on the appropriate use of antibiotics and AMR. Conclusion Physicians’ knowledge of and levels of counseling on the use of antibiotics and AMR were high and fairly stable in both survey results. This shows that Canadian physicians are demonstrating behaviour patterns of AMR stewardship. Existing gaps in counseling practices might be a result of physicians believing that pharmacists or nurses are addressing these issues with patients. Future national surveys conducted among pharmacists and nurses would contribute to the evidence base for AMR stewardship activities. PMID:29237649
The Burden of Oral Disease among Perinatally HIV-Infected and HIV-Exposed Uninfected Youth
Yao, Tzy-Jyun; Ryder, Mark I.; Russell, Jonathan S.; Dominy, Stephen S.; Patel, Kunjal; McKenna, Matt; Van Dyke, Russell B.; Seage, George R.; Hazra, Rohan
2016-01-01
Objective To compare oral health parameters in perinatally HIV-infected (PHIV) and perinatally HIV-exposed but uninfected youth (PHEU). Methods In a cross-sectional substudy within the Pediatric HIV/AIDS Cohort Study, participants were examined for number of decayed teeth (DT), Decayed, Missing, and Filled Teeth (DMFT), oral mucosal disease, and periodontal disease (PD). Covariates for oral health parameters were examined using zero-inflated negative binomial regression and ordinal logistic regression models. Results Eleven sites enrolled 209 PHIV and 126 PHEU. Higher DT scores were observed in participants who were PHIV [Adjusted Mean Ratio (aMR) = 1.7 (95% CI 1.2–2.5)], female [aMR = 1.4 (1.0–1.9)], had no source of regular dental care [aMR = 2.3 (1.5–3.4)], and had a high frequency of meals/snacks [≥5 /day vs 0–3, aMR = 1.9 (1.1–3.1)] and juice/soda [≥5 /day vs 0–3, aMR = 1.6 (1.1–2.4)]. Higher DMFT scores were observed in participants who were older [≥19, aMR = 1.9 (1.2–2.9)], had biological parent as caregiver [aMR = 1.2 (1.0–1.3)], had a high frequency of juice/soda [≥5 /day vs 0–3, aMR = 1.4 (1.1–1.7)] and a low saliva flow rate [mL/min, aMR = 0.8 per unit higher (0.6–1.0)]. Eighty percent had PD; no differences were seen by HIV status using the patient-based classifications of health, gingivitis or mild, moderate, or severe periodontitis. No associations were observed of CD4 count and viral load with oral health outcomes after adjustment. Conclusions Oral health was poor in PHIV and PHEU youth. This was dismaying since most HIV infected children in the U.S. are carefully followed at medical health care clinics. This data underscore the need for regular dental care. As PHIV youth were at higher risk for cavities, it will be important to better understand this relationship in order to develop targeted interventions. PMID:27299992
Tsegaye, L; Huston, P; Milliken, R; Hanniman, K; Nesbeth, C; Noad, L
2016-11-03
On September 21, 2016, the United Nations General Assembly held a high-level meeting on antimicrobial resistance (AMR). Participating political leaders committed to coordinate action across the human and animal health, agriculture and environmental sectors and to work at national, regional and international levels with the public sector, private sector, civil society and all other relevant actors, including the public. The objective of this article is to outline how the Public Health Agency of Canada (PHAC) has been working to address AMR in Canada. PHAC has used a One Health approach and has been working at the federal level with other government departments and nationally with the provinces, territories, professional organizations and other key players to address AMR. To date, the federal response has focused on surveillance, stewardship and innovation across multiple sectors, including human health, animal health, regulatory actions and research. PHAC is currently working with the provinces and territories as well as key experts in the field to develop a pan-Canadian AMR Framework and subsequent action plan that will outline best practices and approaches to AMR across human and animal health. The Framework will build on previous work done by PHAC and the federal/provincial/territorial Pan-Canadian Public Health Network Council, and recognizes the research expertise in Canada, the need to ensure actions are based on evidence, and to combat AMR through infection prevention and control. The three articles in this issue are examples of the foundational work that has been done federally by PHAC, in developing the Canadian AMR Surveillance System (CARSS), and nationally, through task groups of the Public Health Network Council, in identifying where to strengthen human surveillance of AMR and best practices for stewardship in the human health care system. While we remain in an early stage of national, coordinated AMR action, momentum is building to ensure Canada can respond to this global health threat with a One Health approach involving multiple sectors at local, national and international levels that are all well-aligned with the World Health Organization Global Action Plan.
Vikram, Amit; Rovira, Pablo; Agga, Getahun E.; Arthur, Terrance M.; Bosilevac, Joseph M.; Wheeler, Tommy L.; Morley, Paul S.; Belk, Keith E.
2017-01-01
ABSTRACT The specific antimicrobial resistance (AMR) decreases that can be expected from reducing antimicrobial (AM) use in U.S. beef production have not been defined. To address this data gap, feces were recovered from 36 lots of “raised without antibiotics” (RWA) and 36 lots of “conventional” (CONV) beef cattle. Samples (n = 719) were collected during harvest and distributed over a year. AMR was assessed by (i) the culture of six AM-resistant bacteria (ARB), (ii) quantitative PCR (qPCR) for 10 AMR genes (ARGs), (iii) a qPCR array of 84 ARGs, and (iv) metagenomic sequencing. Generally, AMR levels were similar, but some were higher in CONV beef cattle. The prevalence of third-generation cephalosporin-resistant (3GCr) Escherichia coli was marginally different between production systems (CONV, 47.5%; RWA, 34.8%; P = 0.04), but the seasonal effect (summer, 92.8%; winter, 48.3%; P < 0.01) was greater. Erythromycin-resistant (ERYr) Enterococcus sp. concentrations significantly differed between production systems (CONV, 1.91 log10 CFU/g; RWA, 0.73 log10 CFU/g; P < 0.01). Levels of aadA1, ant(6)-I, blaACI, erm(A), erm(B), erm(C), erm(F), erm(Q), tet(A), tet(B), tet(M), and tet(X) ARGs were higher (P < 0.05) in the CONV system. Aggregate abundances of all 43 ARGs detected by metagenomic sequencing and the aggregate abundances of ARGs in the aminoglycoside, β-lactam, macrolide-lincosamide-streptogramin B (MLS), and tetracycline AM classes did not differ (log2 fold change < 1.0) between CONV and RWA systems. These results suggest that further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance. IMPORTANCE The majority of antimicrobial (AM) use in the United States is for food-animal production, leading to concerns that typical AM use patterns during “conventional” (CONV) beef cattle production in the United States contribute broadly to antimicrobial resistance (AMR) occurrence. In the present study, levels of AMR were generally similar between CONV and “raised without antibiotics” (RWA) cattle. Only a limited number of modest AMR increases was observed in CONV cattle, primarily involving macrolide-lincosamide-streptogramin B (MLS) and tetracycline resistance. Macrolides (tylosin) and tetracyclines (chlortetracycline) are administered in-feed for relatively long durations to reduce liver abscesses. To ensure judicious AM use, the animal health, economic, and AMR impacts of shorter duration in-feed administration of these AMs should be examined. However, given the modest AMR reductions observed, further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance. PMID:28887421
New methods and astrophysical applications of adaptive mesh fluid simulations
NASA Astrophysics Data System (ADS)
Wang, Peng
The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.
Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II
Fang, Xiaodong; Luo, Jianying; Nishihama, Ryuichi; Wloka, Carsten; Dravis, Christopher; Travaglia, Mirko; Iwase, Masayuki; Vallen, Elizabeth A.
2010-01-01
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a “headless” AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation. PMID:21173112
Refugees and antimicrobial resistance: A systematic review.
de Smalen, Allard Willem; Ghorab, Hatem; Abd El Ghany, Moataz; Hill-Cawthorne, Grant A
There is a large increase in the numbers of refugees and asylum seekers worldwide and a lack of data on the carriage of antimicrobial resistance in refugee/asylum seeking groups. This article aims to identify the impact of refugees and asylum seekers on the acquisition and transmission of antimicrobial resistance (AMR) through a literature search. The databases Embase, Medline, Pubmed, and Web of Science Core Collection were utilised and covered all articles before the 1st of October 2016. In total, 577 articles were identified, and studies were eligible if they met the selection criteria, including observational study design, English language, and AMR strains reported in absolute numbers. In total, 17 articles met the criteria, the majority were from the European region. Articles fitting the selection criteria exclusively reported AMR in bacterial species including Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumonia, K. oxytoca, Shigella spp., Staphylococcus aureus, Enterococcus faecium, and Acinetobacter baumannii. The analyses indicated that a high percentage of AMR strains, have been circulating among refugees and asylum seekers. The displacement of refugees and asylum seekers seem to play a key role in the transmission of AMR. Therefore, improved AMR control measures are essential. A knowledge gap was identified; further research is strongly recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antimicrobial resistance prediction in PATRIC and RAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, James J.; Boisvert, Sebastien; Brettin, Thomas
The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less
Guerra, Marjorie-Anne R; Naini, Bita V; Scapa, Jason V; Reed, Elaine F; Busuttil, Ronald W; Cheng, Elaine Y; Farmer, Douglas G; Vargas, Jorge H; Venick, Robert S; McDiarmid, Sue V; Wozniak, Laura J
2018-03-01
The significance of post-transplant HLA DSA and chronic AMR in LT is an emerging field of study. Although OPV has previously been described as a histopathologic finding in DSA-positive adult LT recipients, it was not included in the recent Banff criteria for chronic AMR. Our aim was to describe the association between OPV and chronic AMR in pediatric LT recipients. A retrospective review of 67 liver biopsies performed between November 2014 and April 2016 in 45 pediatric LT recipients identified four patients with OPV. Clinical status, liver biochemistry, the presence of DSA, and available non-HLA antibody testing, as well as histopathologic features of chronic AMR, were assessed. All four patients with OPV had class II DSA and histopathologic features of chronic AMR based on the Banff criteria. Two patients were noted to have non-HLA antibodies. Three patients are undergoing treatment with IVIG but have persistent DSA. Two patients have graft failure and are awaiting retransplantation. In conclusion, OPV is a histopathologic finding associated with chronic AMR in pediatric LT recipients. Further studies are needed to elucidate whether OPV is reversible and/or amenable to medical therapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tuning the heat transfer medium and operating conditions in magnetic refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghahremani, Mohammadreza, E-mail: mghahrem@shepherd.edu; Dept. of Electrical and Computer Engineering, The George Washington University, Washington DC 20052; Aslani, Amir
A new experimental test bed has been designed, built, and tested to evaluate the effect of the system’s parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system’s optimal operatingmore » conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.« less
Antimicrobial resistance prediction in PATRIC and RAST
Davis, James J.; Boisvert, Sebastien; Brettin, Thomas; ...
2016-06-14
The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned bymore » their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88–99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71–88%. Lastly, this set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.« less
Nakamura, Tsukasa; Ushigome, Hidetaka; Watabe, Kiyoko; Imanishi, Yui; Masuda, Koji; Matsuyama, Takehisa; Harada, Shumpei; Koshino, Katsuhiro; Iida, Taku; Nobori, Shuji; Yoshimura, Norio
2017-04-01
Immunocomplex capture fluorescence analysis (ICFA) is an attractive method to detect donor-specific anti-HLA antibodies (DSA) and HLA antigen complexes. Currently, antibody-mediated rejection (AMR) due to DSA is usually diagnosed by C4d deposition and serological DSA detection. Conversely, there is a discrepancy between these findings frequently. Thereupon, our graft ICFA technique may contribute to establish the diagnosis of AMR. Graft samples were obtained by a percutaneous needle biopsy. Then, the specimen was dissolved in PBS by the lysis buffer. Subsequently, HLA antigens were captured by anti-HLA beads. Then, DSA-HLA complexes were detected by PE-conjugated anti-human IgG antibodies, where DSA had already reacted with the allograft in vivo, analyzed by a Luminex system. A ratio (sample MFI/blank beads MFI) was calculated: ≥ 1.0 was determined as positive. We found that DSA-HLA complexes in the graft were successfully detected from only slight positive 1.03 to 79.27 in a chronic active AMR patient by graft ICFA. Next, positive graft ICFA had predicted the early phase of AMR (MFI ratio: 1.38) even in patients with no serum DSA. Finally, appropriate therapies for AMR deleted DSA deposition (MFI ratio from 0.3 to 0.7) from allografts. This novel application would detect early phase or incomplete pathological cases of AMR, which could lead to a correct diagnosis and initiation of appropriate therapies. Moreover, graft ICFA might address a variety of long-standing questions in terms of DSA. AMR: Antibody-mediated rejection; DSA: Donor-specific antibodies; ICFA: Immunocomplex capture fluorescence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yangrae; Srivastava, Akhil; Ohm, Robin A.
2012-05-01
Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen. Several A. brassicicola genes have been characterized as affecting pathogenesis of Brassica species. To study regulatory mechanisms of pathogenesis, we mined 421 genes in silico encoding putative transcription factors in a machine-annotated, draft genome sequence of A. brassicicola. In this study, targeted gene disruption mutants for 117 of the transcription factor genes were produced and screened. Three of these genes were associated with pathogenesis. Disruption mutants of one gene (AbPacC) were nonpathogenic and another gene (AbVf8) caused lesions less than half the diameter of wild-type lesions. Unexpectedly, mutants of themore » third gene, Amr1, caused lesions with a two-fold larger diameter than the wild type and complementation mutants. Amr1 is a homolog of Cmr1, a transcription factor that regulates melanin biosynthesis in several fungi. We created gene deletion mutants of ?amr1 and characterized their phenotypes. The ?amr1 mutants used pectin as a carbon source more efficiently than the wild type, were melanin-deficient, and more sensitive to UV light and glucanase digestion. The AMR1 protein was localized in the nuclei of hyphae and in highly melanized conidia during the late stage of plant pathogenesis. RNA-seq analysis revealed that three genes in the melanin biosynthesis pathway, along with the deleted Amr1 gene, were expressed at low levels in the mutants. In contrast, many hydrolytic enzyme-coding genes were expressed at higher levels in the mutants than in the wild type during pathogenesis. The results of this study suggested that a gene important for survival in nature negatively affected virulence, probably by a less efficient use of plant cell-wall materials. We speculate that the functions of the Amr1 gene are important to the success of A. brassicicola as a competitive saprophyte and plant parasite.« less
Oloya, J; Doetkott, D; Khaitsa, M L
2009-04-01
1) To characterize and determine genotypic relatedness of Salmonella serovars commonly isolated from domestic animals and humans in North Dakota, and 2) to assess their role in transferring antimicrobial resistance (AMR) to humans. A total of 434 Salmonella isolates obtained from 1) feces of apparently healthy feedlot, range, and dairy cattle in North Dakota; 2) clinical samples from sick or dead animals submitted to North Dakota State University-Veterinary Diagnostic Laboratory (2000-2005); 3) previous meat product surveillance studies in North Dakota; and 4) 179 samples from human patients in North Dakota (2000-2005) by the North Dakota Department of Health were studied. The isolates were initially serotyped and later genotyped by pulsed-field gel electrophoresis (PFGE) to investigate their relatedness. The National Antimicrobial Resistance Monitoring Systems panel was used to compare AMR profiles of animal and human isolates to assess a possible role of domestic animals in transfer of AMR to humans. Salmonella Typhimurium was the predominant serotype in both humans (13.4%) and domestic animals (34.3%), followed by Newport in animals (2.6%) and human (3.9%). Salmonella Arizona (0.7%), Salmonella Give (0.9%), and Salmonella Muenster (3.5%) were isolated from sick or dead animals. PFGE results confirmed occurrence of similar Salmonella genotypes in both domestic animals and humans. AMR profiles showed that most animal strains were multidrug resistant. A single human isolate had PFGE and multidrug resistance profiles similar to a major cattle genotype, suggesting a possible AMR transmission from cattle to humans. CONCLUSION AND APPLICATION: Similar Salmonella genotypes were infecting domestic animals and humans in North Dakota. The AMR levels were higher in domestic animal isolates than in humans, implying that the occurrence of AMR in animal isolates may not translate directly into AMR in human isolates in North Dakota. This is helpful in determining future policies regarding antimicrobial drug use in domestic animals and humans.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa
2017-05-01
We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.
Adaptive mesh fluid simulations on GPU
NASA Astrophysics Data System (ADS)
Wang, Peng; Abel, Tom; Kaehler, Ralf
2010-10-01
We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA's CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge-Kutta time integration scheme, piecewise linear reconstruction, and a Harten-Lax-van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).
Characterize Framework for Igneous Activity at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Perry; B. Youngs
2000-11-06
The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA andmore » structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both footprints are presented in this AMR. In addition, the probability of an eruptive center(s) forming within the repository footprint is calculated and presented in this AMR for both repository footprint designs. This latter type of calculation was not included in the PVHA.« less
Chaintarli, Katerina; Ingle, Suzanne M; Bhattacharya, Alex; Ashiru-Oredope, Diane; Oliver, Isabel; Gobin, Maya
2016-05-12
As part of the 2014 European Antibiotic Awareness Day plans, a new campaign called Antibiotic Guardian (AG) was launched in the United Kingdom, including an online pledge system to increase commitment from healthcare professionals and members of the public to reduce antimicrobial resistance (AMR). The aim of this evaluation was to determine the impact of the campaign on self-reported knowledge and behaviour around AMR. An online survey was sent to 9016 Antibiotic Guardians (AGs) to assess changes in self-reported knowledge and behaviour (outcomes) following the campaign. Logistic regression models, adjusted for variables including age, sex and pledge group (pledging as member of public or as healthcare professional), were used to estimate associations between outcomes and AG characteristics. 2478 AGs responded to the survey (27.5 % response rate) of whom 1696 (68.4 %) pledged as healthcare professionals and 782 (31.6 %) as members of public (similar proportions to the total number of AGs). 96.3 % of all AGs who responded had prior knowledge of AMR. 73.5 % of participants were female and participants were most commonly between 45 and 54 years old. Two thirds (63.4 %) of participants reported always acting according to their pledge. Members of the public were more likely to act in line with their pledge than professionals (Odds Ratio (OR) =3.60, 95 % Confidence Interval (CI): 2.88-4.51). Approximately half of participants (44.5 %) (both healthcare professionals and members of public) reported that they acquired more knowledge about AMR post-campaign. People that were confused about AMR prior to the campaign acquired more knowledge after the campaign (OR = 3.10, 95 % CI: 1.36-7.09). More participants reported a sense of personal responsibility towards tackling AMR post-campaign, increasing from 58.3 % of participants pre-campaign to 70.5 % post-campaign. This study demonstrated that the campaign increased commitment to tackling AMR in both healthcare professional and member of the public, increased self-reported knowledge and changed self-reported behaviour particularly among people with prior AMR awareness. Online pledge schemes can be an effective and inexpensive way to engage people with the problem of AMR especially among those with prior awareness of the topic.
Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.
Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A
2014-03-01
Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or <1.0, respectively. Eleven studies, describing 36 different trials, fulfilled the eligibility criteria and were finally assessed. An increase of AMR in E. coli was found in 10 out of 11 trials comparing AMR after with AMR prior to oral treatment and in 22 of the 25 trials comparing orally treated with untreated groups. Effects expressed as odds or prevalence ratios were highest for the use of aminoglycosides, quinolones and tetracycline. There was no clear association between the reported dosage and AMR towards tetracycline. Information on antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and provision of information on sample size. Oral administration of antimicrobials increases the risk of AMR in E. coli from swine. There is however a lack of studies on the impact of dosage and longitudinal effects of treatment. The published studies have a number of issues concerning their scientific quality. More high quality research is needed to better address and quantifiy the effect of orally administered antimicrobials on AMR in swine. Copyright © 2014 Elsevier B.V. All rights reserved.
Sakeena, M H F; Bennett, Alexandra A; McLachlan, Andrew J
2018-01-01
Antimicrobial resistance (AMR) is a global health challenge and developing countries are more vulnerable to the adverse health impacts of AMR. Health care workers including pharmacists can play a key role to support the appropriate use of antimicrobials in developing countries and reduce AMR. The aim of this review is to investigate the role of pharmacists in the appropriate use of antibiotics and to identify how the pharmacists' role can be enhanced to combat AMR in developing countries. The databases MEDLINE, EMBASE, Web of Science and Google Scholar were searched for articles published between 2000 and the end of August 2017 that involved studies on the role of pharmacists in developing countries, the expanded services of pharmacists in patient care in developed countries and pharmacists' contributions in antimicrobial use in both developed and developing nations. In developing countries pharmacists role in patient care are relatively limited. However, in developed nations, the pharmacists' role has expanded to provide multifaceted services in patient care resulting in improved health outcomes from clinical services and reduced health care costs. Success stories of pharmacist-led programs in combating AMR demonstrates that appropriately trained pharmacists can be part of the solution to overcome the global challenge of AMR. Pharmacists can provide education to patients enabling them to use antibiotics appropriately. They can also provide guidance to their healthcare colleagues on appropriate antibiotic prescribing. This review highlights that appropriately trained pharmacists integrated into the health care system can make a significant impact in minimising inappropriate antibiotic use in developing countries. Strengthening and enhancing the pharmacists' role in developing countries has the potential to positively impact the global issue of AMR.
Testing the accelerating moment release (AMR) hypothesis in areas of high stress
NASA Astrophysics Data System (ADS)
Guilhem, Aurélie; Bürgmann, Roland; Freed, Andrew M.; Ali, Syed Tabrez
2013-11-01
Several retrospective analyses have proposed that significant increases in moment release occurred prior to many large earthquakes of recent times. However, the finding of accelerating moment release (AMR) strongly depends on the choice of three parameters: (1) magnitude range, (2) area being considered surrounding the events and (3) the time period prior to the large earthquakes. Consequently, the AMR analysis has been criticized as being a posteriori data-fitting exercise with no new predictive power. As AMR has been hypothesized to relate to changes in the state of stress around the eventual epicentre, we compare here AMR results to models of stress accumulation in California. Instead of assuming a complete stress drop on all surrounding fault segments implied by a back-slip stress lobe method, we consider that stress evolves dynamically, punctuated by the occurrence of earthquakes, and governed by the elastic and viscous properties of the lithosphere. We study the seismicity of southern California and extract events for AMR calculations following the systematic approach employed in previous studies. We present several sensitivity tests of the method, as well as grid-search analyses over the region between 1955 and 2005 using fixed magnitude range, radius of the search area and period of time. The results are compared to the occurrence of large events and to maps of Coulomb stress changes. The Coulomb stress maps are compiled using the coseismic stress from all M > 7.0 earthquakes since 1812, their subsequent post-seismic relaxation, and the interseismic strain accumulation. We find no convincing correlation of seismicity rate changes in recent decades with areas of high stress that would support the AMR hypothesis. Furthermore, this indicates limited utility for practical earthquake hazard analysis in southern California, and possibly other regions.
Physical activity, body functions and disability among middle-aged and older Spanish adults.
Caron, Alexandre; Ayala, Alba; Damián, Javier; Rodriguez-Blazquez, Carmen; Almazán, Javier; Castellote, Juan Manuel; Comin, Madgalena; Forjaz, Maria João; de Pedro, Jesús
2017-07-18
Physical activity (PA) is a health determinant among middle-aged and older adults. In contrast, poor health is expected to have a negative impact on PA. This study sought to assess to what extent specific International Classification of Functioning, Disability and Health (ICF) health components were associated with PA among older adults. We used a sample of 864 persons aged ≥50 years, positively screened for disability or cognition in a cross-sectional community survey in Spain. Weekly energy expenditure during PA was measured with the Yale Physical Activity Survey (YPAS) scale. The associations between body function impairment, health conditions or World Health Organization Disability Assessment Schedule (WHODAS 2.0) disability scores and energy expenditure were quantified using negative-binomial regression, and expressed in terms of adjusted mean ratios (aMRs). Mean energy expenditure was 4542 Kcal/week. A lower weekly energy expenditure was associated with: severe/extreme impairment of mental functions, aMR 0.38, 95% confidence interval, CI (0.21-0.68), and neuromusculoskeletal and movement functions, aMR 0.50 (0.35-0.72); WHODAS 2.0 disability, aMR 0.55 (0.34-0.91); dementia, aMR 0.45 (0.31-0.66); and heart failure, aMR 0.54 (0.34-0.87). In contrast, people with arthritis/osteoarthritis had a higher energy expenditure, aMR 1.27 (1.07-1.51). Our results suggest that there is a strong relationship between selected body function impairments, mainly mental, and PA. Although more research is needed to fully understand causal relationships, strategies to improve PA among the elderly may require targeting mental, neuromusculoskeletal and movement functions, disability determinants (including barriers), and specific approaches for persons with dementia or heart failure.
Antibiotic resistance among Ureaplasma spp. isolates: cause for concern?
Beeton, M L; Spiller, O B
2017-02-01
There is growing global concern regarding the rise of antibiotic-resistant organisms. Many of these reports have focused on various Gram-positive and Gram-negative pathogens, with little attention to the genus Ureaplasma. Ureaplasma spp. are associated with numerous infectious diseases affecting pregnant women, neonates and the immunocompromised. Treatment options are extremely limited due to high levels of intrinsic resistance resulting from the unique physiology of these organisms and further restricted in cases of the developing fetus or neonate, often limiting therapeutic options to predominantly macrolides or rarely fluoroquinolones. The increasing presence of macrolide- and fluoroquinolone-resistant strains among neonatal infections may result in pan-drug resistance and potentially untreatable conditions. Here, we review the requirements for accurate measurement of antimicrobial susceptibility, provide a comprehensive review of the antimicrobial resistance (AMR) for Ureaplasma species in the literature and contextualize these results relative to some investigators' reliance on commercial kits that are not CLSI compliant when determining AMR. The dramatic variation in the resistance patterns and impact of high levels of AMR amongst neonatal populations suggests the need for continued surveillance. Commercial kits represent an excellent tool for initial antibiotic susceptibility determination and screening. However, AMR reporting must utilize internationally standardized methods, as high-titre samples, or Mycoplasma hominis-contaminated samples routinely give false AMR results. Furthermore, there is a requirement for future reports to determine the underlying AMR mechanisms and determine whether expanding AMR is due to spontaneous mutation, transmission of resistance genes on mobile elements or selection and expansion of resistant clones. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review
Nhung, Nguyen Thi; Chansiripornchai, Niwat; Carrique-Mas, Juan J.
2017-01-01
Antimicrobial resistance (AMR) is a global health threat, and antimicrobial usage and AMR in animal production is one of its contributing sources. Poultry is one of the most widespread types of meat consumed worldwide. Poultry flocks are often raised under intensive conditions using large amounts of antimicrobials to prevent and to treat disease, as well as for growth promotion. Antimicrobial resistant poultry pathogens may result in treatment failure, leading to economic losses, but also be a source of resistant bacteria/genes (including zoonotic bacteria) that may represent a risk to human health. Here we reviewed data on AMR in 12 poultry pathogens, including avian pathogenic Escherichia coli (APEC), Salmonella Pullorum/Gallinarum, Pasteurella multocida, Avibacterium paragallinarum, Gallibacterium anatis, Ornitobacterium rhinotracheale (ORT), Bordetella avium, Clostridium perfringens, Mycoplasma spp., Erysipelothrix rhusiopathiae, and Riemerella anatipestifer. A number of studies have demonstrated increases in resistance over time for S. Pullorum/Gallinarum, M. gallisepticum, and G. anatis. Among Enterobacteriaceae, APEC isolates displayed considerably higher levels of AMR compared with S. Pullorum/Gallinarum, with prevalence of resistance over >80% for ampicillin, amoxicillin, tetracycline across studies. Among the Gram-negative, non-Enterobacteriaceae pathogens, ORT had the highest levels of phenotypic resistance with median levels of AMR against co-trimoxazole, enrofloxacin, gentamicin, amoxicillin, and ceftiofur all exceeding 50%. In contrast, levels of resistance among P. multocida isolates were less than 20% for all antimicrobials. The study highlights considerable disparities in methodologies, as well as in criteria for phenotypic antimicrobial susceptibility testing and result interpretation. It is necessary to increase efforts to harmonize testing practices, and to promote free access to data on AMR in order to improve treatment guidelines as well as to monitor the evolution of AMR in poultry bacterial pathogens. PMID:28848739
The strategic plan for combating antimicrobial resistance in Gulf Cooperation Council States.
Balkhy, Hanan H; Assiri, Abdullah M; Mousa, Haifa Al; Al-Abri, Seif S; Al-Katheeri, Huda; Alansari, Huda; Abdulrazzaq, Najiba M; Aidara-Kane, Awa; Pittet, Didier
2016-01-01
The Gulf Cooperation Council Center for Infection Control (GCC-IC) has placed the emergence of antimicrobial resistance (AMR) on the top of its agenda for the past four years. The board members have developed the initial draft for the GCC strategic plan for combating AMR in 2014. The strategic plan stems from the WHO mandate to combat AMR at all levels. The need for engaging a large number of stakeholders has prompted the GCC-IC to engage a wider core of professionals in finalizing the plan. A multi-disciplinary group of more than 40 experts were then identified. And a workshop was conducted in Riyadh January 2015 and included, for the first time, representation of relevant ministries and agencies as well as international experts in the field. Participants worked over a period of two and a half days in different groups. International experts shared the global experiences and challenges in addressing human, food, animal, and environmental aspects of controlling AMR. Participants were then divided into 4 groups each to address the human, animal, microbiological and diagnostic, or the environmental aspect of AMR. At the end of the workshop, the strategic plan was revised and endorsed by all participants. The GCC-IC board members then approved it as the strategic plan for AMR. The document produced here is the first GCC strategic plan addressing AMR, which shall be adopted by GCC countries to develop country-based plans and related key performance indicators (KPIs). It is now the role of each country to identify the body that will be accountable for implementing the plan at the country level. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
DOE Hydrogen and Fuel Cells Program 2017 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Hydrogen and Fuel Cells Program 2016 Annual Merit Review and Peer Evaluation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2016, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
Ironmonger, Dean; Edeghere, Obaghe; Gossain, Savita; Bains, Amardeep; Hawkey, Peter M
2013-10-01
Antimicrobial resistance (AMR) is recognized as one of the most significant threats to human health. Local and regional AMR surveillance enables the monitoring of temporal changes in susceptibility to antibiotics and can provide prescribing guidance to healthcare providers to improve patient management and help slow the spread of antibiotic resistance in the community. There is currently a paucity of routine community-level AMR surveillance information. The HPA in England sponsored the development of an AMR surveillance system (AmSurv) to collate local laboratory reports. In the West Midlands region of England, routine reporting of AMR data has been established via the AmSurv system from all diagnostic microbiology laboratories. The HPA Regional Epidemiology Unit developed a web-enabled database application (AmWeb) to provide microbiologists, pharmacists and other stakeholders with timely access to AMR data using user-configurable reporting tools. AmWeb was launched in the West Midlands in January 2012 and is used by microbiologists and pharmacists to monitor resistance profiles, perform local benchmarking and compile data for infection control reports. AmWeb is now being rolled out to all English regions. It is expected that AmWeb will become a valuable tool for monitoring the threat from newly emerging or currently circulating resistant organisms and helping antibiotic prescribers to select the best treatment options for their patients.
Xu, Binjie; Wozniak, Daniel J.
2015-01-01
Twitching motility is an important migration mechanism for the Gram-negative bacterium Pseudomonas aeruginosa. In the commonly used subsurface twitching assay, the sub-population of P. aeruginosa with active twitching motility is difficult to harvest for high-throughput studies. Here we describe the development of a novel method that allows efficient isolation of bacterial sub-populations conducting highly active twitching motility. The transcription factor AmrZ regulates multiple P. aeruginosa virulence factors including twitching motility, yet the mechanism of this activation remains unclear. We therefore set out to understand this mechanism by defining the AmrZ regulon using DNA microarrays in combination with the newly developed twitching motility method. We discovered 112 genes in the AmrZ regulon and many encode virulence factors. One gene of interest and the subsequent focus was lecB, which encodes a fucose-binding lectin. DNA binding assays revealed that AmrZ activates lecB transcription by directly binding to its promoter. The lecB gene was previously shown to be required for twitching motility in P. aeruginosa strain PAK; however, our lecB deletion had no effect on twitching motility in strain PAO1. Collectively, in this study a novel condition was developed for quantitative studies of twitching motility, under which the AmrZ regulon was defined. PMID:26309248
Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit
Onishi, Masayuki; Yeong, Foong May
2016-01-01
Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488
The Operating Principle of a Fully Solid State Active Magnetic Regenerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar
As an alternative refrigeration technology, magnetocaloric refrigeration has the potential to be safer, quieter, more efficient, and more environmentally friendly than the conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. This paper presents an operating principle of a fully solid state AMR, in which an alternative mechanism for heat transfer between the AMR and the heat source/sink is proposed. The operating principle of the fullymore » solid state AMR is based on moving rods/sheets (e.g. copper, brass, iron or aluminum), which are employed to replace the heat transfer fluid. Such fully solid state AMR would provide a significantly higher heat transfer rate than a conventional AMR because the conductivity of moving solid rods/plates is high and it enables the increase in the machine operating frequency hence the cooling capacity. The details of operating principle are presented and discussed here. One of the key enabling features for this technology is the contact between the moving rods/sheets and magnetocaloric material, and heat exchange mechanism at the heat source/sink. This paper provides an overview of the design for a fully solid state magnetocaloric refrigeration system along with guidelines for their optimal design.« less
Noone, D; Al-Matrafi, J; Tinckam, K; Zipfel, P F; Herzenberg, A M; Thorner, P S; Pluthero, F G; Kahr, W H A; Filler, G; Hebert, D; Harvey, E; Licht, C
2012-09-01
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.
Active Control of Flexible Space Structures Using the Nitinol Shape Memory Actuators
1987-10-01
number) FIELD !GROUP SUBGROUP I Active Control, Nitinol Actuators, Space Structures 9. ABSTRACT (Continue on reverse if necessary and identify by block...number) Summarizes research progress in the feasibility demonstration of active vibration control using Nitinol shape memory actuators. Tests on...FLEXIBLE SPACE STRUCTURES USING NITINOL SHAPE MEMORY ACTUATORS FINAL REPORT FOR PHASE I SDIO CONTRACT #F49620-87-C-0035 0 BY DR. AMR M. BAZ KARIM R
Advanced Microwave Radiometer (AMR) for SWOT mission
NASA Astrophysics Data System (ADS)
Chae, C. S.
2015-12-01
The objective of the SWOT (Surface Water & Ocean Topography) satellite mission is to measure wide-swath, high resolution ocean topography and terrestrial surface waters. Since main payload radar will use interferometric SAR technology, conventional microwave radiometer system which has single nadir look antenna beam (i.e., OSTM/Jason-2 AMR) is not ideally applicable for the mission for wet tropospheric delay correction. Therefore, SWOT AMR incorporates two antenna beams along cross track direction. In addition to the cross track design of the AMR radiometer, wet tropospheric error requirement is expressed in space frequency domain (in the sense of cy/km), in other words, power spectral density (PSD). Thus, instrument error allocation and design are being done in PSD which are not conventional approaches for microwave radiometer requirement allocation and design. A few of novel analyses include: 1. The effects of antenna beam size to PSD error and land/ocean contamination, 2. Receiver error allocation and the contributions of radiometric count averaging, NEDT, Gain variation, etc. 3. Effect of thermal design in the frequency domain. In the presentation, detailed AMR design and analyses results will be discussed.
Antimicrobial resistance surveillance in the genomic age.
McArthur, Andrew G; Tsang, Kara K
2017-01-01
The loss of effective antimicrobials is reducing our ability to protect the global population from infectious disease. However, the field of antibiotic drug discovery and the public health monitoring of antimicrobial resistance (AMR) is beginning to exploit the power of genome and metagenome sequencing. The creation of novel AMR bioinformatics tools and databases and their continued development will advance our understanding of the molecular mechanisms and threat severity of antibiotic resistance, while simultaneously improving our ability to accurately predict and screen for antibiotic resistance genes within environmental, agricultural, and clinical settings. To do so, efforts must be focused toward exploiting the advancements of genome sequencing and information technology. Currently, AMR bioinformatics software and databases reflect different scopes and functions, each with its own strengths and weaknesses. A review of the available tools reveals common approaches and reference data but also reveals gaps in our curated data, models, algorithms, and data-sharing tools that must be addressed to conquer the limitations and areas of unmet need within the AMR research field before DNA sequencing can be fully exploited for AMR surveillance and improved clinical outcomes. © 2016 New York Academy of Sciences.
Antibody-Mediated Rejection of the Kidney after Simultaneous Pancreas-Kidney Transplantation
Pascual, Julio; Samaniego, Milagros D.; Torrealba, José R.; Odorico, Jon S.; Djamali, Arjang; Becker, Yolanda T.; Voss, Barbara; Leverson, Glen E.; Knechtle, Stuart J.; Sollinger, Hans W.; Pirsch, John D.
2008-01-01
The prevalence, risk factors, and outcome of antibody-mediated rejection (AMR) of the kidney after simultaneous pancreas-kidney transplantation are unknown. In 136 simultaneous pancreas-kidney recipients who were followed for an average of 3.1 yr, 21 episodes of AMR of the kidney allograft were identified. Eight episodes occurred early (≤90 d) after transplantation, and 13 occurred later. Histologic evidence of concomitant acute cellular rejection was noted in 12 cases; the other nine had evidence only of humoral rejection. In 13 cases, clinical rejection of the pancreas was diagnosed simultaneously, and two of these were biopsy proven and were positive for C4d immunostaining. Multivariate analysis identified only one significant risk factor: Female patients were three times more likely to experience AMR. Nearly all early episodes resolved with treatment and did not predict graft loss, but multivariate Cox models revealed that late AMR episodes more than tripled the risk for kidney and pancreas graft loss; therefore, new strategies are needed to prevent and to treat late AMR in simultaneous pancreas-kidney transplant recipients. PMID:18235091
Antimicrobial resistance in Saudi Arabia
Zowawi, Hosam M.
2016-01-01
Antimicrobial resistance (AMR) is increasingly being highlighted as an urgent public and animal health issue worldwide. This issue is well demonstrated in bacteria that are resistant to last-line antibiotics, suggesting a future with untreatable infections. International agencies have suggested combating strategies against AMR. Saudi Arabia has several challenges that can stimulate the emergence and spread of multidrug-resistant bacteria. Tackling these challenges need efforts from multiple sectors to successfully control the spread and emergence of AMR in the country. Actions should include active surveillance to monitor the emergence and spread of AMR. Infection prevention and control precautions should also be optimized to limit further spread. Raising awareness is essential to limit inappropriate antibiotics use, and the antibiotic stewardship programs in hospital settings, outpatients, and community pharmacies, should regulate the ongoing use of antimicrobials. PMID:27570847
Surface tension models for a multi-material ALE code with AMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wangyi; Koniges, Alice; Gott, Kevin
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Surface tension models for a multi-material ALE code with AMR
Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...
2017-06-01
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6
NASA Astrophysics Data System (ADS)
Lin, Zhisheng; Lohmann, Mark; Ali, Zulfikhar A.; Tang, Chi; Li, Junxue; Xing, Wenyu; Zhong, Jiangnan; Jia, Shuang; Han, Wei; Coh, Sinisa; Beyermann, Ward; Shi, Jing
2018-05-01
The anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy-axis direction of the magnetization is inferred from the AMR saturation feature in the presence and absence of an applied pressure. At zero applied pressure, the easy axis is along the c direction or perpendicular to the layer. Upon application of a hydrostatic pressure > 1 GPa, the uniaxial anisotropy switches to easy-plane anisotropy which drives the equilibrium magnetization from the c axis to the a b plane at zero magnetic field, which amounts to a giant magnetic anisotropy energy change (> 100%). As the temperature is increased across the Curie temperature, the characteristic AMR effect gradually decreases and disappears. Our first-principles calculations confirm the giant magnetic anisotropy energy change with moderate pressure and assign its origin to the increased off-site spin-orbit interaction of Te atoms due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation transition is very rare in three-dimensional ferromagnets, but it may be common to other layered ferromagnets with similar crystal structures to CGT, and therefore offers a unique way to control magnetic anisotropy.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil A
The fiscal year 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June June 5-9, 2017, in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
The fiscal year 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 6-10, 2015, in Washington, D.C.. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
The fiscal year 2015 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 8-12, 2015, in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy.
Antimicrobial Resistance in the Environment.
Waseem, Hassan; Williams, Maggie R; Stedtfeld, Robert D; Hashsham, Syed A
2017-10-01
This review summarizes selected publications of 2016 with emphasis on occurrence and treatment of antibiotic resistance genes and bacteria in the aquatic environment and wastewater and drinking water treatment plants. The review is conducted with emphasis on fate, modeling, risk assessment and data analysis methodologies for characterizing abundance. After providing a brief introduction, the review is divided into the following four sections: i) Occurrence of AMR in the Environment, ii) Treatment Technologies for AMR, iii) Modeling of Fate, Risk, and Environmental Impact of AMR, and iv) ARG Databases and Pipelines.
O'Leary, Jacqueline G; Michelle Shiller, S; Bellamy, Christopher; Nalesnik, Michael A; Kaneku, Hugo; Jennings, Linda W; Isse, Kumiko; Terasaki, Paul I; Klintmalm, Göran B; Demetris, Anthony J
2014-10-01
Acute antibody-mediated rejection (AMR) occurs in a small minority of sensitized liver transplant recipients. Although histopathological characteristics have been described, specific features that could be used (1) to make a generalizable scoring system and (2) to trigger a more in-depth analysis are needed to screen for this rare but important finding. Toward this goal, we created training and validation cohorts of putative acute AMR and control cases from 3 high-volume liver transplant programs; these cases were evaluated blindly by 4 independent transplant pathologists. Evaluations of hematoxylin and eosin (H&E) sections were performed alone without knowledge of either serum donor-specific human leukocyte antigen alloantibody (DSA) results or complement component 4d (C4d) stains. Routine histopathological features that strongly correlated with severe acute AMR included portal eosinophilia, portal vein endothelial cell hypertrophy, eosinophilic central venulitis, central venulitis severity, and cholestasis. Acute AMR inversely correlated with lymphocytic venulitis and lymphocytic portal inflammation. These and other characteristics were incorporated into models created from the training cohort alone. The final acute antibody-mediated rejection score (aAMR score)--the sum of portal vein endothelial cell hypertrophy, portal eosinophilia, and eosinophilic venulitis divided by the sum of lymphocytic portal inflammation and lymphocytic venulitis--exhibited a strong correlation with severe acute AMR in the training cohort [odds ratio (OR) = 2.86, P < 0.001] and the validation cohort (OR = 2.49, P < 0.001). SPSS tree classification was used to select 2 cutoffs: one that optimized specificity at a score > 1.75 (sensitivity = 34%, specificity = 86%) and another that optimized sensitivity at a score > 1.0 (sensitivity = 81%, specificity = 71%). In conclusion, the routine histopathological features of the aAMR score can be used to screen patients for acute AMR via routine H&E staining of indication liver transplant biopsy samples; however, a definitive diagnosis requires substantiation by DSA testing, diffuse C4d staining, and the exclusion of other insults. © 2014 American Association for the Study of Liver Diseases.
The antimicrobial resistance containment and surveillance approach--a public health tool.
Simonsen, Gunnar S.; Tapsall, John W.; Allegranzi, Benedetta; Talbot, Elizabeth A.; Lazzari, Stefano
2004-01-01
Antimicrobial drug resistance (AMR) is widely recognized as a global public health threat because it endangers the effectiveness of treatment of infectious diseases. In 2001 WHO issued the Global Strategy for Containment of Antimicrobial Resistance, but it has proved difficult to translate the recommendations of the Global Strategy into effective public health actions. The purpose of the Antimicrobial Resistance Containment and Surveillance (ARCS) approach is to facilitate the formulation of public health programmes and the mobilization of human and financial resources for the containment of AMR. The ARCS approach highlights the fundamental link between rational drug use and containment of AMR. Clinical management of human and animal infections should be improved through better disease control and prevention, high quality diagnostic testing, appropriate treatment regimens and consumer health education. At the same time, systems for supplying antimicrobial drugs should include appropriate regulations, lists of essential drugs, and functional mechanisms for the approval and delivery of drugs. Containment of AMR is defined in the ARCS approach as the continuous application of this package of core interventions. Surveillance of the extent and trends of antimicrobial resistance as well as the supply, selection and use of antimicrobial drugs should be established to monitor the process and outcome of containment of AMR. The ARCS approach is represented in the ARCS diagram (Fig. 2) which provides a simplified, but comprehensive illustration of the complex problem of containment and monitoring of AMR. PMID:15654407
Antimicrobial resistance and biological governance: explanations for policy failure.
Wallinga, D; Rayner, G; Lang, T
2015-10-01
The paper reviews the state of policy on antimicrobial use and the growth of antimicrobial resistance (AMR). AMR was anticipated at the time of the first use of antibiotics by their originators. For decades, reports and scientific papers have expressed concern about AMR at global and national policy levels, yet the problem, first exposed a half-century ago, worsened. The paper considers the explanations for this policy failure and the state of arguments about ways forward. These include: a deficit of economic incentivisation; complex interventions in behavioural dynamics; joint and separate shifts in medical and animal health regimes; consumerism; belief in technology; and a narrative that in a 'war on bugs' nature can be beaten by human ingenuity. The paper suggests that these narratives underplay the biological realities of the human-animal-biosphere being in constant flux, an understanding which requires an ecological public health analysis of AMR policy development and failure. The paper suggests that effective policy change requires simultaneous actions across policy levels. No single solution is possible, since AMR is the result of long-term human intervention which has accelerated certain trends in the evolution of a microbial ecosystem shared by humans, animals and other biological organisms inhabiting that ecosystem. Viewing the AMR crisis today through an ecological public health lens has the advantage of reuniting the social-ecological and bio-ecological perspectives which have been separated within public health. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review
Nhung, Nguyen T.; Cuong, Nguyen V.; Thwaites, Guy; Carrique-Mas, Juan
2016-01-01
Southeast Asia is an area of great economic dynamism. In recent years, it has experienced a rapid rise in the levels of animal product production and consumption. The region is considered to be a hotspot for infectious diseases and antimicrobial resistance (AMR). We reviewed English-language peer-reviewed publications related to antimicrobial usage (AMU) and AMR in animal production, as well as antimicrobial residues in meat and fish from 2000 to 2016, in the region. There is a paucity of data from most countries and for most bacterial pathogens. Most of the published work relates to non-typhoidal Salmonella (NTS), Escherichia coli (E. coli), and Campylobacter spp. (mainly from Vietnam and Thailand), Enterococcus spp. (Malaysia), and methicillin-resistant Staphylococcus aureus (MRSA) (Thailand). However, most studies used the disk diffusion method for antimicrobial susceptibility testing; breakpoints were interpreted using Clinical Standard Laboratory Institute (CSLI) guidelines. Statistical models integrating data from publications on AMR in NTS and E. coli studies show a higher overall prevalence of AMR in pig isolates, and an increase in levels of AMR over the years. AMU studies (mostly from Vietnam) indicate very high usage levels of most types of antimicrobials, including beta-lactams, aminoglycosides, macrolides, and quinolones. This review summarizes information about genetic determinants of resistance, most of which are transferrable (mostly plasmids and integrons). The data in this review provide a benchmark to help focus research and policies on AMU and AMR in the region. PMID:27827853
Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review.
Huijbers, Patricia M C; Blaak, Hetty; de Jong, Mart C M; Graat, Elisabeth A M; Vandenbroucke-Grauls, Christina M J E; de Roda Husman, Ana Maria
2015-10-20
To establish a possible role for the natural environment in the transmission of clinically relevant AMR bacteria to humans, a literature review was conducted to systematically collect and categorize evidence for human exposure to extended-spectrum β-lactamase-producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp. in the environment. In total, 239 datasets adhered to inclusion criteria. AMR bacteria were detected at exposure-relevant sites (35/38), including recreational areas, drinking water, ambient air, and shellfish, and in fresh produce (8/16). More datasets were available for environmental compartments (139/157), including wildlife, water, soil, and air/dust. Quantitative data from exposure-relevant sites (6/35) and environmental compartments (11/139) were scarce. AMR bacteria were detected in the contamination sources (66/66) wastewater and manure, and molecular data supporting their transmission from wastewater to the environment (1/66) were found. The abundance of AMR bacteria at exposure-relevant sites suggests risk for human exposure. Of publications pertaining to both environmental and human isolates, however, only one compared isolates from samples that had a clear spatial and temporal relationship, and no direct evidence was found for transmission to humans through the environment. To what extent the environment, compared to the clinical and veterinary domains, contributes to human exposure needs to be quantified. AMR bacteria in the environment, including sites relevant for human exposure, originate from contamination sources. Intervention strategies targeted at these sources could therefore limit emission of AMR bacteria to the environment.
McParland, Joanna L; Williams, Lynn; Gozdzielewska, Lucyna; Young, Mairi; Smith, Fraser; MacDonald, Jennifer; Langdridge, Darren; Davis, Mark; Price, Lesley; Flowers, Paul
2018-05-27
Changing public awareness of antimicrobial resistance (AMR) represents a global public health priority. A systematic review of interventions that targeted public AMR awareness and associated behaviour was previously conducted. Here, we focus on identifying the active content of these interventions and explore potential mechanisms of action. The project took a novel approach to intervention mapping utilizing the following steps: (1) an exploration of explicit and tacit theory and theoretical constructs within the interventions using the Theoretical Domains Framework (TDFv2), (2) retrospective coding of behaviour change techniques (BCTs) using the BCT Taxonomy v1, and (3) an investigation of coherent links between the TDF domains and BCTs across the interventions. Of 20 studies included, only four reported an explicit theoretical basis to their intervention. However, TDF analysis revealed that nine of the 14 TDF domains were utilized, most commonly 'Knowledge' and 'Environmental context and resources'. The BCT analysis showed that all interventions contained at least one BCT, and 14 of 93 (15%) BCTs were coded, most commonly 'Information about health consequences', 'Credible source', and 'Instruction on how to perform the behaviour'. We identified nine relevant TDF domains and 14 BCTs used in these interventions. Only 15% of BCTs have been applied in AMR interventions thus providing a clear opportunity for the development of novel interventions in this context. This methodological approach provides a useful way of retrospectively mapping theoretical constructs and BCTs when reviewing studies that provide limited information on theory and intervention content. Statement of contribution What is already known on this subject? Evidence of the effectiveness of interventions that target the public to engage them with AMR is mixed; the public continue to show poor knowledge and misperceptions of AMR. Little is known about the common, active ingredients of AMR interventions targeting the public and information on explicit theoretical content is sparse. Information on the components of AMR public health interventions is urgently needed to enable the design of effective interventions to engage the public with AMR stewardship behaviour. What does this study add? The analysis shows very few studies reported any explicit theoretical basis to the interventions they described. Many interventions share common components, including core mechanisms of action and behaviour change techniques. The analysis suggests components of future interventions to engage the public with AMR. © 2018 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
NASA Astrophysics Data System (ADS)
Sakuraba, Y.; Kokado, S.; Hirayama, Y.; Furubayashi, T.; Sukegawa, H.; Li, S.; Takahashi, Y. K.; Hono, K.
2014-04-01
Anisotropic magnetoresistance (AMR) effect has been systematically investigated in various Heusler compounds Co2MnZ and Co2FeZ (Z = Al, Si, Ge, and Ga) epitaxial films and quantitatively summarized against the total valence electron number NV. It was found that the sign of AMR ratio is negative when NV is between 28.2 and 30.3, and turns positive when NV becomes below 28.2 and above 30.3, indicating that the Fermi level (EF) overlaps with the valence or conduction band edges of half-metallic gap at NV ˜ 28.2 or 30.3, respectively. We also find out that the magnitude of negative AMR ratio gradually increases with shifting of EF away from the gap edges, and there is a clear positive correlation between the magnitude of negative AMR ratio and magnetoresistive output of the giant magnetoresistive devices using the Heusler compounds. This indicates that AMR can be used as a facile way to optimize a composition of half-metallic Heusler compounds having a high spin-polarization at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2014-10-01
The fiscal year (FY) 2014 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from June 16-20, 2014, at the Washington Marriott Wardman Park in Washington, D.C. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenough, Jeffrey A.; de Supinski, Bronis R.; Yates, Robert K.
2005-04-25
We describe the performance of the block-structured Adaptive Mesh Refinement (AMR) code Raptor on the 32k node IBM BlueGene/L computer. This machine represents a significant step forward towards petascale computing. As such, it presents Raptor with many challenges for utilizing the hardware efficiently. In terms of performance, Raptor shows excellent weak and strong scaling when running in single level mode (no adaptivity). Hardware performance monitors show Raptor achieves an aggregate performance of 3:0 Tflops in the main integration kernel on the 32k system. Results from preliminary AMR runs on a prototype astrophysical problem demonstrate the efficiency of the current softwaremore » when running at large scale. The BG/L system is enabling a physics problem to be considered that represents a factor of 64 increase in overall size compared to the largest ones of this type computed to date. Finally, we provide a description of the development work currently underway to address our inefficiencies.« less
NASA Astrophysics Data System (ADS)
Wang, Yonghong; Zhang, Xinru; Chung, Kyungho; Liu, Chengcen; Choi, Seung-Bok; Choi, Hyoung Jin
2016-11-01
To improve mechanical and magnetorheological properties of magnetorheological elastomers (MREs), a facile method was used to fabricate high-performance MREs which consisted of the core-shell complex microparticles with an organic-inorganic network structure dispersed in an ethylene propylene diene rubber. In this work, the proposed magnetic complex microparticles were in situ formed during MREs fabrication as a result of strong interaction between matrix and CIPs using carbon black as a connecting point. The morphology of both isotropic (i-MREs) and anisotropic MREs (a-MREs) was observed by scanning electron microscope (SEM). The effects of carbonyl iron particle (CIP) volume content on mechanical properties and hysteresis loss of MREs were investigated. The effects of CIP volume content on the shear storage modulus, MR effect and loss tangent were studied using a modified dynamic mechanical analyzer under applied magnetic field strengths. The results showed that the orientation effect became more pronounced with increasing CIPs in the a-MREs, whereas CIPs distributed uniformly in the i-MREs. The tensile strength, tear strength and elongation at break decreased with increasing CIP content up to 40 vol.%, while the hardness increased. It is worth noting that the tensile strength of i-MREs and a-MREs containing 40 vol.% CIPs still had high mechanical properties as a result of good compatibility between complex microparticles and rubber matrix. The MR performance of shear storage modulus and damping properties of MREs increased remarkably with CIP content due to strong dipole-dipole interaction of complex microparticles. Besides, the hysteresis loss increased with increasing CIP content as a result of magnetic field induced interfacial sliding between complex microparticles.
Graft-Derived CCL2 Increases Graft Injury During Antibody-Mediated Rejection of Cardiac Allografts
Abe, Toyofumi; Su, Charles A.; Iida, Shoichi; Baldwin, William M.; Nonomura, Norio; Takahara, Shiro; Fairchild, Robert L.
2015-01-01
The pathogenic role of macrophages in antibody-mediated rejection (AMR) remains unclear. Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a potent chemotactic factor for monocytes and macrophages. The current studies used a murine model of AMR to investigate the role of graft-derived CCL2 in AMR and how macrophages may participate in antibody-mediated allograft injury. B6.CCR5−/−/CD8−/− recipients rejected MHC-mismatched wild type A/J allografts with high donor-reactive antibody titers and diffuse C4d deposition in the large vessels and myocardial capillaries, features consistent with AMR. In contrast, A/J.CCL2−/− allografts induced low donor-reactive antibody titers and C4d deposition at day 7 post-transplant. Decreased donor-reactive CD4 T cells producing IFN-γ were induced in response to A/J.CCL2−/− vs. wild type allografts. Consequently, A/J.CCL2−/− allograft survival was modestly but significantly longer than A/J allografts. Macrophages purified from wild type allografts expressed high levels of IL-1β and IL-12p40 and this expression and the numbers of classically activated macrophages were markedly reduced in CCL2-deficient allografts on day 7. The results indicate that allograft-derived CCL2 plays an important role in directing classically activated macrophages into allografts during AMR and that macrophages are important contributors to the inflammatory environment mediating graft tissue injury in this pathology, suggesting CCL2 as a therapeutic target for AMR. PMID:25040187
Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review.
Oloso, Nurudeen Olalekan; Fagbo, Shamsudeen; Garbati, Musa; Olonitola, Steve O; Awosanya, Emmanuel Jolaoluwa; Aworh, Mabel Kamweli; Adamu, Helen; Odetokun, Ismail Ayoade; Fasina, Folorunso Oludayo
2018-06-17
Antimicrobial resistance (AMR) has emerged as a global health threat, which has elicited a high-level political declaration at the United Nations General Assembly, 2016. In response, member countries agreed to pay greater attention to the surveillance and implementation of antimicrobial stewardship. The Nigeria Centre for Disease Control called for a review of AMR in Nigeria using a “One Health approach”. As anecdotal evidence suggests that food animal health and production rely heavily on antimicrobials, it becomes imperative to understand AMR trends in food animals and the environment. We reviewed previous studies to curate data and evaluate the contributions of food animals and the environment (2000⁻2016) to the AMR burden in Nigeria using a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart focused on three areas: Antimicrobial resistance, residues, and antiseptics studies. Only one of the 48 antimicrobial studies did not report multidrug resistance. At least 18 bacterial spp. were found to be resistant to various locally available antimicrobials. All 16 residue studies reported high levels of drug residues either in the form of prevalence or concentration above the recommended international limit. Fourteen different “resistotypes” were found in some commonly used antiseptics. High levels of residues and AMR were found in food animals destined for the human food chain. High levels of residues and antimicrobials discharged into environments sustain the AMR pool. These had evolved into potential public health challenges that need attention. These findings constitute public health threats for Nigeria’s teeming population and require attention.
Milestone Ratings and Supervisory Role Categorizations Swim Together, but is the Water Muddy?
Schumacher, Daniel J; Bartlett, Kathleen W; Elliott, Sean P; Michelson, Catherine; Sharma, Tanvi; Garfunkel, Lynn C; King, Beth; Schwartz, Alan
2018-06-17
This single specialty, multi-institutional study aimed to determine: 1) the association between milestone ratings for individual competencies and average milestone ratings (AMRs) and 2) the association between AMRs and recommended supervisory role categorizations made by individual clinical competency committee (CCC) members. During the 2015-16 academic year, CCC members at 14 pediatric residencies reported milestone ratings for 21 competencies and recommended supervisory role categories (may not supervise, may supervise in some settings, may supervise in all settings) for residents they reviewed. An exploratory factor analysis of competencies was conducted. The associations between individual competencies, the AMR, and supervisory role categorizations were determined by computing bivariate correlations. The relationship between AMRs and recommended supervisory role categorizations was examined using an ordinal mixed logistic regression model. 68/155 CCC members completed both milestone assignments and supervision categorizations for 451 residents. Factor analysis of individual competencies controlling for clustering of residents in raters and sites resulted in a single-factor solution (cumulative variance 0.75). All individual competencies had large positive correlations with the AMR (correlation coefficient: 0.84-0.93), except for two professionalism competencies (Prof1: 0.63 and Prof4: 0.65). When combined across training year and time points, the AMR and supervisory role categorization had a moderately positive correlation (0.56). This exploratory study identified a modest correlation between average milestone ratings and supervisory role categorization. Convergence of competencies on a single factor deserves further exploration, with possible rater effects warranting attention. Copyright © 2018. Published by Elsevier Inc.
Alteration of Cardiac Deformation in Acute Rejection in Pediatric Heart Transplant Recipients.
Chanana, Nitin; Van Dorn, Charlotte S; Everitt, Melanie D; Weng, Hsin Yi; Miller, Dylan V; Menon, Shaji C
2017-04-01
The objective of this study is to assess changes in cardiac deformation during acute cellular- and antibody-mediated rejection in pediatric HT recipients. Pediatric HT recipients aged ≤18 years with at least one episode of biopsy-diagnosed rejection from 2006 to 2013 were included. Left ventricular systolic S (SS) and SR (SSr) data were acquired using 2D speckle tracking on echocardiograms obtained within 12 h of right ventricular endomyocardial biopsy. A mixed effect model was used to compare cardiac deformation during CR (Grade ≥ 1R), AMR (pAMR ≥ 2), and mixed rejection (CR and AMR positive) versus no rejection (Grade 0R and pAMR 0 or 1). A total of 20 subjects (10 males, 50%) with 71 rejection events (CR 35, 49%; AMR 21, 30% and mixed 15, 21%) met inclusion criteria. The median time from HT to first biopsy used for analysis was 5 months (IQR 0.25-192 months). Average LV longitudinal SS and SSr were reduced significantly during rejection (SS: -17.2 ± 3.4% vs. -10.7 ± 4.5%, p < 0.001 and SSr: -1.2 ± 0.2 s - 1 vs. -0.9 ± 0.3 s - 1 ; p < 0.001) and in all rejection types. Average LV short-axis radial SS was reduced only in CR compared to no rejection (p = 0.04), while average LV circumferential SS and SSr were reduced significantly in AMR compared to CR (SS: 18.9 ± 4.2% vs. 20.8 ± 8.8%, p = 0.03 and SSr: 1.35 ± 0.8 s - 1 vs. 1.54 ± 0.9 s - 1 ; p = 0.03). In pediatric HT recipients, LV longitudinal SS and SSr were reduced in all rejection types, while LV radial SS was reduced only in CR. LV circumferential SS and SSr further differentiated between CR and AMR with a significant reduction seen in AMR as compared to CR. This novel finding suggests mechanistic differences between AMR- and CR-induced myocardial injury which may be useful in non-invasively predicting the type of rejection in pediatric HT recipients.
Anomalously large anisotropic magnetoresistance in a perovskite manganite
Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi
2009-01-01
The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504
Simulation of violent free surface flow by AMR method
NASA Astrophysics Data System (ADS)
Hu, Changhong; Liu, Cheng
2018-05-01
A novel CFD approach based on adaptive mesh refinement (AMR) technique is being developed for numerical simulation of violent free surface flows. CIP method is applied to the flow solver and tangent of hyperbola for interface capturing with slope weighting (THINC/SW) scheme is implemented as the free surface capturing scheme. The PETSc library is adopted to solve the linear system. The linear solver is redesigned and modified to satisfy the requirement of the AMR mesh topology. In this paper, our CFD method is outlined and newly obtained results on numerical simulation of violent free surface flows are presented.
Antimicrobial resistance and small ruminant veterinary practice.
Scott, Lisa C; Menzies, Paula I
2011-03-01
Antimicrobial resistance (AMR) is recognized as an emerging issue in the practice of veterinary medicine. Although little surveillance and research has been completed on the prevalence of AMR and associated risk factors in small ruminants, evidence of AMR is present in many countries. Furthermore, antimicrobial use (AMU) practices in sheep have been shown to be associated with increased resistance, highlighting the issue of prudent use of these drugs in many countries. Furthermore, AMU practices in sheep have been shown to be associated with increased resistance, highlighting the issue of prudent use of these drugs. Copyright © 2011 Elsevier Inc. All rights reserved.
Osman, Kamelia M; Kappell, Anthony D; Elhadidy, Mohamed; ElMougy, Fatma; El-Ghany, Wafaa A Abd; Orabi, Ahmed; Mubarak, Aymen S; Dawoud, Turki M; Hemeg, Hassan A; Moussa, Ihab M I; Hessain, Ashgan M; Yousef, Hend M Y
2018-04-11
Hatcheries have the power to spread antimicrobial resistant (AMR) pathogens through the poultry value chain because of their central position in the poultry production chain. Currently, no information is available about the presence of AMR Escherichia coli strains and the antibiotic resistance genes (ARGs) they harbor within hatchezries. Therefore, this study aimed to investigate the possible involvement of hatcheries in harboring hemolytic AMR E. coli. Serotyping of the 65 isolated hemolytic E. coli revealed 15 serotypes with the ability to produce moderate biofilms, and shared susceptibility to cephradine and fosfomycin and resistance to spectinomycin. The most common β-lactam resistance gene was bla TEM , followed by bla OXA-1 , bla MOX -like , bla CIT -like , bla SHV and bla FOX . Hierarchical clustering of E. coli isolates based on their phenotypic and genotypic profiles revealed separation of the majority of isolates from hatchlings and the hatchery environments, suggesting that hatchling and environmental isolates may have different origins. The high frequency of β-lactam resistance genes in AMR E. coli from chick hatchlings indicates that hatcheries may be a reservoir of AMR E. coli and can be a major contributor to the increased environmental burden of ARGs posing an eminent threat to poultry and human health.
Humoral theory of transplantation: some hot topics.
Cai, Junchao; Qing, Xin; Tan, Jianming; Terasaki, Paul I
2013-01-01
Antibody is a major cause of allograft injury. However, it has not been routinely tested post-transplant. A literature search was performed using PubMed on the topics of 'antibody monitoring', 'autoantibody and allograft dysfunction' and 'prevention and treatment of antibody-mediated rejection (AMR)'. Donor-specific antibody (DSA) monitoring not only helps to identify patients at risk of AMR, but also serves as a biomarker to personalize patient's maintenance immunosuppression. Development of autoantibody is a secondary response following primary tissue injury. Some autoantibodies are directly involved in allograft injury, while others only serve as biomarkers of tissue injury. It remains controversial whether DSA-positive patients without symptoms need to be treated. In addition, given the variation in study designs and patient's characteristics, there is discrepancy regarding which treatment regimens provide optimal clinical outcome in preventing/treating AMR. Efficacy of B-cell and/or antibody-targeted therapies in treating or preventing AMR would be better measured by the incorporation of antibody monitoring into current functional and pathological assays. Research in B-cell targeted therapies to prevent and treat AMR is rapidly growing, which includes monoclonal antibodies against B-cell markers CD20, CD40, CD19, BlyS, etc. It requires extensive clinical research to determine the best approach to inhibit or delete antibody and how to balance the drug efficacy with safety.
Vélez, Julián Reyes; Cameron, Marguerite; Rodríguez-Lecompte, Juan Carlos; Xia, Fangfang; Heider, Luke C.; Saab, Matthew; McClure, J. Trenton; Sánchez, Javier
2017-01-01
The objectives of this study are to determine the occurrence of antimicrobial resistance (AMR) genes using whole-genome sequence (WGS) of Streptococcus uberis (S. uberis) and Streptococcus dysgalactiae (S. dysgalactiae) isolates, recovered from dairy cows in the Canadian Maritime Provinces. A secondary objective included the exploration of the association between phenotypic AMR and the genomic characteristics (genome size, guanine–cytosine content, and occurrence of unique gene sequences). Initially, 91 isolates were sequenced, and of these isolates, 89 were assembled. Furthermore, 16 isolates were excluded due to larger than expected genomic sizes (>2.3 bp × 1,000 bp). In the final analysis, 73 were used with complete WGS and minimum inhibitory concentration records, which were part of the previous phenotypic AMR study, representing 18 dairy herds from the Maritime region of Canada (1). A total of 23 unique AMR gene sequences were found in the bacterial genomes, with a mean number of 8.1 (minimum: 5; maximum: 13) per genome. Overall, there were 10 AMR genes [ANT(6), TEM-127, TEM-163, TEM-89, TEM-95, Linb, Lnub, Ermb, Ermc, and TetS] present only in S. uberis genomes and 2 genes unique (EF-TU and TEM-71) to the S. dysgalactiae genomes; 11 AMR genes [APH(3′), TEM-1, TEM-136, TEM-157, TEM-47, TetM, bl2b, gyrA, parE, phoP, and rpoB] were found in both bacterial species. Two-way tabulations showed association between the phenotypic susceptibility to lincosamides and the presence of linB (P = 0.002) and lnuB (P < 0.001) genes and the between the presence of tetM (P = 0.015) and tetS (P = 0.064) genes and phenotypic resistance to tetracyclines only for the S. uberis isolates. The logistic model showed that the odds of resistance (to any of the phenotypically tested antimicrobials) was 4.35 times higher when there were >11 AMR genes present in the genome, compared with <7 AMR genes (P < 0.001). The odds of resistance was lower for S. dysgalactiae than S. uberis (P = 0.031). When the within-herd somatic cell count was >250,000 cells/mL, a trend toward higher odds of resistance compared with the baseline category of <150,000 cells/mL was observed. When the isolate corresponded to a post-mastitis sample, there were lower odds of resistance when compared with non-clinical isolates (P = 0.01). The results of this study showed the strength of associations between phenotypic AMR resistance of both mastitis pathogens and their genotypic resistome and other epidemiological characteristics. PMID:28589129
Mo, Solveig Sølverød; Urdahl, Anne Margrete; Madslien, Knut; Sunde, Marianne; Nesse, Live L; Slettemeås, Jannice Schau; Norström, Madelaine
2018-01-01
The objective of this study was to estimate and compare the occurrence of AMR in wild red foxes in relation to human population densities. Samples from wild red foxes (n = 528) included in the Norwegian monitoring programme on antimicrobial resistance in bacteria from food, feed and animals were included. All samples were divided into three different groups based on population density in the municipality where the foxes were hunted. Of the 528 samples included, 108 (20.5%), 328 (62.1%) and 92 (17.4%) originated from areas with low, medium and high population density, respectively. A single faecal swab was collected from each fox. All samples were plated out on a selective medium for Enterobacteriaceae for culturing followed by inclusion and susceptibility testing of one randomly selected Escherichia coli to assess the overall occurrence of AMR in the Gram-negative bacterial population. Furthermore, the samples were subjected to selective screening for detection of E. coli displaying resistance towards extended-spectrum cephalosporins and fluoroquinolones. In addition, a subset of samples (n = 387) were subjected to selective culturing to detect E. coli resistant to carbapenems and colistin, and enterococci resistant to vancomycin. Of these, 98 (25.3%), 200 (51.7%) and 89 (23.0%) originated from areas with low, medium and high population density, respectively. Overall, the occurrence of AMR in indicator E. coli from wild red foxes originating from areas with different human population densities in Norway was low to moderate (8.8%). The total occurrence of AMR was significantly higher; χ2 (1,N = 336) = 6.53, p = 0.01 in areas with high population density compared to areas with medium population density. Similarly, the occurrence of fluoroquinolone resistant E. coli isolated using selective detection methods was low in areas with low population density and more common in areas with medium or high population density. In conclusion, we found indications that occurrence of AMR in wild red foxes in Norway is associated with human population density. Foxes living in urban areas are more likely to be exposed to AMR bacteria and resistance drivers from food waste, garbage, sewage, waste water and consumption of contaminated prey compared to foxes living in remote areas. The homerange of red fox has been shown to be limited thereby the red fox constitutes a good sentinel for monitoring antimicrobial resistance in the environment. Continuous monitoring on the occurrence of AMR in different wild species, ecological niches and geographical areas can facilitate an increased understanding of the environmental burden of AMR in the environment. Such information is needed to further assess the impact for humans, and enables implementation of possible control measures for AMR in humans, animals and the environment in a true "One Health" approach.
Status of LANL Efforts to Effectively Use Sequoia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William David
2015-05-14
Los Alamos National Laboratory (LANL) is currently working on 3 new production applications, VPC, xRage, and Pagosa. VPIC was designed to be a 3D relativist, electromagnetic Particle-In-Cell code for plasma simulation. xRage, a 3D AMR mesh amd multi physics hydro code. Pagosa, is a 3D structured mesh and multi physics hydro code.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
..., US Airways uses its Advantage Fares to attract additional passengers on flights connecting through...' use of Advantage Fares on other routes. 7. If the merger were approved, US Airways' economic rationale..., a strong brand name, modern equipment, and a competitive cost structure. In mid-2012, US Airways...
Islam, J; Ashiru-Oredope, D; Budd, E; Howard, P; Walker, A S; Hopkins, S; Llewelyn, M J
2018-06-01
In 2016/2017, a financially linked antibiotic prescribing quality improvement initiative Commissioning for Quality and Innovation (AMR-CQUIN) was introduced across acute hospitals in England. This aimed for >1% reductions in DDDs/1000 admissions of total antibiotics, piperacillin/tazobactam and carbapenems compared with 2013/2014 and improved review of empirical antibiotic prescriptions. To assess perceptions of staff leading antimicrobial stewardship activity regarding the AMR-CQUIN, the investments made by hospitals to achieve it and how these related to achieving reductions in antibiotic use. We invited antimicrobial stewardship leads at acute hospitals across England to complete a web-based survey. Antibiotic prescribing data were downloaded from the PHE Antimicrobial Resistance Local Indicators resource. Responses were received from 116/155 (75%) acute hospitals. Owing to yearly increases in antibiotic use, most trusts needed to make >5% reductions in antibiotic consumption to achieve the AMR-CQUIN goal of 1% reduction. Additional funding was made available at 23/113 (20%) trusts and, in 18 (78%), this was <10% of the AMR-CQUIN value. Nationally, the annual trend for increased antibiotic use reversed in 2016/2017. In 2014/2015, year-on-year changes were +3.7% (IQR -0.8%, +8.4%), +9.4% (+0.2%, +19.5%) and +5.8% (-6.2%, +18.2%) for total antibiotics, piperacillin/tazobactam and carbapenems, respectively, and +0.1% (-5.4%, +4.0%), -4.8% (-16.9%, +3.2%) and -8.0% (-20.2%, +4.0%) in 2016/2017. Hospitals where staff believed they could reduce antibiotic use were more likely to do so (P < 0.001). Introducing the AMR-CQUIN was associated with a reduction in antibiotic use. For individual hospitals, achieving the AMR-CQUIN was associated with favourable perceptions of staff and not availability of funding.
Review of Antibiotic Resistance in the Indian Ocean Commission: A Human and Animal Health Issue.
Gay, Noellie; Belmonte, Olivier; Collard, Jean-Marc; Halifa, Mohamed; Issack, Mohammad Iqbal; Mindjae, Saindou; Palmyre, Philippe; Ibrahim, Abdul Aziz; Rasamoelina, Harena; Flachet, Loïc; Filleul, Laurent; Cardinale, Eric
2017-01-01
Antimicrobial resistance (AMR) is a major threat to human, animal health, and environment worldwide. For human, transmission occurred through a variety of routes both in health-care settings and community. In animals, AMR was reported in livestock, pets, and wildlife; transmission of AMR can be zoonotic with the probably most important route being foodborne transmission. The Indian Ocean Commission (IOC), composed of Comoros, Madagascar, Mauritius, Reunion (France), and Seychelles recognized the surveillance of AMR in both animal and human as a main public health priority for the region. Mayotte, French overseas territory, located in Comoros archipelago, was also included in this review. This review summarized our best epidemiological knowledge regarding AMR in Indian Ocean. We documented the prevalence, and phenotypic and genotypic profiles of prone to resistance Gram-positive and Gram-negative bacteria both in animals and humans. Our review clearly pointed out extended-spectrum β-lactamase and carbapenemase-producing Enterobacteriaceae as main human and animal health issue in IOC. However, publications on AMR are scarce, particularly in Comoros, Mayotte, and Seychelles. Thus, research and surveillance priorities were recommended (i) estimating the volume of antimicrobial drugs used in livestock and human medicine in the different territories [mainly third generation cephalosporin (3GC)]; (ii) developing a "One Health" surveillance approach with epidemiological indicators as zoonotic foodborne pathogen (i.e., couple Escherichia coli resistance to 3GC/carbapenems); (iii) screening travelers with a history of hospitalization and consumption of antibiotic drug returning from at risk areas (e.g., mcr-1 transmission with China or hajj pilgrims) allowing an early warning detection of the emergence for quick control measures implementation in IOC.
Review of Antibiotic Resistance in the Indian Ocean Commission: A Human and Animal Health Issue
Gay, Noellie; Belmonte, Olivier; Collard, Jean-Marc; Halifa, Mohamed; Issack, Mohammad Iqbal; Mindjae, Saindou; Palmyre, Philippe; Ibrahim, Abdul Aziz; Rasamoelina, Harena; Flachet, Loïc; Filleul, Laurent; Cardinale, Eric
2017-01-01
Antimicrobial resistance (AMR) is a major threat to human, animal health, and environment worldwide. For human, transmission occurred through a variety of routes both in health-care settings and community. In animals, AMR was reported in livestock, pets, and wildlife; transmission of AMR can be zoonotic with the probably most important route being foodborne transmission. The Indian Ocean Commission (IOC), composed of Comoros, Madagascar, Mauritius, Reunion (France), and Seychelles recognized the surveillance of AMR in both animal and human as a main public health priority for the region. Mayotte, French overseas territory, located in Comoros archipelago, was also included in this review. This review summarized our best epidemiological knowledge regarding AMR in Indian Ocean. We documented the prevalence, and phenotypic and genotypic profiles of prone to resistance Gram-positive and Gram-negative bacteria both in animals and humans. Our review clearly pointed out extended-spectrum β-lactamase and carbapenemase-producing Enterobacteriaceae as main human and animal health issue in IOC. However, publications on AMR are scarce, particularly in Comoros, Mayotte, and Seychelles. Thus, research and surveillance priorities were recommended (i) estimating the volume of antimicrobial drugs used in livestock and human medicine in the different territories [mainly third generation cephalosporin (3GC)]; (ii) developing a “One Health” surveillance approach with epidemiological indicators as zoonotic foodborne pathogen (i.e., couple Escherichia coli resistance to 3GC/carbapenems); (iii) screening travelers with a history of hospitalization and consumption of antibiotic drug returning from at risk areas (e.g., mcr-1 transmission with China or hajj pilgrims) allowing an early warning detection of the emergence for quick control measures implementation in IOC. PMID:28730149
Claireaux, Guy; Couturier, Christine; Groison, Anne-Laure
2006-09-01
This study is an attempt to gain an integrated understanding of the interactions between temperature, locomotion activity and metabolism in the European sea bass (Dicentrarchus labrax). To our knowledge this study is among the few that have investigated the influence of the seasonal changes in water temperature on swimming performance in fish. Using a Brett-type swim-tunnel respirometer the relationship between oxygen consumption and swimming speed was determined in fish acclimatised to 7, 11, 14, 18, 22, 26 and 30 degrees C. The corresponding maximum swimming speed (U(max)), optimal swimming speed (U(opt)), active (AMR) and standard (SMR) metabolic rates as well as aerobic metabolic scope (MS) were calculated. Using simple mathematical functions, these parameters were modelled as a function of water temperature and swimming speed. Both SMR and AMR were positively related to water temperature up to 24 degrees C. Above 24 degrees C SMR and AMR levelled off and MS tended to decrease. We found a tight relationship between AMR and U(max) and observed that raising the temperature increased AMR and increased swimming ability. However, although fish swam faster at high temperature, the net cost of transport (COT(net)) at a given speed was not influence by the elevation of the water temperature. Although U(opt) doubled between 7 degrees C and 30 degrees C (from 0.3 to 0.6 m s(-1)), metabolic rate at U(opt) represented a relatively constant fraction of the animal active metabolic rate (40-45%). A proposed model integrates the effects of water temperature on the interaction between metabolism and swimming performance. In particular the controlling effect of temperature on AMR is shown to be the key factor limiting maximal swimming speed of sea bass.
Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam
2017-02-28
Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Rosello, Alicia; Horner, Carolyne; Hopkins, Susan; Hayward, Andrew C; Deeny, Sarah R
2017-02-01
OBJECTIVES (1) To systematically search for all dynamic mathematical models of infectious disease transmission in long-term care facilities (LTCFs); (2) to critically evaluate models of interventions against antimicrobial resistance (AMR) in this setting; and (3) to develop a checklist for hospital epidemiologists and policy makers by which to distinguish good quality models of AMR in LTCFs. METHODS The CINAHL, EMBASE, Global Health, MEDLINE, and Scopus databases were systematically searched for studies of dynamic mathematical models set in LTCFs. Models of interventions targeting methicillin-resistant Staphylococcus aureus in LTCFs were critically assessed. Using this analysis, we developed a checklist for good quality mathematical models of AMR in LTCFs. RESULTS AND DISCUSSION Overall, 18 papers described mathematical models that characterized the spread of infectious diseases in LTCFs, but no models of AMR in gram-negative bacteria in this setting were described. Future models of AMR in LTCFs require a more robust methodology (ie, formal model fitting to data and validation), greater transparency regarding model assumptions, setting-specific data, realistic and current setting-specific parameters, and inclusion of movement dynamics between LTCFs and hospitals. CONCLUSIONS Mathematical models of AMR in gram-negative bacteria in the LTCF setting, where these bacteria are increasingly becoming prevalent, are needed to help guide infection prevention and control. Improvements are required to develop outputs of sufficient quality to help guide interventions and policy in the future. We suggest a checklist of criteria to be used as a practical guide to determine whether a model is robust enough to test policy. Infect Control Hosp Epidemiol 2017;38:216-225.
A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's
NASA Astrophysics Data System (ADS)
Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue
2006-11-01
A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.
Levine, Deborah J; Glanville, Allan R; Aboyoun, Christina; Belperio, John; Benden, Christian; Berry, Gerald J; Hachem, Ramsey; Hayes, Don; Neil, Desley; Reinsmoen, Nancy L; Snyder, Laurie D; Sweet, Stuart; Tyan, Dolly; Verleden, Geert; Westall, Glen; Yusen, Roger D; Zamora, Martin; Zeevi, Adriana
2016-04-01
Antibody-mediated rejection (AMR) is a recognized cause of allograft dysfunction in lung transplant recipients. Unlike AMR in other solid-organ transplant recipients, there are no standardized diagnostic criteria or an agreed-upon definition. Hence, a working group was created by the International Society for Heart and Lung Transplantation with the aim of determining criteria for pulmonary AMR and establishing a definition. Diagnostic criteria and a working consensus definition were established. Key diagnostic criteria include the presence of antibodies directed toward donor human leukocyte antigens and characteristic lung histology with or without evidence of complement 4d within the graft. Exclusion of other causes of allograft dysfunction increases confidence in the diagnosis but is not essential. Pulmonary AMR may be clinical (allograft dysfunction which can be asymptomatic) or sub-clinical (normal allograft function). This consensus definition will have clinical, therapeutic and research implications. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Donado-Godoy, P; Castellanos, R; León, M; Arevalo, A; Clavijo, V; Bernal, J; León, D; Tafur, M A; Byrne, B A; Smith, W A; Perez-Gutierrez, E
2015-04-01
The development of antimicrobial resistance among bacteria (AMR) is currently one of the world's most pressing public health problems. The use of antimicrobial agents in humans and animals has resulted in AMR which has narrowed the potential use of antibiotics for the treatment of infections in humans. To monitor AMR and to develop control measures, some countries, such as the USA, Canada and Denmark, have established national integrated surveillance systems (FDA, , CIPARS, 2007, DANMAP,2002). The components of these programs monitor changes in susceptibility/resistance to antimicrobial agents of selected zoonotic pathogens and commensal organisms recovered from animals, retail meats and humans. The rapid development of Colombia's animal production industry has raised food safety issues including the emergence of antibiotic resistance. The Colombian Integrated Surveillance Program for Antimicrobial Resistance (COIPARS) was established as a pilot project to monitor AMR on poultry farms, slaughter houses and retail markets. © 2015 Blackwell Verlag GmbH.
Whiley, David M; Trembizki, Ella; Buckley, Cameron; Freeman, Kevin; Baird, Robert W; Beaman, Miles; Chen, Marcus; Donovan, Basil; Kundu, Ratan L; Fairley, Christopher K; Guy, Rebecca; Hogan, Tiffany; Kaldor, John M; Karimi, Mahdad; Limnios, Athena; Regan, David G; Ryder, Nathan; Su, Jiunn-Yih; Ward, James; Lahra, Monica M
2017-09-01
Neisseria gonorrhoeae antimicrobial resistance (AMR) is a globally recognized health threat; new strategies are needed to enhance AMR surveillance. The Northern Territory of Australia is unique in that 2 different first-line therapies, based primarily on geographic location, are used for gonorrhea treatment. We tested 1,629 N. gonorrhoeae nucleic acid amplification test-positive clinical samples, collected from regions where ceftriaxone plus azithromycin or amoxicillin plus azithromycin are recommended first-line treatments, by using 8 N. gonorrhoeae AMR PCR assays. We compared results with those from routine culture-based surveillance data. PCR data confirmed an absence of ceftriaxone resistance and a low level of azithromycin resistance (0.2%), and that penicillin resistance was <5% in amoxicillin plus azithromycin regions. Rates of ciprofloxacin resistance and penicillinase-producing N. gonorrhoeae were lower when molecular methods were used. Molecular methods to detect N. gonorrhoeae AMR can increase the evidence base for treatment guidelines, particularly in settings where culture-based surveillance is limited.
Fundamentals of SCADA and automated meter reading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, A.
1992-02-01
This paper discusses SCADA systems allow users to control and acquire data from remote facilities such as compressors, pressure-regulating stations, control valves and measurement stations. In general, a SCADA system performs functions in sequential control, continuous control, supervisory setpoint control and data acquisitions. AMR systems allow users to obtain up-to-date information on their gas demand. When AMR was in its infancy, equipment was designed only to read and record gas consumption values. The basic function of an early AMR system was to read gas volume at a fixed interval and record the data in its memory until it communicated withmore » a central receiving facility.« less
Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree
NASA Astrophysics Data System (ADS)
Kim, Jong Kyu; Kim, Nam Soo
In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
USDA-ARS?s Scientific Manuscript database
Salmonella Kentucky has become the predominate serotype recovered from broiler slaughter in the United States and the prevalence of antimicrobial resistance (AMR) has increased dramatically in this serotype. Relationships between AMR, genotype, and plasmid replicon types were characterized for 600 ...
Virtual Environment Training: Auxiliary Machinery Room (AMR) Watchstation Trainer.
ERIC Educational Resources Information Center
Hriber, Dennis C.; And Others
1993-01-01
Describes a project implemented at Newport News Shipbuilding that used Virtual Environment Training to improve the performance of submarine crewmen. Highlights include development of the Auxiliary Machine Room (AMR) Watchstation Trainer; Digital Video Interactive (DVI); screen layout; test design and evaluation; user reactions; authoring language;…
Alvarez-Uria, Gerardo; Gandra, Sumanth; Mandal, Siddhartha; Laxminarayan, Ramanan
2018-03-01
To project future antimicrobial resistance (AMR) in Escherichia coli and Klebsiella pneumoniae. Mixed linear models were constructed from a sample of countries with AMR data in the ResistanceMap database. Inverse probability weighting methods were used to account for countries without AMR data. The estimated prevalence of AMR in 2015 was 64.5% (95% confidence interval (CI) 42-87%) for third-generation cephalosporin-resistant (3GCR) Escherichia coli, 5.8% (95% CI 1.8-9.7%) for carbapenem-resistant (CR) E. coli, 66.9% (95% CI 47.1-86.8%) for 3GCR Klebsiella pneumoniae, and 23.4% (95% CI 7.4-39.4%) for CR K. pneumoniae. The projected AMR prevalence in 2030 was 77% (95% CI 55-99.1%) for 3GCR E. coli, 11.8% (95% CI 3.7-19.9%) for CR E. coli, 58.2% (95% CI 50.2-66.1%) for 3GCR K. pneumoniae, and 52.8% (95% CI 16.3-89.3%) for CR K. pneumoniae. The models suggest that third-generation cephalosporins and carbapenems could be ineffective against a sizeable proportion of infections by E. coli and K. pneumoniae in most parts of the world by 2030, supporting both the need to enhance stewardship efforts and to prioritize research and development of new antibiotics for resistant Enterobacteriaceae. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future
Unemo, Magnus
2014-01-01
SUMMARY Neisseria gonorrhoeae is evolving into a superbug with resistance to previously and currently recommended antimicrobials for treatment of gonorrhea, which is a major public health concern globally. Given the global nature of gonorrhea, the high rate of usage of antimicrobials, suboptimal control and monitoring of antimicrobial resistance (AMR) and treatment failures, slow update of treatment guidelines in most geographical settings, and the extraordinary capacity of the gonococci to develop and retain AMR, it is likely that the global problem of gonococcal AMR will worsen in the foreseeable future and that the severe complications of gonorrhea will emerge as a silent epidemic. By understanding the evolution, emergence, and spread of AMR in N. gonorrhoeae, including its molecular and phenotypic mechanisms, resistance to antimicrobials used clinically can be anticipated, future methods for genetic testing for AMR might permit region-specific and tailor-made antimicrobial therapy, and the design of novel antimicrobials to circumvent the resistance problems can be undertaken more rationally. This review focuses on the history and evolution of gonorrhea treatment regimens and emerging resistance to them, on genetic and phenotypic determinants of gonococcal resistance to previously and currently recommended antimicrobials, including biological costs or benefits; and on crucial actions and future advances necessary to detect and treat resistant gonococcal strains and, ultimately, retain gonorrhea as a treatable infection. PMID:24982323
Rodriguez, E. R.; Skojec, Diane V.; Tan, Carmela D.; Zachary, Andrea A.; Kasper, Edward K.; Conte, John V.; Baldwin, William M.
2005-01-01
Antibody-mediated rejection (AMR) in human heart transplantation is an immunopathologic process in which injury to the graft is in part the result of activation of complement and it is poorly responsive to conventional therapy. We evaluated by immunofluorescence (IF), 665 consecutive endomyocardial biopsies from 165 patients for deposits of immunoglobulins and complement. Diffuse IF deposits in a linear capillary pattern greater than 2+ were considered significant. Clinical evidence of graft dysfunction was correlated with complement deposits. IF 2+ or higher was positive for IgG, 66%; IgM, 12%; IgA, 0.6%; C1q, 1.8%; C4d, 9% and C3d, 10%. In 3% of patients, concomitant C4d and C3d correlated with graft dysfunction or heart failure. In these 5 patients AMR occurred 56–163 months after transplantation, and they responded well to therapy for AMR but not to treatment with steroids. Systematic evaluation of endomyocardial biopsies is not improved by the use of antibodies for immunoglobulins or C1q. Concomitant use of C4d and C3d is very useful to diagnose AMR, when correlated with clinical parameters of graft function. AMR in heart transplant patients can occur many months or years after transplant. PMID:16212640
NASA Astrophysics Data System (ADS)
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
76 FR 1592 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
...: Advanced Meat Recovery Systems. OMB Control Number: 0583-0130. Summary of Collection: The Food Safety and... Recovery (AMR) systems ensure that bones used for AMR systems do not contain brain, trigeminal ganglia, or... dorsal root ganglia (DRG); to document their testing protocols, to assess manner that does not cause...
CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database
USDA-ARS?s Scientific Manuscript database
The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins, and mutations involved in AMR. CARD is ontologi...
Effect of radiant catalytic ionization on reduction of foodborne pathogens on beef
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effect of radiant catalytic ionization (RCI) on reduction of Shiga toxin-producing Escherichia coli (STEC) as well as antimicrobial resistant (AMR) and non-AMR Salmonella strains on inoculated beef flanks. The RCI technology utilizes a combination of U...
Trecker, Molly A; Hogan, Daniel J; Waldner, Cheryl L; Dillon, Jo-Anne R; Osgood, Nathaniel D
2015-06-01
To determine the effects of using discrete versus continuous quantities of people in a compartmental model examining the contribution of antimicrobial resistance (AMR) to rebound in the prevalence of gonorrhoea. A previously published transmission model was reconfigured to represent the occurrence of gonorrhoea in discrete persons, rather than allowing fractions of infected individuals during simulations. In the revised model, prevalence only rebounded under scenarios reproduced from the original paper when AMR occurrence was increased by 10(5) times. In such situations, treatment of high-risk individuals yielded outcomes very similar to those resulting from treatment of low-risk and intermediate-risk individuals. Otherwise, in contrast with the original model, prevalence was the lowest when the high-risk group was treated, supporting the current policy of targeting treatment to high-risk groups. Simulation models can be highly sensitive to structural features. Small differences in structure and parameters can substantially influence predicted outcomes and policy prescriptions, and must be carefully considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
NASA Astrophysics Data System (ADS)
Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.
2018-02-01
While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.
USDA-ARS?s Scientific Manuscript database
In the United States (US) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses "substantially drive" antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comparison...
Hinton, Devon E; Hofmann, Stefan G; Rivera, Edwin; Otto, Michael W; Pollack, Mark H
2011-04-01
We examined the therapeutic efficacy of a culturally adapted form of CBT (CA-CBT) for PTSD as compared to applied muscle relaxation (AMR) for female Latino patients with treatment-resistant PTSD. Participants were randomized to receive either CA-CBT (n = 12) or AMR (n = 12), and were assessed before treatment, after treatment, and at a 12-week follow-up. The treatments were manualized and delivered in the form of group therapy across 14 weekly sessions. Assessments included a measure of PTSD, anxiety, culturally relevant idioms of distress (nervios and ataque de nervios), and emotion regulation ability. Patients receiving CA-CBT improved significantly more than in the AMR condition. Effect size estimates showed very large reductions in PTSD symptoms from pretreatment to posttreatment in the CA-CBT group (Cohen's d = 2.6) but only modest improvements in the AMR group (0.8). These results suggest that CA-CBT can be beneficial for previously treatment-resistant PTSD in Latino women. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermofluid Analysis of Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan
While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While themore » goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.« less
NaturAnalogs for the Unsaturated Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Simmons; A. Unger; M. Murrell
2000-03-08
The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturatedmore » Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.« less
Bächler, K; Amico, P; Hönger, G; Bielmann, D; Hopfer, H; Mihatsch, M J; Steiger, J; Schaub, S
2010-05-01
Low-level donor-specific HLA-antibodies (HLA-DSA) (i.e. detectable by single-antigen flow beads, but negative by complement-dependent cytotoxicity crossmatch) represent a risk factor for early allograft rejection. The short-term efficacy of an induction regimen consisting of polyclonal anti-T-lymphocyte globulin (ATG) and intravenous immunoglobulins (IvIg) in patients with low-level HLA-DSA is unknown. In this study, we compared 67 patients with low-level HLA-DSA not having received ATG/IvIg induction (historic control) with 37 patients, who received ATG/IvIg induction. The two groups were equal regarding retransplants, HLA-matches, number and class of HLA-DSA. The overall incidence of clinical/subclinical antibody-mediated rejection (AMR) was lower in the ATG/IvIg than in the historic control group (38% vs. 55%; p = 0.03). This was driven by a significantly lower rate of clinical AMR (11% vs. 46%; p = 0.0002). Clinical T-cell-mediated rejection (TCR) was significantly lower in the ATG/IvIg than in the historic control group (0% vs. 50%; p < 0.0001). Within the first year, allograft loss due to AMR occurred in 7.5% in the historic control and in 0% in the ATG/IvIg group. We conclude that in patients with low-level HLA-DSA, ATG/IvIg induction significantly reduces TCR and the severity of AMR, but the high rate of subclinical AMR suggests an insufficient control of the humoral immune response.
Tsuyuki, Yuzo; Kurita, Goro; Murata, Yoshiteru; Goto, Mieko; Takahashi, Takashi
2017-07-24
In this study, we conducted a species-level identification of group G streptococcal (GGS) isolates from companion animals in Japan and analyzed antimicrobial resistance (AMR) patterns. Strains were isolated from sterile and non-sterile specimens collected from 72 animals with clinical signs or symptoms in April-May, 2015. We identified the strain by 16S rRNA sequencing, mass spectrometry (MS), and an automated method based on their biochemical properties. Antimicrobial susceptibility was determined using the broth microdilution method and E-test. AMR determinants (erm(A), erm(B), mef(A), tet(M), tet(O), tet(K), tet(L), and tet(S)) in corresponding resistant isolates were amplified by PCR. The 16S rRNA sequencing identified the GGS species as Streptococcus canis (n = 68), Streptococcus dysgalactiae subsp. equisimilis (n = 3), and S. dysgalactiae subsp. dysgalactiae (n = 1). However, there were discrepancies between the sequencing data and both the MS and automated identification data. MS and the automated biochemical technique identified 18 and 37 of the 68 sequencing-identified S. canis strains, respectively. The AMR rates were 20.8% for tetracycline and 5.6% for clarithromycin, with minimum inhibitory concentrations (MIC) 50 -MIC 90 of 2-64 and ≤ 0.12-0.25μg/mL, respectively. AMR genotyping showed single or combined genotypes: erm(B) or tet(M)-tet(O)-tet(S). Our findings show the unique characteristics of GGS isolates from companion animals in Japan in terms of species-level identification and AMR patterns.
A Decade-Long Commitment to Antimicrobial Resistance Surveillance in Portugal
Marinho, Catarina M.; Santos, Tiago; Gonçalves, Alexandre; Poeta, Patrícia; Igrejas, Gilberto
2016-01-01
Antimicrobial resistance (AMR) is a worldwide problem with serious health and economic repercussions. Since the 1940s, underuse, overuse, and misuse of antibiotics have had a significant environmental downside. Large amounts of antibiotics not fully metabolized after use in human and veterinary medicine, and other applications, are annually released into the environment. The result has been the development and dissemination of antibiotic-resistant bacteria due to many years of selective pressure. Surveillance of AMR provides important information that helps in monitoring and understanding how resistance mechanisms develop and disseminate within different environments. Surveillance data is needed to inform clinical therapy decisions, to guide policy proposals, and to assess the impact of action plans to fight AMR. The Functional Genomics and Proteomics Unit, based at the University of Trás-os-Montes and Alto Douro in Vila Real, Portugal, has recently completed 10 years of research surveying AMR in bacteria, mainly commensal indicator bacteria such as enterococci and Escherichia coli from the microbiota of different animals. Samples from more than 75 different sources have been accessed, from humans to food-producing animals, pets, and wild animals. The typical microbiological workflow involved phenotypic studies followed by molecular approaches. Throughout the decade, 4,017 samples were collected and over 5,000 bacterial isolates obtained. High levels of AMR to several antimicrobial classes have been reported, including to β-lactams, glycopeptides, tetracyclines, aminoglycosides, sulphonamides, and quinolones. Multi-resistant strains, some relevant to human and veterinary medicine like extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci, have been repeatedly isolated even in non-synanthropic animal species. Of particular relevance are reports of AMR bacteria in wildlife from natural reserves and endangered species. Future work awaits as this threatening yet unsolved problem persists. GRAPHICAL ABSTRACT Summary diagram of the antimicrobial resistance surveillance work developed by the UTAD Functional Genomics and Proteomics Unit. PMID:27843438
No childhood advantage in the acquisition of skill in using an artificial language rule.
Ferman, Sara; Karni, Avi
2010-10-27
A leading notion is that language skill acquisition declines between childhood and adulthood. While several lines of evidence indicate that declarative ("what", explicit) memory undergoes maturation, it is commonly assumed that procedural ("how-to", implicit) memory, in children, is well established. The language superiority of children has been ascribed to the childhood reliance on implicit learning. Here we show that when 8-year-olds, 12-year-olds and young adults were provided with an equivalent multi-session training experience in producing and judging an artificial morphological rule (AMR), adults were superior to children of both age groups and the 8-year-olds were the poorest learners in all task parameters including in those that were clearly implicit. The AMR consisted of phonological transformations of verbs expressing a semantic distinction: whether the preceding noun was animate or inanimate. No explicit instruction of the AMR was provided. The 8-year-olds, unlike most adults and 12-year-olds, failed to explicitly uncover the semantic aspect of the AMR and subsequently to generalize it accurately to novel items. However, all participants learned to apply the AMR to repeated items and to generalize its phonological patterns to novel items, attaining accurate and fluent production, and exhibiting key characteristics of procedural memory. Nevertheless, adults showed a clear advantage in learning implicit task aspects, and in their long-term retention. Thus, our findings support the notion of age-dependent maturation in the establishment of declarative but also of procedural memory in a complex language task. In line with recent reports of no childhood advantage in non-linguistic skill learning, we propose that under some learning conditions adults can effectively express their language skill acquisition potential. Altogether, the maturational effects in the acquisition of an implicit AMR do not support a simple notion of a language skill learning advantage in children.
Oguttu, James Wabwire; Qekwana, Daniel Nenene; Odoi, Agricola
2017-08-22
Antimicrobial resistant Staphylococcus are becoming increasingly important in horses because of the zoonotic nature of the pathogens and the associated risks to caregivers and owners. Knowledge of the burden and their antimicrobial resistance patterns are important to inform control strategies. This study is an exploratory descriptive investigation of the burden and antimicrobial drug resistance patterns of Staphylococcus isolates from horses presented at a veterinary teaching hospital in South Africa. Retrospective laboratory clinical records of 1027 horses presented at the University of Pretoria veterinary teaching hospital between 2007 and 2012 were included in the study. Crude and factor-specific percentages of Staphylococcus positive samples, antimicrobial resistant (AMR) and multidrug resistant (MDR) isolates were computed and compared across Staphylococcus spp., geographic locations, seasons, years, breed and sex using Chi-square and Fisher's exact tests. Of the 1027 processed clinical samples, 12.0% were Staphylococcus positive. The majority of the isolates were S. aureus (41.5%) followed by S. pseudintermedius (14.6%). Fifty-two percent of the Staphylococcus positive isolates were AMR while 28.5% were MDR. Significant (p < 0.05) differences in the percentage of samples with isolates that were AMR or MDR was observed across seasons, horse breeds and Staphylococcus spp. Summer season had the highest (64.3%) and autumn the lowest (29.6%) percentages of AMR isolates. Highest percentage of AMR samples were observed among the Boerperds (85.7%) followed by the American saddler (75%) and the European warm blood (73.9%). Significantly (p < 0.001) more S. aureus isolates (72.5%) were AMR than S. pseudintermedius isolates (38.9%). Similarly, significantly (p < 0.001) more S. aureus (52.9%) exhibited MDR than S. pseudintermedius (16.7%). The highest levels of AMR were towards β-lactams (84.5%) followed by trimethoprim/sulfamethoxazole (folate pathway inhibitors) (60.9%) while the lowest levels of resistance were towards amikacin (14.%). This exploratory study provides useful information to guide future studies that will be critical for guiding treatment decisions and control efforts. There is a need to implement appropriate infection control, and judicious use of antimicrobials to arrest development of antimicrobial resistance. A better understanding of the status of the problem is a first step towards that goal.
USDA-ARS?s Scientific Manuscript database
In the United States (U.S.) it is estimated that food-animal production agriculture accounts for >70% of antimicrobial (AM) use leading to concerns that agricultural uses are the primary source of antimicrobial resistance (AMR). Many studies report AMR in food-animal production settings without comp...
Simple Computation of the Heat of Formation and Density from Theoretically Predicted Values
2012-09-01
ARSENAL AL 35898-5249 2 US ARMY AVN & MIS CMND ATTN AMSRD AMR PS PT L PLEDGER ATTN AMSRD AMR PS PT M MORRISON BLDG 7120...REDSTONE ARSENAL AL 35898 2 US ARMY AVN & MIS CMND ATTN AMSRD ARL PS PT G DRAKE ATTN AMSRD ARL PS PT N MATHIS BLDG 7120
Bortezomib in Kidney Transplantation
Raghavan, Rajeev; Jeroudi, Abdallah; Achkar, Katafan; Gaber, A. Osama; Patel, Samir J.; Abdellatif, Abdul
2010-01-01
Although current therapies for pretransplant desensitization and treatment of antibody-mediated rejection (AMR) have had some success, they do not specifically deplete plasma cells that produce antihuman leukocyte antigen (HLA) antibodies. Bortezomib, a proteasome inhibitor approved for the treatment of multiple myeloma (a plasma cell neoplasm), induces plasma cell apoptosis. In this paper we review the current body of literature regarding the use of this biological agent in the field of transplantation. Although limited experience with bortezomib may seem to show promise in the realm of transplant recipients desensitization and treatment of AMR, there is also experience that may suggest otherwise. Bortezomib's role in desensitization protocols and treatment of AMR will be defined better as more clinical data and trials become available. PMID:20953363
NASA Astrophysics Data System (ADS)
Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky
2018-06-01
We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun
2016-06-15
A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less
High Resolution DNS of Turbulent Flows using an Adaptive, Finite Volume Method
NASA Astrophysics Data System (ADS)
Trebotich, David
2014-11-01
We present a new computational capability for high resolution simulation of incompressible viscous flows. Our approach is based on cut cell methods where an irregular geometry such as a bluff body is intersected with a rectangular Cartesian grid resulting in cut cells near the boundary. In the cut cells we use a conservative discretization based on a discrete form of the divergence theorem to approximate fluxes for elliptic and hyperbolic terms in the Navier-Stokes equations. Away from the boundary the method reduces to a finite difference method. The algorithm is implemented in the Chombo software framework which supports adaptive mesh refinement and massively parallel computations. The code is scalable to 200,000 + processor cores on DOE supercomputers, resulting in DNS studies at unprecedented scale and resolution. For flow past a cylinder in transition (Re = 300) we observe a number of secondary structures in the far wake in 2D where the wake is over 120 cylinder diameters in length. These are compared with the more regularized wake structures in 3D at the same scale. For flow past a sphere (Re = 600) we resolve an arrowhead structure in the velocity in the near wake. The effectiveness of AMR is further highlighted in a simulation of turbulent flow (Re = 6000) in the contraction of an oil well blowout preventer. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-05-CH11231.
Unemo, Magnus; Ison, Catherine A; Cole, Michelle; Spiteri, Gianfranco; van de Laar, Marita; Khotenashvili, Lali
2013-12-01
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae has emerged for essentially all antimicrobials following their introduction into clinical practice. During the latest decade, susceptibility to the last remaining options for antimicrobial monotherapy, the extended-spectrum cephalosporins (ESC), has markedly decreased internationally and treatment failures with these ESCs have been verified. In response to this developing situation, WHO and the European Centre for Disease Prevention and Control (ECDC) have published global and region-specific response plans, respectively. One main component of these action/response plans is to enhance the surveillance of AMR and treatment failures. This paper describes the perspectives from the diverse WHO European Region (53 countries), including the independent countries of the former Soviet Union, regarding gonococcal AMR surveillance networks. The WHO European Region has a high prevalence of resistance to all previously recommended antimicrobials, and most of the first strictly verified treatment failures with cefixime and ceftriaxone were also reported from Europe. In the European Union/European Economic Area (EU/EEA), the European gonococcal antimicrobial surveillance programme (Euro-GASP) funded by the ECDC is running. In 2011, the Euro-GASP included 21/31 (68%) EU/EEA countries, and the programme is further strengthened annually. However, in the non-EU/EEA countries, internationally reported and quality assured gonococcal AMR data are lacking in 87% of the countries and, worryingly, appropriate support for establishment of a GASP is still lacking. Accordingly, national and international support, including political and financial commitment, for gonococcal AMR surveillance in the non-EU/EEA countries of the WHO European Region is essential.
Zawack, Kelson; Li, Min; Booth, James G.; Love, Will; Lanzas, Cristina
2016-01-01
In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring System (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages. We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distinguish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statistically significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-generation fluoroquinolone. PMID:27324772
Lin, Kun-Yi Andrew; Lin, Jyun-Ting; Yang, Hongta
2017-10-01
While ferrocene (Fc) is a promising heterogeneous catalyst for activating persulfate (PS) to degrade organic contaminants, chemical reagent-grade Fc is nanoscale and direct usage of Fc leads to operational and recovery issues. In this study, chitosan (CS) is selected as a support to immobilize Fc as CS is abundant, and environmental benign fishery waste. The amine group of CS also allows the formation of covalent bond between Fc-based reagent (i.e., Fc-CHO) and CS to form Fc-modified CS (Fc-CS). This Fc-CS can be more advantageous than Fc because of its easier recovery by precipitation and filtration. To evaluate Fc-CS for PS activation, degradation of Amaranth (AMR) dye by PS is selected as a model test. The resulting Fc-CS exhibits a higher catalytic activity than pristine Fc possibly because Fc can be evenly dispersed on CS and CS can also exhibit affinity toward AMR. AMR can be also fully decomposed by Fc-CS activated PS. Through the Electron paramagnetic resonance (EPR) spectroscopic analysis, the AMR degradation can be attributed to both sulfate and hydroxyl radicals. Fc-CS had been also proven to activate PS for AMR degradation over multiple times without loss of catalytic activity. These features indicate that Fc-CS can be a promising catalyst and CS appears to be a naturally available and environmentally friendly waste-derived support for immobilizing Fc. The results and findings in this study are essential for CS-supported metal catalysts in environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lalitha, M K; David, Thambu; Thomas, Kurien
2013-01-01
The present study evaluates the feasibility of rapid surveillance of community antimicrobial resistance (AMR) patterns of Streptococcus pneumoniae and Haemophilus influenzae in India using nasopharyngeal swabs (NPSs) of school children. It compares the AMR data obtained with that of invasive and nasopharyngeal (NP) isolates studied previously. No one has done such surveillance since our study so we decided to publish and more clearly demonstrate the feasibility of the methodology we did. This community-based, cross-sectional, cluster sample study had seven centers; each had two sites distant to them. Two hundred sixty school children per center were enrolled. NP swabbing was performed and isolates identified as S. pneumoniae and H. influenzae at each center were sent to reference laboratories. From January to December 2004, 1,988 NP swabs were processed; 776 S. pneumoniae and 64 H. influenzae were isolated. The AMR patterns for S. pneumoniae to co-trimoxazole varied, with sensitivity as low as 6% in Mumbai, 29% in Chennai and Vellore, and 100% in Delhi and Lucknow. For H. influenzae, sensitivity rates to co-trimoxazole ranged from 22% to 62%. The AMR patterns for both bacteria in the present study with data from invasive and NP isolates studied earlier were similar. The study demonstrates that it is practical and feasible to rapidly assess the AMR patterns of both S. pneumoniae and H. influenzae in NPSs of school children in different geographic locations all over India. Copyright © 2013 Elsevier Inc. All rights reserved.
Coastal zone environment measurements at Sakhalin Island using autonomous mobile robotic system
NASA Astrophysics Data System (ADS)
Tyugin, Dmitry; Kurkin, Andrey; Zaytsev, Andrey; Zeziulin, Denis; Makarov, Vladimir
2017-04-01
To perform continuous complex measurements of environment characteristics in coastal zones autonomous mobile robotic system was built. The main advantage of such system in comparison to manual measurements is an ability to quickly change location of the equipment and start measurements. AMRS allows to transport a set of sensors and appropriate power source for long distances. The equipment installed on the AMRS includes: a modern high-tech ship's radar «Micran» for sea waves measurements, multiparameter platform WXT 520 for weather monitoring, high precision GPS/GLONASS receiver OS-203 for georeferencing, laser scanner platform based on two Sick LMS-511 scanners which can provide 3D distance measurements in up to 80 meters on the AMRS route and rugged designed quad-core fanless computer Matrix MXE-5400 for data collecting and recording. The equipment is controlled by high performance modular software developed specially for the AMRS. During the summer 2016 the experiment was conducted. Measurements took place at the coastal zone of Sakhalin Island (Russia). The measuring system of AMRS was started in automatic mode controlled by the software. As result a lot of data was collected and processed to database. It consists of continuous measurements of the coastal zone including different weather conditions. The most interesting for investigation is a period of three-point storm detected on June, 2, 2016. Further work will relate to data processing of measured environment characteristics and numerical models verification based on the collected data. The presented results of research obtained by the support of the Russian president's scholarship for young scientists and graduate students №SP-193.2015.5
Zawack, Kelson; Li, Min; Booth, James G; Love, Will; Lanzas, Cristina; Gröhn, Yrjö T
2016-09-01
In response to concerning increases in antimicrobial resistance (AMR), the Food and Drug Administration (FDA) has decided to increase veterinary oversight requirements for antimicrobials and restrict their use in growth promotion. Given the high stakes of this policy for the food supply, economy, and human and veterinary health, it is important to rigorously assess the effects of this policy. We have undertaken a detailed analysis of data provided by the National Antimicrobial Resistance Monitoring System (NARMS). We examined the trends in both AMR proportion and MIC between 2004 and 2012 at slaughter and retail stages. We investigated the makeup of variation in these data and estimated the sample and effect size requirements necessary to distinguish an effect of the policy change. Finally, we applied our approach to take a detailed look at the 2005 withdrawal of approval for the fluoroquinolone enrofloxacin in poultry water. Slaughter and retail showed similar trends. Both AMR proportion and MIC were valuable in assessing AMR, capturing different information. Most variation was within years, not between years, and accounting for geographic location explained little additional variation. At current rates of data collection, a 1-fold change in MIC should be detectable in 5 years and a 6% decrease in percent resistance could be detected in 6 years following establishment of a new resistance rate. Analysis of the enrofloxacin policy change showed the complexities of the AMR policy with no statistically significant change in resistance of both Campylobacter jejuni and Campylobacter coli to ciprofloxacin, another second-generation fluoroquinolone. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Accurate, meshless methods for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
Antimicrobial Resistance in Agriculture
Thanner, Sophie; Drissner, David
2016-01-01
ABSTRACT In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans. PMID:27094336
Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-10-01
In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.
Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films
NASA Astrophysics Data System (ADS)
Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas
2015-03-01
Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.
Nishihama, Ryuichi; Schreiter, Jennifer H.; Onishi, Masayuki; Vallen, Elizabeth A.; Hanna, Julia; Moravcevic, Katarina; Lippincott, Margaret F.; Han, Haesun; Lemmon, Mark A.; Pringle, John R.
2009-01-01
Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow. PMID:19528296
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
Antimicrobial activity of Nigerian medicinal plants
Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam
2017-01-01
Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606
Venter, Henrietta; Henningsen, Michael L.; Begg, Stephanie L.
2017-01-01
The crisis of antimicrobial resistance (AMR) is one of the most serious issues facing us today. The scale of the problem is illustrated by the recent commitment of Heads of State at the UN to coordinate efforts to curb the spread of AMR infections. In this review, we explore the biochemistry behind the headlines of a few stories that were recently published in the public media. We focus on examples from three different issues related to AMR: (i) hospital-acquired infections, (ii) the spread of resistance through animals and/or the environment and (iii) the role of antimicrobial soaps and other products containing disinfectants in the dissemination of AMR. Although these stories stem from three very different settings, the underlying message in all of them is the same: there is a direct relationship between the use of antimicrobials and the development of resistance. In addition, one type of antimicrobial could select for cross-resistance to another type and/or for multidrug resistance. Therefore, we argue the case for increased stewardship to not only cover clinical use of antibiotics, but also the use of antimicrobials in agriculture and stewardship of our crucially important biocides such as chlorhexidine. PMID:28258225
Aguilar-Montes de Oca, S; Talavera-Rojas, M; Soriano-Vargas, E; Barba-León, J; Vázquez-Navarrete, J; Acosta-Dibarrat, J; Salgado-Miranda, C
2018-01-01
The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug-resistant (MDR) isolates from food-producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico). A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the bla CMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed-field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco. A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates. This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine. © 2017 The Society for Applied Microbiology.
Enhancing US-Japan Cooperation to Combat Antimicrobial Resistance
2014-01-01
The Global Health Security Agenda (GHSA) is aimed at preventing, detecting, and responding to infectious disease threats. To move toward these goals, the United States has committed to partner with at least 30 countries around the world. One of the objectives of the GHSA includes “[p]reventing the emergence and spread of antimicrobial drug resistant organisms.” Antimicrobial resistance (AMR) has become a growing global health security problem, with inappropriate use of antimicrobial medications in humans and animals and a lack of new antimicrobial medications contributing to this problem. While AMR is a growing global concern, working on it regionally can make this multifaceted problem more manageable. The United States and Japan, both world leaders in the life sciences, are close allies that have established cooperative programs in medical research and global health that can be used to work on combating AMR and advance the GHSA. Although the United States and Japan have cooperated on health issues in the past, their cooperation on the growing problem of AMR has been limited. Their existing networks, cooperative programs, and close relationships can and should be used to work on combating this expanding problem. PMID:25470465
On the interplay between cosmological shock waves and their environment
NASA Astrophysics Data System (ADS)
Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent
2017-05-01
Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.
Evaluation of Production Processes to Identify Essential Equipment
1986-06-01
of Severe Dmae AMRed Sevre DUMP Suultlvity Drop Ht Imfpat vel Drap Ht Impact Val (ft) (ft/see) (ft) (ft/see) High 0.75 7 6 20 Normal 1.5 10 14 30 Low...below and overhead shnuld not contain any major structural defects . V-35 S. •. .’,’,....,, ,.- ./ ’•’ % .. ,. •/•/. .. /.: ... /.’•.,,..,•..,’’./ ¢.€ 3...included as one of the floor systems listed herein. 4. The floor system must have no serious structural defects . 5. The floor-to-ceiling height mat not
The Perfect Storm: HLA Antibodies, Complement, FcγRs and Endothelium in Transplant Rejection
Thomas, Kimberly A.; Valenzuela, Nicole M.; Reed, Elaine F.
2015-01-01
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multi-faceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLA). Despite the clearly detrimental impact of HLA antibodies (HLA-Ab) on graft function and survival, the prevention, diagnosis and treatment of AMR remain a challenge. Histological manifestations of AMR reflect signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a “perfect storm” of inflammation. Characterization of antibody features that are critical for effector functions may help identify HLA-Ab more likely to cause rejection. We also highlight recent advancements that may pave the way for new, more effective therapeutics. PMID:25801125
Saini, Vineet; McClure, J T; Scholl, Daniel T; DeVries, Trevor J; Barkema, Herman W
2013-08-01
Concurrent data on antimicrobial use (AMU) and resistance are needed to contain antimicrobial resistance (AMR) in bacteria. The present study examined a herd-level association between AMU and AMR in Escherichia coli (n=394) and Klebsiella species (n=139) isolated from bovine intramammary infections and mastitis cases on 89 dairy farms in 4 regions of Canada [Alberta, Ontario, Québec, and Maritime Provinces (Prince Edward Island, Nova Scotia, and New Brunswick)]. Antimicrobial use data were collected using inventory of empty antimicrobial containers and antimicrobial drug use rate was calculated to quantify herd-level AMU. Minimum inhibitory concentrations (MIC) were determined using Sensititre National Antimicrobial Resistance Monitoring System (NARMS) gram-negative MIC plate (Trek Diagnostic Systems Inc., Cleveland, OH). Isolates were classified as susceptible, intermediate, or resistant. Intermediate and resistant category isolates were combined to form an AMR category, and multivariable logistic regression models were built to determine herd-level odds of AMR to tetracycline, ampicillin, cefoxitin, chloramphenicol, trimethoprim-sulfamethoxazole combination, sulfisoxazole, streptomycin and kanamycin in E. coli isolates. In the case of Klebsiella species isolates, logistic regression models were built for tetracycline and sulfisoxazole; however, no associations between AMU and AMR in Klebsiella species were observed. Ampicillin-intermediate or -resistant E. coli isolates were associated with herds that used intramammarily administered cloxacillin, penicillin-novobiocin combination, and cephapirin used for dry cow therapy [odds ratios (OR)=26, 32, and 189, respectively], and intramammary ceftiofur administered for lactating cow therapy and systemically administered penicillin (OR=162 and 2.7, respectively). Use of systemically administered penicillin on a dairy farm was associated with tetracycline and streptomycin-intermediate or -resistant E. coli isolates (OR=5.6 and 2.8, respectively). Use of cephapirin and cloxacillin administered intramammarily for dry cow therapy was associated with increasing odds of having at least 1 kanamycin-intermediate or -resistant E. coli isolate at a farm (OR=8.7 and 9.3, respectively). Use of systemically administered tetracycline and ceftiofur was associated with cefoxitin-intermediate or -resistant E. coli (OR=0.13 and 0.16, respectively); however, the odds of a dairy herd having at least 1 cefoxitin-intermediate or -resistant E. coli isolate due to systemically administered ceftiofur increased with increasing average herd parity (OR=3.1). Association between herd-level AMU and AMR in bovine mastitis coliforms was observed for certain antimicrobials. Differences in AMR between different barn types and geographical regions were not observed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Model Validation Status Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.L. Hardin
The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified,more » and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and engineered barriers, plus the TSPA model itself Description of the model areas is provided in Section 3, and the documents reviewed are described in Section 4. The responsible manager for the Model Validation Status Review was the Chief Science Officer (CSO) for Bechtel-SAIC Co. (BSC). The team lead was assigned by the CSO. A total of 32 technical specialists were engaged to evaluate model validation status in the 21 model areas. The technical specialists were generally independent of the work reviewed, meeting technical qualifications as discussed in Section 5.« less
Study of Magnetocaloric Cooling for Thermal Management
2012-11-12
The AMR bed, made of stainless steel 304, encloses the magnetocaloric working substance. Each part of the refrigerator is controlled by the...prototype is composed of magnetic field, hydraulic circuit, stainless steel AMR bed and control system. There are various sensors for measuring...DSC and VSM results show that the martensitic transition temperatures of Ni-Co-Mn-Sn decreased with increasing Co content. Co substitution resulted in
Cole, Robert Townsend; Gandhi, Jonathan; Bray, Robert A; Gebel, Howard M; Yin, Michael; Shekiladze, Nikolaz; Young, An; Grant, Aubrey; Mahoney, Ian; Laskar, S Raja; Gupta, Divya; Bhatt, Kunal; Book, Wendy; Smith, Andrew; Nguyen, Duc; Vega, J David; Morris, Alanna A
2018-04-01
Despite improvements in outcomes after heart transplantation, black recipients have worse survival compared with non-black recipients. The source of such disparate outcomes remains largely unknown. We hypothesize that a propensity to generate de-novo donor-specific antibodies (dnDSA) and subsequent antibody-mediated rejection (AMR) may account for racial differences in sub-optimal outcomes after heart transplant. In this study we aimed to determine the role of dnDSA and AMR in racial disparities in post-transplant outcomes. This study was a single-center, retrospective analysis of 137 heart transplant recipients (81% male, 48% black) discharged from Emory University Hospital. Patients were classified as black vs non-black for the purpose of our analysis. Kaplan-Meier and Cox regression analyses were used to evaluate the association between race and selected outcomes. The primary outcome was the development of dnDSA. Secondary outcomes included treated AMR and a composite of all-cause graft dysfunction or death. After 3.7 years of follow-up, 39 (28.5%) patients developed dnDSA and 19 (13.8%) were treated for AMR. In multivariable models, black race was associated with a higher risk of developing dnDSA (hazard ratio [HR] 3.65, 95% confidence interval [CI] 1.54 to 8.65, p = 0.003) and a higher risk of treated AMR (HR 4.86, 95% CI 1.26 to 18.72, p = 0.021) compared with non-black race. Black race was also associated with a higher risk of all-cause graft dysfunction or death in univariate analyses (HR 2.10, 95% CI 1.02 to 4.30, p = 0.044). However, in a multivariable model incorporating dnDSA, black race was no longer a significant risk factor. Only dnDSA development was significantly associated with all-cause graft dysfunction or death (HR 4.85, 95% CI 1.89 to 12.44, p = 0.001). Black transplant recipients are at higher risk for the development of dnDSA and treated AMR, which may account for racial disparities in outcomes after heart transplantation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
Antimicrobial resistance in West Africa: a systematic review and meta-analysis.
Bernabé, Kerlly J; Langendorf, Céline; Ford, Nathan; Ronat, Jean-Baptiste; Murphy, Richard A
2017-11-01
Growing data suggest that antimicrobial-resistant bacterial infections are common in low- and middle-income countries. This review summarises the microbiology of key bacterial syndromes encountered in West Africa and estimates the prevalence of antimicrobial resistance (AMR) that could compromise first-line empirical treatment. We systematically searched for studies reporting on the epidemiology of bacterial infection and prevalence of AMR in West Africa within key clinical syndromes. Within each syndrome, the pooled proportion and 95% confidence interval were calculated for each pathogen-antibiotic pair using random-effects models. Among 281 full-text articles reviewed, 120 met the eligibility criteria. The majority of studies originated from Nigeria (70; 58.3%), Ghana (15; 12.5%) and Senegal (15; 12.5%). Overall, 43 studies (35.8%) focused on urinary tract infections (UTI), 38 (31.7%) on bloodstream infections (BSI), 27 (22.5%) on meningitis, 7 (5.8%) on diarrhoea and 5 (4.2%) on pneumonia. Children comprised the majority of subjects. Studies of UTI reported moderate to high rates of AMR to commonly used antibiotics including evidence of the emergence of cephalosporin resistance. We found moderate rates of AMR among common bloodstream pathogens to typical first-line antibiotics including ampicillin, cotrimoxazole, gentamicin and amoxicillin/clavulanate. Among S. pneumoniae strains isolated in patients with meningitis, levels of penicillin resistance were low to moderate with no significant resistance noted to ceftriaxone or cefotaxime. AMR was common in this region, particularly in hospitalized patients with BSI and both outpatient and hospitalized patients with UTI. This raises concern given the limited diagnostic capability and second-line treatment options in the public sector in West Africa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Using Adaptive Mesh Refinment to Simulate Storm Surge
NASA Astrophysics Data System (ADS)
Mandli, K. T.; Dawson, C.
2012-12-01
Coastal hazards related to strong storms such as hurricanes and typhoons are one of the most frequently recurring and wide spread hazards to coastal communities. Storm surges are among the most devastating effects of these storms, and their prediction and mitigation through numerical simulations is of great interest to coastal communities that need to plan for the subsequent rise in sea level during these storms. Unfortunately these simulations require a large amount of resolution in regions of interest to capture relevant effects resulting in a computational cost that may be intractable. This problem is exacerbated in situations where a large number of similar runs is needed such as in design of infrastructure or forecasting with ensembles of probable storms. One solution to address the problem of computational cost is to employ adaptive mesh refinement (AMR) algorithms. AMR functions by decomposing the computational domain into regions which may vary in resolution as time proceeds. Decomposing the domain as the flow evolves makes this class of methods effective at ensuring that computational effort is spent only where it is needed. AMR also allows for placement of computational resolution independent of user interaction and expectation of the dynamics of the flow as well as particular regions of interest such as harbors. The simulation of many different applications have only been made possible by using AMR-type algorithms, which have allowed otherwise impractical simulations to be performed for much less computational expense. Our work involves studying how storm surge simulations can be improved with AMR algorithms. We have implemented relevant storm surge physics in the GeoClaw package and tested how Hurricane Ike's surge into Galveston Bay and up the Houston Ship Channel compares to available tide gauge data. We will also discuss issues dealing with refinement criteria, optimal resolution and refinement ratios, and inundation.
Potential Sources and Transmission of Salmonella and Antimicrobial Resistance in Kampala, Uganda
Afema, Josephine A.; Byarugaba, Denis K.; Shah, Devendra H.; Atukwase, Esther; Nambi, Maria; Sischo, William M.
2016-01-01
In sub‒Saharan Africa, non‒typhoidal Salmonellae (NTS) cause invasive disease particularly in children and HIV infected adults, but the disease epidemiology is poorly understood. Between 2012 and 2013, we investigated NTS sources and transmission in Kampala. We detected Salmonella in 60% of the influent and 60% of the effluent samples from a wastewater treatment plant and 53.3% of the influent and 10% of the effluent samples from waste stabilization ponds that serve the human population; 40.9% of flush‒water samples from ruminant slaughterhouses, 6.6% of the poultry fecal samples from live bird markets and 4% of the fecal samples from swine at slaughter; and in 54.2% of the water samples from a channel that drains storm–water and effluents from the city. We obtained 775 Salmonella isolates, identified 32 serovars, and determined resistance to 15 antimicrobials. We genotyped common serovars using multiple‒locus variable number tandem repeats analysis or pulsed‒field gel electrophoresis. In addition, we analyzed 49 archived NTS isolates from asymptomatic livestock and human clinical cases. Salmonella from ruminant and swine sources were mostly pan‒susceptible (95%) while poultry isolates were generally more resistant. Salmonella Kentucky isolated from poultry exhibited extensive drug resistance characterized by resistance to 10 antimicrobials. Interestingly, similar genotypes of S. Kentucky but with less antimicrobial resistance (AMR) were found in poultry, human and environmental sources. The observed AMR patterns could be attributed to host or management factors associated with production. Alternatively, S. Kentucky may be prone to acquiring AMR. The factors driving AMR remain poorly understood and should be elucidated. Overall, shared genotypes and AMR phenotypes were found in NTS from human, livestock and environmental sources, suggesting zoonotic and environmental transmissions most likely occur. Information from this study could be used to control NTS transmission. PMID:26999788
Pavlova, Yelena; Viklicky, Ondrej; Slatinska, Janka; Bürgelova, Marcela; Süsal, Caner; Skibova, Jelena; Honsová, Eva; Striz, Ilja; Kolesar, Libor; Slavcev, Antonij
2011-07-01
Our retrospective study was aimed to assess the relevance of pre- and post-transplant measurements of serum concentrations of the soluble CD30 molecule (soluble CD30, sCD30) and the cytokine Hepatocyte growth factor (HGF) for prediction of the risk for development of antibody-mediated rejection (AMR) in kidney transplant patients. Evaluation of sCD30, HGF levels and the presence of HLA-specific antibodies in a cohort of 205 patients was performed before, 2weeks and 6months after transplantation. Patients were followed up for kidney graft function and survival for two years. We found a tendency of higher incidence of AMR in retransplanted patients with elevated pre-transplant sCD30 (≥100U/ml) (p=0.051), however no such correlation was observed in first-transplant patients. Kidney recipients with simultaneously high sCD30 and HLA-specific antibodies (sCD30+/Ab+) before transplantation had significantly lower AMR-free survival compared to the other patient groups (p<0.001). HGF concentrations were not associated with the incidence of AMR at any time point of measurement, nevertheless, the combined analysis HGF and sCD30 showed increased incidence of AMR in recipients with elevated pretransplant sCD30 and low HGF levels. the predictive value of pretransplant sCD30 for the development of antibody-mediated rejection after transplantation is significantly potentiated by the co-presence of HLA specific antibodies. The role of HGF as a rejection-protective factor in patients with high pretransplant HGF levels would need further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.
Ye, Jun; He, Wei; Wu, Qiong; Liu, Hao-Liang; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua
2013-01-01
The epitaxial growth of ultrathin Fe film on Si(111) surface provides an excellent opportunity to investigate the contribution of magnetic anisotropy to magnetic behavior. Here, we present the anisotropic magnetoresistance (AMR) effect of Fe single crystal film on vicinal Si(111) substrate with atomically flat ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the tiny misorientation from Fe(111) plane, the symmetry of magnetocrystalline anisotropy energy changes from the six-fold to a superposition of six-fold, four-fold and a weakly uniaxial contribution. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from torque curves on the basis of AMR results. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of various magnetic anisotropy constants. PMID:23828508
Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada
Agunos, Agnes; Léger, Dave; Carson, Carolee
2012-01-01
This paper reviews common therapeutic applications of antimicrobials in broiler chicken production in relation to Canadian guidelines, surveillance data, and emerging public health concerns about antimicrobial use (AMU). Escherichia coli, Clostridium perfringens, and Staphylococcus spp., were reviewed because of their animal health and economic significance. Enterococcus cecorum and Salmonella were included because of their importance in antimicrobial resistance (AMR) surveillance. This review identified that i) antimicrobials are available in Canada to treat infections by these agents, but may be through over the counter or extra-label use, ii) prevalence rates for these diseases are unknown, iii) antimicrobial use estimates in broilers are lacking, and iv) AMR has emerged in clinical isolates, though data are very sparse. This review highlights the need for surveillance of AMU and AMR in broiler chickens in Canada. PMID:23729827
The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite
NASA Astrophysics Data System (ADS)
Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.
2006-12-01
Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, J., E-mail: jaechun1@ualberta.ca; Alagoz, H. S.; Jung, J., E-mail: jjung@ualberta.ca
Colossal in-plane anisotropic magnetoresistance (AMR) of >16 000% has been engineered in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} films. Recalling that typical AMR values in films are only a few percent, these results mark an astonishing increase that might potentially lead to fabrication of manganite-based switching and sensor devices. The unique colossal behavior is discussed within the context of anisotropic domain growth.
A new data-driven model for post-transplant antibody dynamics in high risk kidney transplantation.
Zhang, Yan; Briggs, David; Lowe, David; Mitchell, Daniel; Daga, Sunil; Krishnan, Nithya; Higgins, Robert; Khovanova, Natasha
2017-02-01
The dynamics of donor specific human leukocyte antigen antibodies during early stage after kidney transplantation are of great clinical interest as these antibodies are considered to be associated with short and long term clinical outcomes. The limited number of antibody time series and their diverse patterns have made the task of modelling difficult. Focusing on one typical post-transplant dynamic pattern with rapid falls and stable settling levels, a novel data-driven model has been developed for the first time. A variational Bayesian inference method has been applied to select the best model and learn its parameters for 39 time series from two groups of graft recipients, i.e. patients with and without acute antibody-mediated rejection (AMR) episodes. Linear and nonlinear dynamic models of different order were attempted to fit the time series, and the third order linear model provided the best description of the common features in both groups. Both deterministic and stochastic parameters are found to be significantly different in the AMR and no-AMR groups showing that the time series in the AMR group have significantly higher frequency of oscillations and faster dissipation rates. This research may potentially lead to better understanding of the immunological mechanisms involved in kidney transplantation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Venter, Henrietta; Henningsen, Michael L; Begg, Stephanie L
2017-02-28
The crisis of antimicrobial resistance (AMR) is one of the most serious issues facing us today. The scale of the problem is illustrated by the recent commitment of Heads of State at the UN to coordinate efforts to curb the spread of AMR infections. In this review, we explore the biochemistry behind the headlines of a few stories that were recently published in the public media. We focus on examples from three different issues related to AMR: (i) hospital-acquired infections, (ii) the spread of resistance through animals and/or the environment and (iii) the role of antimicrobial soaps and other products containing disinfectants in the dissemination of AMR. Although these stories stem from three very different settings, the underlying message in all of them is the same: there is a direct relationship between the use of antimicrobials and the development of resistance. In addition, one type of antimicrobial could select for cross-resistance to another type and/or for multidrug resistance. Therefore, we argue the case for increased stewardship to not only cover clinical use of antibiotics, but also the use of antimicrobials in agriculture and stewardship of our crucially important biocides such as chlorhexidine. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
Petit, L-M; Rabant, M; Canioni, D; Suberbielle-Boissel, C; Goulet, O; Chardot, C; Lacaille, F
2017-03-01
AMR is a risk factor for graft failure after SBTx. We studied impact of DSAs and AMR in 22 children transplanted between 2008 and 2012 (11 isolated SBTx, 10 liver inclusive Tx, and one modified multivisceral Tx). Three patients never developed DSA, but DSAs were found in seven in the pre-Tx period and de novo post-Tx in 19 children. Pathology revealed cellular rejection (15/19), with vascular changes and C4d+. Patients were treated with IV immunoglobulins, plasmapheresis, and steroids. Rescue therapy included antithymocyte globulins, rituximab, eculizumab, and bortezomib. Pathology and graft function normalized in 13 patients, graft loss occurred in two, and death in seven. At the end of the follow-up, 15 children were alive (68%), 13 with functioning graft (59%). Prognosis factors for poor outcome after Tx were the presence of symptoms at AMR suspicion (P +.033). DSAs were often found following SBTx, mostly de novo. Resistant ACR or severe AMR is still difficult to differentiate, with a high need for immunosuppression in both. DSAs may precede development of severe disease and pathology features on the graft: relationship and correlation need to be better investigated with larger groups before and after Tx. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Joshi, Mohan P; Chintu, Chifumbe; Mpundu, Mirfin; Kibuule, Dan; Hazemba, Oliver; Andualem, Tenaw; Embrey, Martha; Phulu, Bayobuya; Gerba, Heran
2018-03-20
The multi-faceted complexities of antimicrobial resistance (AMR) require consistent action, a multidisciplinary approach, and long-term political commitment. Building coalitions can amplify stakeholder efforts to carry out effective AMR prevention and control strategies. We have developed and implemented an approach to help local stakeholders kick-start the coalition-building process. The five-step process is to (1) mobilise support, (2) understand the local situation, (3) develop an action plan, (4) implement the plan, and (5) monitor and evaluate. We first piloted the approach in Zambia in 2004, then used the lessons learned to expand it for use in Ethiopia and Namibia and to the regional level through the Ecumenical Pharmaceutical Network [EPN]. Call-to-action declarations and workshops helped promote a shared vision, resulting in the development of national AMR action plans, revision of university curricula to incorporate relevant topics, infection control activities, engagement with journalists from various mass media outlets, and strengthening of drug quality assurance systems. Our experience with the coalition-building approach in Ethiopia, Namibia, Zambia, and with the EPN shows that coalitions can form in a variety of ways with many different stakeholders, including government, academia, and faith-based organisations, to organise actions to preserve the effectiveness of existing antimicrobials and contain AMR.
Remote wave measurements using autonomous mobile robotic systems
NASA Astrophysics Data System (ADS)
Kurkin, Andrey; Zeziulin, Denis; Makarov, Vladimir; Belyakov, Vladimir; Tyugin, Dmitry; Pelinovsky, Efim
2016-04-01
The project covers the development of a technology for monitoring and forecasting the state of the coastal zone environment using radar equipment transported by autonomous mobile robotic systems (AMRS). Sought-after areas of application are the eastern and northern coasts of Russia, where continuous collection of information on topographic changes of the coastal zone and carrying out hydrodynamic measurements in inaccessible to human environment are needed. The intensity of the reflection of waves, received by radar surveillance, is directly related to the height of the waves. Mathematical models and algorithms for processing experimental data (signal selection, spectral analysis, wavelet analysis), recalculation of landwash from data on heights of waves far from the shore, determination of the threshold values of heights of waves far from the shore have been developed. There has been developed the program complex for functioning of the experimental prototype of AMRS, comprising the following modules: data loading module, reporting module, module of georeferencing, data analysis module, monitoring module, hardware control module, graphical user interface. Further work will be connected with carrying out tests of manufactured experimental prototype in conditions of selected routes coastline of Sakhalin Island. Conducting field tests will allow to reveal the shortcomings of development and to identify ways of optimization of the structure and functioning algorithms of AMRS, as well as functioning the measuring equipment. The presented results have been obtained in Nizhny Novgorod State Technical University n.a. R. Alekseev in the framework of the Federal Target Program «Research and development on priority directions of scientific-technological complex of Russia for 2014 - 2020 years» (agreement № 14.574.21.0089 (unique identifier of agreement - RFMEFI57414X0089)).
The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection.
Thomas, Kimberly A; Valenzuela, Nicole M; Reed, Elaine F
2015-05-01
The pathophysiology of antibody-mediated rejection (AMR) in solid organ transplants is multifaceted and predominantly caused by antibodies directed against polymorphic donor human leukocyte antigens (HLAs). Despite the clearly detrimental impact of HLA antibodies (HLA-Abs) on graft function and survival, the prevention, diagnosis, and treatment of AMR remain a challenge. The histological manifestations of AMR reflect the signatures of HLA-Ab-triggered injury, specifically endothelial changes, recipient leukocytic infiltrate, and complement deposition. We review the interconnected mechanisms of HLA-Ab-mediated injury that might synergize in a 'perfect storm' of inflammation. Characterization of antibody features that are critical for effector functions may help to identify HLA-Abs that are more likely to cause rejection. We also highlight recent advances that may pave the way for new, more effective therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pornsukarom, Suchawan; Thakur, Siddhartha
2017-10-15
The aim of this study was to characterize the plasmids carrying antimicrobial resistance (AMR) determinants in multiple Salmonella serotypes recovered from the commercial swine farm environment after manure application on land. Manure and soil samples were collected on day 0 before and after manure application on six farms in North Carolina, and sequential soil samples were recollected on days 7, 14, and 21 from the same plots. All environmental samples were processed for Salmonella , and their plasmid contents were further characterized. A total of 14 isolates including Salmonella enterica serotypes Johannesburg ( n = 2), Ohio ( n = 2), Rissen ( n = 1), Typhimurium var5- ( n = 5), Worthington ( n = 3), and 4,12:i:- ( n = 1), representing different farms, were selected for plasmid analysis. Antimicrobial susceptibility testing was done by broth microdilution against a panel of 14 antimicrobials on the 14 confirmed transconjugants after conjugation assays. The plasmids were isolated by modified alkaline lysis, and PCRs were performed on purified plasmid DNA to identify the AMR determinants and the plasmid replicon types. The plasmids were sequenced for further analysis and to compare profiles and create phylogenetic trees. A class 1 integron with an ANT(2″)-Ia- aadA2 cassette was detected in the 50-kb IncN plasmids identified in S Worthington isolates. We identified 100-kb and 90-kb IncI1 plasmids in S Johannesburg and S Rissen isolates carrying the bla CMY-2 and tet (A) genes, respectively. An identical 95-kb IncF plasmid was widely disseminated among the different serotypes and across different farms. Our study provides evidence on the importance of horizontal dissemination of resistance determinants through plasmids of multiple Salmonella serotypes distributed across commercial swine farms after manure application. IMPORTANCE The horizontal gene transfer of antimicrobial resistance (AMR) determinants located on plasmids is considered to be the main reason for the rapid proliferation and spread of drug resistance. The deposition of manure generated in swine production systems into the environment is identified as a potential source of AMR dissemination. In this study, AMR gene-carrying plasmids were detected in multiple Salmonella serotypes across different commercial swine farms in North Carolina. The plasmid profiles were characterized based on Salmonella serotype donors and incompatibility (Inc) groups. We found that different Inc plasmids showed evidence of AMR gene transfer in multiple Salmonella serotypes. We detected an identical 95-kb plasmid that was widely distributed across swine farms in North Carolina. These conjugable resistance plasmids were able to persist on land after swine manure application. Our study provides strong evidence of AMR determinant dissemination present in plasmids of multiple Salmonella serotypes in the environment after manure application. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Teng, Y. C.; Kelly, D.; Li, Y.; Zhang, K.
2016-02-01
A new state-of-the-art model (the Fully Adaptive Storm Tide model, FAST) for the prediction of storm surges over complex landscapes is presented. The FAST model is based on the conservation form of the full non-linear depth-averaged long wave equations. The equations are solved via an explicit finite volume scheme with interfacial fluxes being computed via Osher's approximate Riemann solver. Geometric source terms are treated in a high order manner that is well-balanced. The numerical solution technique has been chosen to enable the accurate simulation of wetting and drying over complex topography. Another important feature of the FAST model is the use of a simple underlying Cartesian mesh with tree-based static and dynamic adaptive mesh refinement (AMR). This permits the simulation of unsteady flows over varying landscapes (including localized features such as canals) by locally increasing (or relaxing) grid resolution in a dynamic fashion. The use of (dynamic) AMR lowers the computational cost of the storm surge model whilst retaining high resolution (and thus accuracy) where and when it is required. In additional, the FAST model has been designed to execute in a parallel computational environment with localized time-stepping. The FAST model has already been carefully verified against a series of benchmark type problems (Kelly et al. 2015). Here we present two simulations of the storm tide due to Hurricane Ike(2008) and Hurricane Sandy (2012). The model incorporates high resolution LIDAR data for the major portion of the New York City. Results compare favorably with water elevations measured by NOAA tidal gauges, by mobile sensors deployed and high water marks collected by the USGS.
A new class of accurate, mesh-free hydrodynamic simulation methods
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2015-06-01
We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.
Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.
2017-01-01
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis.
Nellums, Laura B; Thompson, Hayley; Holmes, Alison; Castro-Sánchez, Enrique; Otter, Jonathan A; Norredam, Marie; Friedland, Jon S; Hargreaves, Sally
2018-05-17
Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I 2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I 2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I 2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I 2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I 2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I 2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I 2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Diurnal effects of prior heat stress exposure on sprint and endurance exercise capacity in the heat.
Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Goto, Heita; Goto, Takayuki; Shirato, Minayuki
2018-03-21
Active individuals often perform exercises in the heat following heat stress exposure (HSE) regardless of the time-of-day and its variation in body temperature. However, there is no information concerning the diurnal effects of a rise in body temperature after HSE on subsequent exercise performance in a hot environnment. This study therefore investigated the diurnal effects of prior HSE on both sprint and endurance exercise capacity in the heat. Eight male volunteers completed four trials which included sprint and endurance cycling tests at 30 °C and 50% relative humidity. At first, volunteers completed a 30-min pre-exercise routine (30-PR): a seated rest in a temperate environment in AM (AmR) or PM (PmR) (Rest trials); and a warm water immersion at 40 °C to induce a 1 °C increase in core temperature in AM (AmW) or PM (PmW) (HSE trials). Volunteers subsequently commenced exercise at 0800 h in AmR/AmW and at 1700 h in PmR/PmW. The sprint test determined a 10-sec maximal sprint power at 5 kp. Then, the endurance test was conducted to measure time to exhaustion at 60% peak oxygen uptake. Maximal sprint power was similar between trials (p = 0.787). Time to exhaustion in AmW (mean±SD; 15 ± 8 min) was less than AmR (38 ± 16 min; p < 0.01) and PmR (43 ± 24 min; p < 0.01) but similar with PmW (24 ± 9 min). Core temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (p < 0.05) and at post 30-PR and the start of the endurance test in PmR than AmR (p < 0.05). The rate of rise in core temperature during the endurance test was greater in AmR than AmW and PmW (p < 0.05). Mean skin temperature was higher from post 30-PR to 6 min into the endurance test in HSE trials than Rest trials (p < 0.05). Mean body temperature was higher from post 30-PR to 6 min into the endurance test in AmW and PmW than AmR and PmR (p < 0.05) and the start to 6 min into the endurance test in PmR than AmR (p < 0.05). Convective, radiant, dry and evaporative heat losses were greater on HSE trials than on Rest trials (p < 0.001). Heart rate and cutaneous vascular conductance were higher at post 30-PR in HSE trials than Rest trials (p < 0.05). Thermal sensation was higher from post 30-PR to the start of the endurance test in AmW and PmW than AmR and PmR (p < 0.05). Perceived exertion from the start to 6 min into the endurance test was higher in HSE trials than Rest trials (p < 0.05). This study demonstrates that an approximately 1 °C increase in core temperature by prior HSE has the diurnal effects on endurance exercise capacity but not on sprint exercise capacity in the heat. Moreover, prior HSE reduces endurance exercise capacity in AM, but not in PM. This reduction is associated with a large difference in pre-exercise core temperature between AM trials which is caused by a relatively lower body temperature in the morning due to the time-of-day variation and contributes to lengthening the attainment of high core temperature during exercise in AmR.
2014-05-01
solver to treat the spray process. An Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with...Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with high fidelity while keeping the cell...in single and multi-hole nozzle configurations. The models were added to the present CONVERGE liquid fuel database and validated extensively
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
2014-01-01
Background Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide and gonococcal AMR surveillance globally is imperative for public health purposes. In Eastern Europe, gonococcal AMR surveillance is exceedingly rare. However, in 2004 the Russian gonococcal antimicrobial susceptibility programme (RU-GASP) was initiated. The aims of this study were to describe the prevalence and trends of gonococcal AMR from 2009 to 2012, and molecular epidemiological genotypes in 2011 and 2012 in Russia. Methods Gonococcal isolates from 12–46 surveillance sites distributed across Russia, obtained in 2009 (n = 1200), 2010 (n = 407), 2011 (n = 423), and 2012 (n = 106), were examined for antimicrobial susceptibility using agar dilution method. Gonococcal isolates from 2011 and 2012 were investigated with N. gonorrhoeae multi-antigen sequence typing (NG-MAST). Results During 2009–2012, the proportions of gonococcal isolates resistant to ciprofloxacin, penicillin G, azithromycin and spectinomycin ranged from 25.5% to 44.4%, 9.6% to 13.2%, 2.3% to 17.0% and 0.9% to 11.6%, respectively. Overall, the resistance level to penicillin G was stable, the resistance level to ciprofloxacin was decreasing, however, the level of resistance to azithromycin increased. All isolates were susceptible to ceftriaxone using the US CLSI breakpoints. However, using the European breakpoints 58 (2.7%) of the isolates were resistant to ceftriaxone. Interestingly, this proportion was decreasing, i.e. from 4.8% in 2009 to 0% in 2012. Conclusions In Russia, the diversified gonococcal population showed a high resistance to ciprofloxacin, penicillin G and azithromycin. In general, the MICs of ceftriaxone were relatively high, however, they were decreasing from 2009 to 2012. Ceftriaxone should be the first-line for empiric antimicrobial monotherapy of gonorrhoea in Russia. It is essential to further strengthen the surveillance of gonococcal AMR (ideally also gonorrhoea treatment failures) in Russia. PMID:24947981
Love, William J.; Zawack, Kelson A.; Booth, James G.; Grӧhn, Yrjo T.
2016-01-01
Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data. PMID:27851767
Love, William J; Zawack, Kelson A; Booth, James G; Grӧhn, Yrjo T; Lanzas, Cristina
2016-11-01
Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data.
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter
McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia’s reputation as a supplier of safe and healthy food. PMID:28542602
Antimicrobial Resistance Profiles and Diversity in Salmonella from Humans and Cattle, 2004-2011.
Afema, J A; Mather, A E; Sischo, W M
2015-11-01
Analysis of long-term anti-microbial resistance (AMR) data is useful to understand source and transmission dynamics of AMR. We analysed 5124 human clinical isolates from Washington State Department of Health, 391 cattle clinical isolates from the Washington Animal Disease Diagnostic Laboratory and 1864 non-clinical isolates from foodborne disease research on dairies in the Pacific Northwest. Isolates were assigned profiles based on phenotypic resistance to 11 anti-microbials belonging to eight classes. Salmonella Typhimurium (ST), Salmonella Newport (SN) and Salmonella Montevideo (SM) were the most common serovars in both humans and cattle. Multinomial logistic regression showed ST and SN from cattle had greater probability of resistance to multiple classes of anti-microbials than ST and SN from humans (P < 0.0001). While these findings could be consistent with the belief that cattle are a source of resistant ST and SN for people, occurrence of profiles unique to cattle and not observed in temporally related human isolates indicates these profiles are circulating in cattle only. We used various measures to assess AMR diversity, conditional on the weighting of rare versus abundant profiles. AMR profile richness was greater in the common serovars from humans, although both source data sets were dominated by relatively few profiles. The greater profile richness in human Salmonella may be due to greater diversity of sources entering the human population compared to cattle or due to continuous evolution in the human environment. Also, AMR diversity was greater in clinical compared to non-clinical cattle Salmonella, and this could be due to anti-microbial selection pressure in diseased cattle that received treatment. The use of bootstrapping techniques showed that although there were shared profiles between humans and cattle, the expected and observed number of profiles was different, suggesting Salmonella and associated resistance from humans and cattle may not be wholly derived from a common population. © 2014 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.
Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation as a supplier of safe and healthy food.
Habing, Greg G; Lombard, Jason E; Kopral, Christine A; Dargatz, David A; Kaneene, John B
2012-09-01
Salmonella enterica is the leading cause of foodborne-related deaths and hospitalizations within the United States. Infections caused by antimicrobial-resistant (AMR) strains are associated with higher hospital costs and case fatality. The objective for this study was to determine the association of management practices with the recovery of Salmonella and AMR Salmonella on dairy herds. Individual adult cow fecal samples and/or composite fecal samples were collected from 265 dairy herds in 17 states. Samples were cultured for Salmonella, and the MIC was determined for 15 antimicrobials. Herds were classified as Salmonella positive if at least one isolate was recovered, and AMR Salmonella positive if at least one resistant isolate was recovered. Questionnaires regarding management practices were administered to herd operators, and a subset of practices was selected based on subject knowledge and prior research. Data on preventive and therapeutic antimicrobial usage were included in the analysis. Logistic regression models were used to determine which practices were significantly (p<0.05) associated with each herd classification. A total of 124 and 25 herds were classified as Salmonella positive and AMR Salmonella positive, respectively. Variables significantly associated with Salmonella-positive herds included using sprinklers or misters for heat abatement (OR=2.8; CI: 1.6-4.9), feeding anionic salts to cows (OR=1.9; CI: 1.1-3.5), and feeding ionophores to cows (OR=2.1; CI: 1.2-3.7). Herds that used a broadcast/solid spread had lower odds (OR=0.26; CI: 0.11-0.63) of being Salmonella positive. Herds with at least one resistant isolate were more likely to have used composted/dried manure for bedding relative to herds with only susceptible isolates (OR=3.6; CI: 1.2-11.0). These results can be useful to focus additional research aimed at decreasing the prevalence of Salmonella and AMR Salmonella on U.S. dairy herds.
Rezaei-Hachesu, Peyman; Samad-Soltani, Taha; Yaghoubi, Sajad; GhaziSaeedi, Marjan; Mirnia, Kayvan; Masoumi-Asl, Hossein; Safdari, Reza
2018-07-01
Neonatal intensive care units (NICUs) have complex patients in terms of their diagnoses and required treatments. Antimicrobial treatment is a common therapy for patients in NICUs. To solve problems pertaining to empirical therapy, antimicrobial stewardship programs have recently been introduced. Despite the success of these programs in terms of data collection, there is still inefficiency in terms of analyzing and reporting the data. Thus, to successfully implement these stewardship programs, the design of antimicrobial resistance (AMR) surveillance systems is recommended as a first step. As a result, this study aimed to design an AMR surveillance system for use in the NICUs in northwestern Iranian hospitals to cover these information gaps. The recommended system is compatible with the World Health Organization (WHO) guidelines. The business intelligence (BI) requirements were extracted in an interview with a product owner (PO) using a valid and reliable checklist. Following this, an AMR surveillance system was designed and evaluated in relation to user experiences via a user experience questionnaire (UEQ). Finally, an association analysis was performed on the database, and the results were reported by identifying the important multidrug resistances in the database. A customized software development methodology was proposed. The three major modules of the AMR surveillance are the data registry, dashboard, and decision support modules. The data registry module was implemented based on a three-tier architecture, and the Clinical Decision Support System (CDSS) and dashboard modules were designed based on the BI requirements of the Scrum product owner (PO). The mean values of UEQ measures were in a good range. This measures showed the suitable usability of the AMR surveillance system. Applying efficient software development methodologies allows for the systems' compatibility with users' opinions and requirements. In addition, the construction of interdisciplinary communication models for research and software engineering allows for research and development concepts to be used in operational environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Sakeena, M H F; Bennett, Alexandra A; Jamshed, Shazia; Mohamed, Fahim; Herath, Dilanthi R; Gawarammana, Indika; McLachlan, Andrew J
2018-05-08
Antimicrobial resistance (AMR) is a major challenge for global health care. Pharmacists play a key role in the health care setting to help support the quality use of medicines. The education, training, and experiences of pharmacy students have the potential to impact on patterns of antibiotic use in community and hospital settings. The aim of this study was to investigate antibiotic use, knowledge of antibiotics and AMR among undergraduate pharmacy students at Sri Lankan universities and to compare this between junior and senior pharmacy student groups. A cross-sectional study was conducted at the six universities in Sri Lanka that offer pharmacy undergraduate programmes. All pharmacy students in each university were invited to participate in this study using a self-administered questionnaire with ethics approval. The study instrument comprised five major sections: demographic information, self-reported antibiotic use, knowledge of antibiotic uses in human health, knowledge of AMR and antibiotic use in agriculture. Descriptive data analyses were conducted and Chi-squared analysis was used to explore associations between different variables and level of pharmacy education. Four hundred sixty-six pharmacy students completed the questionnaire. A majority of participants (76%) reported antibiotic use in the past year. More than half (57%) of the junior pharmacy students incorrectly indicated that antibiotic use is appropriate for the management of cold and flu conditions. Senior pharmacy students (n = 206) reported significantly better antibiotic knowledge than junior students (n = 260), p < 0.05. Overall pharmacy students showed good understanding of AMR and their knowledge level increased as the year of pharmacy study increased. This study found that pharmacy students commonly report using antibiotics. Junior students report some misconceptions about antimicrobials. A comparison between junior and senior pharmacy students suggests that pharmacy education is associated with improved understanding of appropriate antibiotic use and AMR among undergraduate pharmacy students in Sri Lanka.
Development of Surface Plasmons/Electro Optic Devices for Active Control of Optical Characteristics
2008-12-01
631 Discovery Dr., Huntsville, AL 35806, Paul R. Ashley, M. Scalora , and Neset Akozbek Charles M. Bowden Research Center, AMSRD-AMR- WS-ST, RDECOM...Centini, E. Fazio, C. Sibilia, M.J. Bloemer, M. Scalora , "Second harmonic generation from metallo-dielectric multilayer photonic band gap structures...34, Phys. Rev. A 77, 013809 (2007) [13] M. Scalora , G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N
Electromechanical Actuation Feasibility Study
1976-05-01
FORMA11ON SLRVicE U. S. DPMfmft1 OF COMMOM AmR 703CR IIGRT DYNAM1U8 LABORATOY AMR 706C YST TM- COMMAND\\ ~WRIGUT-PATTEAWNk AIR POW= RASL OHIO 45M8...AMIE AND0 ACGRIESS 52 RIEPOR01T DATE Air Force Flight Dy-namics Labcratory May 1976 AFSC/AFWAL, United States Air Force 11 sNjsBsIm OF PAGIES Wright... Air Force under Contract Fý3615-75-C-305, Electronechanical Actuation Feasibility Study. The contract was aaministereu by the Air Force Flioht Dynamics
Formation and anisotropic magnetoresistance of Co/Pt nano-contacts through aluminum oxide barrier
NASA Astrophysics Data System (ADS)
Al-Mahdawi, Muftah; Sahashi, Masashi
2014-01-01
We report on the observation of anisotropic magnetoresistance (AMR) in vertical asymmetric nano-contacts (NCs) made through AlOx nano-oxide layer (NOL) formed by ion-assisted oxidation method in the film stack of Co/AlOx-NOL/Pt. Analysis of NC formation was based on in situ conductive atomic force microscopy and transmission electron microscopy. Depending on the purity of NCs from Al contamination, we observed up to 29% AMR ratio at room temperature.
Adaptive Implicit Non-Equilibrium Radiation Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby; Wang, Zhen; Berrill, Mark A
2013-01-01
We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.
A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms
NASA Astrophysics Data System (ADS)
Hasbestan, Jaber J.; Senocak, Inanc
2017-12-01
Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.
RAY-RAMSES: a code for ray tracing on the fly in N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreira, Alexandre; Llinares, Claudio; Bose, Sownak
2016-05-01
We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less
NASA Astrophysics Data System (ADS)
Gorkovenko, A. N.; Lepalovskij, V. N.; Adanakova, O. A.; Vas'kovskiy, V. O.
2016-03-01
In this paper we studied the possibility of tailoring the functional properties of the multilayer magnetoresistive medium with unidirectional anisotropy and the anisotropic magnetoresistance effect (AMR). Objects of the research were composite Co-Al2O3 films and Ta/Fe20Ni80/Fe50Mn50/Fe20Ni80/Co-Al2O3/Fe20Ni80/Ta multilayers structures obtained by magnetron sputtering and selectively subjected vacuum annealing. Structure, magnetic and magnetoresistive properties of the films in the temperature range 77÷440 K were investigated.
Advances in pharmacovigilance initiatives surrounding antimicrobial resistance-Indian perspective.
Bairy, Laxminarayana Kurady; Nayak, Veena; A, Avinash; Kunder, Sushil Kiran
2016-08-01
In recent years the development of antimicrobial resistance has been accelerating, the discovery of new antimicrobial agents has slowed substantially in past decades. This review mainly focuses on the problem of antimicrobial resistance(AMR); the various contributor mechanisms, consequences and future of AMR. The review also highlights the irrational use of antimicrobials, improving their usage and problems associated with pharmacovigilance of antimicrobial resistance. Pharmacovigilance in the form of surveillance of antibiotic use is being done in 90% of the countries worldwide through the WHONET program developed by WHO. However, the data comes from a limited area of the globe. Data from every part of the world is required, so that there is geographical representation of every region. A major hurdle in quantifying the extent of antimicrobial resistance is the fact that there are several known microbes, that may turn out to be resistant to one or more of the several known antimicrobial agents. The global action plan initiated by WHO, if implemented successfully will definitely reduce AMR and will help in evaluating treatment interventions.
Critical success factors for achieving superior m-health success.
Dwivedi, A; Wickramasinghe, N; Bali, R K; Naguib, R N G
2007-01-01
Recent healthcare trends clearly show significant investment by healthcare institutions into various types of wired and wireless technologies to facilitate and support superior healthcare delivery. This trend has been spurred by the shift in the concept and growing importance of the role of health information and the influence of fields such as bio-informatics, biomedical and genetic engineering. The demand is currently for integrated healthcare information systems; however for such initiatives to be successful it is necessary to adopt a macro model and appropriate methodology with respect to wireless initiatives. The key contribution of this paper is the presentation of one such integrative model for mobile health (m-health) known as the Wi-INET Business Model, along with a detailed Adaptive Mapping to Realisation (AMR) methodology. The AMR methodology details how the Wi-INET Business Model can be implemented. Further validation on the concepts detailed in the Wi-INET Business Model and the AMR methodology is offered via a short vignette on a toolkit based on a leading UK-based healthcare information technology solution.
Martins Pereira, Sandra; de Sá Brandão, Patrícia Joana; Araújo, Joana; Carvalho, Ana Sofia
2017-01-01
Introduction Antimicrobial resistance (AMR) is a challenging global and public health issue, raising bioethical challenges, considerations and strategies. Objectives This research protocol presents a conceptual model leading to formulating an empirically based bioethics framework for antibiotic use, AMR and designing ethically robust strategies to protect human health. Methods Mixed methods research will be used and operationalized into five substudies. The bioethical framework will encompass and integrate two theoretical models: global bioethics and ethical decision-making. Results Being a study protocol, this article reports on planned and ongoing research. Conclusions Based on data collection, future findings and using a comprehensive, integrative, evidence-based approach, a step-by-step bioethical framework will be developed for (i) responsible use of antibiotics in healthcare and (ii) design of strategies to decrease AMR. This will entail the analysis and interpretation of approaches from several bioethical theories, including deontological and consequentialist approaches, and the implications of uncertainty to these approaches. PMID:28459355
Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.
Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald
2011-03-14
The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.
Transport coefficients of Dirac ferromagnet: Effects of vertex corrections
NASA Astrophysics Data System (ADS)
Fujimoto, Junji
2018-03-01
As a strongly spin-orbit-coupled metallic model with ferromagnetism, we have considered an extended Stoner model to the relativistic regime, named Dirac ferromagnet in three dimensions. In a previous paper [J. Fujimoto and H. Kohno, Phys. Rev. B 90, 214418 (2014), 10.1103/PhysRevB.90.214418], we studied the transport properties giving rise to the anisotropic magnetoresistance (AMR) and the anomalous Hall effect (AHE) with the impurity potential being taken into account only as the self-energy. The effects of the vertex corrections (VCs) to AMR and AHE are reported in this paper. AMR is found not to change quantitatively when the VCs are considered, although the transport lifetime is different from the one-electron lifetime and the charge current includes additional contributions from the correlation with spin currents. The side-jump and the skew-scattering contributions to AHE are also calculated. The skew-scattering contribution is dominant in the clean case as can be seen in the spin Hall effect in the nonmagnetic Dirac electron system.
Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.
Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K
2011-03-01
A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.
Cdk1-dependent phosphorylation of Iqg1 governs actomyosin ring assembly prior to cytokinesis.
Naylor, Stephen G; Morgan, David O
2014-03-01
Contraction of the actomyosin ring (AMR) provides the centripetal force that drives cytokinesis. In budding yeast (Saccharomyces cerevisiae), assembly and contraction of the AMR is coordinated with membrane deposition and septum formation at the bud neck. A central player in this process is Iqg1, which promotes recruitment of actin to the myosin ring and links AMR assembly with that of septum-forming components. We observed early actin recruitment in response to inhibition of cyclin-dependent kinase 1 (Cdk1) activity, and we find that the Cdk1-dependent phosphorylation state of Iqg1 is a determining factor in the timing of bud neck localization of both Iqg1 and actin, with both proteins accumulating prematurely in cells expressing nonphosphorylatable Iqg1 mutants. We also identified the primary septum regulator Hof1 as a binding partner of Iqg1, providing a regulatory link between the septation and contractile pathways that cooperate to complete cytokinesis.
Fully implicit adaptive mesh refinement solver for 2D MHD
NASA Astrophysics Data System (ADS)
Philip, B.; Chacon, L.; Pernice, M.
2008-11-01
Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)
Improvement of immunoassay detection system by using alternating current magnetic susceptibility
NASA Astrophysics Data System (ADS)
Kawabata, R.; Mizoguchi, T.; Kandori, A.
2016-03-01
A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.
Sala, Andrea; Taddei, Simone; Santospirito, Davide; Sandri, Camillo; Magnone, William; Cabassi, Clotilde S
2016-11-01
Antimicrobial resistance (AMR) in a wide range of infectious agents is a growing public health threat. Birds of prey are considered indicators of the presence of AMR bacteria in their ecosystem because of their predatory behaviour. Only few data are reported in the literature on AMR strains isolated from animals housed in zoos and none about AMR in raptors housed in zoological gardens. This study investigated the antibiotic sensitivity profile of the isolates obtained from the conjunctival and cloacal bacterial flora of 14 healthy birds of prey, 6 Accipitriformes , 3 Falconiformes and 5 Strigiformes , housed in an Italian zoological garden. Staphylococcus spp. was isolated from 50% of the conjunctival swabs, with S. xylosus as the most common species. From cloacal swabs, Escherichia coli was cultured from all animals, while Klebsiella spp. and Proteus spp. were isolated from a smaller number of birds. Worthy of note is the isolation of Escherichia fergusonii and Serratia odorifera , rarely isolated from raptors. Staphylococci were also isolated. All the isolates were multidrug resistant (MDR). To the author's knowledge, this is the first report regarding the presence of MDR strains within raptors housed in a zoological garden. Since resistance genes can be transferred to other pathogenic bacteria, this represents a potential hazard for the emergence of new MDR pathogens. In conclusion, the obtained data could be useful for ex-situ conservation programmes aimed to preserve the health of the endangered species housed in a zoo.
Alternating motion rate as an index of speech motor disorder in traumatic brain injury.
Wang, Yu-Tsai; Kent, Ray D; Duffy, Joseph R; Thomas, Jack E; Weismer, Gary
2004-01-01
The task of syllable alternating motion rate (AMR) (also called diadochokinesis) is suitable for examining speech disorders of varying degrees of severity and in individuals with varying levels of linguistic and cognitive ability. However, very limited information on this task has been published for subjects with traumatic brain injury (TBI). This study is a quantitative and qualitative acoustic analysis of AMR in seven subjects with TBI. The primary goal was to use acoustic analyses to assess speech motor control disturbances for the group as a whole and for individual patients. Quantitative analyses included measures of syllable rate, syllable and intersyllable gap durations, energy maxima, and voice onset time (VOT). Qualitative analyses included classification of features evident in spectrograms and waveforms to provide a more detailed description. The TBI group had (1) a slowed syllable rate due mostly to lengthened syllables and, to a lesser degree, lengthened intersyllable gaps, (2) highly correlated syllable rates between AMR and conversation, (3) temporal and energy maxima irregularities within repetition sequences, (4) normal median VOT values but with large variation, and (5) a number of speech production abnormalities revealed by qualitative analysis, including explosive speech quality, breathy voice quality, phonatory instability, multiple or missing stop bursts, continuous voicing, and spirantization. The relationships between these findings and TBI speakers' neurological status and dysarthria types are also discussed. It was concluded that acoustic analyses of the AMR task provides specific information on motor speech limitations in individuals with TBI.
Improvement of immunoassay detection system by using alternating current magnetic susceptibility.
Kawabata, R; Mizoguchi, T; Kandori, A
2016-03-01
A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.
Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).
Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping
2017-09-01
Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.
Wilson, Annaleise; Gray, Jessica; Chandry, P. Scott; Fox, Edward M.
2018-01-01
The current global crisis of antimicrobial resistance (AMR) among important human bacterial pathogens has been amplified by an increased resistance prevalence. In recent years, a number of studies have reported higher resistance levels among Listeria monocytogenes isolates, which may have implications for treatment of listeriosis infection where resistance to key treatment antimicrobials is noted. This study examined the genotypic and phenotypic AMR patterns of 100 L. monocytogenes isolates originating from food production supplies in Australia and examined this in the context of global population trends. Low levels of resistance were noted to ciprofloxacin (2%) and erythromycin (1%); however, no resistance was observed to penicillin G or tetracycline. Resistance to ciprofloxacin was associated with a mutation in the fepR gene in one isolate; however, no genetic basis for resistance in the other isolate was identified. Resistance to erythromycin was correlated with the presence of the ermB resistance gene. Both resistant isolates belonged to clonal complex 1 (CC1), and analysis of these in the context of global CC1 isolates suggested that they were more similar to isolates from India rather than the other CC1 isolates included in this study. This study provides baseline AMR data for L. monocytogenes isolated in Australia, identifies key genetic markers underlying this resistance, and highlights the need for global molecular surveillance of resistance patterns to maintain control over the potential dissemination of AMR isolates. PMID:29425131
Salehi, Sahar; Sosa, Rebecca A; Jin, Yi-Ping; Kageyama, Shoichi; Fishbein, Michael C; Rozengurt, Enrique; Kupiec-Weglinski, Jerzy W; Reed, Elaine F
2018-05-01
Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1 -/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Wilton, Paula; Smith, Richard; Coast, Joanna; Millar, Michael
2002-04-01
To conduct a systematic review of the literature to describe and critically appraise studies reporting on the cost and/or effectiveness of interventions proposed to control the emergence of antimicrobial resistance (AMR). The search for relevant studies encompassed consultation with world experts in AMR, and electronic bibliographic database search of: Medline (1960-2000); ISI (1981-2000); EMBASE (1988-2000); Grey Literature (1999-2000); Database of Reviews of Effectiveness (DARE) and the NHS Health Economic Evaluation Database (HEED) at York University's Centre for Reviews and Dissemination (CRD) (numerous years); OPAC (1975-2000); and the Cochrane Library Online (1990-2000). Only studies that concerned the effectiveness or cost-effectiveness of measures specifically designed to contain the emergence of AMR were reviewed. Standardised data extraction sheets, based on existing checklists for effectiveness and cost-effectiveness, were used to assess the validity of each study using the 'risk of bias criteria' suggested in the Cochrane Handbook. Only studies categorised as being at low or moderate risk of bias were reported fully. The reliability of the data review process was monitored by comparison of several, random, independent assessments by all authors. The mix of study methods (i.e. including studies based on non-randomised controlled trials) meant that formal meta-analysis was not possible, and thus a qualitative review was performed. In total, 43 studies were reviewed, with 21 classed as being at moderate or low risk of bias and therefore reported in the paper. These studies covered policies on: restricting the use of antimicrobials (five studies, suggesting that restriction policies can alter prescriber behaviour, although with limited evidence of subsequent effect on AMR); prescriber education, feedback and use of guidelines (six studies, with no clear conclusion); combination therapies (seven studies, showing the potential to lower drug-specific resistance, although for an indeterminate time period); vaccination (three studies showing cost/effectiveness). Most of these studies were: from the developed world, principally the USA; hospital-based, with few community level interventions; and concerned with effectiveness, not cost-effectiveness. Overall, there is an absence of good evidence concerning what is effective, and especially cost-effective, in reducing the emergence of AMR. However, in addition to more research concerning these forms of intervention, the paper highlights four specific areas for further investigation: validating intermediate or surrogate outcome measures to enable better use to be made of the literature on intermediate measures; development and evaluation of 'macro' strategies; research into specific aspects of AMR in developing countries; and empirical and methodological research concerning the economic evaluation of interventions.
LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei
2015-01-01
The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less
Extended applications study of AMOOS and AMRS
NASA Technical Reports Server (NTRS)
White, J.
1977-01-01
The potential advantages of the Aeromaneuvering Orbit-to-Orbit Shuttle (AMOOS) over the all-propulsive Orbit Transfer Vehicle (OTV) are shown. In particular, the kit concept studies and the dual fueled AMOOS studies show its versatility and option potential over the all-propulsive vehicle. All of this potential of AMOOS and the Aeromaneuvering Recovery System (AMRS) depends upon the ability to control the trajectory during atmospheric flight and so use an ablative TPS. In turn, this TPS must be light weight, which can be attained by spraying a lightweight ablator directly onto the load bearing skin.
Lecky, Donna M; Touboul Lundgren, Pia; Aldigs, Eman; Abdulmajed, Hind; Ioannidou, Eleni; Paraskeva-Hadjichambi, Demetra; Khouri, Pauline; Gal, Micaela; Hadjichambis, Andreas Ch.; Mappouras, Demetrios; McNulty, Cliodna AM
2017-01-01
Background To understand attitudes and behaviours of adolescents towards antibiotics, antimicrobial resistance and respiratory tract infections. Design Qualitative approach informed by the Theory of Planned Behaviour. Semi-structured interviews and focus groups were undertaken. We aimed to inform the development of an intervention in an international setting to improve antibiotic use among adolescents; therefore on completion of thematic analysis, findings were triangulated with qualitative data from similar studies in France, Saudi Arabia and Cyprus to elucidate differences in the behaviour change model and adaptation to diverse contexts. Setting 7 educational establishments from the south of England. Participants 53 adolescents (16–18 years) participated in seven focus groups and 21 participated in interviews. Results Most participants had taken antibiotics and likened them to other common medications such as painkillers; they reported that their peers treat antibiotics like a ‘cure-all’ and that they themselves were not interested in antibiotics as a discussion topic. They demonstrated low knowledge of the difference between viral and bacterial infections. Participants self-cared for colds and flu but believed antibiotics are required to treat other RTIs such as tonsillitis, which they perceived as more ‘serious’. Past history of taking antibiotics for RTIs instilled the belief that antibiotics were required for future RTIs. Those who characterised themselves as ‘non-science students’ were less informed about antibiotics and AMR. Most participants felt that AMR was irrelevant to them and their peers. Some ‘non-science’ students thought resistance was a property of the body, rather than bacteria. Conclusion Addressing adolescents’ misperceptions about antibiotics and the treatment of RTIs using a behaviour change intervention should help improve antibiotic awareness and may break the cycle of patient demand for antibiotics to treat RTIs amongst this group. Schools should consider educating all students in further education about antibiotic usage and AMR, not only those taking science. PMID:28592579
Unemo, Magnus
2015-08-21
Neisseria gonorrhoeae has developed antimicrobial resistance (AMR) to all drugs previously and currently recommended for empirical monotherapy of gonorrhoea. In vitro resistance, including high-level, to the last option ceftriaxone and sporadic failures to treat pharyngeal gonorrhoea with ceftriaxone have emerged. In response, empirical dual antimicrobial therapy (ceftriaxone 250-1000 mg plus azithromycin 1-2 g) has been introduced in several particularly high-income regions or countries. These treatment regimens appear currently effective and should be considered in all settings where local quality assured AMR data do not support other therapeutic options. However, the dual antimicrobial regimens, implemented in limited geographic regions, will not entirely prevent resistance emergence and, unfortunately, most likely it is only a matter of when, and not if, treatment failures with also these dual antimicrobial regimens will emerge. Accordingly, novel affordable antimicrobials for monotherapy or at least inclusion in new dual treatment regimens, which might need to be considered for all newly developed antimicrobials, are essential. Several of the recently developed antimicrobials deserve increased attention for potential future treatment of gonorrhoea. In vitro activity studies examining collections of geographically, temporally and genetically diverse gonococcal isolates, including multidrug-resistant strains particularly with resistance to ceftriaxone and azithromycin, are important. Furthermore, understanding of effects and biological fitness of current and emerging (in vitro induced/selected and in vivo emerged) genetic resistance mechanisms for these antimicrobials, prediction of resistance emergence, time-kill curve analysis to evaluate antibacterial activity, appropriate mice experiments, and correlates between genetic and phenotypic laboratory parameters, and clinical treatment outcomes, would also be valuable. Subsequently, appropriately designed, randomized controlled clinical trials evaluating efficacy, ideal dose, toxicity, adverse effects, cost, and pharmacokinetic/pharmacodynamics data for anogenital and, importantly, also pharyngeal gonorrhoea, i.e. because treatment failures initially emerge at this anatomical site. Finally, in the future treatment at first health care visit will ideally be individually-tailored, i.e. by novel rapid phenotypic AMR tests and/or genetic point of care AMR tests, including detection of gonococci, which will improve the management and public health control of gonorrhoea and AMR. Nevertheless, now is certainly the right time to readdress the challenges of developing a gonococcal vaccine.
Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Miller; R. Monks; C. Warren
Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICNmore » 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3. The data for these samples represents a subset of the data identified as DTN No. LL990702804244.100.« less
Torres, Irina B; Salcedo, Maite; Moreso, Francesc; Sellarés, Joana; Castellá, Eva; Azancot, M Antonieta; Perelló, Manel; Cantarell, Carme; Serón, Daniel
2014-10-01
Transplant glomerulopathy (TG) is the characteristic lesion of chronic antibody-mediated rejection (AMR). However, in some patients presents with no circulating HLA antibodies or C4d positivity. Patients with TG accomplishing criteria for chronic AMR were compared to patients with isolated TG. We reviewed late (>6 months) graft biopsies performed between 2007 and 2010 (n = 75). Biopsies with C4d-negative TG and no circulating donor-specific antibody were called isolated TG (n = 12), and chronic AMR was defined according to Banff consensus (n = 17). HLA antibodies were evaluated by Luminex technology. Immunohistochemistry was performed to quantify graft infiltrating cells. Patients with isolated TG were older (52 ± 14 vs. 35 ± 14; p = 0.0048), received grafts from older donors (54 ± 16 vs. 41 ± 18; p = 0.0554), and displayed a lower inflammation in the glomerular (g-score: 0.5 ± 0.5 vs. 1.0 ± 0.9; p = 0.0865; CD3 positive cells/glomeruli: 1.5 ± 2.9 vs. 4.4 ± 4.1; p = 0.0147), interstitial (i-score: 1.2 ± 0.9 vs. 1.9 ± 1.0; p = 0.0685; CD45 positive cells/hpf: 18 ± 11 vs. 57 ± 68; p = 0.0132), and peritubular capillary (ptc-score 0.2 ± 0.6 vs. 1.1 ± 0.9; p = 0.0089; CD45 positive cells/hpf: 3.7 ± 3.1 vs. 10.1 ± 7.4; p = 0.0290) compartments. Fifteen grafts were lost and graft survival was significantly lower in patients with chronic AMR (p = 0.0122). Isolated TG is associated with less severe allograft inflammation and with a better outcome than chronic AMR. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria
2015-01-01
Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX-M-15). Conclusion In conclusion, our data show that MDR E. coli are omnipresent in Dutch surface water, and indicate that municipal wastewater significantly contributes to this occurrence. PMID:26030904
Fathi, Ibrahim; Sameh, Omar; Abu-Ollo, Moustafa; Naguib, Abdullah; Alaa-Eldin, Reham; Ghoneim, Dina; Elhabashi, Sara; Taha, Ahmed; Ibrahim, Yara; Radwan, Reem; Nada, Mona; Ramadan, Marwa
2017-01-01
Irresponsible prescription of antimicrobials (AMs) is the driving factor for the growing antimicrobial resistance (AMR) crisis. In this study, we assessed the knowledge, attitudes, perceptions, and beliefs regarding AMs and AMR together with the prescription habits of physicians in three University hospitals in Alexandria, Egypt. A 40-question survey was used. Physicians were stratified into residents and practicing staff members, and further into various departments. Clinical pharmacists at the University main hospital were included for comparative purposes. A total of 319 questionnaires were completed (response rate = 91.4%). Participants demonstrated fair average knowledge about AMs (4.71 ± 1.29 out of 7), with no significant difference between residents and staff members, whereas clinical pharmacists scored significantly higher on knowledge questions (p < 0.005). Participants showed poor awareness regarding local AMR patterns of Klebsiella pneumoniae and Pseudomonas aeruginosa (13% and 23%, respectively). AMR was perceived as a global (95%), national (97%), and local (85%) problem. High confidence regarding use of AMs was noticed with significantly higher levels among staff members (70.3% vs. 86.7%, p < 0.05). Most participants agreed that the patients' demands (78.5%) and socioeconomic statuses (76.3%) do influence their choices. The most significant knowledge deficit was regarding dosage adjustment in renal patients, and the survey highlighted poor engagement in educational activities, limited awareness of local resistance patterns, and neglect in explaining the side-effects to patients. Patients' demands and socioeconomic statuses were also shown to influence the physicians' decisions.
Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates.
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G
2017-02-01
As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Largescale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuber-culosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk.
Antimicrobial Use for and Resistance of Zoonotic Bacteria Recovered from Nonhuman Primates
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Bower, Julie K; Rinaldi, William J; Plauche, Gail B; Habing, Gregory G
2017-01-01
As a growing threat to human and animal health, antimicrobial resistance (AMR) has become a central public-health topic. Large-scale surveillance systems, such as the National Antimicrobial Resistance Monitoring System (NARMS), are now established to monitor and provide guidance regarding AMR, but comprehensive literature on AMR among NHP is sparse. This study provides data regarding current antimicrobial use strategies and the prevalence of AMR in zoonotic bacteria recovered from NHP within biomedical research institutions. We focused on 4 enteric bacteria: Shigella flexneri, Yersinia enterocolitica, Y. pseudotuberculosis, and Campylobacter jejuni. Fifteen veterinarians, 7 biomedical research institutions, and 4 diagnostic laboratories participated, providing susceptibility test results from January 2012 through April 2015. Veterinarians primarily treated cases caused by S. flexneri, Y. enterocolitica, and Y. pseudotuberculosis with enrofloxacin but treated C. jejuni cases with azithromycin and tylosin. All isolates were susceptible to the associated primary antimicrobial but often showed resistance to others. Specifically, S. flexneri isolates frequently were resistant to erythromycin (87.5%), doxycycline (73.7%), and tetracycline (38.3%); Y. enterocolitica isolates to ampicillin (100%) and cefazolin (93.6%); and C. jejuni isolates to methicillin (99.5%) and cephalothin (97.5%). None of the 58 Y. pseudotuberculosis isolates was resistant to any tested antimicrobial. Notably, resistance patterns were not shared between this study's NHP isolates and human isolates presented by NARMS. Our findings indicate that zoonotic bacteria from NHP diagnostic samples are broadly susceptible to the antimicrobials used to treat the clinical infections. These results can help veterinarians ensure effective antimicrobial therapy and protect staff by minimizing occupational risk. PMID:28222842
Törneke, K; Torren-Edo, J; Grave, K; Mackay, D K J
2015-12-01
Antimicrobials are essential medicines for the treatment of many microbial infections in humans and animals. Only a small number of antimicrobial agents with new mechanisms of action have been authorized in recent years for use in either humans or animals. Antimicrobial resistance (AMR) arising from the use of antimicrobial agents in veterinary medicine is a concern for public health due to the detection of increasing levels of resistance in foodborne zoonotic bacteria, particularly gram-negative bacteria, and due to the detection of determinants of resistance such as Extended-spectrum beta-lactamases (ESBL) in bacteria from animals and in foodstuffs of animal origin. The importance and the extent of the emergence and spread of AMR from animals to humans has yet to be quantified. Likewise, the relative contribution that the use of antimicrobial agents in animals makes to the overall risk to human from AMR is currently a subject of debate that can only be resolved through further research. Nevertheless, risk managers have agreed that the impact on public health of the use of antimicrobials in animals should be minimized as far as possible and a variety of measures have been introduced by different authorities in the EU to achieve this objective. This article reviews a range of measures that have been implemented within European countries to reduce the occurrence and the risk of transmission of AMR to humans following the use of antimicrobial agents in animals and briefly describes some of the alternatives to the use of antimicrobial agents that are being developed. © 2015 John Wiley & Sons Ltd.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
NASA Astrophysics Data System (ADS)
Niknia, I.; Trevizoli, P. V.; Govindappa, P.; Christiaanse, T. V.; Teyber, R.; Rowe, A.
2018-05-01
First order transition material (FOM) usually exhibits magnetocaloric effects in a narrow temperature range which complicates their use in an active magnetic regenerator (AMR) refrigerator. In addition, the magnetocaloric effect in first order materials can vary with field and temperature history of the material. This study examines the behavior of a MnFe(P,Si) FOM sample in an AMR cycle using a numerical model and experimental measurements. For certain operating conditions, multiple points of equilibrium (MPE) exist for a fixed hot rejection temperature. Stable and unstable points of equilibriums (PEs) are identified and the impacts of heat loads, operating conditions, and configuration losses on the number of PEs are discussed. It is shown that the existence of multiple PEs can affect the performance of an AMR significantly for certain operating conditions. In addition, the points where MPEs exist appear to be linked to the device itself, not just the material, suggesting the need to layer a regenerator in a way that avoids MPE conditions and to layer with a specific device in mind.
Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, G. M.
2002-01-01
We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.
Magnetoresistive magnetometer for space science applications
NASA Astrophysics Data System (ADS)
Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.
2012-02-01
Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang
2018-05-01
The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12/n/Fe36/n) n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρxx) increases by 6.4 times and the anomalous Hall resistivity (ρAHE) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.
Nguyen, Nhung T; Nguyen, Hoa M; Nguyen, Cuong V; Nguyen, Trung V; Nguyen, Men T; Thai, Hieu Q; Ho, Mai H; Thwaites, Guy; Ngo, Hoa T; Baker, Stephen; Carrique-Mas, Juan
2016-07-01
Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180 Escherichia coli isolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms. E. coli isolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene, mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37 mcr-1 gene-positive E. coli isolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role of mcr-1 in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam. Our study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance among E. coli over the different stages of production in emerging pig and poultry production systems in Vietnam. E. coli isolates showed a high prevalence of resistance (>20%) to critically important antimicrobials, such as colistin, ciprofloxacin, and gentamicin. The underlying genetic mechanisms identified for colistin (the mcr-1 gene) and quinolone (gyrA gene mutations) are likely to play a major role in AMR to those compounds. Conjugation experiments led to the identification of a 63-kb plasmid, similar to one recently identified in China, as the potential carrier of the mcr-1 gene. These results should encourage greater restrictions of such antimicrobials in Southeast Asian farming systems. Copyright © 2016 Nguyen et al.
Kylie, Jennifer; McEwen, Scott A; Boerlin, Patrick; Reid-Smith, Richard J; Weese, J Scott; Turner, Patricia V
2017-11-01
Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species. Copyright © 2017 Elsevier B.V. All rights reserved.
Barriers to and enablers of implementing antimicrobial stewardship programs in veterinary practices.
Hardefeldt, Laura Y; Gilkerson, J R; Billman-Jacobe, H; Stevenson, M A; Thursky, K; Bailey, K E; Browning, G F
2018-03-23
Antimicrobial stewardship (AMS) programs are yet to be widely implemented in veterinary practice and medical programs are unlikely to be directly applicable to veterinary settings. To gain an in-depth understanding of the factors that influence effective AMS in veterinary practices in Australia. A concurrent explanatory mixed methods design was used. The quantitative phase of the study consisted of an online questionnaire to assess veterinarians' attitudes to antimicrobial resistance (AMR) and antimicrobial use in animals, and the extent to which AMS currently is implemented (knowingly or unknowingly). The qualitative phase used semi-structured interviews to gain an understanding of the barriers to and enablers of AMS in veterinary practices. Data were collected and entered into NVivo v.11, openly coded and analyzed according to mixed methods data analysis principles. Companion animal, equine, and bovine veterinarians participated in the study. Veterinary practices rarely had antimicrobial prescribing policies. The key barriers were a lack of AMS governance structures, client expectations and competition between practices, cost of microbiological testing, and lack of access to education, training and AMS resources. The enablers were concern for the role of veterinary antimicrobial use in development of AMR in humans, a sense of pride in the service provided, and preparedness to change prescribing practices. Our study can guide development and establishment of AMS programs in veterinary practices by defining the major issues that influence the prescribing behavior of veterinarians. © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Quinoa - Adaptive Computational Fluid Dynamics, 0.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, Jozsef; Gonzalez, Francisco; Rogers, Brandon
Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter,more » an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh, (http://www.geuz.org/gmsh), Netgen, (http://sourceforge.net/apps/mediawiki/netgen-mesher), ExodusII, (http://sourceforge.net/projects/exodusii), HyperMesh, (http://www.altairhyperworks.com/product/HyperMesh).« less
Characterize Eruptive Processes at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Valentine
2001-12-20
This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Withinmore » the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes.« less
Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Smith, Woutrina; Call, Douglas R
2016-11-03
Antimicrobial resistance (AMR) is a growing and significant threat to public health on a global scale. Escherichia coli comprises Gram-negative, fecal-borne pathogenic and commensal bacteria that are frequently associated with antibiotic resistance. AMR E. coli can be ingested via food, water and direct contact with fecal contamination. We estimated the prevalence of AMR Escherichia coli from select drinking water sources in northern Tanzania. Water samples (n = 155) were collected and plated onto Hi-Crome E. coli and MacConkey agar. Presumptive E. coli were confirmed by using a uidA PCR assay. Antibiotic susceptibility breakpoint assays were used to determine the resistance patterns of each isolate for 10 antibiotics. Isolates were also characterized by select PCR genotyping and macro-restriction digest assays. E. coli was isolated from 71 % of the water samples, and of the 1819 E. coli tested, 46.9 % were resistant to one or more antibiotics. Resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline, and trimethoprim was significantly higher (15-30 %) compared to other tested antibiotics (0-6 %; P < 0.05). Of the β-lactam-resistant isolates, bla TEM-1 was predominant (67 %) followed by bla CTX-M (17.7 %) and bla SHV-1 (6.0 %). Among the tetracycline-resistant isolates, tet(A) was predominant (57.4 %) followed by tet(B) (24.0 %). E. coli isolates obtained from these water sources were genetically diverse with few matching macro-restriction digest patterns. Water supplies in northern Tanzania may be a source of AMR E. coli for people and animals. Further studies are needed to identify the source of these contaminants and devise effective intervention strategies.
Hanish, Steven I.; Samaniego, Milagros; Mezrich, Joshua D.; Foley, David P.; Leverson, Glen E.; Lorentzen, David F.; Sollinger, Hans W.; Pirsch, John D.; D’Alessandro, Anthony M.; Fernandez, Luis A.
2011-01-01
Background With adoption of Model for End-stage Liver Disease (MELD), the number of simultaneous liver-kidney transplants (SLK) has greatly increased. A recent registry study questioned the equity of allocating kidney transplants (KTx) simultaneously with liver transplantation due to poor outcomes (1). Methods To investigate outcome of KTx in SLK, all SLK (n=36) performed at our center from 1/2000–12/2007 were reviewed and KTx outcomes compared to those of kidney transplant alone (KTA) performed during that period (n=1,283). We also reviewed whether pre-transplant panel reactive antibody (PRA) and donor specific antibody (DSA) affected KTx outcome in SLK. Results One- and three-year KTx and patient survival were not different between KTA and SLK regardless of sensitization level. There were 348 (27%) KTx failures in KTA vs. 6 (17%) in SLK (NS). Overall freedom from acute cellular rejection (ACR) and antibody-mediated rejection (AMR) in SLK was 93% and 96% at 3 years, compared to 72% and 78% in KTA (p=0.0105 and p=0.0744, respectively). Sensitized KTx recipients had more ACR and AMR (32% and 38%) at three years compared to non-sensitized recipients (28% and 20%) (p=0.23 and 0.0001, respectively). No differences in ACR and AMR were observed when SLK was divided and level of sensitization compared (p=0.17 and 0.65, respectively). Conclusion SLK is a life-saving procedure with excellent patient and graft survival. AMR incidence in the KTx appears reduced in SLK compared to KTA regardless of level of preoperative PRA. A high level of DSA should not preclude simultaneous transplantation when clinically indicated. PMID:20626084
Rawson, T M; Moore, L S P; Tivey, A M; Tsao, A; Gilchrist, M; Charani, E; Holmes, A H
2017-01-01
To improve the quality of antimicrobial stewardship (AMS) interventions the application of behavioural sciences supported by multidisciplinary collaboration has been recommended. We analysed major UK scientific research conferences to investigate AMS behaviour change intervention reporting. Leading UK 2015 scientific conference abstracts for 30 clinical specialties were identified and interrogated. All AMS and/or antimicrobial resistance(AMR) abstracts were identified using validated search criteria. Abstracts were independently reviewed by four researchers with reported behavioural interventions classified using a behaviour change taxonomy. Conferences ran for 110 days with >57,000 delegates. 311/12,313(2.5%) AMS-AMR abstracts (oral and poster) were identified. 118/311(40%) were presented at the UK's infectious diseases/microbiology conference. 56/311(18%) AMS-AMR abstracts described behaviour change interventions. These were identified across 12/30(40%) conferences. The commonest abstract reporting behaviour change interventions were quality improvement projects [44/56 (79%)]. In total 71 unique behaviour change functions were identified. Policy categories; "guidelines" (16/71) and "service provision" (11/71) were the most frequently reported. Intervention functions; "education" (6/71), "persuasion" (7/71), and "enablement" (9/71) were also common. Only infection and primary care conferences reported studies that contained multiple behaviour change interventions. The remaining 10 specialties tended to report a narrow range of interventions focusing on "guidelines" and "enablement". Despite the benefits of behaviour change interventions on antimicrobial prescribing, very few AMS-AMR studies reported implementing them in 2015. AMS interventions must focus on promoting behaviour change towards antimicrobial prescribing. Greater focus must be placed on non-infection specialties to engage with the issue of behaviour change towards antimicrobial use.
Alternating Motion Rate to Distinguish Elderly People With History of Pneumonia.
Kera, Takeshi; Edahiro, Ayako; Hirano, Hirohiko; Kawai, Hisashi; Yoshida, Hideyo; Kojima, Motonaga; Fujiwara, Yoshinori; Ihara, Kazushige; Obuchi, Shuichi
2016-12-01
Under the hypothesis that elderly people in the community may have deficient oropharyngeal dysfunction, the purpose of this case-control study was to compare oral and physical characteristics in elderly people with and without a history of pneumonia and to identify factors distinguishing them. In 2014, we examined 1,311 elderly people who agreed to participate in a longitudinal and intervention study for the community-dwelling elderly. We looked at such physical characteristics as body composition, grip power, gait, and balance and at oropharyngeal characteristics, such as alternating motion rate (AMR) in speech and the repetitive saliva-swallowing test (RSST). The subjects were also asked about past history of pneumonia and other morbid conditions. From that information, we extracted 24 subjects reporting to have had pneumonia within the previous 5 y as well as 172 other subjects who matched the pneumonia subjects with respect to age, sex, and number of other morbidities to form 2 groups for comparisons. We also subjected the data to a logistic regression analysis, with having or not having pneumonia as the dependent variable, oral and physical characteristics as independent variables, and age and sex as covariates. No significant differences were seen in physical characteristics between the 2 groups. Among the oropharyngeal characteristics, AMR was significantly lower in the pneumonia subjects (P = .005, effect size = 0.20), whereas RSST exhibited no significant difference between the 2 groups. Logistic regression revealed AMR to be the only factor related to pneumonia (P = .002, odds ratio 0.169, 95% CI 0.056-0.508). In community-dwelling elderly people, association of pneumonia with skilled tongue control (AMR) rather than with swallowing (RSST) prompts a reexamination of what constitutes being at risk for pneumonia. Copyright © 2016 by Daedalus Enterprises.
Yadav, Pragya D; Gurav, Yogesh K; Mistry, Madhulika; Shete, Anita M; Sarkale, Prasad; Deoshatwar, Avinash R; Unadkat, Vishwa B; Kokate, Prasad; Patil, Deepak Y; Raval, Dinkar K; Mourya, Devendra T
2014-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) etiology was detected in a family cluster (nine cases, including two deaths) in the village of Karyana, Amreli District, and also a fatal case in the village of Undra, Patan District, in Gujarat State, India. Anti-CCHFV IgG antibodies were detected in domestic animals from Karyana and adjoining villages. Hyalomma ticks from households were found to be positive for CCHF viral RNA. This confirms the emergence of CCHFV in new areas and the wide spread of this disease in Gujarat State. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less
NASA Astrophysics Data System (ADS)
Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.
2018-06-01
We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.
Urbaniak, C.; Sielaff, A. Checinska; Frey, K. G.; ...
2018-01-16
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS “resistome’ was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq™ and metagenomics. Discmore » diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. Lastly, this information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.« less
Roux, Antoine; Bendib Le Lan, Ines; Holifanjaniaina, Sonia; Thomas, Kimberly A.; Picard, Clément; Grenet, Dominique; De Miranda, Sandra; Douvry, Benoit; Beaumont-Azuar, Laurence; Sage, Edouard; Devaquet, Jérôme; Cuquemelle, Elise; Le Guen, Morgan; Suberbielle, Caroline; Gautreau, Chantal; Stern, Marc; Rossetti, Maura; Hamid, Abdul Monem; Parquin, Francois
2017-01-01
Although donor-specific anti-human leukocyte antigen (HLA) antibodies (DSAs) are frequently found in recipients after lung transplantation (LT), the characteristics of DSA which influence antibody-mediated rejection (AMR) in LT are not fully defined. We retrospectively analyzed 206 consecutive LT patients of our center (2010–2013). DSAs were detected by using luminex single antigen beads assay and mean fluorescence intensity was assessed. Within the study population, 105 patients had positive DSA. Patients with and without AMR (AMRPos, n = 22, and AMRNeg, n = 83, respectively) were compared. AMRPos patients had significantly greater frequencies of anti-HLA DQ DSA (DQ DSA) than AMRNeg patients (95 vs 58%, respectively, p < 0.0001). Compared to AMRNeg patients, AMRPos patients had higher DQ DSA sum MFI [7,332 (2,067–10,213) vs 681 (0–1,887), p < 0.0001]. DQ DSA when associated with AMR, had more frequent graft loss and chronic lung allograft dysfunction (CLAD). These data suggest (i) that DSA characteristics clearly differ between AMRPos and AMRNeg patients and (ii) the deleterious impact of DQ DSA on clinical outcome. PMID:29075627
Antimicrobial resistance and the current refugee crisis.
Maltezou, Helena C; Theodoridou, Maria; Daikos, George L
2017-09-01
In the past few years, Europe has experienced an enormous influx of refugees and migrants owing to the ongoing civil war in Syria as well as conflicts, violence and instability in other Asian and African countries. Available data suggest that refugees carry a significant burden of multidrug-resistant (MDR) organisms, which is attributed to the rising antimicrobial resistance (AMR) rates in their countries of origin, both in healthcare settings and in the community. Transmission of MDR pathogens among refugees is facilitated by the collapsed housing, hygiene and healthcare infrastructures in several communities as well as poor hygiene conditions during their trip to destination countries. These findings highlight the fact that refugees may serve as vehicles of AMR mechanisms from their countries of origin along the immigration route. Following risk assessment, routine microbiological screening for MDR organism carriage of refugees and migrants as well as effective infection control measures should be considered upon admission. This will on the one hand address the possibility of dissemination of novel AMR mechanisms in non- or low-endemic countries and on the other will ensure safety for all patients. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Burow, Elke; Käsbohrer, Annemarie
2017-03-01
The aim of this literature review was to identify risk factors in addition to antimicrobial treatment for antimicrobial resistance (AMR) occurrence in commensal Escherichia coli in pigs. A variety of studies were searched in 2014 and 2015. Studies identified as potentially relevant were assessed against eligibility criteria such as observation or experiment (no review), presentation of risk factors in addition to (single dosage) antimicrobial use, risk factors for but not resulting from AMR, and the same antimicrobial used and tested. Thirteen articles (nine on observational, four on experimental studies) were finally selected as relevant. It was reported that space allowance, production size/stage, cleanliness, entry of animals and humans into herds, dosage/frequency/route of administration, time span between treatment and sampling date, herd size, distance to another farm, coldness, and season had an impact on AMR occurrence. Associations were shown by one to four studies per factor and differed in magnitude, direction, and level of significance. The risk of bias was unclear in nearly half of the information of observational studies and in most of the information from experimental studies. Further research on the effects of specific management practices is needed to develop well-founded management advice.
How Can Vaccines Contribute to Solving the Antimicrobial Resistance Problem?
Siber, George R.
2016-01-01
ABSTRACT There is a growing appreciation for the role of vaccines in confronting the problem of antimicrobial resistance (AMR). Vaccines can reduce the prevalence of resistance by reducing the need for antimicrobial use and can reduce its impact by reducing the total number of cases. By reducing the number of pathogens that may be responsible for a particular clinical syndrome, vaccines can permit the use of narrower-spectrum antibiotics for empirical therapy. These effects may be amplified by herd immunity, extending protection to unvaccinated persons in the population. Because much selection for resistance is due to selection on bystander members of the normal flora, vaccination can reduce pressure for resistance even in pathogens not included in the vaccine. Some vaccines have had disproportionate effects on drug-resistant lineages within the target species, a benefit that could be more deliberately exploited in vaccine design. We describe the effects of current vaccines in controlling AMR, survey some vaccines in development with the potential to do so further, and discuss strategies to amplify these benefits. We conclude with a discussion of research and policy priorities to more fully enlist vaccines in the battle against AMR. PMID:27273824
Urbaniak, C; Sielaff, A Checinska; Frey, K G; Allen, J E; Singh, N; Jaing, C; Wheeler, K; Venkateswaran, K
2018-01-16
Antimicrobial resistance (AMR) is a global health issue. In an effort to minimize this threat to astronauts, who may be immunocompromised and thus at a greater risk of infection from antimicrobial resistant pathogens, a comprehensive study of the ISS "resistome' was conducted. Using whole genome sequencing (WGS) and disc diffusion antibiotic resistance assays, 9 biosafety level 2 organisms isolated from the ISS were assessed for their antibiotic resistance. Molecular analysis of AMR genes from 24 surface samples collected from the ISS during 3 different sampling events over a span of a year were analyzed with Ion AmpliSeq ™ and metagenomics. Disc diffusion assays showed that Enterobacter bugandensis strains were resistant to all 9 antibiotics tested and Staphylococcus haemolyticus being resistant to none. Ion AmpliSeq ™ revealed that 123 AMR genes were found, with those responsible for beta-lactam and trimethoprim resistance being the most abundant and widespread. Using a variety of methods, the genes involved in antimicrobial resistance have been examined for the first time from the ISS. This information could lead to mitigation strategies to maintain astronaut health during long duration space missions when return to Earth for treatment is not possible.
Penicillin dust exposure and penicillin resistance among pharmaceutical workers in Tehran, Iran.
Farshad, Ali Asghar; Enferadi, Mojtaba; Bakand, Shahnaz; Jamshidi Orak, Rouhangiz; Mirkazemi, Roksana
2016-07-01
Antimicrobial resistance (AMR) adversely impacts the prevention and treatment of a wide range of infections and is considered as a serious threat to global public health. Occupational-related AMR is a neglected area of research. To assess exposure to penicillin dust, penicillin active materials, and to report the frequency of penicillin resistance among pharmaceutical workers in Tehran, Iran. A quasi-experimental study was conducted among workers on a penicillin production line in a pharmaceutical company (n = 60) and workers in a food producing company (n = 60). Data were collected via survey, air sampling, and throat swab. The mean overall concentrations of penicillin dust and penicillin active material were 6.6 and 4.3 mg/m 3 , respectively, in the pharmaceutical industry. Streptococcus pneumoniae (S. pneumoniae) was detected in 45% (27) individuals in the exposed group, 92.6% of which showed penicillin resistance. Resistance was significantly higher among workers in penicillin production line (p = 0.014). High level of AMR among workers in penicillin production line is a health risk for the workers as well as society as a whole through the spread of drug resistant micro-organisms.
Penicillin dust exposure and penicillin resistance among pharmaceutical workers in Tehran, Iran
Farshad, Ali Asghar; Enferadi, Mojtaba; Bakand, Shahnaz; Jamshidi Orak, Rouhangiz; Mirkazemi, Roksana
2016-01-01
Background Antimicrobial resistance (AMR) adversely impacts the prevention and treatment of a wide range of infections and is considered as a serious threat to global public health. Occupational-related AMR is a neglected area of research. Objective To assess exposure to penicillin dust, penicillin active materials, and to report the frequency of penicillin resistance among pharmaceutical workers in Tehran, Iran. Methods A quasi-experimental study was conducted among workers on a penicillin production line in a pharmaceutical company (n = 60) and workers in a food producing company (n = 60). Data were collected via survey, air sampling, and throat swab. Results The mean overall concentrations of penicillin dust and penicillin active material were 6.6 and 4.3 mg/m3, respectively, in the pharmaceutical industry. Streptococcus pneumoniae (S. pneumoniae) was detected in 45% (27) individuals in the exposed group, 92.6% of which showed penicillin resistance. Resistance was significantly higher among workers in penicillin production line (p = 0.014). Conclusions High level of AMR among workers in penicillin production line is a health risk for the workers as well as society as a whole through the spread of drug resistant micro-organisms. PMID:27388022
ESR and 230Th/234U dating of speleothems from Aladağlar Mountain Range (AMR) in Turkey
NASA Astrophysics Data System (ADS)
Ulusoy, Ülkü; Anbar, Gül; Bayarı, Serdar; Uysal, Tonguç
2014-03-01
Electron spin resonance (ESR) and 230Th/234U ages of speleothem samples collected from karstic caves located around 3000 m elevation in the Aladağlar Mountain Range (AMR), south-central Turkey, were determined in order to provide new insight and information regarding late Pleistocene climate. ESR ages were validated with the 230Th/234U ages of test samples. The ESR ages of 21 different layers of six speleothem samples were found to range mostly between about 59 and 4 ka, which cover the Marine Oxygen Isotope Stages (MIS) MIS 3 to MIS 1. Among all, only six layers appear to have deposited during MIS 8 and 5. Most of the samples dated were deposited during the late glacial stage (MIS 2). It appears that a cooler climate with a perennial and steady recharge was more conducive to speleothem development rather than a warmer climate with seasonal recharge in the AMR during the late Quaternary. This argument supports previous findings that suggest a two -fold increase in last glacial maximum mean precipitation in Turkey with respect to the present value.
Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle
2013-01-01
Background The purpose of this study was to objectively compare methodological approaches that might be utilized in designing an antimicrobial resistance (AMR) surveillance program in beef feedlot cattle. Specifically, four separate comparisons were made to investigate their potential impact on estimates for prevalence of AMR. These included investigating potential differences between 2 different susceptibility testing methods (broth microdilution and disc diffusion), between 2 different target bacteria (non-type-specific E. coli [NTSEC] and Mannheimia haemolytica), between 2 strategies for sampling feces (individual samples collected per rectum and pooled samples collected from the pen floor), and between 2 strategies for determining which cattle to sample (cattle that were culture-positive for Mannheimia haemolytica and those that were culture-negative). Results Comparing two susceptibility testing methods demonstrated differences in the likelihood of detecting resistance between automated disk diffusion (BioMIC®) and broth microdilution (Sensititre®) for both E. coli and M. haemolytica. Differences were also detected when comparing resistance between two bacterial organisms within the same cattle; there was a higher likelihood of detecting resistance in E. coli than in M. haemolytica. Differences in resistance prevalence were not detected when using individual animal or composite pen sampling strategies. No differences in resistance prevalences were detected in E. coli recovered from cattle that were culture-positive for M. haemolytica compared to those that were culture-negative, suggesting that sampling strategies which targeted recovery of E. coli from M. haemolytica-positive cattle would not provide biased results. Conclusions We found that for general purposes, the susceptibility test selected for AMR surveillance must be carefully chosen considering the purpose of the surveillance since the ability to detect resistance appears to vary between these tests depending upon the population where they are applied. Continued surveillance of AMR in M. haemolytica recovered by nasopharyngeal swab is recommended if monitoring an animal health pathogen is an objective of the surveillance program as results of surveillance using fecal E. coli cannot be extrapolated to this important respiratory pathogen. If surveillance of E. coli was pursued in the same population, study populations could target animals that were culture-positive for M. haemolytica without biasing estimates for AMR in E. coli. Composite pen-floor sampling or sampling of individuals per-rectum could possibly be used interchangeably for monitoring resistance in E. coli. PMID:24144185
Turner, Katy Me; Christensen, Hannah; Adams, Elisabeth J; McAdams, David; Fifer, Helen; McDonnell, Anthony; Woodford, Neil
2017-06-14
To create a mathematical model to investigate the treatment impact and economic implications of introducing an antimicrobial resistance point-of-care test (AMR POCT) for gonorrhoea as a way of extending the life of current last-line treatments. Modelling study. England. Patients accessing sexual health services. Incremental impact of introducing a hypothetical AMR POCT that could detect susceptibility to previous first-line antibiotics, for example, ciprofloxacin or penicillin, so that patients are given more tailored treatment, compared with the current situation where all patients are given therapy with ceftriaxone and azithromycin. The hypothetical intervention was assessed using a mathematical model developed in Excel. The model included initial and follow-up attendances, loss to follow-up, use of standard or tailored treatment, time taken to treatment and the costs of testing and treatment. Number of doses of ceftriaxone saved, mean time to most appropriate treatment, mean number of visits per (infected) patient, number of patients lost to follow-up and total cost of testing. In the current situation, an estimated 33 431 ceftriaxone treatments are administered annually and 792 gonococcal infections remain untreated due to loss to follow-up. The use of an AMR POCT for ciprofloxacin could reduce these ceftriaxone treatments by 66%, and for an AMR POCT for penicillin by 79%. The mean time for patients receiving an antibiotic treatment is reduced by 2 days in scenarios including POCT and no positive patients remain untreated through eliminating loss to follow-up. Such POCTs are estimated to add £34 million to testing costs, but this does not take into account reductions in costs of repeat attendances and the reuse of older, cheaper antimicrobials. The introduction of AMR POCT could allow clinicians to discern between the majority of gonorrhoea-positive patients with strains that could be treated with older, previously abandoned first-line treatments, and those requiring our current last-line dual therapy. Such tests could extend the useful life of dual ceftriaxone and azithromycin therapy, thus pushing back the time when gonorrhoea may become untreatable. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Christensen, Hannah; Adams, Elisabeth J; McAdams, David; Fifer, Helen; McDonnell, Anthony; Woodford, Neil
2017-01-01
Objective To create a mathematical model to investigate the treatment impact and economic implications of introducing an antimicrobial resistance point-of-care test (AMR POCT) for gonorrhoea as a way of extending the life of current last-line treatments. Design Modelling study. Setting England. Population Patients accessing sexual health services. Interventions Incremental impact of introducing a hypothetical AMR POCT that could detect susceptibility to previous first-line antibiotics, for example, ciprofloxacin or penicillin, so that patients are given more tailored treatment, compared with the current situation where all patients are given therapy with ceftriaxone and azithromycin. The hypothetical intervention was assessed using a mathematical model developed in Excel. The model included initial and follow-up attendances, loss to follow-up, use of standard or tailored treatment, time taken to treatment and the costs of testing and treatment. Main outcome measures Number of doses of ceftriaxone saved, mean time to most appropriate treatment, mean number of visits per (infected) patient, number of patients lost to follow-up and total cost of testing. Results In the current situation, an estimated 33 431 ceftriaxone treatments are administered annually and 792 gonococcal infections remain untreated due to loss to follow-up. The use of an AMR POCT for ciprofloxacin could reduce these ceftriaxone treatments by 66%, and for an AMR POCT for penicillin by 79%. The mean time for patients receiving an antibiotic treatment is reduced by 2 days in scenarios including POCT and no positive patients remain untreated through eliminating loss to follow-up. Such POCTs are estimated to add £34 million to testing costs, but this does not take into account reductions in costs of repeat attendances and the reuse of older, cheaper antimicrobials. Conclusions The introduction of AMR POCT could allow clinicians to discern between the majority of gonorrhoea-positive patients with strains that could be treated with older, previously abandoned first-line treatments, and those requiring our current last-line dual therapy. Such tests could extend the useful life of dual ceftriaxone and azithromycin therapy, thus pushing back the time when gonorrhoea may become untreatable. PMID:28615273
Moolchandani, Kailash; Deepashree, R; Sistla, Sujatha; Harish, BN; Mandal, Jharna
2017-01-01
Introduction Hospital Acquired Infections (HAIs) are the rising threat in the health care facilities across the globe. As most Intesive Care Unit (ICU) patients are frequently on broad spectrum antimicrobials, this induces selective antibiotic pressure which leads to development of Antimicrobial Resistance (AMR) among the microorganisms of ICUs. Aim To study the occurrence of different types of HAIs in patients admitted to various ICUs of JIPMER and the AMR pattern of the bacterial pathogens isolated from them. Materials and Methods The record based retrospective data of culture reports of the patients admitted to all the ICUs of JIPMER during the period from April 2015 to March 2016 were collected. A total of 3,090 isolates were obtained from the clinical specimens of 1,244 patients. Data on various factors like demographic characters, type of ICU, infecting organism, site of infection, type of HAI’s and AMR including co-resistance were collected and analysed using Microsoft Excel. Results Most common culture positive clinical specimen received was tracheal aspirate (29.9%) followed by exudate (22.7%). Acinetobacter spp from tracheal aspirate and Pseudomonas spp from blood specimens were the most common organisms isolated; whereas Escherichia coli was the predominant organism found in urine, exudate and sterile fluid specimens. About 22.2% infections were HAIs, out of which pneumonia (6.24%) was the most common. Analysis of antimicrobial susceptibility pattern revealed that most of Gram-Negative Bacilli (GNB) was Multi Drug Resistant (MDR) i.e., resistant to three or more class of antibiotics such as cephalosporins, carbapenems, aminoglycosides, tetracyclines and fluoroquinolones. The prevalence of Methicillin- resistant Staphylococcus aureus (MRSA) and Vancomycin- resistant Enterococci (VRE) were found to be 40.6% and 11.9% respectively. Conclusion The increasing trend AMR among the hospital acquired pathogens such as MDR-GNBs, MRSA and VRE pose a great threat to HCWs as well as to the other critically ill patients of the ICUs. Study on AMR surveillance is the need of the hour as it helps the centers to generate local antibiogram which further helps in formulating the national data. It also guides the clinicians to choose appropriate empirical therapy and assist escalation and de-escalation wherever possible. Hence, such studies will be a stepping stone in establishing antimicrobial stewardship and regulate the antimicrobial use. PMID:28384858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Geveci, Berk
The FY18Q1 milestone of the ECP/VTK-m project includes the implementation of a multiblock data set, the completion of a gradients filtering operation, and the release of version 1.1 of the VTK-m software. With the completion of this milestone, the new multiblock data set allows us to iteratively schedule algorithms on composite data structures such as assemblies or hierarchies like AMR. The new gradient algorithms approximate derivatives of fields in 3D structures with finite differences. Finally, the release of VTK-m version 1.1 tags a stable release of the software that can more easily be incorporated into external projects.
Anisotropic mesh adaptation for marine ice-sheet modelling
NASA Astrophysics Data System (ADS)
Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier
2017-04-01
Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.
Ström, G; Boqvist, S; Albihn, A; Fernström, L-L; Andersson Djurfeldt, A; Sokerya, S; Sothyra, T; Magnusson, U
2018-01-01
Administration of antimicrobials to food-producing animals is regarded as a major contributor to the overall emergence of resistance in bacteria worldwide. However, few data are available on global antimicrobial use and resistance (AMR) in livestock, especially from low- and middle-income countries. We conducted a structured survey of 91 small-scale pig farms in the urban and peri-urban areas of Phnom Penh, Cambodia, to assess the farmers' knowledge, attitudes and practices related to antimicrobial use in their pig production. Commensal Escherichia coli was isolated from three healthy pigs from each farm ( n = 261) and susceptibility testing was performed against 14 antimicrobials, using broth microdilution. Univariable logistic regression and generalized linear mixed models were used to investigate potential associations between farm characteristics, management factors and resistance to different types of antimicrobials. We found a widespread and arbitrary use of antimicrobials, often based on the farmer's own judgment. Around 66% of the farmers reported frequently self-adjusting treatment duration and dosage, and 45% had not heard about the term 'antimicrobial resistance'. The antimicrobials most commonly mentioned or kept by the farmers were amoxicillin, tylosin, gentamicin and colistin. Around 37% used a feed concentrate that contained antimicrobials, while antimicrobials for humans were used as a last-line treatment by 10% of the farmers. Commensal E. coli exhibited high prevalence of resistance to several antimicrobials considered to be of critical importance for human medicine, including ampicillin, ciprofloxacin and colistin, and multidrug-resistance was found in 79% of the samples. Higher prevalence of resistance was observed on farms that administered prophylactic antimicrobials and on farms that treated the entire group or herd in the event of disease. The widespread and arbitrary use of antimicrobials in pig farming in Cambodia is highly worrisome. Overall, farmers had a low awareness of the risks and consequences related to antimicrobial use and AMR. The results presented in this study confirm the hypothesis that non-rational use of antimicrobials results in higher prevalence of AMR and highlight the need for professional animal health systems that involve medically rational use of antimicrobials in emerging economies such as Cambodia.
Hawking, Meredith Kd; Lecky, Donna M; Touboul Lundgren, Pia; Aldigs, Eman; Abdulmajed, Hind; Ioannidou, Eleni; Paraskeva-Hadjichambi, Demetra; Khouri, Pauline; Gal, Micaela; Hadjichambis, Andreas Ch; Mappouras, Demetrios; McNulty, Cliodna Am
2017-06-06
To understand attitudes and behaviours of adolescents towards antibiotics, antimicrobial resistance and respiratory tract infections. Qualitative approach informed by the Theory of Planned Behaviour. Semi-structured interviews and focus groups were undertaken. We aimed to inform the development of an intervention in an international setting to improve antibiotic use among adolescents; therefore on completion of thematic analysis, findings were triangulated with qualitative data from similar studies in France, Saudi Arabia and Cyprus to elucidate differences in the behaviour change model and adaptation to diverse contexts. 7 educational establishments from the south of England. 53 adolescents (16-18 years) participated in seven focus groups and 21 participated in interviews. Most participants had taken antibiotics and likened them to other common medications such as painkillers; they reported that their peers treat antibiotics like a 'cure-all' and that they themselves were not interested in antibiotics as a discussion topic. They demonstrated low knowledge of the difference between viral and bacterial infections.Participants self-cared for colds and flu but believed antibiotics are required to treat other RTIs such as tonsillitis, which they perceived as more 'serious'. Past history of taking antibiotics for RTIs instilled the belief that antibiotics were required for future RTIs. Those who characterised themselves as 'non-science students' were less informed about antibiotics and AMR. Most participants felt that AMR was irrelevant to them and their peers. Some 'non-science' students thought resistance was a property of the body, rather than bacteria. Addressing adolescents' misperceptions about antibiotics and the treatment of RTIs using a behaviour change intervention should help improve antibiotic awareness and may break the cycle of patient demand for antibiotics to treat RTIs amongst this group. Schools should consider educating all students in further education about antibiotic usage and AMR, not only those taking science. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Allen, M. F.; Taggart, M. C.; Hernandez, R. R.; Harmon, T. C.; Rundel, P.
2017-12-01
Observation is essential for organizing outputs from sensor data to describe dynamic phenomena regulating core processes. The rhizosphere is that region of the soil layer that regulates soil carbon acquisition, turnover, and sequestration and that is most sensitive to rapid changes in soil moisture, temperature, and gases. Virtually every process regulating carbon and nutrient immobilization and mineralization occur here at the maximum rates. However, the observation of root, microbial, and animal growth, movement, and mortality are rarely undertaken at time scales of crucial events. While multiple cores or observations can be taken in space, replications in time are rarely undertaken. We coupled automated (AMR) and manual minirhizotrons (MMR) with soil and aboveground sensors for temperature (T), water content (q), CO2, and O2 to measure short-term dynamics that regulate carbon cycling. AMRs imaged rhizospheres, multiple times daily. From these images, we observed timing of root and hyphal growth and mortality in response to changes in photosynthesis, diurnal temperature fluctuations, and precipitation and drought events. Replicate manual minirhizotron tubes describe the spatial structure of those events, and replicate core samples provide measurements of standing crop at known times. We present four examples showing how observation led to understanding unusual C flux patterns in mixed-conifer forest (belowground photosynthate allocation), hot desert (CaCO3 formation and weathering), grassland (root grazing), and tropical rainforest (soil gas flux patterns).
Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance.
Enioutina, Elena Yu; Teng, Lida; Fateeva, Tatyana V; Brown, Jessica C S; Job, Kathleen M; Bortnikova, Valentina V; Krepkova, Lubov V; Gubarev, Michael I; Sherwin, Catherine M T
2017-11-01
In the modern antimicrobial era, the rapid spread of resistance to antibiotics and introduction of new and mutating viruses is a global concern. Combating antimicrobial resistant microbes (AMR) requires coordinated international efforts that incorporate new conventional antibiotic development as well as development of alternative drugs with antimicrobial activity, management of existing antimicrobials, and rapid detection of AMR pathogens. Areas covered: This manuscript discusses some conventional strategies to control microbial resistance. The main purpose of the manuscript is to present information on specific herbal medicines that may serve as good treatment alternatives to conventional antimicrobials for infections sensitive to conventional as well as resistant strains of microorganisms. Expert commentary: Identification of potential new antimicrobials is challenging; however, one source for potential structurally diverse and complex antimicrobials are natural products. Natural products may have advantages over other post-germ theory antimicrobials. Many antimicrobial herbal medicines possess simultaneous antibacterial, antifungal, antiprotozoal and/or antiviral properties. Herbal products have the potential to boost host resistance to infections, particularly in immunocompromised patients. Antimicrobial broad-spectrum activity in conjunction with immunostimulatory properties may help to prevent microbial resistance to herbal medicine. As part of the efforts to broaden use of herbal medicines to treat microbial infections, pre-clinical and clinical testing guidelines of these compounds as a whole should be implemented to ensure consistency in formulation, efficacy and safety.
Deficits in the pitch sensitivity of cochlear-implanted children speaking English or Mandarin
Deroche, Mickael L. D.; Lu, Hui-Ping; Limb, Charles J.; Lin, Yung-Song; Chatterjee, Monita
2014-01-01
Sensitivity to complex pitch is notoriously poor in adults with cochlear implants (CIs), but it is unclear whether this is true for children with CIs. Many are implanted today at a very young age, and factors related to brain plasticity (age at implantation, duration of CI experience, and speaking a tonal language) might have strong influences on pitch sensitivity. School-aged children participated, speaking English or Mandarin, having normal hearing (NH) or wearing a CI, using their clinically assigned settings with envelope-based coding strategies. Percent correct was measured in three-interval three-alternative forced choice tasks, for the discrimination of fundamental frequency (F0) of broadband harmonic complexes, and for the discrimination of sinusoidal amplitude modulation rate (AMR) of broadband noise, with reference frequencies at 100 and 200 Hz to focus on voice pitch processing. Data were fitted using a maximum-likelihood technique. CI children displayed higher thresholds and shallower slopes than NH children in F0 discrimination, regardless of linguistic background. Thresholds and slopes were more similar between NH and CI children in AMR discrimination. Once the effect of chronological age was extracted from the variance, the aforementioned factors related to brain plasticity did not contribute significantly to the CI children's sensitivity to pitch. Unless different strategies attempt to encode fine structure information, potential benefits of plasticity may be missed. PMID:25249932
Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, I; Pember, R; Greenough, J
2005-10-18
We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less
Meter reading for smaller customers in an open-access environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
As the ability to buy gas and transportation services directly from suppliers becomes available to small commercial and residential customers, local distribution companies (LDCs) are evaluating how to measure and track their consumption. The LDCs often measure the gas use of large commercial and industrial customers with remote, automated meter-reading (AMR) devices, many of which provide real-time data. The utility can justify the expense of installing these devices because of the customers` considerable gas consumption. But for customers who already contribute very little to margins, AMR investments by LDCs are more problematic. The paper discusses some options for remote meteringmore » and forecasts future trends in the industry.« less
NASA Astrophysics Data System (ADS)
Lu, Y.; Li, C. F.
2017-12-01
Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.
Antimicrobial stewardship – can we afford to do without it?
Aryee, Anna; Price, Nicholas
2015-01-01
Antimicrobial resistance (AMR) is a rapidly developing and alarming global threat which has been highlighted by national governments and public health bodies including the World Health Organization. The spectre of a ‘post-antibiotic era’ is a real possibility unless curtailing the development and spread of these organisms is given high priority. Numerous studies have shown that AMR is associated with worse outcomes for patients and higher healthcare costs. While clinical data from low and middle income countries is lacking, there is increasing evidence that the problem in these areas is as great, or even greater, than in high income nations. Of the many drivers behind the development of AMR, the most significant is selection pressure caused by antibiotic use. Antimicrobial stewardship programmes are a set of interventions that aim to ensure the judicious use of antimicrobials by preventing their unnecessary use, and by providing targeted and limited therapy in situations where they are warranted. The ultimate goal of these programmes is to provide effective antimicrobial therapy whilst safeguarding their effectiveness for future generations. Whilst they do require an initial investment, they have been shown to be an effective way of controlling antimicrobial use, and have been associated with improved patient outcomes and reduced healthcare costs. PMID:24803175
Mather, Alison E.; Matthews, Louise; Mellor, Dominic J.; Reeve, Richard; Denwood, Matthew J.; Boerlin, Patrick; Reid-Smith, Richard J.; Brown, Derek J.; Coia, John E.; Browning, Lynda M.; Haydon, Daniel T.; Reid, Stuart W. J.
2012-01-01
We examined long-term surveillance data on antimicrobial resistance (AMR) in Salmonella Typhimurium DT104 (DT104) isolates from concurrently sampled and sympatric human and animal populations in Scotland. Using novel ecological and epidemiological approaches to examine diversity, and phenotypic and temporal relatedness of the resistance profiles, we assessed the more probable source of resistance of these two populations. The ecological diversity of AMR phenotypes was significantly greater in human isolates than in animal isolates, at the resolution of both sample and population. Of 5200 isolates, there were 65 resistance phenotypes, 13 unique to animals, 30 unique to humans and 22 were common to both. Of these 22, 11 were identified first in the human isolates, whereas only five were identified first in the animal isolates. We conclude that, while ecologically connected, animals and humans have distinguishable DT104 communities, differing in prevalence, linkage and diversity. Furthermore, we infer that the sympatric animal population is unlikely to be the major source of resistance diversity for humans. This suggests that current policy emphasis on restricting antimicrobial use in domestic animals may be overly simplistic. While these conclusions pertain to DT104 in Scotland, this approach could be applied to AMR in other bacteria–host ecosystems. PMID:22090389
Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard J; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A
2014-10-01
Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim-sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the "What's strange about recent events?" (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders.
Glass-Kaastra, Shiona K.; Pearl, David L.; Reid-Smith, Richard J.; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A.
2014-01-01
Susceptibility results for Pasteurella multocida and Streptococcus suis isolated from swine clinical samples were obtained from January 1998 to October 2010 from the Animal Health Laboratory at the University of Guelph, Guelph, Ontario, and used to describe variation in antimicrobial resistance (AMR) to 4 drugs of importance in the Ontario swine industry: ampicillin, tetracycline, tiamulin, and trimethoprim–sulfamethoxazole. Four temporal data-analysis options were used: visualization of trends in 12-month rolling averages, logistic-regression modeling, temporal-scan statistics, and a scan with the “What’s strange about recent events?” (WSARE) algorithm. The AMR trends varied among the antimicrobial drugs for a single pathogen and between pathogens for a single antimicrobial, suggesting that pathogen-specific AMR surveillance may be preferable to indicator data. The 4 methods provided complementary and, at times, redundant results. The most appropriate combination of analysis methods for surveillance using these data included temporal-scan statistics with a visualization method (rolling-average or predicted-probability plots following logistic-regression models). The WSARE algorithm provided interesting results for quality control and has the potential to detect new resistance patterns; however, missing data created problems for displaying the results in a way that would be meaningful to all surveillance stakeholders. PMID:25355992
Egawa, H; Teramukai, S; Haga, H; Tanabe, M; Mori, A; Ikegami, T; Kawagishi, N; Ohdan, H; Kasahara, M; Umeshita, K
2014-01-01
We evaluated the effects of rituximab prophylaxis on outcomes of ABO-blood-type-incompatible living donor liver transplantation (ABO-I LDLT) in 381 adult patients in the Japanese registry of ABO-I LDLT. Patients underwent dual or triple immunosuppression with or without B cell desensitization therapies such as plasmapheresis, splenectomy, local infusion, intravenous immunoglobulin and rituximab. Era before 2005, intensive care unit-bound status, high Model for End-Stage Liver Disease score and absence of rituximab prophylaxis were significant risk factors for overall survival and antibody-mediated rejection (AMR) in the univariate analysis. After adjustment for era effects in the multivariate analysis, only absence of rituximab prophylaxis was a significant risk factor for AMR, and there were no significant risk factors for survival. Rituximab prophylaxis significantly decreased the incidence of AMR, especially hepatic necrosis (p < 0.001). In the rituximab group, other B cell desensitization therapies had no add-on effects. Multiple or large rituximab doses significantly increased the incidence of infection, and early administration had no advantage. In conclusion, outcomes in adult ABO-I LDLT have significantly improved in the latest era coincident with the introduction of rituximab. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.
Al-Harthi, Sameer E.; Khan, Lateef M.; Osman, Abdel-Moneim M.; Alim, Mai A.; Saadah, Omar I.; Almohammadi, Abdulrehman A.; Khan, Faheem M.; Kamel, Fatemah O.
2015-01-01
Objectives: To understand the perceptions, attitude, and prescribing practices of clinicians regarding antimicrobial resistance (AMR). Methods: A multidisciplinary cross-sectional study comprising 447 clinicians of university, public, and private hospitals of Jeddah, Saudi Arabia was carried out from August to October 2014 using a self-administered questionnaire. Results: Interestingly, 33% of the general physicians yielded to patient/parent’s demand for the choice of antimicrobials (AMs) as compared with only 13.2% of the residents, and 4.3% of the specialists. In addition, expensive AMs are more often prescribed by the general physician (70.4%) in comparison with 26.4% residents and 30.4% of the specialists. However, no significant differences were observed between the knowledge and perceptions regarding the current scope of AM agents, as well as their use and misuse. Furthermore, dependability of specialist and residents seems to be significantly higher than general physicians on pocketbooks and smartphone for AM education sources. Conclusion: This study revealed that despite a clear concept of AMR, general physicians lacks consistency in prescribing aptitude and use of effective educational resources, while all respondents lacks dedication to follow the guidelines of AM use. This highlights the requirement of AM stewardship with decisive objective of reduction in AMR. PMID:26108585
Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion
You, Yaqi; Silbergeld, Ellen K.
2014-01-01
Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level. PMID:24959164
Resistance Elasticity of Antibiotic Demand in Intensive Care.
Heister, Thomas; Hagist, Christian; Kaier, Klaus
2017-07-01
The emergence and spread of antimicrobial resistance (AMR) is still an unresolved problem worldwide. In intensive care units (ICUs), first-line antibiotic therapy is highly standardized and widely empiric while treatment failure because of AMR often has severe consequences. Simultaneously, there is a limited number of reserve antibiotics, whose prices and/or side effects are substantially higher than first-line therapy. This paper explores the implications of resistance-induced substitution effects in ICUs. The extent of such substitution effects is shown in a dynamic fixed effect regression analysis using a panel of 66 German ICUs with monthly antibiotic use and resistance data between 2001 and 2012. Our findings support the hypothesis that demand for reserve antibiotics substantially increases when resistance towards first-line agents rises. For some analyses the lagged effect of resistance is also significant, supporting the conjecture that part of the substitution effect is caused by physicians changing antibiotic choices in empiric treatment by adapting their resistance expectation to new information on resistance prevalence. The available information about resistance rates allows physicians to efficiently balance the trade-off between exacerbating resistance and ensuring treatment success. However, resistance-induced substitution effects are not free of charge. These effects should be considered an indirect burden of AMR. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long
2013-01-01
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR). PMID:23959236
Huang, Shih-Hao; Wei, Lu-Shiuan; Chu, Hsiao-Tzu; Jiang, Yeu-Long
2013-08-16
This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD). In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX), peroxidase (POD), and Amplex Red (AmR) or alcohol oxidase (AOX), POD, and AmR by using same fluorescence indicator (AmR).
Mather, Alison E; Matthews, Louise; Mellor, Dominic J; Reeve, Richard; Denwood, Matthew J; Boerlin, Patrick; Reid-Smith, Richard J; Brown, Derek J; Coia, John E; Browning, Lynda M; Haydon, Daniel T; Reid, Stuart W J
2012-04-22
We examined long-term surveillance data on antimicrobial resistance (AMR) in Salmonella Typhimurium DT104 (DT104) isolates from concurrently sampled and sympatric human and animal populations in Scotland. Using novel ecological and epidemiological approaches to examine diversity, and phenotypic and temporal relatedness of the resistance profiles, we assessed the more probable source of resistance of these two populations. The ecological diversity of AMR phenotypes was significantly greater in human isolates than in animal isolates, at the resolution of both sample and population. Of 5200 isolates, there were 65 resistance phenotypes, 13 unique to animals, 30 unique to humans and 22 were common to both. Of these 22, 11 were identified first in the human isolates, whereas only five were identified first in the animal isolates. We conclude that, while ecologically connected, animals and humans have distinguishable DT104 communities, differing in prevalence, linkage and diversity. Furthermore, we infer that the sympatric animal population is unlikely to be the major source of resistance diversity for humans. This suggests that current policy emphasis on restricting antimicrobial use in domestic animals may be overly simplistic. While these conclusions pertain to DT104 in Scotland, this approach could be applied to AMR in other bacteria-host ecosystems.
Revisiting Traditional Risk Factors for Rejection and Graft Loss after Kidney Transplantation
Dunn, TB; Noreen, H; Gillingham, K; Maurer, D; Ozturk, O. Goruroglu; Pruett, TL; Bray, RA; Gebel, HM; Matas, AJ
2011-01-01
Single antigen bead (SAB) testing permits reassessment of immunologic risk for kidney transplantation. Traditionally, high panel reactive antibody (PRA), retransplant and deceased donor (DD) grafts have been associated with increased risk. We hypothesized that this risk was likely mediated by (unrecognized) donor-specific antibody (DSA). We grouped 587 kidney transplants using clinical history and SAB testing of day of transplant serum as 1) unsensitized; PRA=0 (n= 178), 2) 3rd party sensitized; no DSA (n=363), or 3) donor sensitized; with DSA (n=46), and studied rejection rates, death censored graft survival (DCGS), and risk factors for rejection. Antibody-mediated rejection (AMR) rates were increased with DSA (p<0.0001), but not with PRA in the absence of DSA. Cell-mediated rejection (CMR) rates were increased with DSA (p<0.005); with a trend to increased rates when PRA>0 in the absence of DSA (p=0.08). Multivariate analyses showed risk factors for AMR were DSA, worse HLA matching, and female gender; for CMR: DSA, PRA>0 and worse HLA matching. AMR and CMR were associated with decreased DCGS. The presence of DSA is an important predictor of rejection risk, in contrast to traditional risk factors. Further development of immunosuppressive protocols will be facilitated by stratification of rejection risk by donor sensitization. PMID:21812918
Ranabhat, Chhabi Lal; Kim, Chun-Bae; Park, Myung-Bae; Acharaya, Sambhu
2017-08-08
Disparity in adult mortality (AM) with reference to social dynamics and health care has not been sufficiently examined. This study aimed to identify the gap in the understanding of AM in relation to religion, political stability, economic level, and universal health coverage (UHC). A cross-national study was performed with different sources of data, using the administrative record linkage theory. Data was created from the 2013 World Bank data catalogue by region, The Economist (Political instability index 2013), Stuckler David et al. (Universal health coverage, 2010), and religious categories of all UN country members. Descriptive statistics, a t-test, an ANOVA followed by a post hoc test, and a linear regression were used where applicable. The average AM rate for males and females was 0.20 ± 0.10 and 0.14 ± 0.10, respectively. There was high disparity of AM between countries with and without UHC and between groups with low and high income. UHC and political stability would significantly reduce AMR by >0.41 in both sexes and high economic status would reduce male AMR by 0.44, and female AMR by 0.70. It can be concluded that effective health care; UHC and political stability significantly reduce AM.
NASA Astrophysics Data System (ADS)
Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan
2018-06-01
Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.
Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion.
You, Yaqi; Silbergeld, Ellen K
2014-01-01
Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.
Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials
NASA Astrophysics Data System (ADS)
Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi
2015-02-01
We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.
Jabeen, Kauser; Bhawan Mal, Pushpa; Khan, Erum; Chandio, Saeeda; Jacobsson, Susanne; Unemo, Magnus
2016-07-22
Globally, increasing antimicrobial resistance (AMR) in Neisseria gonorrhoea has led to decreased treatment options for gonorrhoea. Continuous monitoring of resistance is crucial to determine evolving resistance trends in Neisseria gonorrhoea and to suggest treatment recommendations. Quality assured gonococcal AMR data from Pakistan are mainly lacking. This study was performed to determine prevalence and trends of gonococcal AMR and molecular epidemiology of local strains during 2012-2014 in Karachi, Pakistan. Gonococcal isolates (n = 100) were obtained from urogenital specimens submitted to the Aga Khan University Laboratory, Karachi, Pakistan. Antimicrobial susceptibility was determined using Etest and molecular epidemiology was assessed by N. gonorrhoeae multiantigen sequence typing (NG-MAST). Quality control was performed using N. gonorrhoeae WHO reference strains C, F, G, K, L, M, N, O, and P, and ATCC 49226. Susceptibility to spectinomycin, ceftriaxone and cefixime was 100 % and to azithromycin was 99 %. All isolates had low ceftriaxone MICs, i.e., ≤0.032 mg/L. Resistance to ciprofloxacin, tetracycline and penicillin G were 86 %, 51 % and 43 %, respectively. NG-MAST analysis identified 74 different sequence types (STs). A highly diversified gonococcal population, 74 NG-MAST STs (62 novel STs) with an increased resistance to penicillin G, ciprofloxacin and tetracycline circulated in Karachi, Pakistan. Fortunately, no resistance to ceftriaxone was detected. Accordingly, ceftriaxone can continuously be recommended as the treatment of choice. However it is recommended to increase the dose of ceftriaxone from 125 mg intramuscularly to 250 mg intramuscularly due to ceftriaxone MIC creep and emerging resistance reported in the region. Furthermore, due to the high level of resistance to ciprofloxacin (86 %) it is essential to exclude ciprofloxacin from the recommended first-line therapy. It is imperative to significantly broaden the gonococcal AMR monitoring with participation from other laboratories and cities in Pakistan.
Boireau, C; Morignat, É; Cazeau, G; Jarrige, N; Jouy, É; Haenni, M; Madec, J-Y; Leblond, A; Gay, É
2018-02-01
Antimicrobial resistance (AMR) among bacteria isolated from food-producing animals is a growing concern with implications for public health. AMR surveillance is essential to identify resistance trends and help in the design of effective and efficient control strategies. The aim of the study was to describe the antimicrobial susceptibility of pathogenic Escherichia coli isolated from three livestock productions in France (cattle, swine and poultry). The trend in resistance to the most commonly prescribed antibiotics in animal health was analysed as follows: amoxicillin (penicillin), spectinomycin or streptomycin (aminoglycoside), tetracycline and trimethoprim-sulfamethoxazole/Enrofloxacin and ceftiofur were also taken into account as members of critically important antimicrobial families in human and veterinary medicine, that is fluoroquinolones and third-generation cephalosporins, respectively. Data collected between 2002 and 2015 by the French national surveillance network of AMR referred to as RESAPATH were analysed. Resistance trends were investigated using non-linear analysis (generalized additive models) applied to time-series stratified by livestock production and antibiotic. Irrespective of the species and the antibiotic considered, resistance signals over time showed no significant annual cycle. Resistance to third-generation cephalosporins emerged during the period of the study, with a peak at 22% [20.5; 24.0] in poultry in 2010, decreasing afterwards, while it remained consistently below 10% for the other species. The proportion of resistance to fluoroquinolones was broadly similar between species and remained under 30%, with a slight decreasing trend after 2009. Resistances to tetracycline and amoxicillin remained high, between 90% and 40% over time in cattle and swine. After 2010, there was a decrease in resistance to these antibiotics for all species, especially to tetracycline for poultry with a drop from 84% in 2009 to 43% in 2015. These results contribute to risk assessment and constitute objective evidence on which to evaluate the efficacy of control measures implemented to limit AMR occurrence. © 2017 Blackwell Verlag GmbH.
Nascimento, E; Fabreti de Oliveira, R A; Maciel, M D; Pereira, A B; das Mercêz de Lucas, F; Salomão-Filho, A; Pereira, W A; Moreira, J B; Vilaça, S S; de Castro Gontijo, R; Lasmar, M F; Vianna, H R; Magalhâes, A; Calazans, C A C; Simão-Filho, C; Vilela, B
2014-01-01
Donor-specific antibodies (DSAs) play a fundamental role in kidney transplantation. The identification of DSAs is an essential rejection parameter. We evaluated a protocol in 237 patients receiving kidneys from living (LDs) and deceased donors (DDs). Recipients were classified as being at low (LR), medium (MR), high (HR), or strong (SR) risk of rejection based on Luminex panel reactive antibody (PRA)-single antigen beads (SABs). Grafts that survived for 1 year were evaluated. Of the 237 transplanted patients, 129 (54.43%) received a kidney from an LD and 108 (45.57%) from a DD. Of 95 LR recipients receiving kidneys from LDs, 2 patients lost the graft due to non-immunological causes. Of 34 MR recipients, 13 had rejection episodes, and 2 lost the graft by AMR and one by cellular rejection (CR). Of 108 recipients receiving a kidney from a DD, 59 (54.63%) were LR, 31 (28.70%) MR, 11 (10.19%) HR, and 7 (6.48%) SR. Twenty of all transplanted recipients lost their grafts; 4 were due to clinical causes, 4 by cellular rejection, and 12 by antibody-mediated rejection (AMR) with PRA-SAB mean fluorescent intensity of 530 to 12,591. One-year graft survival for LD transplanted LR and MR patients was 97.6% and 94.1%, respectively (P = .004). In DD recipients, the LR vs MR SD was P = .011, and for LR vs HR + SR it was P = .001. For MR vs HR+SR no SD was found (P = .323). Rejections were detected in 51 patients (21.52%). Graft failure occurred in 16 patients (6.75%). A total of 218 (91.98%) recipients maintained good kidney function after 1 year. This protocol based on fluxogram risk assessment of AMR provided fast and precise immunological evaluation of recipients and donors and stratification by immunological risk of AMR. Copyright © 2014 Elsevier Inc. All rights reserved.
Benedict, Katharine M.; Gow, Sheryl P.; McAllister, Tim A.; Booker, Calvin W.; Hannon, Sherry J.; Checkley, Sylvia L.; Noyes, Noelle R.; Morley, Paul S.
2015-01-01
The objectives of this study were to estimate the prevalence of antimicrobial resistance (AMR) and to investigate the associations between exposures to antimicrobial drugs (AMDs) and AMR in fecal non-type specific Escherichia coli (NTSEC) recovered from a large population of feedlot cattle. Two-stage random sampling was used to select individually identified cattle for enrollment, which were sampled at arrival and then a second time later in the feeding period. Advanced regression techniques were used to estimate resistance prevalences, and to investigate associations between AMD exposures in enrolled cattle and penmates and AMR identified in NTSEC recovered from the second sample set. Resistance was most commonly detected to tetracycline, streptomycin, and sulfisoxazole, and was rarely identified for critically important AMDs. All cattle were exposed to AMDs in feed, and 45% were treated parenterally. While resistance prevalence generally increased during the feeding period, most AMD exposures were not significantly associated with AMR outcomes. Exposures of enrolled cattle to tetracycline were associated with increased resistance to tetracycline and trimethoprim sulfa, while beta-lactam exposures were associated with decreased likelihood of detecting streptomycin resistance. Pen-level AMD exposure measures were not associated with resistance outcomes. These findings suggest that tetracycline treatment of feedlot cattle can be associated with modest increases in risk for recovery of resistant NTSEC, but the numerous treatments with an advanced macrolide (tulathromycin) were not associated with detectable increases in resistance in NTSEC. All cattle were exposed to in-feed treatments of tetracycline and this could limit the ability to identify the full impact of these exposures, but these exposures varied for enrolled cattle varied, providing an opportunity to evaluate a dose response. While AMD exposures were not associated with detectably increased risks for resistance to critically important AMDs, rare resistance outcomes and infrequent exposure to other important AMDs (e.g., cephalosporins) limited our ability to rigorously investigate questions regarding factors that can influence resistance to these important AMDs. PMID:26633649
Trembizki, Ella; Smith, Helen; Lahra, Monica M; Chen, Marcus; Donovan, Basil; Fairley, Christopher K; Guy, Rebecca; Kaldor, John; Regan, David; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M
2014-06-01
Neisseria gonorrhoeae antimicrobial resistance (AMR) is a global problem heightened by emerging resistance to ceftriaxone. Appropriate molecular typing methods are important for understanding the emergence and spread of N. gonorrhoeae AMR. We report on the development, validation and testing of a Sequenom MassARRAY iPLEX method for multilocus sequence typing (MLST)-style genotyping of N. gonorrhoeae isolates. An iPLEX MassARRAY method (iPLEX14SNP) was developed targeting 14 informative gonococcal single nucleotide polymorphisms (SNPs) previously shown to predict MLST types. The method was initially validated using 24 N. gonorrhoeae control isolates and was then applied to 397 test isolates collected throughout Queensland, Australia in the first half of 2012. The iPLEX14SNP method provided 100% accuracy for the control isolates, correctly identifying all 14 SNPs for all 24 isolates (336/336). For the 397 test isolates, the iPLEX14SNP assigned results for 5461 of the possible 5558 SNPs (SNP call rate 98.25%), with complete 14 SNP profiles obtained for 364 isolates. Based on the complete SNP profile data, there were 49 different sequence types identified in Queensland, with 11 of the 49 SNP profiles accounting for the majority (n = 280; 77%) of isolates. AMR was dominated by several geographically clustered sequence types. Using the iPLEX14SNP method, up to 384 isolates could be tested within 1 working day for less than Aus$10 per isolate. The iPLEX14SNP offers an accurate and high-throughput method for the MLST-style genotyping of N. gonorrhoeae and may prove particularly useful for large-scale studies investigating the emergence and spread of gonococcal AMR. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Gonnenthal; N. Spyoher
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Sonnenthale
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less
Zhu, Motao; Cummings, Peter; Zhao, Songzhu; Coben, Jeffrey H.; Smith, Gordon S.
2014-01-01
Background Graduated driver licensing (GDL) laws are associated with reduced crash rates per person-year among adolescents. It is unknown whether adolescents crash less per miles driven or drive less under GDL policies. Methods We used data from the US National Household Travel Survey and Fatality Analysis Reporting System for 1995–1996, 2001–2002, and 2008–2009. We compared adolescents subject to GDL laws with those not, by estimating adjusted incidence rate ratios for being a driver in a crash with a death per person-year (aIRRpy) and per miles driven (aIRRm), and adjusted miles driven ratios (aMR) controlling for changes in rates over time. Results Comparing persons subject to GDL policies with those not, 16-year-olds had fewer fatal crashes per person-year (aIRRpy 0.63, 95% confidence interval [CI] 0.47, 0.91), drove fewer miles (aMR 0.79, 95% CI 0.63, 0.98), and had lower crash rates per miles driven (aIRRm 0.83, 95% CI 0.65, 1.06). For age 17, the aIRRpy was 0.83 (95% CI 0.60, 1.17), the aMR 0.80 (95% CI 0.63, 1.03), and the aIRRm 1.03 (95% CI 0.80, 1.35). For age 18, the aIRRpy was 0.93 (95% CI 0.72, 1.19), the aMR 0.92 (95% CI 0.77, 1.09), and the aIRRm 1.01 (95% CI 0.84, 1.23). Conclusions If these associations are causal, GDL laws reduced crashes per person-year by about one-third among 16-year-olds; half the reduction was due to fewer crashes per miles driven and half to less driving. For ages 17 and 18, there was no evidence of reduced crash rates per miles driven. PMID:24525908
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.
Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping
2016-01-01
Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis) revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs. PMID:27774436
Permanent magnet design for magnetic heat pumps using total cost minimization
NASA Astrophysics Data System (ADS)
Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.
2017-11-01
The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.
Eisenberg, Joseph N.S.; Trueba, Gabriel; Zhang, Lixin; Johnson, Timothy J.
2017-01-01
Summary: Small-scale food animal production is widely practiced around the globe, yet it is often overlooked in terms of the environmental health risks. Evidence suggests that small-scale food animal producers often employ the use of antimicrobials to improve the survival and growth of their animals, and that this practice leads to the development of antimicrobial resistance (AMR) that can potentially spread to humans. The nature of human–animal interactions in small-scale food animal production systems, generally practiced in and around the home, likely augments spillover events of AMR into the community on a scale that is currently unrecognized and deserves greater attention. https://doi.org/10.1289/EHP2116 PMID:29038091
Magnano, Immacolata; Pes, Giovanni Mario; Pilurzi, Giovanna; Cabboi, Maria Paola; Ginatempo, Francesca; Giaconi, Elena; Tolu, Eusebio; Achene, Antonio; Salis, Antonio; Rothwell, John C; Conti, Maurizio; Deriu, Franca
2014-11-01
To investigate vestibulo-masseteric (VMR), acoustic-masseteric (AMR), vestibulo-collic (VCR) and trigemino-collic (TCR) reflexes in patients with multiple sclerosis (MS); to relate abnormalities of brainstem reflexes (BSRs) to multimodal evoked potentials (EPs), clinical and Magnetic Resonance Imaging (MRI) findings. Click-evoked VMR, AMR and VCR were recorded from active masseter and sternocleidomastoid muscles, respectively; TCR was recorded from active sternocleidomastoid muscles, following electrical stimulation of the infraorbital nerve. EPs and MRI were performed with standard techniques. Frequencies of abnormal BSRs were: VMR 62.1%, AMR 55.1%, VCR 25.9%, TCR 58.6%. Brainstem dysfunction was identified by these tests, combined into a four-reflex battery, in 86.9% of cases, by EPs in 82.7%, MRI in 71.7% and clinical examination in 37.7% of cases. The sensitivity of paired BSRs/EPs (93.3%) was significantly higher than combined MRI/clinical testing (70%) in patients with disease duration ⩽6.4years. BSR alterations significantly correlated with clinical, EP and MRI findings. The four-BSR battery effectively increases the performance of standard EPs in early detection of brainstem impairment, otherwise undetected by clinical examination and neuroimaging. Multiple BSR assessment usefully supplements conventional testing and monitoring of brainstem function in MS, especially in newly diagnosed patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Morales, J; Contreras, L; Zehnder, C; Pinto, V; Elberg, M; Araneda, S; Herzog, C; Calabran, L; Aguiló, J; Ferrario, M; Buckel, E; Fierro, J A
2011-01-01
Low-risk renal transplant recipients treated with standard immunosuppressive therapy including interleukin-2 receptor (IL-2R) antagonist show a low incidence of early rejection episodes but few reports have examined the incidence and severity of late rejection processes. This study evaluated retrospectively cellular and antibody-mediated rejection (AMR) among 42 recipients selected because they showed low panel-reactive-antibodies, short cold ischemia time, no delayed graft function, and therapy including basiliximab (Simulect) induction. The mean observation time was 6.6 years. Sixty-seven percent of donors were deceased. Ten-year patient and death-censored graft survivals were 81% and 78%, respectively. Seven patients lost their kidneys due to nonimmunologic events. The seven recipients who experienced cellular rejection episodes during the first posttransplant year had them reversed with steroids. Five patients displayed late acute AMR causing functional deterioration in four cases including 1 graft loss. De novo sensitization occurred in 48% of recipients including patients without clinical rejection. In conclusion, long-term follow-up of kidney transplant recipients selected by a low immunologic risk showed a persistent risk of de novo sensitization evolving to acute AMR in 11% of cases. Although immunologic events were related to late immunosuppressive reduction, most graft losses were due to nonimmunologic factors. Copyright © 2011 Elsevier Inc. All rights reserved.
Natale, Alessandra; Stelling, John; Meledandri, Marcello; Messenger, Louisa A; D'Ancona, Fortunato
2017-01-01
Resistant pathogens infections cause in healthcare settings, higher patient mortality, longer hospitalisation times and higher costs for treatments. Strengthening and coordinating local, national and international surveillance systems is the cornerstone for the control of antimicrobial resistance (AMR). In this study, the WHONET-SaTScan software was applied in a hospital in Italy to identify potential outbreaks of AMR. Data from San Filippo Neri Hospital in Rome between 2012 and 2014 were extracted from the national surveillance system for antimicrobial resistance (AR-ISS) and analysed using the simulated prospective analysis for real-time cluster detection included in the WHONET-SaTScan software. Results were compared with the hospital infection prevention and control system. The WHONET-SaTScan identified 71 statistically significant clusters, some involving pathogens carrying multiple resistance phenotypes. Of these 71, three were also detected by the hospital system, while a further 15, detected by WHONET-SaTScan only, were considered of relevant importance and worth further investigation by the hospital infection control team. In this study, the WHONET-SaTScan system was applied for the first time to the surveillance of AMR in Italy as a tool to strengthen this surveillance to allow more timely intervention strategies both at local and national level, using data regularly collected by the Italian national surveillance system. PMID:28333615
AMR Studies of Star Formation: Simulations and Simulated Observations
NASA Astrophysics Data System (ADS)
Offner, Stella; McKee, C. F.; Klein, R. I.
2009-01-01
Molecular clouds are typically observed to be approximately virialized with gravitational and turbulent energy in balance, yielding a star formation rate of a few percent. The origin and characteristics of the observed supersonic turbulence are poorly understood, and without continued energy injection the turbulence is predicted to decay within a cloud dynamical time. Recent observations and analytic work have suggested a strong connection between the initial stellar mass function, the core mass function, and turbulence characteristics. The role of magnetic fields in determining core lifetimes, shapes, and kinematic properties remains hotly debated. Simulations are a formidable tool for studying the complex process of star formation and addressing these puzzles. I present my results modeling low-mass star formation using the ORION adaptive mesh refinement (AMR) code. I investigate the properties of forming cores and protostars in simulations in which the turbulence is driven to maintain virial balance and where it is allowed to decay. I will discuss simulated observations of cores in dust emission and in molecular tracers and compare to observations of local star-forming clouds. I will also present results from ORION cluster simulations including flux-limited diffusion radiative transfer and show that radiative feedback, even from low-mass stars, has a significant effect on core fragmentation, disk properties, and the IMF. Finally, I will discuss the new simulation frontier of AMR multigroup radiative transfer.
Poverty and prevalence of antimicrobial resistance in invasive isolates.
Alvarez-Uria, Gerardo; Gandra, Sumanth; Laxminarayan, Ramanan
2016-11-01
To evaluate the association between the income status of a country and the prevalence of antimicrobial resistance (AMR) in the three most common bacteria causing infections in hospitals and in the community: third-generation cephalosporin (3GC)-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and 3GC-resistant Klebsiella species. Using 2013-2014 country-specific data from the ResistanceMap repository and the World Bank, the association between the prevalence of AMR in invasive samples and the gross national income (GNI) per capita was investigated through linear regression with robust standard errors. To account for non-linear association with the dependent variable, GNI per capita was log-transformed. The models predicted an 11.3% (95% confidence interval (CI) 6.5-16.2%), 18.2% (95% CI 11-25.5%), and 12.3% (95% CI 5.5-19.1%) decrease in the prevalence of 3GC-resistant E. coli, 3GC-resistant Klebsiella species, and MRSA, respectively, for each log GNI per capita. The association was stronger for 3GC-resistant E. coli and Klebsiella species than for MRSA. A significant negative association between GNI per capita and the prevalence of MRSA and 3GC-resistant E. coli and Klebsiella species was found. These results underscore the urgent need for new policies aimed at reducing AMR in resource-poor settings. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Currie, Kay; King, Caroline; Nuttall, Tim; Smith, Matt; Flowers, Paul
2018-03-23
Antimicrobial resistance (AMR) is a global challenge facing both human and animal healthcare professionals; an effective response to this threat requires a 'One-Health' approach to antimicrobial stewardship (AMS) to preserve important antibiotics for urgent clinical need. However, understanding of barriers and enablers to effective AMS behaviour in companion animal veterinary practice is currently limited. We conducted a Delphi study of 16 nationally recognised experts from UK-based veterinary policymakers, university academics and leaders of professional bodies. This Delphi study sought to identify veterinary behaviours which experts believe contribute to AMR and form vital aspects of AMS. Analysis of Delphi findings indicated a perceived hierarchy of behaviours, the most influential being antibiotic prescribing behaviours and interactions with clients. Other veterinary behaviours perceived as being important related to interactions with veterinary colleagues; infection control practices; and the use of diagnostic tests to confirm infection. Key barriers and enablers to AMS within each of these behavioural domains were identified. Specific interventions to address important barriers and enablers are recommended. To the authors' knowledge, this is the first study to establish expert consensus at a national level about which 'behaviours' (aspects of veterinarian practice) should be targeted in relation to AMR and AMS in companion animal veterinary practice. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Modiano, David; Colella, Phillip
1994-01-01
A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.
Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perna, P., E-mail: paolo.perna@imdea.org; Guerrero, R.; Niño, M. A.
2016-05-15
We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetrymore » of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.« less
Thermodynamics of adaptive molecular resolution
NASA Astrophysics Data System (ADS)
Delgado-Buscalioni, R.
2016-11-01
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Inoue, Satoki; Kawaguchi, Masahiko; Sakamoto, Takanori; Kitaguchi, Katsuyasu; Furuya, Hitoshi; Sakaki, Toshisuke
2002-07-01
Since the time available to provide the cooling and rewarming is limited during deliberate mild hypothermia, the technique to accelerate the cooling and rewarming rate of core temperature has been studied. Amrinone has been reported to accelerate the cooling rate but not the rewarming rate of core temperature during deliberate mild hypothermia. The failure of amrinone effect on the rewarming rate might be due to an insufficient dose of amrinone during hypothermic conditions. The authors therefore tested whether higher doses of amrinone can accelerate the rewarming rate of core temperature during deliberate mild hypothermia for neurosurgery. After institutional approval and informed consent, 30 patients were randomly assigned to one of three groups. Patients in the control group (n = 10) did not receive amrinone; patients in the AMR 15 group (n = 10) received 15 microg x kg(-1) x min(-1) amrinone with a 1.0-mg/kg loading dose of amrinone at the beginning of cooling; and patients in the ReAMR group (n = 10) received 5 microg x kg(-1) x min(-1) amrinone with 1.0-mg/kg loading and reloading doses of amrinone at the beginning of cooling and rewarming, respectively. Administration of amrinone was started just after the induction of cooling and continued until the end of anesthesia. Anesthesia was maintained with nitrous oxide in oxygen, propofol, and fentanyl. After induction of anesthesia, patients were cooled, and tympanic membrane temperature was maintained at 34.5 degrees C. After completion of the main surgical procedures, patients were actively rewarmed and extubated in the operating room. The cooling and rewarming rates of core temperature were both significantly faster in both amrinone groups than in the control group. During the cooling and rewarming periods, forearm minus fingertip temperature gradient was significantly smaller in both amrinone groups than in the control group. During the rewarming period, heart rate and mean arterial pressure in the AMR 15 group were significantly faster and lower, respectively, than in the control group. Systemic vascular resistance in the AMR 15 group was smaller than in the control group throughout the study; on the other hand, only the value after the start of rewarming in the ReAMR group was smaller than in the control group. Amrinone at an infusion rate of 15 or 5 microg x kg(-1) x min(-1) with a reloading at the beginning of rewarming accelerated the rewarming rate of core temperature during deliberate mild hypothermia. This suggests that high-dose amrinone is required to accelerate rewarming from deliberate mild intraoperative hypothermia for neurosurgical procedures.
Xu, Ying; Galambos, Csaba; Reyes-Múgica, Miguel; Miller, Susan A; Zeevi, Adriana; Webber, Steven A; Feingold, Brian
2013-01-01
C4d assessment of endomyocardial biopsies (EMBs) after heart transplantation (HTx) has been widely adopted to aid in the diagnosis of antibody-mediated rejection (AMR), yet it remains unclear whether or not to assess all patients routinely and with what frequency/duration. In this study we sought to evaluate the utility of routine C4d immunostaining in the first year after pediatric and young adult HTx. We reviewed pre-transplant alloantibody and clinical data, including serial EMB reports, on all 51 patients who received HTx at our center since we instituted routine C4d staining of all first-year EMBs. C4d was considered positive if diffuse capillary staining (≥ 2(+)) was present. Rare/focal capillary staining or absence of staining was considered negative. Twenty-six of 406 first-year EMBs (6%) were C4d(+) in 6 (12%) patients. Sixty-five percent of all C4d(+) EMBs occurred by 30 days post-transplant. Five of 6 patients had pre-transplant donor-specific antibody (DSA) ≥ 4,000 MFI. The sixth patient had neither pre-transplant anti-HLA antibodies nor a positive donor-specific cytotoxicity crossmatch (DSXM), but there was clinical concern for AMR. Among the entire cohort, 5 of 10 patients with pre-transplant DSA ≥ 4,000 MFI and/or a positive DSXM were C4d(+) compared with only 1 of 41 without (50% vs 2%; p = 0.001). In the first year after HTx, C4d(+) occurred early and only in children and young adults with pre-transplant DSA or with clinical suspicion of AMR. Although our data suggest that assessment limited to the first 90 days post-transplant in patients with pre-transplant DSA ≥ 4,000 MFI may be appropriate in the absence of clinical concern for AMR, further research is needed to determine the optimum strategy for post-transplant surveillance. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Roulette, Casey J; Caudell, Mark A; Roulette, Jennifer W; Quinlan, Robert J; Quinlan, Marsha B; Subbiah, Murugan; Call, Douglas R
2017-12-15
In sub-Saharan Africa, efforts to control antimicrobial resistance (AMR) are aggravated by unregulated drug sales and use, and high connectivity between human, livestock, and wildlife populations. Our previous research indicates that Maasai agropastoralists-who have high exposure to livestock and livestock products and self-administer veterinary antibiotics-harbor antibiotic resistant Escherichia coli (E. coli). Here, we report the results of a public health intervention project among Maasai aimed at reducing selection and transmission of E. coli bacteria. Research was conducted in two Maasai communities in Northern Tanzania. Participants were provided with health knowledge and technological innovations to facilitate: 1) the prudent use of veterinary antibiotics (tape measures and dosage charts to calculate livestock weight for more accurate dosage), and, 2) the pasteurization of milk (thermometers), the latter of which was motivated by findings of high levels of resistant E. coli in Maasai milk. To determine knowledge retention and intervention adoption, we conducted a two-month follow-up evaluation in the largest of the two communities. Retention of antimicrobial knowledge was positively associated with retention of bacterial knowledge and, among men, retention of bacterial knowledge was associated with greater wealth. Bacterial and AMR knowledge were not, however, associated with self-reported use of the innovations. Among women, self-reported use of the thermometers was associated with having more children and greater retention of knowledge about the health benefits of the innovations. Whereas 70% of women used their innovations correctly, men performed only 18% of the weight-estimation steps correctly. Men's correct use was associated with schooling, such that high illiteracy rates remain an important obstacle to the dissemination and diffusion of weight-estimation materials. Our results indicate that dietary preferences for unboiled milk, concerns over child health, and a desire to improve the health of livestock are important cultural values that need to be incorporated in future AMR-prevention interventions that target Maasai populations. More generally, these findings inform future community-health interventions to limit AMR.
Zhu, Motao; Cummings, Peter; Zhao, Songzhu; Coben, Jeffrey H; Smith, Gordon S
2015-04-01
Graduated driver licensing (GDL) laws are associated with reduced crash rates per person-year among adolescents. It is unknown whether adolescents crash less per miles driven or drive less under GDL policies. We used data from the US National Household Travel Survey and Fatality Analysis Reporting System for 1995-1996, 2001-2002 and 2008-2009. We compared adolescents subject to GDL laws with those not by estimating adjusted IRRs for being a driver in a crash with a death per person-year (aIRRpy) and per miles driven (aIRRm), and adjusted miles driven ratios (aMR) controlling for changes in rates over time. Comparing persons subject to GDL policies with those not, 16 year olds had fewer fatal crashes per person-year (aIRRpy 0.63, 95% CI 0.47 to 0.91), drove fewer miles (aMR 0.79, 95% CI 0.63 to 0.98) and had lower crash rates per miles driven (aIRRm 0.83, 95% CI 0.65 to 1.06). For age 17, the aIRRpy was 0.83 (95% CI 0.60 to 1.17), the aMR 0.80 (95% CI 0.63 to 1.03) and the aIRRm 1.03 (95% CI 0.80 to 1.35). For age 18, the aIRRpy was 0.93 (95% CI 0.72 to 1.19), the aMR 0.92 (95% CI 0.77 to 1.09) and the aIRRm 1.01 (95% CI 0.84 to 1.23). If these associations are causal, GDL laws reduced crashes per person-year by about one-third among 16 year olds; half the reduction was due to fewer crashes per miles driven and half to less driving. For ages 17 and 18, there was no evidence of reduced crash rates per miles driven. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2013-01-01
Background Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major public health concern worldwide. In Vietnam, knowledge regarding N. gonorrhoeae prevalence and AMR is limited, and data concerning genetic characteristics of N. gonorrhoeae is totally lacking. Herein, we investigated the phenotypic AMR (previous, current and possible future treatment options), genetic resistance determinants for extended-spectrum cephalosporins (ESCs), and genotypic distribution of N. gonorrhoeae isolated in 2011 in Hanoi, Vietnam. Methods N. gonorrhoeae isolates from Hanoi, Vietnam isolated in 2011 (n = 108) were examined using antibiograms (Etest for 10 antimicrobials), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST), and sequencing of ESC resistance determinants (penA, mtrR and penB). Results The levels of in vitro resistance were as follows: ciprofloxacin 98%, tetracycline 82%, penicillin G 48%, azithromycin 11%, ceftriaxone 5%, cefixime 1%, and spectinomycin 0%. The MICs of gentamicin (0.023-6 mg/L), ertapenem (0.002-0.125 mg/L) and solithromycin (<0.016-0.25 mg/L) were relatively low. No penA mosaic alleles were found, however, 78% of the isolates contained an alteration of amino acid A501 (A501V (44%) and A501T (34%)) in the encoded penicillin-binding protein 2. A single nucleotide (A) deletion in the inverted repeat of the promoter region of the mtrR gene and amino acid alterations in MtrR was observed in 91% and 94% of the isolates, respectively. penB resistance determinants were detected in 87% of the isolates. Seventy-five different NG-MAST STs were identified, of which 59 STs have not been previously described. Conclusions In Vietnam, the highly diversified gonococcal population displayed high in vitro resistance to antimicrobials previously recommended for gonorrhoea treatment (with exception of spectinomycin), but resistance also to the currently recommended ESCs were found. Nevertheless, the MICs of three potential future treatment options were low. It is essential to strengthen the diagnostics, case reporting, and epidemiologic surveillance of gonorrhoea in Vietnam. Furthermore, the surveillance of gonococcal AMR and gonorrhoea treatment failures is imperative to reinforce. Research regarding novel antimicrobial treatment strategies (e.g., combination therapy) and new antimicrobials is crucial for future treatment of gonorrhoea. PMID:23351067
Nikitin, Iu D; Ovchinnikov, A V
1998-01-01
A way of reducing the cost price of hospital automation is proposed. It is not necessary for it to update the whole equipment, but only a small part--the workstations used by programmers for their work, which support the stability of hospital automation; the working places of operators should be kept without modifications, but to allot them properties to inherit a potency and modernity of the purchased equipment; for this purpose they should be equipped with virtual machines copying properties of workstations being arrange in accordance with the pyramidal structure. A UNIX which represents a multi-user, multitask operational operative system providing an access on several pseudoterminals is simultaneously installed on the PENTIUM 100/133 workstation. A graphic terminal of the AMR "UnTerminal" firm (USA) is proposed for use as working places. Their advantage is that they have a special adapter connected directly to the bus of PC extension. Each user is allotted a video adapter, a keyboard controller, sequential and parallel interfaces for connection of the printer and manipulator. Each working place supports multitasking and it can be equipped with a printer, a "mouse" or modem. The image is transmitted on work places with a very high velocity-77 mehabits/sec that supports not only a text mode, but also VGA or SVGA graphics. Certainly, graphic terminals are more expensive than text terminals, but their capacities are similar to those of the main computer, here, the workstation. They may be located from the main computer at a distance of up to 75 meters or more and do not require adjustment during their installation.
CSM parallel structural methods research
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1989-01-01
Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... State of Oklahoma Employment Security Commission requested administrative reconsideration of the... workers, stated ``aircraft maintenance has been outsourced to China'' and that the fleet services clerks...
Anderson localization and ''universal'' degradation of T/sub c/ in high-temperature superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavens, C.R.
Anderson, Muttalib, and Ramakrishnan (AMR) showed that strong disorder leads to a frequency (..omega..) dependent increase of the Coulomb repulsion in a three-dimensional superconductor. Their one-free-parameter theory agrees nicely with the experimentally observed decrease in T/sub c/ but only for a fitted critical resistivity (rho/sub c/) that is very much smaller than the free-electron-gas estimate (rho/sup f//sub c/). We reexamine the effect of AMR's disorder-enhanced Coulomb repulsion using the Eliashberg equations for T/sub c/ rather than the simple two-square-well aproximation to them which is suspect when there are more than two characteristic frequencies involved. The most important modification of themore » original calculation is the inclusion of the Coulomb contribution to the renormalization function Z(..omega..).« less
Thermodynamics of adaptive molecular resolution.
Delgado-Buscalioni, R
2016-11-13
A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Utilities bullish on meter-reading technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, W.L.
1995-01-15
By the end of 1996, the 400,000 customers of Kansas City Power & Light Company (KCPL) will have their electric meters read by a real-time wireless network that will relay electrical consumption readings back to computers at the utility`s customer service office. KCPL`s executives believe the new radio and cellular network will greatly improve the company`s ability to control its power distribution, manage its load requirements, monitor outages, and in the near future, allow time-of-use and offpeak pricing. The KCPL system represents the first systemwide, commercial application of wireless automated meter reading (AMR) by a U.S. utility. The article alsomore » describes other AMR systems for reading water and gas meters, along with saying that $18 billion in future power plant investments can be avoided by using time-of-use pricing for residential customers.« less
Associations between host characteristics and antimicrobial resistance of Salmonella typhimurium.
Ruddat, I; Tietze, E; Ziehm, D; Kreienbrock, L
2014-10-01
A collection of Salmonella Typhimurium isolates obtained from sporadic salmonellosis cases in humans from Lower Saxony, Germany between June 2008 and May 2010 was used to perform an exploratory risk-factor analysis on antimicrobial resistance (AMR) using comprehensive host information on sociodemographic attributes, medical history, food habits and animal contact. Multivariate resistance profiles of minimum inhibitory concentrations for 13 antimicrobial agents were analysed using a non-parametric approach with multifactorial models adjusted for phage types. Statistically significant associations were observed for consumption of antimicrobial agents, region type and three factors on egg-purchasing behaviour, indicating that besides antimicrobial use the proximity to other community members, health consciousness and other lifestyle-related attributes may play a role in the dissemination of resistances. Furthermore, a statistically significant increase in AMR from the first study year to the second year was observed.
Adaptive mesh refinement techniques for the immersed interface method applied to flow problems
Li, Zhilin; Song, Peng
2013-01-01
In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763
Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.
Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S
2016-02-10
Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.
Tackling the threat of antimicrobial resistance: from policy to sustainable action
Shallcross, Laura J.; Howard, Simon J.; Fowler, Tom; Davies, Sally C.
2015-01-01
Antibiotics underpin all of modern medicine, from routine major surgery through to caesarean sections and modern cancer therapies. These drugs have revolutionized how we practice medicine, but we are in a constant evolutionary battle to evade microbial resistance and this has become a major global public health problem. We have overused and misused these essential medicines both in the human and animal health sectors and this threatens the effectiveness of antimicrobials for future generations. We can only address the threat of antimicrobial resistance (AMR) through international collaboration across human and animal health sectors integrating social, economic and behavioural factors. Our global organizations are rising to the challenge with the recent World Health Assembly resolution on AMR and development of the Global Action plan but we must act now to avoid a return to a pre-antibiotic era. PMID:25918440
Research activities to improve the utilization of antibiotics in Africa.
Massele, Amos; Tiroyakgosi, Celda; Matome, Matshediso; Desta, Abayneh; Muller, Arno; Paramadhas, Bene D Anand; Malone, Brighid; Kurusa, Gobuiwang; Didimalang, Thatayaone; Moyo, Mosana; Godman, Brian
2017-02-01
There is a need to improve the rational use of antibiotics across continents including Africa. This has resulted in initiatives in Botswana including treatment guidelines and the instigation of Antibiotic Stewardship Programs (ASPs). The next steps involve a greater understanding of current antibiotic utilization and resistance patterns (AMR). This resulted in a 2-day meeting involving key stakeholders principally from Botswana to discuss key issues including AMR rates as well as ASPs in both the public and private sectors. Following this, the findings will be used to plan future studies across Africa including point prevalence studies. The findings will be presented in July 2016 at the next Medicines Utilization Research in Africa meeting will ideally serve as a basis for planning future pertinent interventional studies to enhance the rational use of antibiotics in Botswana and wider.
[The environment as a reservoir for antimicrobial resistance : A growing problem for public health?
Westphal-Settele, Kathi; Konradi, Sabine; Balzer, Frederike; Schönfeld, Jens; Schmithausen, Ricarda
2018-05-01
Antimicrobial resistance (AMR) is a threat to public and animal health on the global scale. The origin of the genes associated with resistance has long been unknown. Recently, there is a growing body of evidence demonstrating that environmental bacteria are resistant to a multitude of antibiotic substances and that this environmental reservoir of AMR is still growing. The analysis of the genomes of bacterial pathogens indicates that they have acquired their resistance profiles by incorporating different genetic elements through horizontal gene transfer. The ancestors of pathogenic bacteria, as well as the origin of resistance determinants, lay most likely in the environmental microbiota. Indeed, there is some evidence that at least some clinically relevant resistance genes have originated in environmental bacterial species. Thus, feasible measures are required to reduce the risks posed by AMR genes and resistant bacteria that occur in the environment. It has been shown that a concurrence of factors, such as high concentrations of antibiotics or heavy metals used as biocides and high bacterial densities, promote development and spread of antimicrobial resistance. For this purpose, it is essential to restrict the use of antibiotics for the treatment of livestock and humans to medical necessity, as well as to reduce the application of biocides and heavy metals in animal husbandry. Moreover, it is important to further develop sanitary measures at the interface between the environment and clinical settings or livestock farming.
Verran, Joanna; Haigh, Carol; Brooks, Jane; Butler, Jonathan; Redfern, James
2018-05-31
There are many different initiatives, global and local, designed to raise awareness of antimicrobial resistance (AMR) and change audience behaviour. However, it is not possible to assess the impact of specific, small-scale events on national and international outcomes - although one might acknowledge some contribution to the individual and collective knowledge and experience-focused 'science capital' As with any research, in preparation for a public engagement event, it is important to identify aims, and appropriate methods whose results might help satisfy those aims. Therefore, the aim of this paper was to develop, deliver and evaluate an event designed to engage an adult audience with AMR. The venue was a World War 2 air raid shelter, enabling comparison of the pre- and post-antibiotic eras via three different activity stations, focusing on nursing, the search for new antibiotics, and investigations into novel antimicrobials. The use of observers released the presenters from evaluation duties, enabling them to focus on their specific activities. Qualitative measures of audience engagement were combined with quantitative data. The evaluation revealed that adult audiences can easily be absorbed into an activity- particularly if hands-on - after a brief introduction. This research demonstrates that hands-on practical engagement with AMR can enable high level interaction and learning in an informal and enjoyable environment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Sykora, Juan; Cheung, Mark C. M.; Moreno-Insertis, Fernando
We study the buoyant rise of magnetic flux tubes embedded in an adiabatic stratification using two-and three-dimensional, magnetohydrodynamic simulations. We analyze the dependence of the tube evolution on the field line twist and on the curvature of the tube axis in different diffusion regimes. To be able to achieve a comparatively high spatial resolution we use the FLASH code, which has a built-in Adaptive Mesh Refinement (AMR) capability. Our 3D experiments reach Reynolds numbers that permit a reasonable comparison of the results with those of previous 2D simulations. When the experiments are run without AMR, hence with a comparatively largemore » diffusivity, the amount of longitudinal magnetic flux retained inside the tube increases with the curvature of the tube axis. However, when a low-diffusion regime is reached by using the AMR algorithms, the magnetic twist is able to prevent the splitting of the magnetic loop into vortex tubes and the loop curvature does not play any significant role. We detect the generation of vorticity in the main body of the tube of opposite sign on the opposite sides of the apex. This is a consequence of the inhomogeneity of the azimuthal component of the field on the flux surfaces. The lift force associated with this global vorticity makes the flanks of the tube move away from their initial vertical plane in an antisymmetric fashion. The trajectories have an oscillatory motion superimposed, due to the shedding of vortex rolls to the wake, which creates a Von Karman street.« less
Ramírez-Vargas, Gabriel; Quesada-Gómez, Carlos; Acuña-Amador, Luis; López-Ureña, Diana; Murillo, Tatiana; del Mar Gamboa-Coronado, María; Chaves-Olarte, Esteban; Thomson, Nicholas; Rodríguez-Cavallini, Evelyn
2017-01-01
ABSTRACT The antimicrobial resistance (AMR) rates and levels recorded for Clostridium difficile are on the rise. This study reports the nature, levels, diversity, and genomic context of the antimicrobial resistance of human C. difficile isolates of the NAPCR1/RT012/ST54 genotype, which caused an outbreak in 2009 and is endemic in Costa Rican hospitals. To this end, we determined the susceptibilities of 38 NAPCR1 isolates to 10 antibiotics from seven classes using Etests or macrodilution tests and examined 31 NAPCR1 whole-genome sequences to identify single nucleotide polymorphisms (SNPs) and genes that could explain the resistance phenotypes observed. The NAPCR1 isolates were multidrug resistant (MDR) and commonly exhibited very high resistance levels. By sequencing their genomes, we showed that they possessed resistance-associated SNPs in gyrA and rpoB and carried eight to nine acquired antimicrobial resistance (AMR) genes. Most of these genes were located on known or novel mobile genetic elements shared by isolates recovered at different hospitals and at different time points. Metronidazole and vancomycin remain the first-line treatment options for these isolates. Overall, the NAPCR1 lineage showed an enhanced ability to acquire AMR genes through lateral gene transfer. On the basis of this finding, we recommend further vigilance and the adoption of improved control measures to limit the dissemination of this lineage and the emergence of more C. difficile MDR strains. PMID:28137804
Revisiting traditional risk factors for rejection and graft loss after kidney transplantation.
Dunn, T B; Noreen, H; Gillingham, K; Maurer, D; Ozturk, O G; Pruett, T L; Bray, R A; Gebel, H M; Matas, A J
2011-10-01
Single-antigen bead (SAB) testing permits reassessment of immunologic risk for kidney transplantation. Traditionally, high panel reactive antibody (PRA), retransplant and deceased donor (DD) grafts have been associated with increased risk. We hypothesized that this risk was likely mediated by (unrecognized) donor-specific antibody (DSA). We grouped 587 kidney transplants using clinical history and single-antigen bead (SAB) testing of day of transplant serum as (1) unsensitized; PRA = 0 (n = 178), (2) third-party sensitized; no DSA (n = 363) or (3) donor sensitized; with DSA (n = 46), and studied rejection rates, death-censored graft survival (DCGS) and risk factors for rejection. Antibody-mediated rejection (AMR) rates were increased with DSA (p < 0.0001), but not with panel reactive antibody (PRA) in the absence of DSA. Cell-mediated rejection (CMR) rates were increased with DSA (p < 0.005); with a trend to increased rates when PRA>0 in the absence of DSA (p = 0.08). Multivariate analyses showed risk factors for AMR were DSA, worse HLA matching, and female gender; for CMR: DSA, PRA>0 and worse HLA matching. AMR and CMR were associated with decreased DCGS. The presence of DSA is an important predictor of rejection risk, in contrast to traditional risk factors. Further development of immunosuppressive protocols will be facilitated by stratification of rejection risk by donor sensitization. ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation
NASA Astrophysics Data System (ADS)
Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo
2015-01-01
Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.
Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki
2015-01-01
Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482
78 FR 13140 - Additional Designation of Amr Armanazi Pursuant to Executive Order 13382
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... means of delivery (including missiles capable of delivering such weapons), including any efforts to... proliferation of weapons of mass destruction or their means of delivery (including missiles capable of...
Infectious Diseases Society of America
... Marches Save NIH Funding Faces of Antimicrobial Resistance Report Download Full Report Support AMR Program Funding WHO Priority Antibiotic-Resistant ... Looking to the Future of ID 2015 Annual Report Donate Today IDWeek Mentorship Program About the Foundation ...
Prosodic Structure as a Parallel to Musical Structure
Heffner, Christopher C.; Slevc, L. Robert
2015-01-01
What structural properties do language and music share? Although early speculation identified a wide variety of possibilities, the literature has largely focused on the parallels between musical structure and syntactic structure. Here, we argue that parallels between musical structure and prosodic structure deserve more attention. We review the evidence for a link between musical and prosodic structure and find it to be strong. In fact, certain elements of prosodic structure may provide a parsimonious comparison with musical structure without sacrificing empirical findings related to the parallels between language and music. We then develop several predictions related to such a hypothesis. PMID:26733930
Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott
2014-03-01
Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.
CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, Adrienne Celeste
Here, the development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria.
CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense
Greene, Adrienne Celeste
2017-11-17
Here, the development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria.
NASA Astrophysics Data System (ADS)
Fakhari, Abbas; Bolster, Diogo; Luo, Li-Shi
2017-07-01
We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time (WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct numerical simulation of two-phase flows in three dimensions. The proposed WMRT model enhances the numerical stability of the LBM for immiscible fluids at high density ratios, particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT-LBM-AMR is validated through simulations of (a) buoyancy-driven motion and deformation of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence mechanism of a liquid drop at a liquid-liquid interface. The numerical simulations agree well with available experimental data and theoretical approximations where applicable.
Space magnetometer based on an anisotropic magnetoresistive hybrid sensor
NASA Astrophysics Data System (ADS)
Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.
2014-12-01
We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.
Cerebellar contribution to mental rotation: a cTBS study.
Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura
2013-12-01
A cerebellar role in spatial information processing has been advanced even in the absence of physical manipulation, as occurring in mental rotation. The present study was aimed at investigating the specific involvement of left and right cerebellar hemispheres in two tasks of mental rotation. We used continuous theta burst stimulation to downregulate cerebellar hemisphere excitability in healthy adult subjects performing two mental rotation tasks: an Embodied Mental Rotation (EMR) task, entailing an egocentric strategy, and an Abstract Mental Rotation (AMR) task entailing an allocentric strategy. Following downregulation of left cerebellar hemisphere, reaction times were slower in comparison to sham stimulation in both EMR and AMR tasks. Conversely, identical reaction times were obtained in both tasks following right cerebellar hemisphere and sham stimulations. No effect of cerebellar stimulation side was found on response accuracy. The present findings document a specialization of the left cerebellar hemisphere in mental rotation regardless of the kind of stimulus to be rotated.
NASA Astrophysics Data System (ADS)
Jiang, Z.; Llandro, J.; Mitrelias, T.; Bland, J. A. C.
2006-04-01
A lab-on-a-chip integrated microfluidic cell has been developed for magnetic biosensing, which is comprised of anisotropic magnetoresistance (AMR) sensors optimized for the detection of single magnetic beads and electrodes to manipulate and sort the beads, integrated into a microfluidic channel. The device is designed to read out the real-time signal from 9 μm diameter magnetic beads moving over AMR sensors patterned into 18×4.5 μm rectangles and 10 μm diameter rings and arranged in Wheatstone bridges. The beads are moved over the sensors along a 75×75 μm wide channel patterned in SU8. Beads of different magnetic moments can be sorted through a magnetostatic sorting gate into different branches of the microfluidic channel using a magnetic field gradient applied by lithographically defined 120 nm thick Cu striplines carrying 0.2 A current.
NASA Technical Reports Server (NTRS)
Farhat, Charbel
1998-01-01
In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.
NASA Astrophysics Data System (ADS)
Zakaria, Dzaki; Lubis, Sandro W.; Setiawan, Sonni
2018-05-01
Tropical weather system is controlled by periodic atmospheric disturbances ranging from daily to subseasonal time scales. One of the most prominent atmospheric disturbances in the tropics is convectively coupled equatorial waves (CCEWs). CCEWs are excited by latent heating due to a large-scale convective system and have a significant influence on weather system. They include atmospheric equatorial Kelvin wave, Mixed Rossby Gravity (MRG) wave, Equatorial Rossby (ER) wave and Tropical Depression (TD-type) wave. In this study, we will evaluate the seasonal variability of CCEWs activity in nine high-top CMIP5 models, including their spatial distribution in the troposphere. Our results indicate that seasonal variability of Kelvin waves is well represented in MPI-ESM-LR and MPI-ESM-MR, with maximum activity occurring during boreal spring. The seasonal variability of MRG waves is well represented in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR, with maximum activity observed during boreal summer. On the other hand, ER waves are well captured by IPSL-CM5A-LR and IPSL-CM5A-MR and maximize during boreal fall; while TD-type waves, with maximum activity observed during boreal summer, are well observed in CanESM2, HadGEM2-CC, IPSL-CM5A-LR and IPSL-CM5A-MR. Our results indicate that the skill of CMIP5 models in representing seasonal variability of CCEWs highly depends on the convective parameterization and the spatial or vertical resolution used by each model.
An Ensemble Approach for Improved Short-to-Intermediate-Term Seismic Potential Evaluation
NASA Astrophysics Data System (ADS)
Yu, Huaizhong; Zhu, Qingyong; Zhou, Faren; Tian, Lei; Zhang, Yongxian
2017-06-01
Pattern informatics (PI), load/unload response ratio (LURR), state vector (SV), and accelerating moment release (AMR) are four previously unrelated subjects, which are sensitive, in varying ways, to the earthquake's source. Previous studies have indicated that the spatial extent of the stress perturbation caused by an earthquake scales with the moment of the event, allowing us to combine these methods for seismic hazard evaluation. The long-range earthquake forecasting method PI is applied to search for the seismic hotspots and identify the areas where large earthquake could be expected. And the LURR and SV methods are adopted to assess short-to-intermediate-term seismic potential in each of the critical regions derived from the PI hotspots, while the AMR method is used to provide us with asymptotic estimates of time and magnitude of the potential earthquakes. This new approach, by combining the LURR, SV and AMR methods with the choice of identified area of PI hotspots, is devised to augment current techniques for seismic hazard estimation. Using the approach, we tested the strong earthquakes occurred in Yunnan-Sichuan region, China between January 1, 2013 and December 31, 2014. We found that most of the large earthquakes, especially the earthquakes with magnitude greater than 6.0 occurred in the seismic hazard regions predicted. Similar results have been obtained in the prediction of annual earthquake tendency in Chinese mainland in 2014 and 2015. The studies evidenced that the ensemble approach could be a useful tool to detect short-to-intermediate-term precursory information of future large earthquakes.
Dhungana, Neha; Morris, Cory; Krasowski, Matthew D
2017-08-01
The aim of this study was to compare the operational impact of using vanadate oxidase versus diazo direct bilirubin assays for an academic medical center patient population. Retrospective study was done over an approximately 3.5 year period. The main automated chemistry instrumentation was a Roche Diagnostics cobas 8000 line. The Roche Direct Bilirubin assay was compared to Diazyme Laboratories Direct Bilirubin Assay and Randox Laboratories Direct Bilirubin assay using manufacturer's guidelines for hemolysis index, lipemia index, and analytical measurement range (AMR). Retrospective data was analyzed for 47,333 serum/plasma specimens that had clinical orders for direct bilirubin. A total of 5943 specimens (12.6%) exceeded the hemolysis index limit for the Roche method compared to only 0.2% and 0.05% of specimens for the Diazyme and Randox methods, respectively. The impact was particularly large on patients less than 2 years old, for which 51.3% of specimens exceeded the hemolysis index for the Roche method. A total of 1671 specimens (3.5%) exceeded the lipemia index limit for the Roche method compared to less than 0.1% for the Randox method. Lastly, 988 (2.1%) of specimens had direct bilirubin concentrations exceeding the upper AMR limit of 10 mg/dL [171 µmol/L] for the Roche assay compared to less than 1% of specimens for the vanadate oxidase methods. Vanadate oxidase direct bilirubin methods offer advantages over diazo methods in terms of less interference by hemolysis and lipemia, as well as wider AMR. The advantages are particularly evident for neonatal and infant populations.
Control of Antimicrobial Resistance Requires an Ethical Approach
Parsonage, Ben; Hagglund, Philip K.; Keogh, Lloyd; Wheelhouse, Nick; Brown, Richard E.; Dancer, Stephanie J.
2017-01-01
Ethical behavior encompasses actions that benefit both self and society. This means that tackling antimicrobial resistance (AMR) becomes an ethical obligation, because the prospect of declining anti-infectives affects everyone. Without preventive action, loss of drugs that have saved lives over the past century, will condemn ourselves, people we know, and people we don’t know, to unacceptable risk of untreatable infection. Policies aimed at extending antimicrobial life should be considered within an ethical framework, in order to balance the choice, range, and quality of drugs against stewardship activities. Conserving availability and effectiveness for future use should not compromise today’s patients. Practices such as antimicrobial prophylaxis for healthy people ‘at risk’ should receive full debate. There are additional ethical considerations for AMR involving veterinary care, agriculture, and relevant bio-industries. Restrictions for farmers potentially threaten the quality and quantity of food production with economic consequences. Antibiotics for companion animals do not necessarily spare those used for humans. While low-income countries cannot afford much-needed drugs, pharmaceutical companies are reluctant to develop novel agents for short-term return only. Public demand encourages over-the-counter, internet, black market, and counterfeit drugs, all of which compromise international control. Prescribers themselves require educational support to balance therapeutic choice against collateral damage to both body and environment. Predicted mortality due to AMR provides justification for international co-operation, commitment and investment to support surveillance and stewardship along with development of novel antimicrobial drugs. Ethical arguments for, and against, control of antimicrobial resistance strategies are presented and discussed in this review. PMID:29163414
The role of parallelism in the real-time processing of anaphora.
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P
2012-06-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution.
The role of parallelism in the real-time processing of anaphora
Poirier, Josée; Walenski, Matthew; Shapiro, Lewis P.
2012-01-01
Parallelism effects refer to the facilitated processing of a target structure when it follows a similar, parallel structure. In coordination, a parallelism-related conjunction triggers the expectation that a second conjunct with the same structure as the first conjunct should occur. It has been proposed that parallelism effects reflect the use of the first structure as a template that guides the processing of the second. In this study, we examined the role of parallelism in real-time anaphora resolution by charting activation patterns in coordinated constructions containing anaphora, Verb-Phrase Ellipsis (VPE) and Noun-Phrase Traces (NP-traces). Specifically, we hypothesised that an expectation of parallelism would incite the parser to assume a structure similar to the first conjunct in the second, anaphora-containing conjunct. The speculation of a similar structure would result in early postulation of covert anaphora. Experiment 1 confirms that following a parallelism-related conjunction, first-conjunct material is activated in the second conjunct. Experiment 2 reveals that an NP-trace in the second conjunct is posited immediately where licensed, which is earlier than previously reported in the literature. In light of our findings, we propose an intricate relation between structural expectations and anaphor resolution. PMID:23741080
Seismic analysis of parallel structures coupled by lead extrusion dampers
NASA Astrophysics Data System (ADS)
Patel, C. C.
2017-06-01
In this paper, the response behaviors of two parallel structures coupled by Lead Extrusion Dampers (LED) under various earthquake ground motion excitations are investigated. The equation of motion for the two parallel, multi-degree-of-freedom (MDOF) structures connected by LEDs is formulated. To explore the viability of LED to control the responses, namely displacement, acceleration and shear force of parallel coupled structures, the numerical study is done in two parts: (1) two parallel MDOF structures connected with LEDs having same damper damping in all the dampers and (2) two parallel MDOF structures connected with LEDs having different damper damping. A parametric study is conducted to investigate the optimum damping of the dampers. Moreover, to limit the cost of the dampers, the study is conducted with only 50% of total dampers at optimal locations, instead of placing the dampers at all the floor level. Results show that LEDs connecting the parallel structures of different fundamental frequencies, the earthquake-induced responses of either structure can be effectively reduced. Further, it is not necessary to connect the two structures at all floors; however, lesser damper at appropriate locations can significantly reduce the earthquake response of the coupled system, thus reducing the cost of the dampers significantly.
NASA Astrophysics Data System (ADS)
He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.
2017-02-01
Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG-BP method can provide improved tracking of sharp compositional boundaries. For applications in which strict bound-preserving behavior is desired, use of an element that provides a divergence-free condition on the weak formulation (e.g., Raviart-Thomas) and an improved mesh coarsening scheme for the AMR are required.
Recovering star formation histories: Integrated-light analyses vs. stellar colour-magnitude diagrams
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Pérez, I.; Gallart, C.; Alloin, D.; Monelli, M.; Koleva, M.; Pompei, E.; Beasley, M.; Sánchez-Blázquez, P.; Florido, E.; Aparicio, A.; Fleurence, E.; Hardy, E.; Hidalgo, S.; Raimann, D.
2015-11-01
Context. Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main-sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. Aims: We evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. Methods: We have obtained a high signal-to-noise (S/N ~ 36.3 per Å) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6-metre telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using STECKMAP, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes (STARLIGHT and ULySS) to derive the SFR and AMR from the integrated LMC spectrum. Results: We find very good agreement (average differences ~4.1%) between the SFR (t) and the AMR obtained using STECKMAP on the integrated light spectrum, and the CMD analysis. STECKMAP minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2. We find that the use of single stellar populations (SSPs) to recover the stellar content, using for instance STARLIGHT or ULySS codes, hampers the reconstruction of the SFR (t) and AMR shapes, yielding larger discrepancies with respect to the CMD results. These discrepancies can be reduced if spectral templates based on known and complex SFHs are employed rather than SSPs. Based on observations obtained at the 3.6 m ESO telescope on La Silla (Chile) and with the Hubble Space Telescope, operated by NASA.Appendices are available in electronic form at http://www.aanda.org
Effects of Ceftiofur and Chlortetracycline on the Resistomes of Feedlot Cattle.
Weinroth, Margaret D; Scott, H Morgan; Norby, Bo; Loneragan, Guy H; Noyes, Noelle R; Rovira, Pablo; Doster, Enrique; Yang, Xiang; Woerner, Dale R; Morley, Paul S; Belk, Keith E
2018-07-01
Treatment of food-producing animals with antimicrobial drugs (AMD) is controversial because of concerns regarding promotion of antimicrobial resistance (AMR). To investigate this concern, resistance genes in metagenomic bovine fecal samples during a clinical trial were analyzed to assess the impacts of treatment on beef feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystalline-free acid (a third-generation cephalosporin) were used to treat all cattle in treatment pens or only a single animal, and either chlortetracycline was included in the feed of all cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and posttrial fecal samples were collected, and resistance genes were characterized using shotgun metagenomics. Treatment with ceftiofur was not associated with changes to β-lactam resistance genes. However, cattle fed chlortetracycline had a significant increase in relative abundance of tetracycline resistance genes. There was also an increase of an AMR class not administered during the study, which is a possible indicator of coselection of resistance genes. Samples analyzed in this study had previously been evaluated by culture characterization ( Escherichia coli and Salmonella ) and quantitative PCR (qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study. In the majority of samples, genes that were selectively enriched through culture and qPCR were not identified through shotgun metagenomic sequencing in this study, suggesting that changes previously documented did not reflect changes affecting the majority of bacterial genetic elements found in the predominant fecal resistome. IMPORTANCE Despite significant concerns about public health implications of AMR in relation to use of AMD in food animals, there are many unknowns about the long- and short-term impact of common uses of AMD for treatment, control, and prevention of disease. Additionally, questions commonly arise regarding how to best measure and quantify AMR genes in relation to public health risks and how to determine which genes are most important. These data provide an introductory view of the utility of using shotgun metagenomic sequencing data as an outcome for clinical trials evaluating the impact of using AMD in food animals. Copyright © 2018 Weinroth et al.
Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G
2018-04-03
Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E. faecium strains were positive for any of the virulence genes tested. The clonal relationships among the 22 E. faecium strains were determined by pulsed-field gel electrophoresis (PFGE) typing. A total of 10 PFGE patterns were observed with 22 strains and a few of the strains from different probiotic products had identical (100% Dice similarity) PFGE patterns. In conclusion, the E. faecium strains in a few commercial probiotics exhibited AMR to medically-important antimicrobials, but none contained virulence genes.
Cole, Jennifer
Over the last 70 years, the efficacy, ready availability and relatively low cost of antimicrobial drugs - medicines that kill microorganisms such as bacteria and viruses or inhibit their multiplication, growth and pathogenic action - has led to their considerable overuse. It is estimated that nearly 50 per cent of all antimicrobial use in hospitals is unnecessary or inappropriate1 while in neonatal care, the figure is even higher, with infection confirmed in only five per cent of neonates treated with antibiotics.2 The more antimicrobials are used, the faster the microorganisms they target evolve into new, resistant strains, a natural process of evolution that threatens to undermine the tremendous life-saving potential of these drugs. Antimicrobial resistance (AMR) is a growing concern not only for the healthcare sector3 but also, increasingly, for security and resilience. Pandemic influenza, comparable only to 'Catastrophic terrorist attacks' at the top of the UK's National Risk Register4 may well result from the emergence of a strain that cannot be treated effectively with currently available drugs or from one that quickly develops resistance to the stockpiled countermeasures. Multidrug-resistant tuberculosis impacts on immigration policy, methicillin-resistant Staphylococcus aureus (MRSA), a major cause of hospital-acquired infections is an ongoing challenge for the health sector and the increase in drug-resistant strains of malaria is problematic both in its own right and as an additional consequence of climate change. AMR places a significant burden on international governments and tackling it requires changes to thinking across a number of government departments. In 2011, the Transatlantic Taskforce on Antimicrobial Resistance (TATFAR) published Recommendations for future collaboration between the US and EU1 and both the EU and the UK's Department of Health have recently developed new AMR strategies and Action Plans. This paper will explore the cross-disciplinary policy challenges that AMR presents and the difficulties that are likely to be faced in implementing the recommendations of the TATFAR report. It will compare and contrast the efficacy of some of the programmes already in place to help reduce or better target the use of antimicrobials and discuss potential areas for further research and development into tackling a growing international problem.
Antimicrobial resistance pattern in a tertiary care hospital: An observational study
Saravanan, Revathy; Raveendaran, Vinod
2013-01-01
Context: The number of organisms developing resistance to commonly used antibiotics is increasing among the various generations. The exact national scenario of antimicrobial resistance (AMR) is not known in India owing to the absence of a central monitoring agency. Aims: The aim of this study is to identify the group of organisms developing resistance, to know the classes of drugs against, which resistance has emerged and to assess the possible factors that can favor the development of AMR so that antibiotic policy can be formulated for the proper and effective use of antibiotics. Settings and Design: An observational study was conducted for a period of 1 year from August 2011 to July 2012 in a tertiary care hospital in Pondicherry. Subjects and Methods: Data regarding culture and sensitivity of the organisms isolated from different sources such as urine, blood, wound swab/pus, stool, sputum and tracheal aspirations were collected from the records of the Microbiology Department. Sample processing, identification of organisms to the genus and/or species level and antimicrobial sensitivity were carried out as per the Clinical and Laboratory Standards Institute guidelines on the 999 samples received. Results: Out of 999 samples, 125 (12.5%) showed significant growth of organisms exhibiting resistance to either single or multiple drugs. Out of 84 (67.2%) in-patients and 41 (32.8%) out-patient samples, Escherichia was the most common organism isolated with a total of 41 (32.8%), followed by Methicillin sensitive Staphylococcus aureus, 26 (20.8%), Klebsiella 25 (20%), Methicillin resistant Staphylococcus aureus 17 (13.6%), Pseudomonas 10 (8%), Proteus 2 (1.6%), 1 (0.8%) each of Citrobacter and Enterococci. Maximum resistance was observed with commonly used first line antimicrobials such as co-trimoxazole, ampicillin, amoxicillin, amoxyclav, fluoroquinolones, third generation cephalosporins and nalidixic acid. Least resistant or highly sensitive were amikacin, nitrofurantoin, gentamycin and doxycycline among the gram-negative bacteria. Macrolides, clindamycin, gentamycin, nitrofurantoin, vancomycin were the most sensitive antimicrobials against the gram-positive bacteria. Lack of knowledge on the consequences of inappropriate use of antibiotics was exhibited by 63% of subjects in our study. Conclusions: AMR was more with hospital acquired organisms and against commonly used antibiotics that are available since long period. Variation of resistance and sensitivity pattern with time and geographical location is identified. Periodic AMR monitoring and rotation of antibiotics are suggested to restrict further emergence of resistance. PMID:24808672
Parallel computations and control of adaptive structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.; Belvin, W. Keith; Chong, K. P. (Editor); Liu, S. C. (Editor); Li, J. C. (Editor)
1991-01-01
The equations of motion for structures with adaptive elements for vibration control are presented for parallel computations to be used as a software package for real-time control of flexible space structures. A brief introduction of the state-of-the-art parallel computational capability is also presented. Time marching strategies are developed for an effective use of massive parallel mapping, partitioning, and the necessary arithmetic operations. An example is offered for the simulation of control-structure interaction on a parallel computer and the impact of the approach presented for applications in other disciplines than aerospace industry is assessed.
Consequences of the Breakout Model for Particle Acceleration in CMEs and Flares
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Karpen, J. T.; DeVore, C. R.
2011-01-01
The largest and most efficient particle accelerators in the solar system are the giant events consisting of a fast coronal mass ejection (CME) and an intense X-class solar flare. Both flares and CMEs can produce l0(exp 32) ergs or more in nonthermal particles. Two general processes are believed to be responsible: particle acceleration at the strong shock ahead of the CME, and reconnection-driven acceleration in the flare current sheet. Although shock acceleration is relatively well understood, the mechanism by which flare reconnection produces nonthermal particles is still an issue of great debate. We address the question of CME/flare particle acceleration in the context of the breakout model using 2.5D MHD simulations with adaptive mesh refinement (AMR). The AMR capability allows us to achieve ultra-high numerical resolution and, thereby, determine the detailed structure and dynamics of the flare reconnection region. Furthermore, we employ newly developed numerical analysis tools for identifying and characterizing magnetic nulls, so that we can quantify accurately the number and location of magnetic islands during reconnection. Our calculations show that flare reconnection is dominated by the formation of magnetic islands. In agreement with many other studies, we find that the number of islands scales with the effective Lundquist number. This result supports the recent work by Drake and co-workers that postulates particle acceleration by magnetic islands. On the other hand, our calculations also show that the flare reconnection region is populated by numerous shocks and other indicators of strong turbulence, which can also accelerate particles. We discuss the implications of our calculations for the flare particle acceleration mechanism and for observational tests of the models.
Biot, Fabrice Vincent; Lopez, Mélanie Monique; Poyot, Thomas; Neulat-Ripoll, Fabienne; Lignon, Sabrina; Caclard, Arnaud; Thibault, François Michel; Peinnequin, Andre; Pagès, Jean-Marie; Valade, Eric
2013-01-01
Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.
Kotwani, Anita; Joshi, P C; Jhamb, Urmila; Holloway, Kathleen
2017-01-01
The objective of the study was to explore the prescribing practices, knowledge, and attitudes of primary care doctors and community pharmacists, regarding antibiotic use in acute upper respiratory tract infections (URTI) and diarrhea in children to better understand causes of misuse and identify provider suggestions to change such behavior. Two focus group discussions (FGDs) each were conducted with primary care government doctors (GDs), private general practitioners (GPs), pediatricians, and community pharmacists in Delhi. Each FGD had 8-12 participants and lasted 2 h. Furthermore, 22 individual face-to-face semi-structured interviews were conducted with providers of varying type and experience at their workplaces. Thematic and summative qualitative content analysis was done. All groups admitted to overusing antibiotics, GPs appearing to use more antibiotics than GDs and pediatricians for URTI and diarrhea in children. Pharmacists copy the prescribing of neighborhood doctors. Antimicrobial resistance (AMR) knowledge was poor for all stakeholders except pediatricians. Causes for prescribing antibiotics were patient pressure, profit motive, lack of follow-up and in addition for GDs, workload, no diagnostic facility, and pressure to use near-expiry medicines. Knowledge was gained through self-experience, copying others, information from pharmaceutical companies, and for some, training, continuous medical education/conferences. All groups blamed other professional groups/quacks for antibiotic overuse. Interventions suggested were sensitizing and empowering prescribers through training of providers and the public about the appropriate antibiotic use and AMR and implementing stricter regulations. A package of interventions targeting providers and consumers is urgently needed for awareness and change in behavior to reduce inappropriate community antibiotic use.
Wu, Dong; Ma, Ruoqi; Wei, Huawei; Yang, Kai; Xie, Bing
2018-05-01
Around 350 million tons of solid waste is disposed of in landfills every year globally, with millions of cubic meters of landfill leachates released into neighboring environment. However, to date, little is known about the variations of antimicrobial resistance (AMR) in on-site leachate treatment systems and its development in leachate-receiving water environment. Here, we quantified 7 subtypes of antibiotic resistance genes (ARGs), 3 types of culturable antibiotic resistant bacteria (ARB) and 6 subtypes of mobile genetic elements (MGEs) in the effluents from a combined leachate treatment process, including biological treatment (MBR), physical separation (UF), ultraviolet (UV) disinfection and advanced oxidation process (AOP). The contents of ARGs, ARB and MGEs were generally enriched by the MBR, but then decreased significantly along with the tertiary treatment process. However, in the effluent-receiving water samples, the abundance of dominant ARGs (i.e. ermB, sul1, bla TEM ) increased by 1.5 orders of magnitude within 96 h, alongside a general increase of MGEs (~10.0 log 10 (copies/mL) and total ARB (~1100 CFU/mL). Structural correlation analyses reveal that target ARGs were closely associated with MGEs, particularly in effluent-receiving samples (Procrustes test; M 2 = 0.49, R = 0.71, P = 0.001); and occurrences of ARB were majorly affected by ARG's distribution and environmental conditions (e.g. nitrogen speciation) in effluent and recipient groups, respectively. This study indicates that current treatment technologies and operation protocols are not feasible in countering the development of AMR in effluent-receiving water environment, particularly in tidal rivers that are capable of retaining contaminants for a long residence time. Copyright © 2018 Elsevier Ltd. All rights reserved.
2017 DOE Vehicle Technologies Office Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2017 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 5-9, 2017, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 263 individual activities were reviewed for VTO by 191 reviewers. Exactly 1,241 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia to give inputsmore » to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less
2016 DOE Vehicle Technologies Office Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2016 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 6-9, 2016, in Washington, DC. The review encompassed work done by the Hydrogen and Fuel Cells Program and VTO: 226 individual activities were reviewed for VTO, by 171 reviewers. A total of 1,044 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia tomore » give inputs to DOE with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less
2015 DOE Vehicle Technologies Office Annual Merit Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2015 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held June 8-12, 2015, in Arlington, Virginia. The review encompassed all of the work done by the FCTO and the VTO: 258 individual activities were reviewed for VTO, by 170 reviewers. A total of 1,095 individual review responses were received for the VTO technical reviews. The objective of the meeting was to review the accomplishments and plans for VTO over the previous 12 months, and provide an opportunity for industry, government, and academia tomore » give inputs to DOE on the Office with a structured and formal methodology. The meeting also provided attendees with a forum for interaction and technology information transfer.« less
Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors.
Liu, Shuang; Zha, Congxiang; Nacro, Kassoum; Hu, Min; Cui, Wenge; Yang, Yuh-Lin; Bhatt, Ulhas; Sambandam, Aruna; Isherwood, Matthew; Yet, Larry; Herr, Michael T; Ebeltoft, Sarah; Hassler, Carla; Fleming, Linda; Pechulis, Anthony D; Payen-Fornicola, Anne; Holman, Nicholas; Milanowski, Dennis; Cotterill, Ian; Mozhaev, Vadim; Khmelnitsky, Yuri; Guzzo, Peter R; Sargent, Bruce J; Molino, Bruce F; Olson, Richard; King, Dalton; Lelas, Snjezana; Li, Yu-Wen; Johnson, Kim; Molski, Thaddeus; Orie, Anitra; Ng, Alicia; Haskell, Roy; Clarke, Wendy; Bertekap, Robert; O'Connell, Jonathan; Lodge, Nicholas; Sinz, Michael; Adams, Stephen; Zaczek, Robert; Macor, John E
2014-07-10
A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13.
Providing context: antimicrobial resistance from multiple environmental sources
USDA-ARS?s Scientific Manuscript database
Background: Animal agriculture has been identified as encouraging the spread of resistance due to the use of large quantities of antimicrobials for animal production purposes. When antimicrobial resistance (AMR) is reported in agricultural settings without comparison to other environments there is a...
CRISPR-Based Antibacterials: Transforming Bacterial Defense into Offense.
Greene, Adrienne C
2018-02-01
The development of antimicrobial-resistant (AMR) bacteria poses a serious worldwide health concern. CRISPR-based antibacterials are a novel and adaptable method for building an arsenal of antibacterials potentially capable of targeting any pathogenic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Collisionless stellar hydrodynamics as an efficient alternative to N-body methods
NASA Astrophysics Data System (ADS)
Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard
2013-01-01
The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.
Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
Nuti, Ramya; Goud, Nerella S; Saraswati, A Prasanth; Alvala, Ravi; Alvala, Mallika
2017-01-01
Antimicrobial resistance (AMR) has posed a serious threat to global public health and it requires immediate action, preferably long term. Current drug therapies have failed to curb this menace due to the ability of microbes to circumvent the mechanisms through which the drugs act. From the drug discovery point of view, the majority of drugs currently employed for antimicrobial therapy are small molecules. Recent trends reveal a surge in the use of peptides as drug candidates as they offer remarkable advantages over small molecules. Newer synthetic strategies like organometalic complexes, Peptide-polymer conjugates, solid phase, liquid phase and recombinant DNA technology encouraging the use of peptides as therapeutic agents with a host of chemical functions, and tailored for specific applications. In the last decade, many peptide based drugs have been successfully approved by the Food and Drug Administration (FDA). This success can be attributed to their high specificity, selectivity and efficacy, high penetrability into the tissues, less immunogenicity and less tissue accumulation. Considering the enormity of AMR, the use of Antimicrobial Peptides (AMPs) can be a viable alternative to current therapeutics strategies. AMPs are naturally abundant allowing synthetic chemists to develop semi-synthetics peptide molecules. AMPs have a broad spectrum of activity towards microbes and they possess the ability to bypass the resistance induction mechanisms of microbes. The present review focuses on the potential applications of AMPs against various microbial disorders and their future prospects. Several resistance mechanisms and their strategies have also been discussed to highlight the importance in the current scenario. Breakthroughs in AMP designing, peptide synthesis and biotechnology have shown promise in tackling this challenge and has revived the interest of using AMPs as an important weapon in fighting AMR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms.
Saini, V; McClure, J T; Léger, D; Keefe, G P; Scholl, D T; Morck, D W; Barkema, H W
2012-08-01
Monitoring of antimicrobial resistance (AMR) in bacteria has clinical and public health significance. The present study determined prevalence of AMR in common mastitis pathogens Staphylococcus aureus, including methicillin-resistant Staph. aureus (MRSA; n=1,810), Escherichia coli (n=394), and Klebsiella species (n=139), including extended-spectrum β-lactamase (ESBL)-producing E. coli and Klebsiella species, isolated from milk samples on 89 dairy farms in 6 Canadian provinces. Minimum inhibitory concentrations (MIC) were determined using the Sensititer bovine mastitis plate (Trek Diagnostic Systems Inc., Cleveland, OH) and a National Antimicrobial Resistance Monitoring System gram-negative panel containing antimicrobials commonly used for mastitis treatment and control. Denim blue chromogenic agar and real-time PCR were used to screen and confirm MRSA, respectively. Resistance proportion estimates ranged from 0% for cephalothin and oxacillin to 8.8% for penicillin in Staph. aureus isolates, and 15% of the resistant Staph. aureus isolates were multidrug resistant. One MRSA isolate was confirmed (prevalence: 0.05%). Resistance proportion estimates ranged from 0% for ceftriaxone and ciprofloxacin to 14.8% for tetracycline in E. coli, and 0% for amikacin, ceftiofur, ciprofloxacin, and nalidixic acid to 18.6% for tetracycline in Klebsiella species isolates. Further, 62.8 and 55% of the resistant E. coli and Klebsiella species isolates were multidrug resistant, respectively. Resistance to >5 and >2 antimicrobials was most common in E. coli and Klebsiella species isolates, respectively, and no ESBL producers were found. Prevalence of AMR in bovine mastitis pathogens was low. Most gram-negative udder pathogens were multidrug resistant; MRSA was rarely found, and ESBL E. coli and Klebsiella species isolates were absent in Canadian milk samples. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Trikha, Saurabh; Jeremic, Aleksandar M.
2013-01-01
Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin’s molecular forms, thereby serving a cyto-protective role in these cells. PMID:24019897